

Preliminary Technical Data

FEATURES

Digital ±70 g accelerometer/vibration sensing 22 kHz sensor resonance 100.2 kSPS sample rate **SPI-compatible serial interface** Programmable data capture function: 3 channels, 1024 samples each 1 accelerometer/2 auxiliary ADCs (AIN1, AIN2) Manual trigger for user initiation Automatic trigger for periodic data capture Conditional trigger for condition-driven capture **Digital temperature sensor output Digitally controlled sample rate Digitally controlled frequency response** 2 auxiliary digital I/Os **Digitally activated self-test** Digitally activated low power mode Serial number and device ID Single-supply operation: 3.15 V to 3.6 V Operating temperature range: -40°C to +125°C 9.2 mm × 9.2 mm 16-terminal LGA

APPLICATIONS

Vibration analysis Shock detection and event capture Condition monitoring Machine health Instrumentation, diagnostics Safety, shut-off sensing Security sensing, tamper detection

Programmable Digital Vibration Sensor ADIS16220

GENERAL DESCRIPTION

The ADIS16220 *i*Sensor[®] is a digital vibration sensor that combines industry-leading *i*MEMS[®] sensing technology with a signal processor. It provides a buffer memory for high speed data capture, along with a convenient serial interface for data collection and configuration. The 22 kHz sensor resonance and 100.2 kSPS sample rate provide adequate response for most machine-health applications. The averaging/decimating filter provides optimization for lower bandwidth applications.

An internal clock drives the data sampling system, which fills the buffer memory for user access. The data capture function has three different trigger modes. The automatic data collection allows for periodic wake-up and capture, based on a programmable duty cycle. The manual data capture mode allows the user to initiate a data capture, providing power and read-rate optimization. The event capture mode continuously updates the buffers and monitors them for a preset trigger condition. This mode captures pre-event data and post-event data and produces an alarm indicator for driving an interrupt.

The serial peripheral interface (SPI) and data buffer structure provide convenient access to wide-bandwidth sensor data. The ADIS16220 also offers a digital temperature sensor, digital power supply measurements, and peak output capture.

The ADIS16220 comes in a 9.2 mm \times 9.2 mm \times 3.9 mm LGA package that meets the Pb-free solder reflow profile requirements per JEDEC J-STD-020 and has an extended operating temperature range of -40° C to $+125^{\circ}$ C.

FUNCTION BLOCK DIAGRAM

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2009 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications1
General Description
Function Block Diagram1
Specifications
Timing Specifications
Timing Diagrams5
Absolute Maximum Ratings
ESD Caution
Pin Configuration and Function Descriptions7
Recommended Pad Layout7
Theory of Operation
Sensing Element
Data Sampling and Processing8
User Interface

Basic Operation	9
Reading Data from the Capture Buffer	. 11
Capture Mode Configuration	. 11
Global Commands	. 12
Filtering	. 13
Offset Adjustment	. 13
Input/Output Functions	. 13
Diagnostics	. 14
Applications Information	. 15
Assembly	. 15
Serial Identification	. 15
Interface Board	. 15
Outline Dimensions	. 16
Ordering Guide	. 16

