

Triple Skew-Compensating Video Delay Line with Analog and Digital Control

Preliminary Technical Data

AD8120

FEATURES

Corrects for Unshielded Twisted Pair (UTP) cable delay skew Broadband delay up to a total of 50 nsec per channel 152 MHz BW @ V₀ = 2 V_{P-P} & Ons delay 106 MHz BW @ Vo = 2 VP-P & 50ns delay Channel-to-channel output matching within ±4% Low output offset No external circuitry required to correct for offsets Independent Red, Green and Blue delay controls **Digital or analog delay control** Six-bit digital control over standard SPI bus I²C control Analog voltage control with on-chip MUXed ADC Fixed overall gain of 2 Low Noise Large differential input impedance: $10 M\Omega$ 32-lead 5 mm × 5 mm LFCSP package

APPLICATIONS

Keyboard-video mouse (KVM) Digital Signage RGB video over UTP cable Professional video projection and distribution HD Video Security video General Broadband Delay Lines

GENERAL DESCRIPTION

The AD8120 is a triple broadband skew delay compensation IC that corrects for time mismatch of video signals incurred by transmission in unshielded twisted pairs of Category-5 and Category-6 type cables. Skew between the individual pairs exists in most types of multi-pair UTP cables due to the different twist-rates used for each pair in order to minimize crosstalk among the pairs. Some pairs are therefore longer than others, and in long cables, the difference in propagation time between two pairs can be well into the tens of nanoseconds.

The AD8120 contains three delay paths which provide broadband delays up to 50 nanoseconds, in 0.8 ns increments, using 64 digital control steps or analog control adjustment. The delay technique used in the AD8120 minimizes noise and offset at the outputs. It has a broad bandwidth that ranges between 106MHz and 152 MHz, depending upon the delay setting. This high output bandwidth capability makes AD8120 ideal in applications that receive high-resolution video over UTP cables.

The logic circuitry inside the AD8120 provides for individual delay control of each path. The three delay times can be independently set using a standard four-wire SPI bus, standard I²C bus or by applying three analog control voltages to the V_{CR}, V_{CG}, and V_{CB} pins. Analog control offers a simple solution for systems that do not have digital control available, the simplest being potentiometer control.

The AD8120 is designed to be used with the AD8123 triple UTP equalizer in video-over-UTP applications, but can be used in other applications where similar controllable broadband delays are required.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The AD8120 is available in a 5 mm \times 5 mm 32-lead LFCSP package and is rated to operate over the industrial temperature range of -40°C to +85°C.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Table of Contents	2
Specifications	3
Absolute Maximum Ratings	5

Thermal Resistance	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Test Circuits	10
Theory of Operation	11
Applications	12

REVISION HISTORY

Revision PrA: Initial Version

SPECIFICATIONS

 T_{A} = 25°C, Vs = ±5V, R_{\text{L}}=150 $\Omega,$ unless otherwise noted.

Table 1.

