

Octal Line Receiver

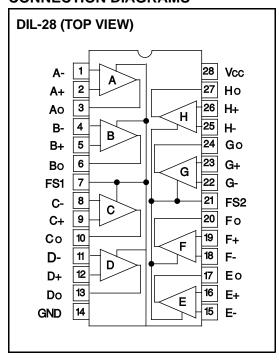
FEATURES

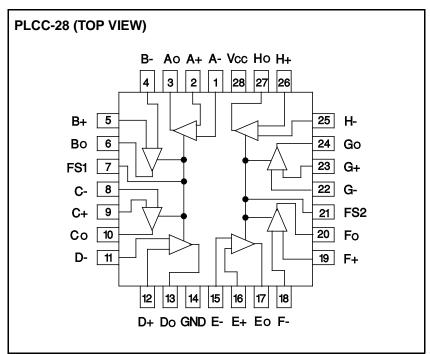
- Meets EIA232E/423A/422A and CCITT V.10, V.11, V.28, X.26, X.27
- Single +5V Supply—TTL Compatible Outputs
- Differential Inputs withstand ±25V
- Low Open Circuit Voltage for Improved Failsafe Characteristic
- Reduced Supply Current—35mA Max
- Internal Hysteresis

DESCRIPTION

The UC5181C is an octal line receiver designed to meet a wide range of digital communications requirements as outlined in EIA standards EIA232E, EIA422A, EIA423A and CCITT V.10, V.11, V.28, X.26, and X.27. The UC5181C is similar to the UC5180C, but without the input filtering. Thus, it covers the entire range of data rates up to 10MBPS. A failsafe function allows these devices to "fail" to a known state under a wide variety of fault conditions at the inputs.

ABSOLUTE MAXIMUM RATINGS (Note 1)


Supply Voltage, Vcc
Output Sink Current
Output Short Circuit Time
Common Mode Input Range15V
Differential Input Range25V
Failsafe Voltage0.3 to Vcc
PLCC Power Dissipation, TA=25° C (Note 2) 1000 mW
DIP Power Dissipation, Ta=25° C (Note 2)
Storage Temperature Range65° C to +150° C
Lead Temperature (Soldering, 10 seconds)300° C
Note 1: All voltages are with respect to ground, pin 14. Currents are positive in,


negative out of the specified terminal.

Note 1: All vollages are with respect to ground, pill 14: Currents are positive if negative out of the specified terminal.

Note 2: Consult packaging section of Databook for thermal limitations and considerations of package.

CONNECTION DIAGRAMS

DC ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for TA = 0°C to +70°C; Vcc = 5V ±5%, Input Common Mode Range ±7V, TA = TJ.

PARAMETER	SYMBOL	TEST CONDITIONS 3V ≤ VIN ≤25V			UC5181C		UNITS
					MIN	MAX	
DC Input Resistance	RIN				3	7	kΩ
Failsafe Output Voltage	Vofs	Inputs Open or Shorted Together, or One Input Open and One Grounded	0≥lout≤8mAVFaiLsafe=0V			0.45	V
			0≥louт≥-4	00μA, VFAILSAFE=VCC	2.7		
Differential Input High	VTL	Vout= 0.45V, lout = -440 μ A (See Figure 1)		Rs = 0 (Note3)	50	200	mV
Threshold				Rs = 500 (Note 3)		400	
Differential Input Low	VTL	Vout = 0.45V, lout = 8 mA (See Figure		Rs = 0 (Note 3)	-200	-50	mV
Threshold	nold 1)				-400		
Hysteresis	VH	Fs=0V or Vcc (See Figure 1)			45	140	mV
Open Circuit Input Voltage	Vioc					75	mV
Input Capacitance	Cı					20	pF
High Level Output Voltage	VoH	$VID = 1V$, $IOUT = -440 \mu A$			2.7		V
Low Level Output Voltage	Vol	VID = -1V (Note 4) $\frac{IOUT = 4 \text{ mA}}{IOUT = 8 \text{ mA}}$ Note 5		IOUT = 4 mA		0.4	V
				IOUT = 8 mA		0.45	
Short Circuit Output Current	los			20	100	mA	
Supply current	lcc 4.75V ≤Vcc≤5.25V				35	mA	
Input Current	lin	Other Inputs Grounded		VIN = +10V		3.25	mA
				VIH = -10V	-3.25		

- Note 3: Rs is a resistor in series with each input.
- Note 4: Measure after 100 ms warm up (at 0°C).
- Note 5: Only 1 output may be shorted at a time and then only for a maximum of 1 sec.
- Note 6: The delays, either tPLH or tPHL, shall not vary from receiver to receiver by more than 35ns.

