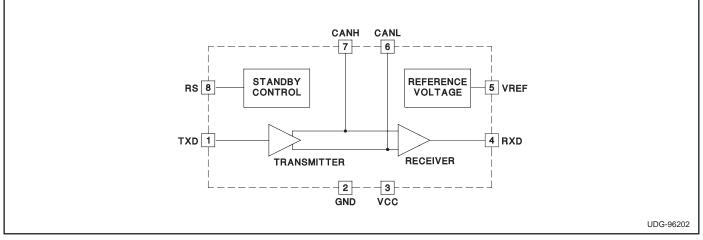
# **CAN** Transceiver

#### FEATURES

- Pin Compatible with PCA82C250 and DeviceNet, SDS, ISO11898 Compatible
- High Speed, up to 1Mbps
- Differential Transmit to the Bus and Receive from the Bus to the CAN Controller
- At Least 110 Nodes Can Be Connected
- 100V Transient Protection on the Transmit Output
- 24V Supply Cross Wire Protection on CANH and CANL
- No Bus Loading When Powered
  Down
- Operates over -40°C to +125°C
- Unitrode DeviceNet ID#107

The UC5350 Control Area Network Transceiver is designed for industrial applications employing the CAN serial communications physical layer per ISO 11898 standard. The device is a high speed transceiver designed for use up to 1Mbps. Especially designed for hostile environments, this device features cross wire, loss of ground, over voltage, and over temperature protections well as a wide common mode range.


The transceiver interfaces the single ended CAN controller with the differential CAN bus found in industrial and automotive applications. It operates over the -7V to +12V common mode range of the bus and will withstand common mode transients of -25V to +18V as well as Schaffner tests. Performance features include high differential input impedance, a symmetrical differential signal driver and very low propogation delay that improves bus bandwidth and length by reducing reflection and distortion.

The transceiver operates over a wide temperature range, -40°C to +125°C and is available in 8-pin SOIC and Dual-in-Line packages.

| Inp    | uts | System Mode | Output Mode | Outputs         |                      |  |
|--------|-----|-------------|-------------|-----------------|----------------------|--|
| TXD    | RS  |             |             | VCANH - VCANL   | RXD                  |  |
| 0      | 0   | High Speed  | Dominant    | 1.5V to 3V      | 0                    |  |
| 1      | 0   | High Speed  | Recessive   | -120mV to +12mV | 1                    |  |
| High Z | 0   | High Speed  | Recessive   | -120mV to +12mV | 1                    |  |
| Х      | 1   | Standby     |             | High Z          | 0 at Bus = Dominant  |  |
|        |     |             |             | -               | 1 at Bus = Recessive |  |

#### FUNCTIONAL TABLE (VCC = 4.5V to 5.5V)

## **BLOCK DIAGRAM**



## PRELIMINARY

## **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage0.3V to 9V                        |
|-------------------------------------------------|
| TXD, RXD, VREF, RS                              |
| CANL, CANH                                      |
| 0V < VCC < 5.5V8V to +36V                       |
| Non-Destructive, Non-Operative8V to +32V        |
| Transient, Schaffner Test (Fig. 1)–150 to +100V |
| Operating Temperature40°C to +125°C             |
| Storage Temperature                             |
| Junction Temperature55°C to +150°C              |
| Lead Temperature (Soldering, 10 sec.)+300°C     |
| Crosswire Protection Maximum VBUS               |
| Bus Differential Voltage* 30V                   |
| Cross Wire Protection TA40°C to 125°C           |

Currents are positive into, negative out of the specified terminal.

Consult Packaging Section of the Databook for thermal limitations and considerations of packages.

\*Refers to Figures 9, 10, 11, 12 and 13.