Parameter	Conditions/Comments	Min	Тур	Max	Unit
DELAY CHARACTERISTICS					
Total Adjustable Delay Range	Delay Code 63 – Delay Code 0		50		ns
Delay Resolution	Monotonic, 1 LSB		0.8		ns
Propagation Delay	Delay at 0 ns setting		5.9		ns
Channel to Channel Delay Error	At maximum delay		0.7		%
Delay Differential Nonlinearity (DNL)	See Applications Section for Details				LSB
Delay Integral Nonlinearity (INL)	See Applications Section for Details				LSB
DYNAMIC PERFORMANCE					
-3dB Large Signal Bandwidth	$V_{OUT} = 2 V_{P-P}$, delay at 0 ns		152		MHz
	$V_{OUT} = 2 V_{P-P}$, delay at 50 ns		106		MHz
-3dB Video Signal Bandwidth	$V_{OUT} = 1.4 V_{P-P}$, delay at 0 ns				MHz
	$V_{OUT} = 1.4 V_{P-P}$, delay at 50 ns				MHz
-3dB Small Signal Bandwidth	$V_{OUT} = 0.2 V_{P-P}$, delay at 0 ns				MHz
	$V_{OUT} = 0.2 V_{P-P}$, delay at 50 ns				MHz
0.1 dB Video Signal Flatness	$V_{OUT} = 1.4 V_{P-P}$, delay at 0 ns				MHz
	$V_{OUT} = 1.4 V_{P-P}$, delay at 50 ns				MHz
10% to 90% Rise/Fall Time	V _{OUT} = 1.4 V step, delay at 0 ns		3.5		ns
	Vout = 1.4 V step, delay at 50 ns		4.5		ns
Settling Time to 1%	V _{OUT} = 1.4 V step, delay at 0 ns		5		ns
	Vout = 1.4 V step, delay at 50 ns		12		ns
Slew Rate	$V_{OUT} = 1.4 V$ step, delay at 0 ns		500		V/µs
	Vout = 1.4 V step, delay at 50 ns		400		V/µs
Overshoot	$V_{OUT} = 1.4 V$ step, delay at 0 ns		5	10	%
	Vout = 1.4 V step, delay at 50 ns				%
Gain	Over All Codes				V/V
Channel-to-Channel Gain Matching	Over All Codes, Among All Channels				%
Hostile Crosstalk	Measured R-to-B at 1MHz, V _{OUT} =1.4 V _{P-P}		-80		dB
Settling Time, Delay Setting Change	Time to settle to 1% after last clock edge				ns
VIDEO INPUT CHARACTERISTICS					
Input Bias Current	Rin, Gin, Bin		1	5	μΑ
Input Voltage Range	R _{IN} , G _{IN} , B _{IN}		-1/1		V
Input Resistance	Rin, Gin, Bin		10		MΩ
VIDEO OUTPUT CHARACTERISTICS					
Output Voltage Swing	Rout, Gout, Bout				V
Output Current	Rout, Gout, Bout		20		mA
Integrated Output Noise	Rout, Gout, Bout		2.5		mV _{rms}
Output Offset Voltage	Rout, Gout, Bout, Over All Delay Settings	-30	0	30	mV
Channel-to-Channel Output Offset Voltage Matching	Over All Codes, Among All Channels				mV
Output Impedence	Rout, Gout, Bout, PD high		4		Ω
	Rout, Gout, Bout, PD low		1		MΩ
ANALOG CONTROL INPUT CHARACTERISTICS					
Input Bias Current	Vcr, Vcg, Vcb				μA
Recommend Operating Range	V _{CR} , V _{CG} , V _{CB}		0 to 2		V
Input Offset Voltage	Vcr, Vcg, VcB Required To Move First Delay Step				V
Maximum Delay Saturation Voltage	V_{CR} , V_{CG} , V_{CB} at Which Maximum Delay is Reached				V
Delay Voltage Step Size in Linear Range	ΔV_{CR} , ΔV_{CG} , ΔV_{CB} to Move one Delay LSB				mV
DIGITAL CONTROL INPUT CHARACTERISTICS					

AD8120

Preliminary Technical Data

Parameter	Conditions/Comments	Min	Тур	Max	Unit
Input Bias Current	SDO/SDA, SCK/SCL, SDI, CS , SER_SEL, MODE				μA
Input High Voltage	SDO/SDA, SCK/SCL, SDI, CS , SER_SEL, MODE				V
Input Low Voltage	SDO/SDA, SCK/SCL, SDI, CS , SER_SEL, MODE				V
Output High Voltage	SDO/SDA, SCK/SCL, SDI, CS , SER_SEL, MODE				v
Output Low Voltage	SDO/SDA, SCK/SCL, SDI, CS , SER_SEL, MODE				v
Minimum Input Slew Rate	SCK/SCL				V/µs
Setup Time	SDI to SCK, SDA (in) to SCL				
Hold Time	SDI to SCK, SDA (in) to SCL				
Clock Frequency	SCK/SCL				
Clock Pulse Width	SCK/SCL				
POWER DOWN (PD)					
Input Bias Current	Powered Down				
	Enabled				
Input Voltage	Powered Down				
	Enabled				
Assert Time					
De-Assert Time					
POWER SUPPLY					
Positive Supply Range		4.5		5.5	V
Negative Supply Range		-5.5		-4.5	V
Quiescent Positive Supply Current	Delay = 0 ns				mA
	Delay = 50 ns				mA
	Powered Down, \overline{PD} = Low				
Quiescent Negative Supply Current	Delay = 0 ns				mA
	Delay = 50 ns				mA
	Powered Down, \overline{PD} = Low				
Supply Current Drift	T _{MIN} to T _{MAX}				mA/°C
+PSRR	$R_L = 150 \Omega$				dB
-PSRR	$R_L = 150 \ \Omega$				dB

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	
Power Dissipation	See Figure 3
Common-Mode Input Voltage	VEE – 0.5 V to VCC + 0.5 V
Differential Input Voltage	1.8 V
Storage Temperature	–65°C to +125°C
Operating Temperature Range	–40°C to +85°C
Lead Temperature Range	300°C
Junction Temperature	150°C
Figure 2)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface mount packages.