SPECIFICATIONS

 $T_A = -40^{\circ}$ C to +125°C, VDD = 3.3 V, ±1 g, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Тур	Max	Unit
ACCELEROMETER					
Measurement range	$T_A = 25^{\circ}C$	-70		+70	g
Sensitivity	$T_A = 25^{\circ}C$		19.073		mg/LSB
Sensitivity Error	$T_A = 25^{\circ}C$		±5		%
Sensitivity Temperature Coefficient			±310		ppm/°C
Nonlinearity	With respect to full scale		±0.2	±2	%
Cross-Axis Sensitivity			±2		%
Alignment Error	With respect to package		±1		Degree
Offset Error	$T_A = 25^{\circ}C$	-19.1		+19.1	g
Offset Temperature Coefficient			±5		mg/°C
Output Noise	T _A = 25°C, AVG_CNT = 0x0000		507		mg rms
Output Noise Density	$T_A = 25^{\circ}C$, 10 Hz to 1 kHz		4		m <i>g</i> /√Hz
Sensor Resonant Frequency			22		kHz
Self-Test Response		917	1310	1703	LSB
AUXILIARY INPUTS (AIN1, AIN2)					
Resolution			14		Bits
Sensitivity			305.18		µV/LSB
Integral Nonlinearity			2.4		LSB
Differential Nonlinearity			4		LSB
Offset			VDD/2		V
Offset Error			±20.4		LSB
Input Range		0		VDD	V
Input Capacitance			20		pF
ON-CHIP VOLTAGE REFEERENCE					
Output Level			2.5		V
Accuracy			±5		mV
Temperature Coefficient			±40		ppm/°C
Output Impedance			70		Ω
LOGIC INPUTS ¹					
Input High Voltage, V _{INH}		2.0			V
Input Low Voltage, VINL				0.8	V
Logic 1 Input Current, I _{INH}	$V_{IH} = 3.3 V$		±0.2	±1	μA
Logic 0 Input Current, I _{INL}	$V_{IL} = 0 V$				
All Except RST			-40	-60	μΑ
RST			-1		mA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS ¹					
Output High Voltage, Vон	Isource = 1.6 mA	2.4			V
Output Low Voltage, Vol	$I_{SINK} = 1.6 \text{ mA}$			0.4	V
FLASH MEMORY					
Endurance ²		10,000			Cycles
Data Retention ³	T」 = 85°C	10			Years
START-UP TIME ⁴					
Initial Startup			160		ms
Reset Recovery (RST)	RST or software (GLOB_CMD)		23		ms
Sleep Mode Recovery			2.3		ms

Parameter	Conditions	Min	Тур	Мах	Unit
CONVERSION RATE	AVG_CNT = 0x0000		100.2		kSPS
Clock Accuracy			3		%
POWER SUPPLY	Operating voltage range, VDD	3.15	3.3	3.6	V
Power Supply Current	Capture mode, $T_A = 25^{\circ}C$		38	46	mA
	Sleep mode, T _A = 25°C		230		μA
	Sleep mode, T _A = 85°C		250	400	μA
	Sleep mode, T _A = 125°C		600	1000	μΑ

¹ The digital I/O signals are 5 V tolerant.
 ² Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at -40°C, +25°C, +85°C, and +125°C.
 ³ Retention lifetime equivalent at junction temperature (T_J) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime decreases with junction temperature.
 ⁴ The start-up times presented do not include the data capture time, which is dependent on the AVG_CNT register settings.

TIMING SPECIFICATIONS

 T_{A} = 25°C, VDD = 3.3 V, unless otherwise noted.

Table 2.

Parameter	Description	Min ¹	Тур	Max	Unit
fsclк	SCLK frequency	0.01		2.25	MHz
t _{stall}	Stall period between data, between 16 th and 17 th SCLK	15.4			μs
tcs	Chip select to SCLK edge	48.8			ns
t _{DAV}	DOUT valid after SCLK edge			100	ns
t _{DSU}	DIN setup time before SCLK rising edge	24.4			ns
t _{DHD}	DIN hold time after SCLK rising edge	48.8			ns
tsclkr, tsclkf	SCLK rise/fall times		5	12.5	ns
t _{sr}	SCLK high pulse width			12.5	ns
tsr	SCLK low pulse width			12.5	ns
tdf, tdr	DOUT rise/fall times		5	12.5	ns
tsfs	CS high after SCLK edge	5			ns

¹ Guaranteed by design, not tested.

TIMING DIAGRAMS

Figure 2. SPI Timing and Sequence

Figure 3. DIN Bit Sequence

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Acceleration	
Any Axis, Unpowered	2000 g
Any Axis, Powered	2000 g
VDD to GND	–0.3 V to +6.0 V
Digital Input Voltage to GND	–0.3 V to +5.3 V
Digital Output Voltage to GND	–0.3 V to VDD + 0.3 V
Analog Inputs to GND	–0.3 V to +3.6 V
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	–65°C to +125°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Package Characteristics

Package Type	θ _{JA}	θ」	Device Weight		
16-Terminal LGA	250°C/W	25°C/W	0.6 g		

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

7980

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES 1. NC = NO CONNECT.

2. THIS IS NOT AN ACTUAL TOP VIEW, BECAUSE THE PINS ARE NOT VISIBLE FROM THE TOP. THIS IS A LAYOUT VIEW THAT REPRESENTS THE PIN CONFIGURATION IF THE PACKAGE IS LOOKED THROUGH FROM THE TOP. THIS CONFIGURATION IS PROVIDED FOR PCB LAYOUT PURPOSES.

