

18-Line SCSI Terminator (Reverse Disconnect)

FEATURES

- Complies with SCSI, SCSI-2, SCSI-3 and FAST-20 Standards
- 2pF Channel Capacitance
 During Disconnect
- 50µA Supply Current in Disconnect Mode
- 110Ω Termination
- SCSI Hot Plugging Compliant, 10nA Typical
- +400mA Sinking Current for Active Negation
- -650mA Sourcing Current for Termination
- Trimmed Impedance to 5%

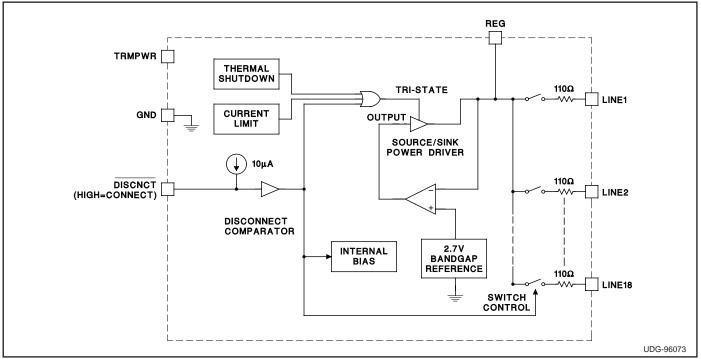
BLOCK DIAGRAM

DESCRIPTION

The UCC5617 provides 18 lines of active termination for a SCSI (Small Computers Systems Interface) parallel bus. The SCSI standard recommends and Fast-20 (Ultra) requires active termination at both ends of the cable.

Pin for pin compatible with the UC5609, the UCC5617 is ideal for high performance 5V SCSI systems, Termpwr 4.0V to 5.25V. During disconnect the supply current is only 50μ A typical, which makes the IC attractive for lower powered systems.

The UCC5617 is designed with a low channel capacitance of 2pF, which eliminates effects on signal integrity from disconnected terminators at interim points on the bus.

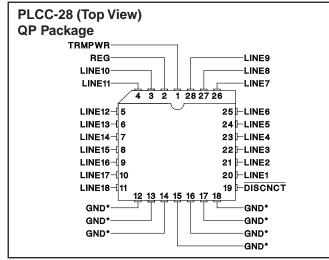

The power amplifier output stage allows the UCC5617 to source full termination current and sink active negation current when all termination lines are actively negated.

The UCC5617, as with all Unitrode terminators, is completely hot pluggable and appears as high impedance at the terminating channels with TRMPWR=0V or open.

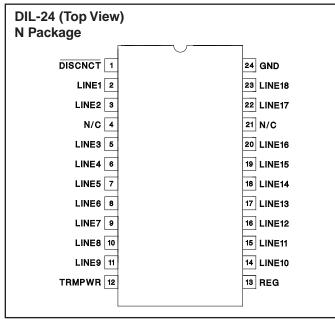
Internal circuit trimming is utilized, first to trim the 110Ω impedance, and then most importantly, to trim the output current as close to the maximum SCSI-3 specification as possible, which maximizes noise margin in fast SCSI operation.

Other features include thermal shutdown and current limit.

This device is offered in low thermal resistance versions of the industry standard 28 pin wide body SOIC, TSSOP and PLCC.

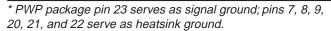

Circuit Design Patented

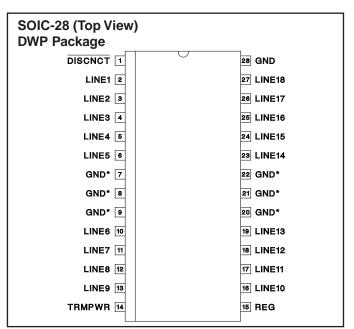
ABSOLUTE MAXIMUM RATINGS


Tempwr	
Signal Line Voltage	
Regulator Output Current	1A
Storage Temperature	65°C to +150°C
Operating Junction Temperature	55°C to +150°C
Lead Temperature (Soldering, 10 Seconds)	
All currents are positive into, negative out of the specified term	inal. Consult Packaging

Section of Databook for thermal limitations and considerations of packages.

CONNECTION DIAGRAMS




* DWP package pins 12 - 18 serve as both heatsink and signal ground.

* N package for engineering samples only.

TSSOP-28 (Top View) PWP Package	
	28 LINE4
	27 LINE3
LINE7 3	26 LINE2
LINE8 4	25 LINE1
LINE9 5	24 DISCNCT
TRMPWR 6	23 GND*
GND* 7	22 GND*
GND* 8	21 GND*
GND* 9	20 GND*
REG 10	19 LINE18
LINE10 11	18 LINE17
LINE11 12	17 LINE16
LINE12 13	16 LINE15
LINE13 14	15 LINE14

* DWP package pin 28 serves as signal ground; pins 7, 8, 9, 20, 21, 22 serve as heatsink/ground. Note: Drawings are not to scale.

