Preliminary

ADA4051-2

PIN CONFIGURATIONS

FEATURES

Very Low Supply Current: $15 \mu \mathrm{~A} / \mathrm{amp}$ (Max) $10 \mu \mathrm{~V}$ Offset Voltage (Max)
$50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Voltage Offset Drift (Max)
1.8 V to 5.5 V Single Supply Operation

Rail-to-Rail Input and Output
High PSRR and CMRR: 106 dB min

APPLICATIONS

Pressure and Position Sensors
Temperature Measurements
Electronic Scales
Medical Instrumentation
Battery Powered Equipment
Handheld Test Equipment

GENERAL DESCRIPTION

The ADA4051-2 is a dual CMOS high precision operational amplifier featuring rail-to-rail input and output swings, micropower, and extremely low offset voltage while operating from a 1.8 V to 5.5 V single power supply.

Employing a new circuit technology, these low cost amplifiers offer high PSRR and CMRR, while operating with a supply current of $15 \mu \mathrm{~A}$ per amplifier maximum.

This combination of features makes the ADA4051 amplifier an ideal choice for battery powered applications where it is important to minimize power consumption and the need for high precision op amps.

The ADA4051-2 is specified for the extended industrial $\left(-40^{\circ}\right.$ to $+125^{\circ} \mathrm{C}$) temperature range, but it is operational from -40° to $+150^{\circ} \mathrm{C}$. ADA4051-2 dual amplifier is available in the standard 8-pin MSOP and 8-pin LFCSP packages.

[^0](@ $\mathrm{V}_{\mathrm{S}}=+1.8 \mathrm{~V}$ to $+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{S}} / 2$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	$\mathrm{V}_{\text {OS }}$	$0 \mathrm{v}<\mathrm{V}_{\mathrm{CM}}<5 \mathrm{~V}$		2	10	$\mu \mathrm{V}$
Offset Voltage Drift	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	$-40^{\circ}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$		0.02	0.05	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}				± 200	
		$-40^{\circ}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$		± 150		pA
Input Offset Current	$\mathrm{I}_{\text {OS }}$			± 140	± 400	pA
Input Common Mode Voltage Range	V_{CM}		(V-) - 0.1		$(\mathrm{V}+)+0.1$	V
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & (\mathrm{V}-)-0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)+0.1 \mathrm{~V} \\ & -40^{\circ}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$	106	130		dB
Channel Separation				0.1		$\mu \mathrm{V} / \mathrm{V}$
Open Loop Voltage Gain	$\mathrm{A}_{\text {OL }}$	(V-) $-0.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<(\mathrm{V}+)+0.1 \mathrm{~V}$	106	130		dB
Input Capacitance		Differential Common Mode		$\begin{aligned} & 2 \\ & 4 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing from Rail		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & -40^{\circ}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$		30	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Short Circuit Limit	$\mathrm{I}_{\text {SC }}$			± 25		mA
Open Loop Output Impedance		$\mathrm{f}=350 \mathrm{kHz}, \mathrm{I}_{\mathrm{O}}=0$		2		$\mathrm{k} \Omega$
POWER SUPPLY Power Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	106	120		dB
Supply Current/Amplifier	$\mathrm{I}_{\text {SY }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{I}_{\mathrm{O}}=0 \\ & -40^{\circ}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$		12	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply Voltage	V_{SY}		1.8		5.5	V
Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		100		$\mu \mathrm{s}$
DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product	SR+ SR- GBP	$\begin{aligned} & \mathrm{G}=+1 \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$		$\begin{gathered} 0.035 \\ 0.03 \\ 100 \end{gathered}$		V/ $\mu \mathrm{s}$ V/ $\mu \mathrm{s}$ kHz
NOISE PERFORMANCE Input Voltage Noise Voltage Noise Density Current Noise Density	$\begin{aligned} & e_{n p-p} \\ & e_{n} \\ & i_{n} \end{aligned}$	$\begin{aligned} & \mathrm{f}=0.01 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=10 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} \text { TBD } \\ 1.9 \\ 95 \\ 100 \end{gathered}$		μV_{p-p} μV_{p-p} $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ fA/ $\sqrt{ } \mathrm{Hz}$
TEMPERATURE RANGE Specified Range Operating Range	$\begin{aligned} & \mathrm{T}_{\mathrm{S}} \\ & \mathrm{~T}_{\mathrm{A}} \end{aligned}$		$\begin{aligned} & -40 \\ & -40 \end{aligned}$		$\begin{aligned} & +125 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply voltage .. +6 V
Input Voltage ... \pm Vs
Differential Input Voltage ${ }^{1}$... \pm Vs
Output Short-Circuit Duration to Gnd Indefinite
Storage Temperature Range
KS, RJ, CP, RM Packages
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
ADA405-1/2
$40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range
KS, RJ, CP, RM Packages $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 Sec) $+260^{\circ} \mathrm{C}$

Package Type	$\theta_{J^{2}}$	$\theta_{\text {JC }}$	Units
8-Pin MSOP (RM)	TBD	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-bump LFCSP (CP)	TBD	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Differential input voltage is limited to 5 V or the supply voltage whichever is less.
${ }^{2} \theta_{\text {JA }}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface mount packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADA4051-2ARMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Pin MSOP	RM-8
ADA4051-2ACPZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8-$ Pin LFCSP	CP-8

ESD Caution

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulates on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid
 performance degradation or loss of functionality.

[^0]: PrelimRev PrB
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

