FEATURES

Single-supply operation: 3 V to 36 V
Wide input voltage range
Rail-to-rail output swing
Low supply current: $\mathbf{2 5 0} \boldsymbol{\mu} \mathrm{A} / \mathrm{amp}$
Wide bandwidth: 1.2 MHz
Slew rate: $0.46 \mathrm{~V} / \mu \mathrm{s}$
Low offset voltage: $\mathbf{5 0 0} \boldsymbol{\mu} \mathrm{V}$ maximum
No phase reversal

APPLICATIONS

Industrial process control Battery-powered instrumentation Power supply control and protection
 Telecommunications
 Remote sensors
 Low voltage strain gage amplifiers
 DAC output amplifiers

GENERAL DESCRIPTION

The ADA4091-2 is a dual, micropower, single-supply, 1.2 MHz bandwidth amplifier featuring rail-to-rail inputs and outputs. It is guaranteed to operate from a +3 V single supply as well as from $\pm 15 \mathrm{~V}$ dual supplies.
The ADA4091 family of op amps features a unique input stage that allows the input voltage to safely exceed either supply without any phase inversion or latch-up. The output voltage swings to within 10 mV of the supplies.

Applications for these amplifiers include portable telecommunications equipment, power supply control and protection, and interface for transducers with wide output ranges. Sensors requiring a rail-to-rail input amplifier include Hall effect, piezoelectric, and resistive transducers.

PIN CONFIGURATION

Figure 1. 8-Lead, Narrow Body SOIC

The ability to swing rail-to-rail at both the input and output enables designers to build multistage filters in single-supply systems and to maintain high signal-to-noise ratios.
The ADA4091 family of op amps is specified over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The ADA4091-2 is part of a growing family of 36 V , low power op amps from Analog Devices, Inc. (see Table 1).

The ADA4091-2 is available in an 8-lead plastic SOIC surfacemount package.

Table 1. Low Power, 36 V Operational Amplifiers

Family	Rail-to-Rail I/O	PJFET	Low Noise
Single			OP1177
Dual	ADA4091-2	AD8682	OP2177
Quad		AD8684	OP4177

Rev. 0

ADA4091-2

TABLE OF CONTENTS

Features 1
Applications. 1
Pin Configuration 1
General Description 1
Revision History 2
Specifications 3
Electrical Specifications3
Absolute Maximum Ratings 6

REVISION HISTORY

10/08-Revision 0: Initial Version
Thermal Resistance 6
ESD Caution 6
Typical Performance Characteristics 7
Theory of Operation 13
Input Overvoltage Protection 14
Outline Dimensions 15
Ordering Guide 15

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{V}_{\mathrm{SY}}= \pm 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-500	+45	+500	$\mu \mathrm{V}$
			-1.0		+1.0	mV
Input Bias Current	I_{B}		-50		+50	nA
	los	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	-55		+55	nA
Input Offset Current		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-275		+275	nA
			-5		+5	nA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	-5		+5	nA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-75		+75	nA
Input Voltage Range	CMRR		-1.5		+1.5	V
Common-Mode Rejection Ratio		$\pm 1.5 \mathrm{~V}<\mathrm{V}_{\text {SY }} \pm 18 \mathrm{~V}$	76			dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	70			dB
Large Signal Voltage Gain	Avo	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}$ to 2.7 V	106			dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	100			dB
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}$ to 2.7 V	93			dB
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	85			dB
Offset Voltage Drift	$\Delta \mathrm{Vos} / \Delta \mathrm{T}$			2.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
OUTPUT CHARACTERISTICS						
Output Voltage High	Vor	$\mathrm{RL}=100 \mathrm{k} \Omega$ to GND	1.495			V
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.490			V
		RL $=10 \mathrm{k} \Omega$ to GND	1.475			V
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.455			V
Output Voltage Low	Vol	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to GND			-1.498	V
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			-1.498	V
		$\mathrm{RL}=10 \mathrm{k} \Omega$ to GND			-1.495	V
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			-1.491	V
Short-Circuit Limit	Isc	Sink/source $=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		± 31		mA
Open-Loop Impedance	Zout	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{A}_{\mathrm{v}}=1$		102		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{5 \mathrm{Y}}=2.7 \mathrm{~V}$ to 36 V	100			dB
Supply Current per Amplifier	$\mathrm{l} Y$ Y	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	100			dB
		$\mathrm{l}_{0}=0 \mathrm{~mA}$			200	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				
DYNAMIC PERFORMANCE						
Slew Rate	SR	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \text { To } 0.01 \% \end{aligned}$	0.46			V/ $\mu \mathrm{s}$
Settling Time	ts			22		
Gain Bandwidth Product	GBP			1.22		MHz
Phase Margin	$Ф_{\text {M }}$			69		Degrees
NOISE PERFORMANCE						
Voltage Noise	$e_{n} p$-p	0.1 Hz to 10 Hz		2		$\mu \mathrm{V}$ p-p
Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$		24		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

