

16V Dual Auto-Zero, Rail-to-Rail Output, Precision Amplifier

Preliminary Technical Data

FEATURES

Low Offset Voltage: 9 μV maximum Input Offset Drift: 0.04 μV/°C Rail-to-Rail output swing 16V Single or ±8V Dual Supply Operation High PSRR: 143 dB typical High Gain and CMRR: 133 dB typical Very Low Input Bias Current: 40 pA Low Supply Current: 1.3 mA/amp

APPLICATIONS

Pressure and Position Sensors Strain Gage Amplifiers Medical Instrumentation Thermocouple Amplifiers Automotive Sensors Precision References Precision Current Sources

FUNCTIONAL BLOCK DIAGRAM

AD8639

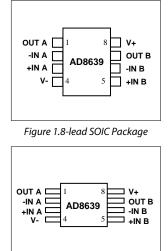


Figure 2. 8-lead MSOP Package

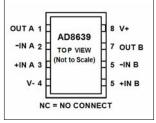


Figure 3. 8-lead LFCSP(3x3mm) Package

GENERAL DESCRIPTION

The AD8639 is a dual, wide bandwidth, auto-zero amplifier featuring rail-to-rail output swing and low noise. This amplifier has very low offset, drift, and bias current. Operation is fully specified from 5 V to 16 V single supply (± 2.5 V to ± 8 V dual supply).

The AD8639 provides benefits previously found only in expensive zero-drift or chopper-stabilized amplifiers. Using the Analog Devices, Inc., topology, these auto-zero amplifiers combine low cost with high accuracy and low noise. No external capacitors are required. In addition, the AD8639 greatly reduces the digital switching noise found in most chopper-stabilized amplifiers.

With a typical offset voltage of only 3 μ V, drift of less than 0.04 μ V/°C, and noise of only 1.2 μ V p-p (0.1 Hz to 10 Hz), the AD8639 is suited for applications in which error sources cannot be tolerated. Position and pressure sensors, medical equipment,

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature ranges. Many systems can take advantage of the rail-to-rail output swing provided by the AD8639 to maximize SNR.

The AD8639 is specified for the extended industrial temperature range (-40°C to +125°C). The AD8639 is available in tiny 8-lead LFCSP (3x3mm), MSOP, and SOIC packages.

The AD8639 is a member of a growing series of auto-zero op amps offered by Analog Devices (see Table 1).

Table 1. Auto-Zero Op Amps

Supply	5V	5V Low Power	16V
Single	AD8628	AD8538	AD8638
Dual	AD8629	AD8539	AD8639
Quad	AD8630		

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2008 Analog Devices, Inc. All rights reserved.

SPECIFICATIONS

CTICC

Parameter	Symbol	Conditions	Min	Тур	Max
INPUT CHARACTERISTICS					
Offset Voltage	Vos	$-0.1~V \le V_{\text{CM}} \le +3.0~V$		3	9
		$-40^\circ C \le T_A \le +125^\circ C$			23
Input Bias Current	Ів			1.5	40
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		7	40
		-40°C ≤ T _A ≤ +125°C		45	105
Input Offset Current	los			7	40
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		7	40
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		16.5	60
Input Voltage Range		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	-0.1		+3
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 3 V$	118	133	
,		-40°C ≤ T _A ≤ +125°C	118		
Large Signal Voltage Gain	Avo	$R_L = 10 \ k\Omega, V_0 = 0.5 \ V$ to 4.5 V	120	136	
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	119		
Offset Voltage Drift	ΔV os/ ΔT	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		0.04	0.15
OUTPUT CHARACTERISTICS					
Output Voltage High	Vон	$R_L = 10 \ k\Omega$ to V_{CM}	4.97	4.985	
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.97		
		$R_L = 2 \ k\Omega \ to \ V_{CM}$	4.90	4.93	
		$-40^\circ C \le T_A \le +125^\circ C$	4.86		
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$ to V_{CM}		7.5	10
		$-40^\circ C \le T_A \le +125^\circ C$			15
		$R_L = 2 \ k\Omega \ to \ V_{CM}$	32 40		
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			55
Short-Circuit Current	lsc	$T_A = 25^{\circ}C$		±19	
Closed-Loop Output Impedance	Ζουτ	f = 100 kHz, Av = 1		4.2	
POWER SUPPLY					
Power Supply Rejection Ratio	PSRR	$V_{SY} = 4.5 V \text{ to } 16 V$	127	143	
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	125		
Supply Current/Amplifier	lov.	$l_0 = 0 m \Delta$		10	1 2