## **CONNECTION DIAGRAM**

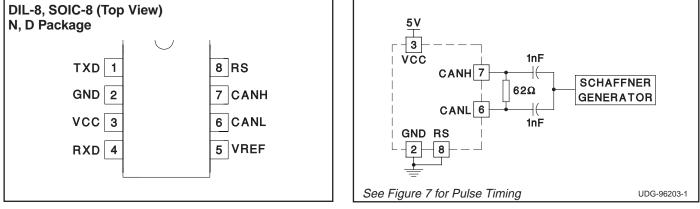



Figure 1. Schaffner Test

| PARAMETER                            | TEST CONDITIONS                | MIN      | TYP  | MAX     | UNITS |
|--------------------------------------|--------------------------------|----------|------|---------|-------|
| Supply Voltage                       |                                | 4.5      |      | 5.5     | V     |
| Supply Current                       | Dominant, TXD = 1V             |          |      | 70      | mA    |
|                                      | Recessive, TXD = 4V            |          | 9    | 13      | mA    |
|                                      | Standby, RS = 4V               |          | 1    | 1.5     | mA    |
| RS Input Current                     |                                | -10      |      | 5       | μA    |
| RS Voltage Input = Logic 1           | Standby                        | 0.75VCC  |      |         | V     |
| RS Voltage Input = Logic 0           | High Speed                     |          |      | 0.3VCC  | V     |
| Transmitter Voltage Input = Logic 1  | Transmitter Output Recessive   | 0.7VCC   |      |         | V     |
| Transmitter Voltage Input = Logic 0  | Transmitter Output Dominant    |          |      | 0.3VCC  | V     |
| Transmitter Current Input at Logic 1 | TXD = 4V                       |          |      | 30      | μA    |
| Transmitter Current Input at Logic 0 | TXD = 1V                       | -30      |      | 30      | μA    |
| Receiver Voltage Output = Logic 1    | $RXD = -100\mu A$ , $TXD = 4V$ | VCC -1.0 |      |         | V     |
| Receiver Voltage Output = Logic 0    | RXD = 1mA, TXD = 1V            |          | 0.75 | 1.0     | V     |
|                                      | RXD = 10mA, TXD = 1V           |          | 1.2  | 1.5     | V     |
| CANH, CANL Input Resistance          | No Load, TXD = 4V              | 30       | 43   | 54      | kΩ    |
| Differential Input Resistance        | No Load, TXD = 4V              | 60       | 86   | 108     | kΩ    |
| CANH, CANL Input Capacitance         | (Note 1)                       |          |      | 20      | pF    |
| Differential Input Capacitance       | (Note 1)                       |          |      | 10      | pF    |
| Reference Output Voltage             | VREF = ±50μA                   | 0.45VCC  |      | 0.55VCC | V     |

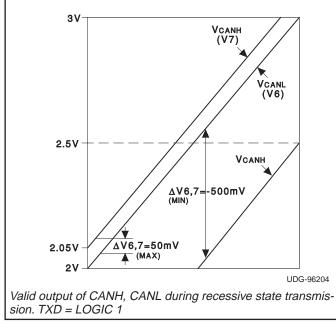
**ELECTRICAL CHARACTERISTICS (Total Device)** Unless otherwise stated, the device is disconnected from the bus line; VCC = 4.5V to 5.5V;  $60\Omega$  in parallel with 100pF load between CANH and CANL; TA = -40°C to +125°C, T<sub>A</sub> = T<sub>J</sub>

Note 1: Guaranteed by design. Not 100% tested in production.

kΩ

kΩ

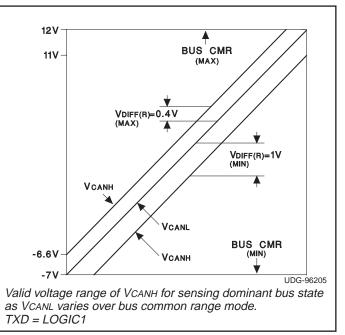
50


#### ELECTRICAL CHARACTERISTICS (DC Parameters For Recessive State) Unless otherwise stated, the مامينامم

| device is disconnected from the bus line; 6002 in parallel with 100pF load between CANH and CANE. |                                                                                 |      |     |      |       |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|-----|------|-------|--|
| PARAMETER                                                                                         | TEST CONDITIONS                                                                 | MIN  | TYP | MAX  | UNITS |  |
| VCANH, VCANL                                                                                      | No Load, TXD = 4V (Figure 2)                                                    | 2    | 2.5 | 3    | V     |  |
| Differential Output Transmitter<br>(VCANH – VCANL)                                                | No Load, TXD = 4V (Figure 2)                                                    | -500 | 0   | 50   | mV    |  |
| Differential Input Receiver                                                                       | Common Mode Range = $-7V$ to $+12V$ ,<br>TXD = 4V, CANH, CANL Externally Driven | -1   |     | 0.40 | V     |  |