Figure 4. Pin Configuration

Pin No.	Mnemonic	Type ¹	Description
1	SCLK	1	SPI, Serial Clock.
2	DOUT	O ²	SPI, Data Output.
3	DIN	1	SPI, Data Input.
4	<u>cs</u>	1	SPI, Chip Select.
5, 6	DIO1, DIO2	I/O	Digital Input/Output Pins.
7, 8, 10, 11	NC	N/A	No Connect.
9	RST	1	Reset, Active Low.
12	AIN2	1	Analog Input Channel 1.
13	VDD	S	Power Supply, 3.3 V.
14	AIN1	1	Analog Input Channel 2.
15	VREF	0	Voltage Reference for AIN1 and AIN2.
16	GND	S	Ground.

¹ S = supply; O = output; I = input; I/O = input/output.

² DOUT is an output when \overline{CS} is low. When \overline{CS} is high, DOUT is in a three-state, high impedance mode.

RECOMMENDED PAD LAYOUT

Figure 5. Recommended of a Pad Layout

THEORY OF OPERATION

The ADIS16220 is a wide-bandwidth, digital acceleration sensor for vibration analysis applications. This sensing system collects data autonomously and makes it available to any processor system that supports a 4-wire serial peripheral interface (SPI).

SENSING ELEMENT

Digital vibration sensing in the ADIS16220 starts with a widebandwidth MEMS accelerometer core that provides a linear motion-to-electrical transducer function. Figure 6 provides a basic physical diagram of the sensing element and its response to linear acceleration. It uses a fixed frame and a moving frame to form a differential capacitance network that responds to linear acceleration. Tiny springs tether the moving frame to the fixed frame and govern the relationship between acceleration and physical displacement. A modulation signal on the moving plate feeds through each capacitive path into the fixed frame plates and into a demodulation circuit, which produces the electrical signal that is proportional to the acceleration acting on the device.

The ADIS16220 runs autonomously, based on the configuration in the user control registers. The analog acceleration signal feeds into an analog-to-digital (ADC) converter stage, which passes digitized data into the controller for data processing and capture. Processing options include offset adjustment, filtering, and checking for preset alarm conditions.

Figure 7. Simplified Sensor Signal Processing Diagram

USER INTERFACE

SPI Interface

Data collection and configuration commands both use the SPI, which consists of four wires. The chip select $\overline{(CS)}$ signal activates the SPI interface and the serial clock (SCLK) synchronizes the serial data lines. The serial input data clocks into DIN on the SCLK rising edge, and the serial output data clocks out of the DOUT on the SCLK falling edge. Many digital processor platforms support this interface with dedicated serial ports and simple instruction sets.

User Registers

The user registers provide addressing for all input/output operations on the SPI interface. Each 16-bit register has its own unique bit assignment and has two addresses: one for its upper byte and one for its lower byte. Table 8 provides a memory map for each register, along with their function. The control registers use a dual memory structure. The SRAM controls operation while the part is on, and facilitates all user configuration inputs. The flash memory provides nonvolatile storage for control registers that have flash backup (see Table 8). Storing configuration data in the flash memory requires a separate command (GLOB_ CMD[12] = 1, DIN = 0xBF10). When the device powers on or resets, the flash memory contents load into the SRAM, and then the device starts producing data according to the configuration in the control registers.

Figure 8. SRAM and Flash Memory Diagram

BASIC OPERATION

The ADIS16220 requires only power, ground, and the four SPI signals to produce data and make it available to a processor. Figure 9 provides a schematic for connecting to an SPI-compatible processor, and includes the two configurable digital I/O lines. DIO1's factory default configuration is a busy indicator that goes high when the devices is capturing data and goes low when finished.

Figure 9. Electrical Hook-Up Diagram

Table 6. Generic Master Processor Pin Names and Functions

Pin Name	Function
SS	Slave select
IRQ1, IRQ2	Interrupt request inputs
MOSI	Master output, slave input
MISO	Master input, slave output
SCLK	Serial clock

The ADIS16220 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit sequence shown in Figure 13. Processor platforms typically support SPI communication with general-purpose serial ports that require some configuration in their control registers. Table 7 provides a list of the most common settings that require attention to initialize a processor's serial port for communication with the ADIS16220.