Table 3. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
5 mm × 5 mm, 32-Lead LFCSP	TBD	TBD	°C/W

Maximum Power Dissipation

The maximum safe power dissipation in the ADA4410-6 package is limited by the associated rise in junction temperature (T_J) on the die. At approximately 150°C, which is the glass transition temperature, the plastic will change its properties. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4410-6. Exceeding a junction temperature of 175°C for an extended period of time can result in changes in the silicon devices potentially causing failure.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

The power dissipated in the package (P_D) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V_S) times the quiescent current (I_S). Power dissipated due to load drive depends upon the particular application. It is calculated by multiplying the load current by the associated voltage drop across the device. RMS voltages and currents must be used in these calculations.

Airflow will increase heat dissipation effectively reducing θ_{JA} . Also, more metal directly in contact with the package leads from metal traces, through holes, ground, and power planes will reduce the θ_{JA} .

Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature on a JEDEC standard 4-layer board. θ_{JA} values are approximations.

Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

AD8120

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Exposed Pad on Underside of Device Must Be Connected to PCB Plane

Figure 4. 32-Lead LFCSP Pin Configuration, Top View

Table 4. Pin Function De	escriptions	
Pin No.	Mnemonic	Description
1	GND	Ground
2	SDO/SDA	Serial Data Output for SPI Bus/Bi-Directional Serial Data Line for I ² C Bus
3	DNC	Do Not Connect
4	NC	No Internal Connection
5	PD	Power Down
6	SER_SEL	Selection Between SPI and I ² C Serial Buses. I ² C=0, SPI=1
7	MODE	Selection Between Analog and Digital Control Modes. Digital=0, Analog=1
8, 18, 24	GND	Ground
9	Vs-	Negative Power Supply. Connect to -5V
10	B_GAIN	Blue Channel Gain of 2 if tied to GND or 1 if NC
11	Bout	Blue Channel Video Output
12	G_GAIN	Green Channel Gain of 2 if tied to GND or 1 if NC
13	GOUT	Green Channel Video Output
14	R_GAIN	Red Channel Gain of 2 if tied to GND or 1 if NC
15	R _{OUT}	Red Channel Video Output
16, 17, 25	V _{S+}	Positive Power Supply. Connect to +5V
19	DNC	Do Not Connect
20	VREF	Internal Reference Bypass
21	V _{CB}	Analog Delay Control, Blue Channel
22	Vcg	Analog Delay Control, Green Channel
23	V _{CR}	Analog Delay Control, Red Channel
26	R _{IN}	Red Channel Video Input
27	G _{IN}	Green Channel Video Input
28	BIN	Blue Channel Video Input
29	SDI	Serial Data Input for SPI Bus
30	SCK/SCL	Serial Clock for SPI Bus/Serial Clock for I ² C Bus
31	CS	Chip Select for SPI Bus
32	TEST1	Test Pin. Connect to Ground
Exposed Underside Pad		Thermal Plane Connection. Connect to any PCB plane with voltage between V_{S+} and V_{S-}

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25^{\circ}$ C, $Vs = \pm 5$ V, $R_L = 150 \Omega$, unless otherwise noted.

Figure 5. Small Signal Frequency Response for Various Delay Settings

Figure 6. Small Signal Pulse Response for Various Delay Settings

Figure 7. Digital Delay Code vs. Delay

Figure 8. Video Signal Frequency Response for Various Delay Settings

Figure 9. Large Signal Pulse Response for Various Delay Settings

|--|

Figure 10. Analog Voltage vs. Delay

Figure 13. Small Signal Frequency Response for Various Temperatures

Figure 22. Negative Supply Current vs. Delay

Figure 19. Positive Supply Current vs. Delay

TEST CIRCUITS

THEORY OF OPERATION

APPLICATIONS