(Figure 3)

No Load


prested from the bus lines COO is percelled with 100p E lead between CANUL A N II



**Differential Input Resistance** 

CANH, CANL Input Resistance

Figure 2. Recessive State Voltage Diagram



60

15

Figure 3. Recessive State Voltage Diagram

**ELECTRICAL CHARACTERISTICS (DC Parameters For Dominant State)** Unless otherwise stated, the device is disconnected from the bus line;  $60\Omega$  in parallel with 100pF load between CANH and CANL. VCC = 4.75V to 5.5V

| PARAMETER                                       | TEST CONDITIONS                                                                             | MIN  | TYP | MAX  | UNITS |
|-------------------------------------------------|---------------------------------------------------------------------------------------------|------|-----|------|-------|
| CANH Output Voltage (VCANH)                     | TXD = 1V (Figure 4)                                                                         | 2.75 |     | 4.5  | V     |
| CANL Output Voltage (VCANL)                     | TXD = 1V (Figure 4)                                                                         | 0.50 | 1.1 | 2.25 | V     |
| Differential Output Transmitter (VCANH - VCANL) | TXD = 1V (Figure 4)                                                                         | 1.5  | 2   | 3    | V     |
| Differential Input Receiver (VDIFF(D))          | Common Mode Range = $-2$ to $+7V$ , TXD = $4V$ ,<br>CANH, CANL Externally Driven (Figure 5) | 0.9  |     | 5    | V     |
|                                                 | Common Mode Range = $-7$ to $+12V$ , TXD = 4V,<br>CANH, CANL Externally Driven (Figure 5)   | 1.0  |     | 5    | V     |

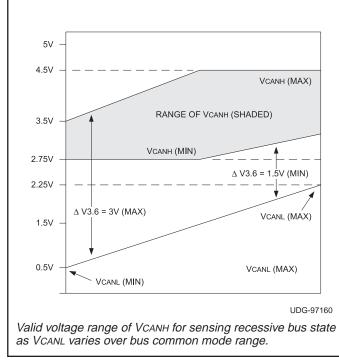
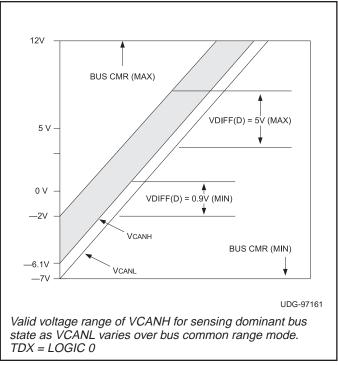




Figure 4. Dominant State Voltage Diagram





#### TRANSMITTER CHARACTERISTICS

Unless otherwise stated, the device is disconnected from the bus line;  $60\Omega$  in parallel with 100pF load between CANH and CANL.

| PARAMETER                                          | TEST CONDITIONS                            | MIN  | TYP | MAX | UNITS |
|----------------------------------------------------|--------------------------------------------|------|-----|-----|-------|
| Differential Output Transmitter<br>(VCANH - VCANL) | Dominant Mode                              | 1.5  | 2   | 3   | V     |
|                                                    | Recessive Mode                             | -500 |     | 50  | mV    |
| Delay From TXD to Bus Active TON (TXD)             | (Figure 6)                                 |      | 45  | 65  | ns    |
| Delay From TXD to Bus Inactive TOFF (TXD)          | $60\Omega$ Across CANH and CANL (Figure 6) |      | 40  | 80  | ns    |

#### **RECEIVER CHARACTERISTICS**

Unless otherwise stated, the device is disconnected from the bus line;  $60\Omega$  in parallel with 100pF load between CANH and CANL.