Table 7. Generic Master Processor SPI Settings

Processor Setting	Description
Master	ADIS16220 operates as a slave
SCLK Rate ≤ 2.25 MHz	Bit rate setting
SPI Mode 3 (1, 1)	Clock polarity/phase (CPOL = 1, CPHA = 1)
MSB-First	Bit sequence
16-Bit	Shift register/data length

User registers govern all data collection and configuration. Table 8 provides a memory map that includes all user registers, with references to bit assignment tables that follow the generic assignments in Figure 10.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
									— L(OWE	R ВҮТ	Е —				

Figure 10. Generic Register Bit Definitions

SPI Write Commands

Master processors write to the control registers, one byte at a time, using the bit assignments in Figure 13. Some configurations require writing both bytes to a register, which takes two separate 16-bit sequences, whereas others require only one byte. The programmable registers in Table 8 provide controls for optimizing sensor operation and for starting various automated functions. For example, set GLOB_CMD[11] = 1 by writing 0xBF08 to the master processor's SPI transmit register, which feeds the DIN line, to start a manual capture sequence. The manual capture starts immediately after the last bit clocks into DIN (16th SCLK rising edge).

SPI Read Commands

Reading data through the SPI requires two consecutive 16-bit sequences. The first sequence transmits the read command and address on DIN, and the second receives the resulting data from DOUT. The 7-bit register address (A6:A0) can represent either the upper or lower byte address for the target register. For example, DIN can be either 0x0A00 or 0x0B00 when reading the CAPT_SUPPLY register.

Figure 12 provides a full-duplex mode example of reading the CAPT_SUPPLY register. Also, the second SPI segment sets the device up to read CAPT_TEMP on the following SPI segment (not shown).

Note that all registers in Table 8 consist of two bytes. All unused memory locations are reserved for future use.

Table 8. User Register Memory Map

		Flash				Bit
Name	Access	Backup	Address ¹	Default	Function	Assignments
FLASH_CNT	Read only	Yes	0x00	N/A	Flash memory write count	Table 30
ACCL_NULL	Read/write	Yes	0x02	0x0000	Acceleration offset adjustment control	Table 23
AIN1_NULL	Read/write	Yes	0x04	0x0000	AIN1 offset adjustment control	Table 24
AIN2_NULL	Read/write	Yes	0x06	0x0000	AIN2 offset adjustment control	Table 24
			0x08 to 0x09		Reserved	
CAPT_SUPPLY	Read only	Yes	0x0A	0x8000	Output, power supply during capture	Table 10
CAPT_TEMP	Read only	Yes	0x0C	0x8000	Output, temperature during capture	Table 10
CAPT_PEAKA	Read only	Yes	0x0E	0x8000	Output, peak acceleration during capture	Table 10
CAPT_PEAK1	Read only	Yes	0x10	0x8000	Output, peak AIN1 level during capture	Table 10
CAPT_PEAK2	Read only	Yes	0x12	0x8000	Output, peak AIN2 level during capture	Table 10
CAPT_BUFA	Read only	No	0x14	0x8000	Output, capture buffer for acceleration	Table 10
CAPT_BUF1	Read only	No	0x16	0x8000	Output, capture buffer for AIN1	Table 10
CAPT_BUF2	Read only	No	0x18	0x8000	Output, capture buffer for AIN2	Table 10
CAPT_PNTR	Read/write	No	0x1A	0x8000	Operation, capture buffer address pointer	Table 9
CAPT_CTRL	Read/write	Yes	0x1C	0x0020	Operation, capture control register	Table 13
CAPT_PRD	Read/write	Yes	0x1E	0x0000	Operation, capture period (automatic mode)	Table 14
ALM_MAGA	Read/write	Yes	0x20	0x0000	Alarm A, acceleration peak threshold	Table 17
ALM_MAG1	Read/write	Yes	0x22	0x0000	Alarm 1, AIN1 peak threshold	Table 18
ALM_MAG2	Read/write	Yes	0x24	0x0000	Alarm 2, AIN2 peak threshold	Table 18
ALM_MAGS	Read/write	Yes	0x26	0x0000	Alarm S, temperature/power supply threshold	Table 19
ALM_CTRL	Read/write	Yes	0x28	0x0000	Alarm, control register	Table 16
			0x2A to 0x31		Reserved	
GPIO_CTRL	Read/write	Yes	0x32	0x0000	Operation, general I/O configuration	Table 26
MSC_CTRL	Read/write	Yes	0x34	0x0000	Operation, self-test control, AIN configuration	Table 28
DIO_CTRL	Read/write	Yes	0x36	0x000F	Operation, digital I/O configuration	Table 25
AVG_CNT	Read/write	Yes	0x38	0x0000	Operation, filter configuration	Table 22
			0x3A to 0x3B		Reserved	
DIAG_STAT	Read only	Yes	0x3C	0x0000	Diagnostics, system status	Table 27
GLOB_CMD	Write only	No	0x3E	0x0000	Operation, system commands	Table 21
ST_DELTA	Read only	Yes	0x40	0x0000	Self-test response	Table 29
			0x42 to 0x51		Reserved	
DAY_ID	Read only	Yes	0x52	N/A	Factory program date, day	Table 31
YEARMON_ID	Read only	Yes	0x54	N/A	Factory program date, month/year	Table 32
PROD_ID	Read only	Yes	0x56	0x3F5C	Product identifier; convert to decimal = 16220	N/A
SERIAL_NUM	Read only	Yes	0x58	N/A	Serial number	Table 33

