

Single, Ultralow Distortion, Ultralow Noise Op Amp

Preliminary Technical Data

AD8597

FEATURES

Low noise: 1 nV/√Hz at 1 kHz

Low distortion: -105 dB THD @ 20 kHz <80 nV p-p input noise, 0.1 Hz to 10 Hz

Slew rate: 16 V/µs Wide bandwidth: 10 MHz Supply current: 4.7 mA typical Low offset voltage: 10 µV typical

CMRR: 120 dB Unity-gain stable ±15 V operation

APPLICATIONS

Professional audio preamplifiers
ATE/precision testers
Imaging systems
Medical/physiological measurements
Precision detectors/instruments
Precision data conversion

PIN CONFIGURATION

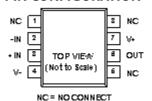


Figure 1. 8-Lead SOIC (R-8)

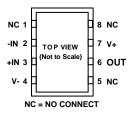


Figure 2. 8-LFCSP (3x3)(CP-8)

GENERAL DESCRIPTION

The AD8597 is a single, very low noise, low distortion operational amplifier ideal for use as a preamplifier. The low noise of $1~{\rm nV/\sqrt{Hz}}$ and low harmonic distortion of $-105~{\rm dB}$ (or better) at audio bandwidths give the AD8597 the wide dynamic range necessary for preamps in audio, medical, and instrumentation applications. The AD8597's excellent slew rate of $16~{\rm V/\mu s}$ and $10~{\rm MHz}$ gain bandwidth make it highly suitable for medical

applications. The low distortion and settling time of the AD8597 make it ideal for buffering of high resolution data converters.

The AD8597 is available in an 8-Lead SOIC and 8-Lead LFCSP (3x3) packages and is specified over a -40° C to $+125^{\circ}$ C temperature range.

AD8597

SPECIFICATIONS

 $V_S = \pm 15$ V, $V_{CM} = 0$ V, $V_O = 0$ V, $T_A = +25$ °C, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			10	120	μV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			180	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40 °C \leq T _A \leq $+125$ °C		0.8	2.2	μV/°C
Input Bias Current	I _B			25	180	nA
		-40 °C $\leq T_A \leq +125$ °C			300	nA
Input Offset Current	los			25	180	nA
		-40 °C $\leq T_A \leq +125$ °C			220	nA
Input Voltage Range	IVR	$V_{DD} = \pm 15 \text{ V}$	-12.5		+12.5	V
Common-Mode Rejection Ratio	CMRR	$-12.5 \text{ V} \le \text{V}_{\text{CM}} \le +12.5 \text{ V}$	120	140		dB
,		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	115			dB
Large Signal Voltage Gain	Avo	$R_L \ge 600 \Omega, V_O = -11 V \text{ to } +11 V$	110	116		dB
Large Signal Voltage Gain		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	106	•		dB
Input Capacitance	C _{DIFF}	, , , , , , , , , , , , , , , , , , , ,		4.8		pf
	C _{CM}			4.5		pf
OUTPUT CHARACTERISTICS	- 3.11			- -		1
Output Voltage High	V _{OH}	$R_L = 600 \Omega$	13.1	13.4		V
- a-p as 1 2 - a g 2 - a a g	- 011	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	12.8			V
		$R_1 = 2 k\Omega$	13.5	13.7		V
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	13.2	13.7		V
Output Voltage Low	V _{OL}	$R_L = 600 \Omega$	13.2	-13.2	-12.9	v
output voltage Low	VOL.	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		13.2	-12.8	V
		$R_L = 2 k\Omega$		-13.5	-13.4	v
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		13.3	-13.3	v
Output Short Circuit Current	I _{sc}	40 C 3 TA 3 T 125 C		±52	13.3	mA
Closed-Loop Output Impedance	Zout	At 1 MHz, A _V = 1		5		Ω
POWER SUPPLY	2001	7.C 1 WH12, 7.V = 1		<u> </u>		12
Power Supply Rejection Ratio	PSRR	$V_{DD} = \pm 18 \text{ V to } \pm 4.5 \text{ V}$	120	140		dB
Tower Supply Rejection Natio	1 31111	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	118	140		dB
Supply Current per Amplifier	I _{SY}	-40 C \(\) \(\) \(\) \(\) \(\)	110	4.7	5.7	mA
Supply Current per Ampliner	ISY	-40 °C \leq T _A \leq +125°C		4.7	5.7 6.75	mA
DYNAMIC PERFORMANCE		-40 C S IA S + 123 C			0.73	IIIA
Slew Rate	SR	A 1 P 2 kO		16.8		V/us
Siew Rate	οn	$A_V = -1, R_L = 2 k\Omega$				V/µs
Cottlin o Time o		$A_V = 1, R_L = 2 k\Omega$		15 2		V/µs
Settling Time	t _s	To 0.01%, step = 10 V		2		μs
Gain Bandwidth Product	GBP			10		MHz
Phase Margin	фм			68		Degree
NOISE PERFORMANCE						1
Peak-to-Peak Noise	e _n p-p	0.1 Hz to 10 Hz		76		nV
Voltage Noise Density	en	f = 1 kHz		1.07	1.15	nV/√Hz
		f = 10 Hz			1.5	nV/√Hz
Current Noise		f = 1 kHz		1.5		pA/√Hz
Total Harmonic Distortion + Noise	THD + N	$G = 1$, $R_L \ge 1$ k Ω , $f = 1$ kHz, $V_{RMS} = 3$ V		-108		dB
		$G = 1$, $R_L \ge 1$ k Ω , $f = 20$ kHz, $V_{RMS} = 3$ V		-105		dB

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating		
Supply Voltage	±18 V		
Input Voltage	GND to V_{DD}		
Differential Input Voltage	±1 V		
Output Short-Circuit to GND	Indefinite		
Storage Temperature Range	−65°C to +150°C		
Operating Temperature Range	−40°C to +125°C		
Lead Temperature Range (Soldering 60 sec)	300°C		
Junction Temperature	150°C		

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θја	θις	Unit
8-Lead LFCSP (CP-8)	TBD	TBD	°C/W
8-Lead SOIC (R-8)	120	36	°C/W

POWER SEQUENCING

The op amp supplies must be established simultaneously with, or before, any input signals are applied.

If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.