ADA4091-2

$\mathrm{V}_{\mathrm{O}}= \pm 5.0 \mathrm{~V},-4.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+4.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain	Vos IB Ios CMRR Avo	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \pm 1.5 \mathrm{~V}<\mathrm{V}_{\mathrm{SY}} \pm 18 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{o}}= \pm 4.7 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 4.7 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -500 \\ & -1.0 \\ & \\ & \\ & -5 \\ & 88 \\ & 82 \\ & 113 \\ & 103 \\ & 98 \\ & 87 \end{aligned}$	$\begin{aligned} & +141 \\ & 30 \end{aligned}$	$\begin{aligned} & +500 \\ & +1.00 \\ & 60 \\ & 150 \\ & 2 \\ & 30 \\ & +5 \end{aligned}$	$\mu \mathrm{V}$ mV nA nA nA nA V dB dB dB dB dB dB
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Open-Loop Impedance	Voн VoL Isc Zout	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to GND } \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{RL}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \text { Sink } / \text { source }=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{Av}_{\mathrm{V}}=1 \end{aligned}$	$\begin{aligned} & 4.980 \\ & 4.980 \\ & 4.950 \\ & 4.900 \end{aligned}$	4.990 4.970 ± 20 77	$\begin{aligned} & -4.990 \\ & -4.980 \\ & -4.980 \\ & -4.975 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \Omega \end{aligned}$
POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier	PSRR ISY	$\begin{aligned} & \mathrm{V}_{S Y}=2.7 \mathrm{~V} \text { to } 36 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	180	$\begin{aligned} & 225 \\ & 300 \end{aligned}$	dB dB $\mu \mathrm{A}$ $\mu \mathrm{A}$
DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin	SR GBP $Ф_{\mathrm{M}}$	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\begin{aligned} & 0.46 \\ & 1.22 \\ & 70 \end{aligned}$		V/ $\mu \mathrm{s}$ MHz Degrees
NOISE PERFORMANCE Voltage Noise Voltage Noise Density	$\begin{aligned} & e_{n} p-p \\ & e_{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 24 \end{aligned}$		$\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

$\mathrm{V}_{\mathrm{SY}}= \pm 15.0 \mathrm{~V},-14.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+14.9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

ADA4091-2

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	36 V
Input Voltage	Refer to the Input
	Overvoltage Protection
	section
Differential Input Voltage ${ }^{1}$	$\pm V_{\text {sr }}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

[^0]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the device soldered on a 4-layer JEDEC standard PCB with zero air flow.

Table 6. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{Jc}}$	Unit
8 -Lead SOIC (R-8)	155	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Input Offset Voltage Distribution