¹ Each register contains two bytes. The address of the lower byte is displayed. The address of the upper byte is equal to the address of the lower byte, plus 1.

Figure 13. SPI Communication Bit Sequence

READING DATA FROM THE CAPTURE BUFFER

Initiate a manual capture command by setting GLOB_CMD[11] = 1 (DIN = 0xBF08). Wait for DIO1 to go high and then low before using the SPI port. When the capture is complete, the first data samples load into the CAPT_BUFx registers and 0x0000 loads into the index pointer (CAPT_PNTR). The index pointer determines which data samples load into the CAPT_BUFx registers. For example, writing 0x0138 to the CAPT_PNTR register (DIN = 0x9A38, DIN = 0x9B01) causes the 313th sample in the buffer memory to load into the CAPT_BUFx registers.

Figure 14. Acceleration Capture Buffer Structure and Operation; CAPT_BUF1 (AIN1) and CAPT_BUF2 (AIN2) Use Similar Structures

Table 9. CAPT_PNTR Bits Descriptions

Bit	Description (Default = 0x0000)
[15:10]	Not used
[9:0]	Data bits

The index pointer automatically increments with a CAPT_BUFA, CAPT_BUF1, or CAPT_BUF2 read command. In the master processor firmware, the loop may appear similar to the following:

```
Data(0) = spi_reg_read(0x14)
For n = 0 to 1023
Data(n) = spi_reg_read(0x14);
n = n + 1;
end
```

Output Data Format

The CAPT_BUFA and CAPT_PEAKA registers use a 14-bit, twos complement format to accommodate acceleration in both directions (positive and negative). In addition to the acceleration data, a capture event also produces analog input data (CAPT_BUF1, CAPT_BUF2), power supply data (CAPT_SUPPLY), temperature data (CAPT_TEMP), the peak acceleration level (CAPT_PEAKA) and the peak analog input levels (CAPT_PEAK1, CAPT_PEAK2) in the captured data.

Register	Bits	Format	Scale
CAPT_SUPPLY	12	Binary, 0 V = 0 LSB	1.22 mV
CAPT_TEMP	12	Binary, 25°C = 1278 LSB	–0.47°C
CAPT_BUFA, CAPT_PEAKA	16	Twos complement	19.073 m <i>g</i>
CAPT_BUF1, CAPT_BUF2, CAPT_PEAK1, CAPT_PEAK2	16	Twos complement	350.18 μV

Output (Binary)	Hex	LSB	Acceleration
0000 1110 0101 0001	0x0E56	+3670	+70 g
0000 0000 0000 0001	0x0001	+1	+0.019073 g
0000 0000 0000 0000	0x0000	0	0
1111 1111 1111 1111	0xFFFF	-1	–0.019073 g
1111 0001 1010 1101	0xF1AA	-3670	-70 g

Table 12. Analog Input Data Format

01				
	Output (Binary)	Hex	LSB	Level (mV)
	0000 1100 1100 1101	0x0CCD	+3277	VDD/2 + 1000
	0000 0000 0000 0001	0x0001	+1	VDD/2 + 0.305
	0000 0000 0000 0000	0x0000	0	VDD/2
	1111 1111 1111 1111	0xFFFF	-1	VDD/2 - 0.305
	1111 0011 0011 0010	0xF332	-3277	VDD/2 - 1000

Power Supply Voltage (Vs) Equation

 $V_S = (CAPT_SUPPLY) \times 0.001221 \text{ V/LSB} = +3.3 \text{ V}$

where *CAPT_SUPPLY* = 2703 LSB.

