NITRODE

18-Line 3-5 Volt SCSI Active Terminator, Reverse Disconnect

FEATURES

- Complies with SCSI, SCSI-2, SCSI-3 and FAST-20 (Ultra) Standards
- 2.75V to 7V Operation •
- 1.8pF Channel Capacitance during . Disconnect
- 1µA Supply Current in Disconnect • Mode
- 110 Ohm/2.5k Programmable . Termination
- Completely Meets SCSI Hot Plugging •
- -650mA Sourcing Current for . Termination
- +400mA Sinking Current for Active • **Negation Drivers**
- Trimmed Termination Current to 4% •
- Trimmed Impedance to 7%
- Current Limit and Thermal Shutdown Protection

DESCRIPTION

The UCC5611 provides 18 lines of active termination for a SCSI (Small Computer Systems Interface) parallel bus. The SCSI standard recommends active termination at both ends of the cable segment.

The UCC5611 is ideal for high performance 3.3V SCSI systems. The key features contributing to such low operating voltage are the 0.1V drop out regulator and the 2.75V reference. The reduced reference voltage was necessary to accommodate the lower termination current dictated in the SCSI-3 specification. During disconnect the supply current is typically only 1µA, which makes the IC attractive for battery powered systems.

The UCC5611 is designed with an ultra low channel capacitance of 1.8pF, which eliminates effects on signal integrity from disconnected terminators at interim points on the bus.

The UCC5611 can be programmed for either a 110 ohm or 2.5k ohm termination. The 110 ohm termination is used for standard SCSI bus lengths and the 2.5k ohm termination is typically used in short bus applications. When driving the TTL compatible DISCNCT pin directly, the 110 ohm termination is connected when the DISCNCT pin is driven high, and disconnected when low. When the DISCNCT pin is driven through an impedance between 80k and 150k, the 2.5k ohm termination is connected when the DISCNCT pin is driven high, and disconnected when driven low.

continued

Circuit Design Patented

BLOCK DIAGRAM

Description Continued

The power amplifier output stage allows the UCC5611 to source full termination current and sink active negation current when all termination lines are actively negated.

The UCC5611 is pin for pin compatible with Unitrode's other 18 line SCSI terminators, except that DISCNCT is now active low, allowing lower capacitance and lower voltage upgrades to existing systems. The UCC5611, as with all Unitrode terminators, is completely hot pluggable and appears as high impedance at the terminating channels with VTRMPWR = 0V or open.

Internal circuit trimming is utilized, first to trim the 110

ABSOLUTE MAXIMUM RATINGS

Termpwr Voltage+7V
Signal Line Voltage 0V to +7V
Regulator Output Current Self-regulating
Storage Temperature65°C to +150°C
Operating Temperature55°C to +150°C
Lead Temperature (Soldering, 10 Sec.)+300°C
Unless otherwise specified all voltages are with respect to
Ground. Currents are positive into, negative out of the speci-
fied terminal.
Consult Packaging Section of Unitrode Integrated Circuits dat-
abook for thermal limitations and considerations of packages.

RECOMMENDED OPERATING CONDITIONS

Termpwr Voltage 2.75	V to 5.25V
Signal Line Voltage	0V to +5V
Disconnect Input Voltage 0V to	o Termpwr

* DWP package pin 28 serves as signal ground; pins 7, 8, 9, 20, 21, 22 serve as heatsink/ground.

ohm termination impedance to a 7% tolerance, and then most importantly, to trim the output current to a 4% tolerance, as close to the max SCSI-3 spec as possible, which maximizes noise margin in FAST-20 SCSI operation.

Other features include thermal shutdown and current limit.

This device is offered in low thermal resistance versions of the industry standard 28 pin wide body SOIC, 24 pin wide body DIP and 28 pin PLCC.

CONNECTION DIAGRAMS

* QP package pins 12 - 18 serve as both heatsink and signal ground.

DIL-24 (Top View N or J Package	/)	
DISCNCT 1	\smile	24 GND
LINE1 2		23 LINE18
LINE2 3		22 LINE17
N/C 4		21 N/C
LINE3 5		20 LINE16
LINE4 6		19 LINE15
LINE5 7		18 LINE14
LINE6 8		17 LINE13
LINE7 9		16 LINE12
LINE8 10		15 LINE11
LINE9 11		14 LINE10
TRMPWR 12		13 REG

Note: Drawings are not to scale.

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for TA = 0°C to 70°C. TRMPWR = 3.3V $\overline{\text{DISCNCT}}$ = 3.3V $\overline{\text{RDISCNCT}}$ = 0.0 hms TA = T.1

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
Supply Current Section							
Termpwr Supply Current	All termination lines = Open		1	2	mA		
	All termination lines = 0.2V		415	435	mA		
Power Down Mode	DISCNCT = 0V		0.5	5	μA		
Output Section (110 ohms - Terminator Lines)							
Terminator Impedance	(Note 4)	102.3	110	117.7	Ohms		
Output High Voltage	TRMPWR = 3V (Note 1)	2.5	2.7	3.0	V		
Max Output Current	VLINE = 0.2V, TJ = 25° C	-22.1	-23	-24	mA		
	VLINE = 0.2V	-21	-23	-24	mA		
	VLINE = 0.2V, TRMPWR = 3V, TJ = 25°C (Note 1)	-20.2	-23	-24	mA		
	VLINE = 0.2V, TRMPWR = 3V (Note 1)	-19	-23	-24	mA		
	VLINE = 0.5V			-22.4	mA		
Output Leakage	DISCNCT = 0V, TRMPWR = 0V to 5.25V		10	400	nA		
Output Capacitance	DISCNCT = 0V, DWP Package (Note 2, 3)		1.8	2.5	pF		
Output Section (2.5k ohms - Termina	ator Lines) (RDISCNCT = 80k ohms)						
Terminator Impedance		2	2.5	3	kΩ		
Output High Voltage	TRMPWR = 3V (Note 1)	2.5	2.7	3.0	V		
Max Output Current	VLINE = 0.2V	-0.7	-1	-1.4	mA		
	VLINE = 0.2V, TRMPWR = 3V (Note 1)	-0.6	-1	-1.5	mA		
Output Leakage	DISCNCT = 0V, TRMPWR = 0 to 5.25V		10	400	nA		
Output Capacitance	DISCNCT = 0V, DWP Package (Note 2, 3)		1.8	2.5	pF		
Regulator Section							
Regulator Output Voltage	5.25V > TRMPWR > 3V	2.5	2.7	3.0	V		
Drop Out Voltage	All Termination Lines = 0.2V		0.1	0.2	V		
Short Circuit Current	VREG = 0V	-450	-650	-800	mA		
Sinking Current Capability	VREG = 3V	200	400	800	mA		
Thermal Shutdown	(Note 2)		170		°C		
Thermal Shutdown Hysteresis	(Note 2)		10		°C		
Disconnect Section							
Disconnect Threshold	RDISCNCT = 0 & 80k	0.8	1.5	2.0	V		
Input Current	DISCNCT = 3.3V		30	50	μA		

Note 1: Measuring each termination line while other 17 are low (0.2V). Note 2: Guaranteed by design. Not 100% tested in production. Note 3: Output Capacitance is measured at 0.5V.

Note 4: Tested by measuring IOUT with VOUT = 0.2V and VOUT = VREG - 0.1V then calculating the impedance.

APPLICATION INFORMATION

Figure 1: Typical SCSI Bus Configurations Utilizing A UCC5611 Device