20 µA Maximum, Rail-to-Rail I/O, Zero Input, Crossover Distortion Amplifiers

Preliminary Technical Data

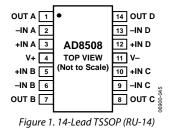
FEATURES

PSRR: 100 dB minimum CMRR: 105 dB typical Very low supply current: 20 μA per amp maximum 1.8 V to 5 V single-supply or ±0.9 V to ±2.5 V dual-supply operation Rail-to-rail input and output 2.5 mV offset voltage maximum Very low input bias current: 1 pA typical

APPLICATIONS

Pressure and position sensors Remote security Bio sensors IR thermometers Battery-powered consumer equipment Hazard detectors

GENERAL DESCRIPTION


The AD8508 is a quad micropower amplifiers featuring rail-torail input and output swings while operating from a 1.8 V to 5 V single or from ± 0.9 V to ± 2.5 V dual power supply.

Using a novel circuit technology, these low cost amplifiers offer zero crossover distortion (excellent PSRR and CMRR performance) and very low bias current, while operating with a supply current of less than 20 μA per amplifier. This amplifier offers the lowest noise in its power class.

This combination of features makes the AD8508 amplifiers ideal choices for battery-powered applications because they minimize errors due to power supply voltage variations over the lifetime of the battery and maintain high CMRR even for a railto-rail input op amp.

PIN CONFIGURATION

AD8508

Remote battery-powered sensors, handheld instrumentation and consumer equipment, hazard detection (for example, smoke, fire, and gas), and patient monitors can benefit from the features of the AD8508 amplifiers.

The AD8508 are specified for both the industrial temperature range of -40° C to $+85^{\circ}$ C and the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The AD8508 quad amplifiers are available in the 14-lead TSSOP package.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 V_{SY} = 5 V, V_{CM} = $V_{\text{SY}}/2,$ T_{A} = 25°C, R_{L} = 100 k Ω to GND, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0~V \leq V_{CM} \leq 5~V$		0.5	2.5	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			3.5	mV
Input Bias Current	IB			1	10	рА
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			100	рА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			600	рА
Input Offset Current	los			0.5	5	рА
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			50	рА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			130	рА
Input Voltage Range		$-40^{\circ}C \le T_A \le +125^{\circ}C$	0		5	V
Common-Mode Rejection Ratio	CMRR	$0~V \leq V_{CM} \leq 5~V$	90	105		dB
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	90			dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	85			dB
Large Signal Voltage Gain	A _{VO}	$0.05~V \leq V_{\text{OUT}} \leq 4.95~V$	105	120		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	100			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		2		μV/°C
Input Capacitance Differential Mode	CDIFF			3		pF
Input Capacitance Common Mode	C _{CM}			4.2		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 100 \text{ k}\Omega \text{ to GND}$	4.98	4.99		v
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.98			v
		$R_{L} = 10 \text{ k}\Omega$ to GND	4.9	4.95		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.9			v
Output Voltage Low	Vol	$R_L = 100 \text{ k}\Omega \text{ to } V_{SY}$		2	5	mV
1 5		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			5	mV
		$R_{L} = 10 \text{ k}\Omega \text{ to } V_{SY}$		10	25	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			30	mV
Short-Circuit Limit	lsc			±55		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 1.8 V \text{ to } 5 V$	100	110		dB
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	100			dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	95			dB
Supply Current per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$		15	20	μA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			25	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 10 \text{ pF}, G = 1$		13		mV/μs
Gain Bandwidth Product	GBP	$R_L = 1 M\Omega, C_L = 20 pF, G = 1$		95		kHz
Phase Margin	Фм	$R_L = 1 M\Omega$, $C_L = 20 pF$, $G = 1$		60		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.8		μV р-р
Voltage Noise Density	en p	f = 1 kHz		45		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		15		fA/√Hz

ELECTRICAL CHARACTERISTICS—1.8 V OPERATION

 V_{SY} = 1.8 V, V_{CM} = $V_{\text{SY}}/2,$ T_{A} = 25°C, R_{L} = 100 k Ω to GND, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0~V \leq V_{\text{CM}} \leq 1.8~V$		0.5	2.5	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			3.5	mV
Input Bias Current	IB			1	10	pА
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			100	pА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			600	pА
Input Offset Current	los			0.5	5	pА
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			50	pА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			100	pА
Input Voltage Range		$-40^{\circ}C \le T_A \le +125^{\circ}C$	0		1.8	V
Common-Mode Rejection Ratio	CMRR	$0~V \leq V_{\text{CM}} \leq 1.8~V$	85	100		dB
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	85			dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	80			dB
Large Signal Voltage Gain	Avo	$0.05~V \leq V_{\text{OUT}} \leq 1.75~V$	95	115		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	95			dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		2.5		μV/°C
Input Capacitance Differential Mode	C _{DIFF}			3		pF
Input Capacitance Common Mode	C _{CM}			4.2		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega \text{ to GND}$	1.78	1.79		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	1.78			V
		$R_L = 10 \ k\Omega \ to \ GND$	1.65	1.75		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	1.65			V
Output Voltage Low	Vol	$R_L = 100 \text{ k}\Omega \text{ to } V_{SY}$		2	5	mV
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			5	mV
		$R_L = 10 \ k\Omega \ to \ V_{SY}$		12	25	mV
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			25	mV
Short-Circuit Limit	lsc			±6.5		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 1.8 V \text{ to } 5 V$	100	110		dB
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	100			dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	95			dB
Supply Current per Amplifier	Isy	$V_{OUT} = V_{SY}/2$		16.5	20	μΑ
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			25	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	R_L = 100 k Ω , C_L = 10 pF, G = 1		13		mV/μs
Gain Bandwidth Product	GBP	$R_L = 1 \ M\Omega, \ C_L = 20 \ pF, \ G = 1$		95		kHz
Phase Margin	Фм	$R_L = 1 \text{ M}\Omega, C_L = 20 \text{ pF}, G = 1$		60		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.8		μV p-p
Voltage Noise Density	en	f = 1 kHz		45		nV/√Hz
Current Noise Density	İn	f = 1 kHz		15		fA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating		
Supply Voltage	5.5 V		
Input Voltage	$\pm V_{SY} \pm 0.1 V$		
Input Current ¹	±10 mA		
Differential Input Voltage ²	$\pm V_{SY}$		
Output Short-Circuit Duration to GND	Indefinite		
Storage Temperature Range	-65°C to +150°C		
Operating Temperature Range	-40°C to +125°C		
Junction Temperature Range	–65°C to +150°C		
Lead Temperature (Soldering, 60 sec)	300°C		

¹ Input pins have clamp diodes to the supply pins. Input current should be limited to 10 mA or less whenever the input signal exceeds the power supply rail by 0.5 V.

² Differential input voltage is limited to 5 V or the supply voltage, whichever is less.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard two-layer board.

Table 4. Thermal Resistance

Package Type	θ _{JA}	οισ	Unit
8-Lead MSOP (RM-8)	190	44	°C/W
14-Lead TSSOP (RU-14)	180	35	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.