

Buck Pulse Width Modulator Stepdown Voltage Regulator

FEATURES

- Simple Single Inductor Buck PWM Stepdown Voltage Regulation
- Drives External PMOS Switch
- Contains UVLO Circuit
- Includes Pulse-by-Pulse Current Limit
- Low 50μA Sleep Mode Current

DESCRIPTION

The UC3573 is a Buck pulse width modulator which steps down and regulates a positive input voltage. The chip is optimized for use in a single inductor buck switching converter employing an external PMOS switch. The block diagram consists of a precision reference, an error amplifier configured for voltage mode operation, an oscillator, a PWM comparator with latching logic, and a 0.5A peak gate driver. The UC3573 includes an undervoltage lockout circuit to insure sufficient input supply voltage is present before any switching activity can occur, and a pulse-by-pulse current limit. Input current can be sensed and limited to a user determined maximum value. In addition, a sleep comparator interfaces to the UVLO circuit which turns the chip off when the input voltage is below the UVLO threshold. This reduces the supply current to only $50\mu A$, making the UC3573 ideal for battery powered applications.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

VCC
EAINV
EAOUT25mA
RAMP–0.3V to 4V
CS
оит
3VREF
Storage Temperature
Junction Temperature—65°C to +150°C
_ead Temperature (Soldering, 10 sec.)+300°C
Currents are positive into, negative out of the specified terminal.
Consult Packaging Section of Databook for thermal limitations and considerations of packages.

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these parameters apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for the UC1573, $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2573, and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3573, VCC = 5V, CT = 680pF, TA = TJ.

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNITS
Reference Section		•			•
3VREF		2.94	3	3.06	V
Line Regulation	VCC = 4.75 to 30V		1	10	mV
Load Regulation	I3VREF = 0 to -5mA		1	10	mV
Oscillator Section		•	1		•
Frequency	Vcc = 5V, 30V	85	100	115	kHz
Error Amp Section		•	•		1
EAINV	EAOUT = 2V	1.45	1.5	1.55	l v
I EAINV	EAOUT = 2V		-0.2	-1	μΑ
AVOL	EAOUT = 0.5V to 3V	65	90		dB
EAOUT High	EAINV = 1.4V	3.6	4	4.4	V
EAOUT Low	EAINV = 1.6V		0.1	0.2	V
leaout	EAINV = 1.4V, EAOUT = 2V	-350	-500		μΑ
	EAINV = 1.6V, EAOUT = 2V	7	20		mA
Unity Gain Bandwidth	T _J = 25°C, F = 10kHz	0.6	1		MHz
Current Sense Comparator Section		•			•
Threshold (referred to VCC)		-0.39	-0.43	-0.47	V
Input Bias Current	CS = VCC		150	800	nA
CS Propagation Delay			400		ns
Gate Drive Output Section		•			•
OUT High Saturation	IOUT = 0		0	0.3	V
	IOUT = -10mA		0.7	1.5	V
	IOUT = -100mA		1.5	2.5	V
OUT Low Saturation	IOUT = 10mA		0.1	0.4	V
	IOUT = 100mA		1.5	2.2	V
Rise Time	T _J = 25°C, CLOAD = 1nF + 3.3 Ohms		30	80	ns
Fall Time	T _J = 25°C, CLOAD = 1nF + 3.3 Ohms		30	80	ns
Pulse Width Modulator Section		•			
Maximum Duty Cycle	EAINV = 1.4V		92	96	%
Minimum Duty Cycle	EAINV = 1.6V			0	%
Modulator Gain	EAOUT = 1.5V to 2.5V	25	35	45	%/V
Undervoltage Lockout Section		<u> </u>			•
Start Threshold		3.5	4.2	4.5	V
Hysteresis		100	200	300	mV

ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these parameters apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for the UC1573, $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2573, and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3573, VCC = 5V, CT = 680pF, TA = TJ.

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNITS				
Sleep Mode Section									
Threshold		1.8	2.2	2.6	V				
Supply Current Section									
Ivcc	VCC = 30V		9	12	mA				
Ivcc	VCC = 30V, EAINV = 3V		50	150	μΑ				

PIN DESCRIPTIONS

3VREF: Precision 3V reference. Bypass with 100nF capacitor.

CS: Peak current limit sense pin. Senses the current across a current sense resistor placed between VCC and source of the PMOS Buck switch. OUT will be held high (PMOS buck switch off) if VCC – CS exceeds 0.4V.

EAINV: Inverting input to error amplifier. VOUT sense feedback connected to this pin. The non-inverting input of the error amplifier is internally connected to

$$\frac{3VREF}{2}$$
 volts.

Connecting the EAINV pin to an external voltage greater than 2.6V commands the chip to go into a low current sleep mode. **EAOUT:** Output of error amplifier. Use EAOUT and EAINV for loop compensation components.

GND: Circuit Ground.

OUT: Gate drive for external PMOS switch connected between VCC and the flyback inductor. OUT drives the gate of the PMOS switch between VCC and GND.

RAMP: Oscillator and ramp for pulse width modulator. Frequency is set by a capacitor to GND by the equation

Recommended operating frequency range is 10kHz to 200kHz.

VCC: Input voltage supply to chip. Range is 4.75V to 30V. Bypass with a $1\mu F$ capacitor.

Typical Waveforms

TYPICAL APPLICATION: 12V TO 5V BUCK CONVERTER