Temperature Equation

 $Temperature = (1278 - CAPT_TEMP) \times 0.47^{\circ}C/LSB + 25^{\circ}C = 0.1^{\circ}C$

where $CAPT_TEMP = 1331$.

CAPTURE MODE CONFIGURATION

The CAPT_CTRL register provides three different options for triggering a data capture: manual, automatic, and event. It also offers an option for placing the device in a low power, shutdown mode in between capture events. This setting adds approximately 2.3 ms to the total capture time relationship:

$$T_{C} = 0.014 + \frac{1}{97,184} \times 1024 \times 2^{AVG_{-}CNT} \text{ (no flash)}$$
$$T_{C} = 0.516 + \frac{1}{97,184} \times 1024 \times 2^{AVG_{-}CNT} \text{ (with flash)}$$

Table 13. CAPT_CTRL Bit Descriptions

Bit	Description (Default = 0x0020)	
[15:7]	Not used		
[6]	Automatically store capture buffers to flash upon alarm trigger (1 = enabled)		
[5:4]	Pre-event capture length		
	00 = 64 samples		
	01 = 128 samples		
	10 = 256 samples		
	11 = 512 samples		
[3:2]	Capture mode		
	00 = manual: use GLOB_CMD[11] to sta	rt capture	
	01 = automatic: use CAPT_PRD[9:0] to s	et capture period	
	10 = event: continuously monitor data f set in ALM_CTRL, ALM_MAGA, ALM_MAG	for the conditions a1, and ALM_MAG2.	
	11 = not used		
[1]	Power-down between capture events		
	1 = enabled, which requires \overline{CS} toggle t	o wake up	
[0]	Not used		

Manual Capture Mode

This is the factory-default mode, where the sensor waits for a user-driven trigger to execute a data capture. Set $GLOB_CMD[11] = 1$ (DIN = 0xBF08) to execute a data capture in this mode. Set CAPT_CTRL[6:0] = 0x02 to place the device in manual mode and enable the control bit that shuts the device down while it waits for the data capture command.

Automatic Capture Mode

In automatic mode, the device executes data captures without user input, on a periodic basis. Configuring the device for this mode requires three steps: program the capture period using CAPT_PRD, set the device in automatic mode using CAPT_CTRL[3:2], and start the capture process/clock using CLOB_CMD[11]. See Table 15 for an example of setting up automatic mode.

Table 14. CAPT_PRD Register Bit Descriptions

Bit	Description (Default = 0x0000)
[15:10]	Not used
[9:8]	Scale
	00 = 1 second/LSB
	01 = 1 minute/LSB
	10 = 1 hour/LSB
[7:0]	Data bits, binary format

Table 15. Example Event Mode Configuration Sequence

DIN	Description
0x9F02,	Set time scale to hours
0x9E18	Set the time between captures to 24 hours
0x9C06	Set the device for trigger mode and enable shutdown
0xBF08	Start: device executes a capture and shuts down

Event Capture Mode

The event capture mode triggers a data capture when the data meets the preset conditions in the alarm registers (ALM_xxxx). The ALM_CTRL register provides trigger source selection and configuration controls, while the ALM_MAGx registers provide threshold level controls.

Table 16. ALM_CTRL Bit Descriptions

Bit	Description (Default = 0x0000)
[15:6]	Not used
[5]	System alarm comparison polarity
	1 = trigger when less than ALM_MAGS[11:0]
	0 = trigger when greater than ALM_MAGS[11:0]
[4]	System alarm trigger source
	1 = temperature, 0 = power supply
[3]	System alarm enable (ALM_MAGS)
	1 = enabled, 0 = disabled
[2]	AIN2 alarm enable (ALM_MAG2)
	1 = enabled, 0 = disabled
[1]	AIN1 alarm enable (ALM_MAG1)
	1 = enabled, 0 = disabled
[0]	Acceleration alarm enable (ALM_MAGA)
	1 = enabled, 0 = disabled

Table 17. ALM_MAGA Bit Descriptions

Bit	Description (Default = 0x0000)
[15:0]	Data bits for acceleration threshold setting; twos complement, 19.073 mg/LSB. Range = +8191/-8192 LSBs

Table 18. ALM_MAG1 and ALM_MAG2 Bit Descriptions

Bit	Description (Default = 0x0000)
[15:0]	Data bits for AIN1, AIN2 signal threshold setting;
	twos complement, 350.18 μV/LSB.
	Range = +8191/-8192 LSBs

Table 19. ALM_MAGS Bit Descriptions

Bit	Description (Default = 0x0000)
[15:12]	Not used.
[11:0]	Data bits for temperature or supply threshold setting. Binary format matches CAPT_TEMP or CAPT_SUPPLY format, depending on the ALM_CTRL[4] setting.