Figure 3. Input Offset Voltage vs. Temperature

Figure 4. Input Bias Current vs. Input Common-Mode Voltage

Figure 5. Dropout Voltage vs. Load Current

Figure 6. Open-Loop Gain and Phase vs. Frequency

Figure 7. Closed-Loop Gain vs. Frequency

Figure 8. Output Impedance vs. Frequency

Figure 9. Large Signal Transient Response

Figure 10. Small Signal Transient Response

Figure 11. Output Swing vs. Frequency

Figure 12. Input Offset Voltage Distribution

Figure 13. Input Offset Voltage vs. Temperature

Figure 14. Large Signal Transient Response

Figure 15. Small Signal Transient Response

Figure 16. Input Bias Current vs. Common-Mode Voltage

Figure 17. Open-Loop Gain and Phase vs. Frequency

Figure 18. Output Impedance vs. Frequency

Figure 19. Output Voltage Swing vs. Frequency

Figure 20. Dropout Voltage vs. Load Current

Figure 21. Closed-Loop Gain vs. Frequency

Figure 22. Input Offset Voltage Distribution

Figure 23. Offset Voltage TC

Figure 24. Input Bias Current vs. Common-Mode Voltage

Figure 25. Open-Loop Gain and Phase vs. Frequency

Figure 26.Large Signal Transient Response

Figure 27. Small Signal Transient Response

Figure 28. Output Voltage Swing vs. Frequency

Figure 29. Dropout Voltage vs. Load Current

Figure 30. Output Impedance vs. Frequency

Figure 31. Closed-Loop Gain vs. Frequency

Figure 32. Voltage Noise, Vp-p

Figure 33. Channel Separation vs. Frequency

Figure 34. CMRR vs. Frequency

Figure 35. PSRR vs. Frequency

Figure 36. Supply Current vs. Supply Voltage

THEORY OF OPERATION

The ADA4091-2 is a single-supply, micropower amplifier featuring rail-to-rail inputs and outputs. To achieve wide input and output ranges, this amplifier employs unique input and output stages. In Figure 37, the input stage comprises two differential pairs, a PNP pair and an NPN pair. These two stages do not work in parallel. Instead, only one stage is on for any given input signal level. The PNP stage (Transistor Q1 and Transistor Q2) is required to ensure that the amplifier remains in the linear region when the input voltage approaches and reaches the negative rail. Alternatively, the NPN stage (Transistor Q5 and Transistor Q6) is needed for input voltages up to and including the positive rail.
For the majority of the input common-mode range, the PNP stage is active, as shown in Figure 4. Notice that the bias current switches direction at approximately 1.5 V below the positive rail. At voltages below this level, the bias current flows out of the ADA4091-2, from the PNP input stage. Above this voltage, however, the bias current enters the device, due to the NPN stage. The actual mechanism within the amplifier for switching between the input stages comprises Transistor Q3, Transistor Q4, and Transistor Q7. As the input common-mode voltage increases, the emitters of Q1 and Q2 follow that voltage plus a diode drop. Eventually, the emitters of Q1 and Q2 are high enough to turn on Q3, which diverts the tail current away from the PNP input stage, turning it off. Instead, the current is mirrored through Q4 and Q7 to activate the NPN input stage.

A common practice in bipolar amplifiers to protect the input transistors from large differential voltages is to include series resistors and differential diodes. (See Figure 39 for the full input protection circuitry.) These diodes turn on whenever the differential voltage exceeds approximately 0.6 V . In this condition, current flows between the input pins, limited only by the two $5 \mathrm{k} \Omega$ resistors. Evaluate each circuit carefully to make sure that the increase in current does not affect performance.
The output stage in the ADA4091-2 device uses a PNP and an NPN transistor, as do most output stages. However, Q32 and Q33, the output transistors, are actually connected with their collectors to the output pin to achieve the rail-to-rail output swing.
As the output voltage approaches either the positive or negative rail, these transistors begin to saturate. Thus, the final limit on output voltage is the saturation voltage of these transistors, which is about 50 mV . The output stage does have inherent gain arising from the collectors and any external load impedance. Because of this, the open-loop gain of the op amp is dependent on the load resistance.

Figure 37. Simplified Schematic without Input Protection (see Figure 39)

ADA4091-2

INPUT OVERVOLTAGE PROTECTION

The ADA4091-2 has two different ESD circuits for enhanced protection as shown in Figure 39. One circuit is a series resistor of $5 \mathrm{k} \Omega$ to the internal inputs and diodes (D1 and D2 or D5 and D6) from the internal inputs to the supply rails. The other protection circuit is a circuit with two DIACs (D3 and D4 or D7 and D8) to the supply rails. A DIAC can be considered a bidirectional Zener diode with a transfer characteristic as shown in Figure 39.

Figure 38. DIAC Transfer Characteristic
For a worst-case design analysis, consider two cases. The ADA4091-2 has the normal ESD structure from the internal op amp inputs to the supply rails. In addition, it has 42 V DIACs from the external inputs to the rails as shown in Figure 37.
Therefore, two conditions have to be considered to determine which one is the limiting factor.

- Condition 1. Consider, for example, that when operating on $\pm 15 \mathrm{~V}$, the inputs can go +42 V above the negative supply rail. With the -V pin equal to $-15 \mathrm{~V},+42 \mathrm{~V}$ above this supply (the negative supply) is +27 V ,
- Condition 2. There is also a restriction on the input current of 5 mA through a $5 \mathrm{k} \Omega$ resistor to the ESD structure to the positive rail. In Condition $1,+27 \mathrm{~V}$ through the $5 \mathrm{k} \Omega$ resistor to +15 V gives a current of 2.4 mA . Thus, the DIAC is the limiting factor. If the ADA4091-2 supply voltages are changed to $\pm 5 \mathrm{~V}$, then $-5 \mathrm{~V}+42 \mathrm{~V}=37 \mathrm{~V}$. However, $+5 \mathrm{~V}+(5 \mathrm{k} \Omega \times 5 \mathrm{~mA})=30 \mathrm{~V}$. Thus, the normal resistor-diode structure is the limitation when running on lower supply voltages.

Additional resistance can be added externally in series with each input to protect against higher peak voltages, however the additional thermal noise of the resistors must be considered.

The flatband voltage noise of the ADA4091-2 is approximately $24 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, and a $5 \mathrm{k} \Omega$ resistor has a noise of $9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. Adding an additional $5 \mathrm{k} \Omega$ resistor increases the total noise by less than 15% root-sum-square (RSS). Therefore, resistor values should be kept below this value if overall noise performance is critical.
Note that this is input protection under abnormal conditions only. The correct amplifier operation is only specified with an input voltage range as shown in the Specifications section of this data sheet.

Figure 39. Complete Input Protection Network

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 40. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE			
Model	Temperature Range	Package Description	Package Option
ADA4091-2ARZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8
ADA4091-2ARZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8
ADA4091-2ARZ-RL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	R-8

[^1]
ADA4091-2

NOTES

[^0]: ${ }^{1}$ Input current should be limited to $\pm 5 \mathrm{~mA}$.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