mV mΑ Ω dB dB 1.0 Supply Current/Amplifier $l_0 = 0 mA$ 1.3 mΑ **I**SY $-40^{\circ}C \le T_A \le +125^{\circ}C$ 1.5 mΑ DYNAMIC PERFORMANCE Slew Rate SR $R_L = 10 \ k\Omega$ 2.5 V/µs Settling Time to 0.1% 2 V step, C_L = 20 pF, R_L = 1 k Ω ts 3 μs **Overload Recovery Time** 50 μs Gain Bandwidth Product GBP $R_L = 2 k\Omega$, $C_L = 20 pF$ 1.35 MHz Phase Margin Фм $R_L=2\;k\Omega,\,C_L=20\;pF$ 70 Degrees NOISE PERFORMANCE 1.2 Voltage Noise 0.1 Hz to 10 Hz en p-p μV p-p 60 nV/√Hz Voltage Noise Density f = 1 kHzen

Unit

μV μV pА pА pА pА pА pА V dB dB dB dB µV/°C

۷ V V ۷ m٧ mV m٧

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 V_{SY} = 16 V, V_{CM} = 8 V, T_{A} = 25°C, unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$-0.1~V \leq V_{\text{CM}} \leq +14.0~V$		3	9	μV
		$-40^\circ C \leq T_A \leq +125^\circ C$			23	μV
Input Bias Current	Ів			1	75	pА
•		-40°C ≤ T _A ≤ +85°C		4	75	pA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		85	250	pA
Input Offset Current	los	10 C 2 TK 2 T 125 C		20	70	pA
input onset Current	105			20		-
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		50	75	рА
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	0.1	50	150	рА
Input Voltage Range		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	-0.1		+14	V
Common-Mode Rejection Ratio	CMRR	V _{CM} = 0 V to 14 V	127	142		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	127			dB
Large Signal Voltage Gain	Avo	R_L = 10 kΩ, V_0 = 0.5 V to 15.5 V	130	147		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	130			dB
Offset Voltage Drift	ΔV os/ ΔT	$-40^{\circ}C \le T_A \le +125^{\circ}C$		0.04	0.15	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 10 \ k\Omega$ to V_{CM}	15.94	15.96		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	15.93			V
		$R_L = 2 \ k\Omega \ to \ V_{CM}$	15.77	15.82		V
		$-40^\circ C \le T_A \le +125^\circ C$	15.7			V
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$ to V_{CM}		30	40	mV
		$-40^\circ C \le T_A \le +125^\circ C$			60	mV
		$R_L = 2 \ k\Omega$ to V_{CM}		110	130	mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			190	mV
Short-Circuit Current	lsc	$T_A = 25^{\circ}C$		±37		mA
Closed-Loop Output Impedance	Zout	f = 100 kHz, Av = 1		3		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	Vsy = 4.5 V to 16 V	127	143		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	125			dB
Supply Current/Amplifier	lsy	$I_0 = 0 \text{ mA}$		1.25	1.5	mA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1.7	mA
DYNAMIC PERFORMANCE						1
Slew Rate	SR	R∟ = 10 kΩ		2		V/µs
Settling Time to 0.1%	ts	4 V step, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega$		4		μs
Overload Recovery Time				50		μs
Gain Bandwidth Product	GBP	$R_L = 2 \text{ k}\Omega$, $C_L = 20 \text{ pF}$		1.5		MHz
Phase Margin	Фм	$R_L = 2 \ k\Omega, C_L = 20 \ pF$		74		Degrees
NOISE PERFORMANCE						
Voltage Noise	en p-p	0.1 Hz to 10 Hz		1.2 60		μV p-p
/oltage Noise Density	en	f = 1 kHz		00		nV/√Hz