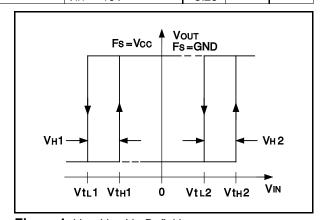


Figure 1. VTL, VTH, VH Definition

AC ELECTRICAL CHARACTERISTICS: Vcc=5V ±5%. Ta=0°C to +70°C, Figure 2 Ta=TJ.

PARAMETER	SYMBOL	. TEST CONDITIONS		UC5181C	
			MIN	MAX	
Propagation Delay-Low to High	tpLH	CL=50pF, VIN= ±500 mV (Note 6)		120	ns
Propagation Delay-High to Low	tPHL	CL=50pF, VIN= ±500 mV (Note 6)		120	ns
Acceptable Input frequency	fA	Unused Input Grounded, VIN= ±200 mV		5.0	MHz

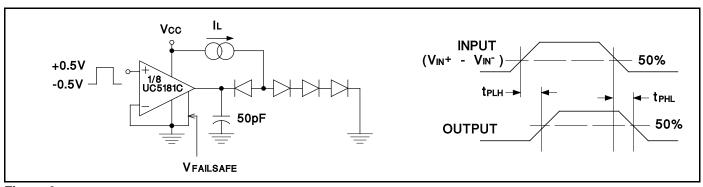
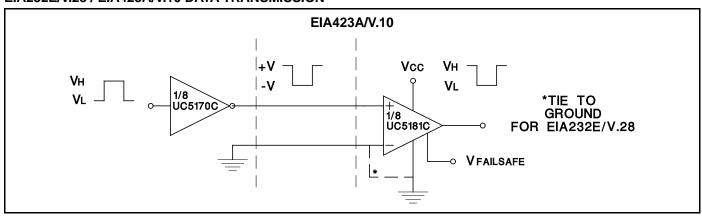


Figure 2. AC Test Circuit


APPLICATIONS INFORMATION

Failsafe Operation

These devices provide a failsafe operating mode to guard against input fault conditions as defined in EIA422A and EIA423A standards. These fault conditions are (1) driver in power-off condition, (2) receiver not interconnected with driver, (3) open-circuited interconnecting cable, and (4) short-circuited interconnecting cable. If one of these four fault conditions occurs at the inputs of a receiver,

then the output of that receiver is driven to a known logic level. The receiver is programmed by connecting the fail-safe input to Vcc or ground. A connection to Vcc provides a logic "1" output under fault conditions, while a connection to ground provides a logic "0". There are two failsafe pins (Fs1 and Fs2) on the UC5181C where each provides common failsafe control for four receivers.

EIA232E/V.28 / EIA423A/V.10 DATA TRANSMISSION

EIA422A/V.11 DATA TRANSMISSION

GENERAL LAYOUT NOTES

The drivers and receivers should be mounted close to the system common ground point, with the ground reference tied to the common point to reduce RFI/EMI.

Filter connectors or transzorbs should be used to reduce the RFI/EMI, and protecting the system from static (ESD), and electrical overstress (EOS). A filter connector or capacitor will reduce the ESD pulse by 90% typically. A cable dragged across a carpet and connected to a system can easily be charged to over 25,000 volts. This is a metal to metal contact when the cable is connected to the

system (no resistance), currents exceed 80 amps with less than a nanosecond rise time. A transzorb provides two functions, the device capacitance inherently acts as a filter capacitor, and the device clamps the ESD and EOS pulses which would pass through the capacitor and destroy the devices. The recommended transzorb for the UC5180C and the UC5181C is P6KE22CA.

^{*} Transzorb is a trademark of General Semiconductor Industries.