| PARAMETER                                   | TEST CONDITIONS                                                                                     | MIN | TYP | MAX | UNITS |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| Differential Input Receiver (VCANH - VCANL) | Dominant Mode, TXD = 4V                                                                             | 0.9 |     |     | V     |
|                                             | Recessive Mode, TXD = 4V                                                                            |     |     | 0.4 | V     |
| Differential Input Hysteresis               | TXD = 4V                                                                                            |     | 150 |     | mV    |
| Delay From Bus to RXD (TON)                 | Inactive to Active Bus (Figure 6)                                                                   |     |     | 55  | ns    |
| Delay From Bus to RXD (TOFF)                | Active to Inactive Bus, $60\Omega$ Across CANH and CANL (Figure 6)                                  |     |     | 145 | ns    |
| Delay From Bus to RXD (TOFF)                | $T_A = -25^{\circ}C$ to 85°C Active to Inactive Bus,<br>60 $\Omega$ Across CANH and CANL (Figure 6) |     |     | 75  | ns    |

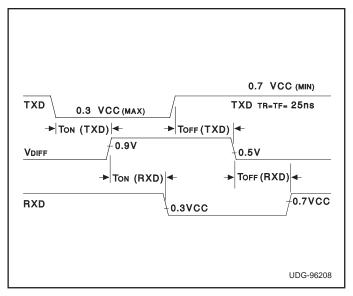



Figure 6. Transceiver AC Response

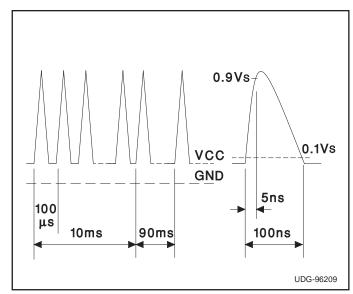
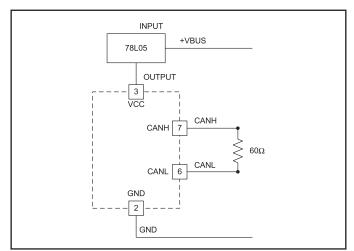




Figure 7. Timing Diagram for Schaffner Tests

## **Magnitude Specifications for Vs**

| ISO        | DIN 40839-1 | Schaffner    |  |  |  |
|------------|-------------|--------------|--|--|--|
| DP7637/1   | (Draft)     | NSG500C/506C |  |  |  |
| Up to 150V | Up to 150V  | 40V to 200V  |  |  |  |



**Figure 8. Normal Connection** 

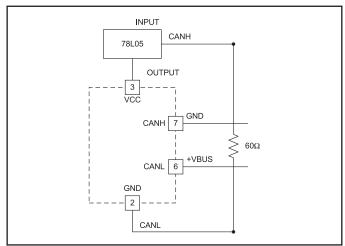



Figure 10. Crosswire No. 2

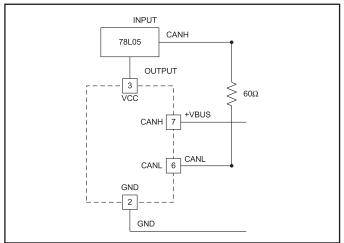



Figure 12. Crosswire No. 4

UNITRODE CORPORATION 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603) 424-3460

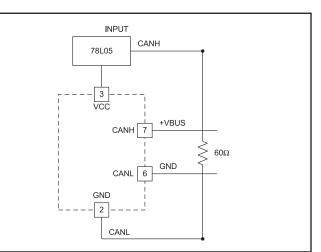



Figure 9. Crosswire No. 1

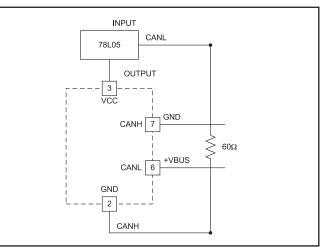



Figure 11. Crosswire No. 3

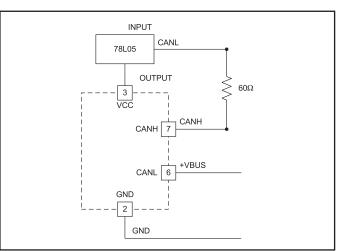



Figure 13. Crosswire No. 5