ELECTRICAL CHARACTERISTICS Unless otherwise stated these specifications apply for $T_A = 0^{\circ}C$ to $70^{\circ}C$,

TRMPWR = 4.75V, $\overline{\text{DISCNCT}}$ = 4.75V, TA = TJ.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current Section	'		1	1	
Termpwr Supply Current	All termination lines = Open		1	2	mA
	All termination lines = 0.2V		420	450	mA
Power Down Mode	DISCNCT = 0V		50	100	μA
Output Section (Termination Line	es)				
Termination Impedance	(Note 3)	104.5	110	115.5	Ω
Output High Voltage	VTRMPWR = 4V (Note 1)	2.6	2.8	3	V
Maximum Output Current	$VLINE = 0.2V, TJ = 25^{\circ}C$	-22.1	-23.3	-24	mA
	VLINE = 0.2V	-20.7	-23.3	-24	mA
	VLINE = 0.2V, TRMPWR = 4V, TJ = 25°C (Note 1)	-21	-23	-24	mA
	VLINE = 0.2V, TRMPWR = 4V (Note 1)	-20	-23	-24	mA
	VLINE = 0.5V			-22.4	mA
Output Leakage	$\overline{\text{DISCNCT}} = 0$ V, TRMPWR = 0V to 5.25V,		10	400	nA
	REG = 0.2V, VLINE = 5.25V				
Output Capacitance	$\overline{\text{DISCNCT}} = 2.4 \text{V}$ (Note 2)		2	3.5	pF
Regulator Section					
Regulator Output Voltage		2.6	2.8	3	V
Drop Out Voltage	All Termination Lines = 0.2V		0.4	0.8	V
Short Circuit Current	VREG = 0V	-475	-650	-850	mA
Sinking Current Capability	Vreg = 3.5V	200	400	800	mA
Thermal Shutdown			170		°C
Thermal Shutdown Hysteresis			10		°C
Disconnect Section					
Disconnect Threshold		0.8	1.5	2	V
Input Current	$\overline{\text{DISCNCT}} = 0\text{V}$		-10	-30	μA

Note 1: Measuring each termination line while other 17 are low (0.2V).

Note 2: Guaranteed by design. Not 100% tested in production.

Note 3: Tested by measuring IOUT with VOUT = 0.2V and VOUT with no load, then calculating:

 $Z = \frac{VOUT N.L. - 0.2V}{VOUT N.L. - 0.2V}$

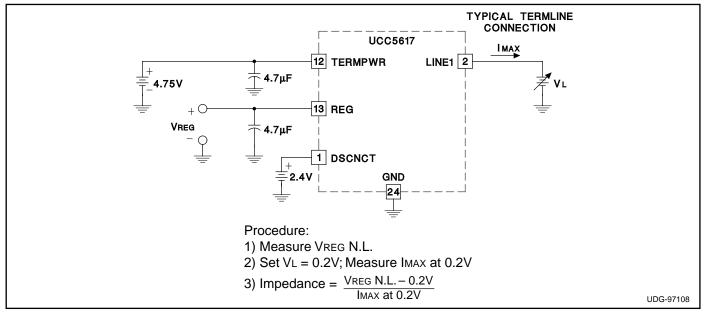
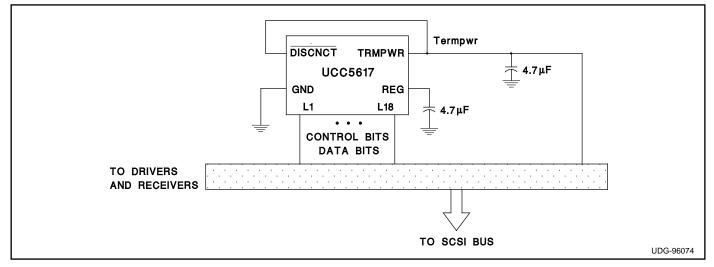


Figure 1. Termline Impedance Measurement Circuit


PIN DESCRIPTIONS

DISCNCT: Taking this pin low causes the 18 channels to become high impedance and the chip to go into low-power mode; a high or open state allows the channels to provide normal termination.

LINE 1-18: 110Ω termination channels. **REG:** Output of the internal 2.8V regulator. **TRMPWR:** Power for the IC.

GND: Ground reference for the IC.

APPLICATION INFORMATION