Configuring the device in the event capture mode requires four steps: select which data channels to enable (ALM_CTRL[5:0]), set each threshold (ALM_MAGx), select event capture mode (CAPT_CTRL[3:2]) and start the capture mode operation (GLOB_CMD[11]). Each ALM_MAGx register has a corresponding error flag in the DIAG_STAT register for software monitoring of alarm conditions. Note that the system alarm has an error flag in DIAG_STAT[11] but cannot trigger a data capture.

Table 20. Example Event Mode Configuration Sequen

DIN	Description
0xA00C, 0xA102	Set acceleration trigger point at $>+10 g$ and $<-10 g$ by setting ALM_MAGA = 0x020C.
0xA634, 0xA700	Set temperature error flag level at +60°C by setting ALM_MAGS = 0x00C4.
0xA839	Set the system alarm as a greater-than-temperature configuration and enable both acceleration and system alarms by setting ALM_CTRL[5:0] = 0x39.
0xB61F	Keep DIO1 as a busy indicator and set DIO2 as a positive alarm indicator by setting DIO_CTRL[7:0] = 0x1F.
0x9C5A	Set capture into event mode, enable automatic capture store to flash, enable power-down between captures, and set pre-event capture length to 128 samples by setting CAPT_CTRL[7:0] = 0x5A.
0xBF08	Start the event capture mode by setting GLOB_CMD[11] = 1

GLOBAL COMMANDS

The GLOB_CMD register provides an array of single-write commands for convenience. Setting the assigned bit in Table 21 to 1 activates each function. When the function completes, the bit restores itself to 0. For example, clear the capture buffers using a single DIN write sequence, DIN = 0xBF01. All of the commands in the GLOB_CMD register require the power supply to be within normal limits for the execution times listed in Table 21. The execution times reflect the factory default configuration where applicable and describe the time required to return to normal operation.

Bit	Description	Execution Time ¹
[15:14]	Not used	N/A
[13]	Restore capture data and settings from flash memory	0.88 ms (no capture) 6.91 ms (with capture)
[12]	Copy capture data and settings to flash memory	350 ms (no capture) 502 (with capture)
[11]	Capture mode start/stop	N/A
[10]	Set CAPT_PNTR = 0x0000	0.037 ms
[9]	Not used	N/A
[8]	Clear capture buffers	0.84 ms
[7]	Software reset	22.7 ms
[6]	Not used	N/A
[5]	Flash test, compare sum of flash memory with the sum of SRAM	10.5 ms
[4]	Clear DIAG_STAT register	0.035 ms
[3]	Factory setting restore	335 ms
[2]	Self-test	12 ms
[1]	Power-down, requires toggling \overline{CS} low to wake up	N/A
[0]	Autonull	678 ms

Table 21. GLOB_CMD Bit Descriptions

¹ This indicates the typical duration of time between the command write and the device returning to normal operation.

FILTERING

The ADIS16220 provides an averaging/decimation filter for lower bandwidth applications that may value finer frequency resolution using the 1024-sample capture buffer.

Figure 15. Simplified Signal Processing Flowchart

AVG_CNT[3:0] controls the averaging/decimating filter structure in binomial steps, starting with 1 and ending with 1024. For example, set AVG_CNT[3:0] = 1000 (DIN = 0xB608) to select 256 averages and a decimation rate of 1/256. Note that the decrease in sample time impacts the total capture time (T_c):

AVG_CNT[3:0] = 1000 = 8, *N* = 2⁸ = 256 averages

Table 22. AVG_CNT Bit Descriptions

Bit	Description (Default = 0x0000)			
[15:4]	Not used			
[3:0]	Power-of-two setting for number of averages, binary			

OFFSET ADJUSTMENT

The ACCL_NULL, AIN1_NULL and AIN2_NULL registers provide a bias adjustment function. For example, setting ACCL_NULL = 0x009C (DIN = 0x829C) increases the acceleration bias by 156 LSB (3 *g*). Set GLOB_CMD[0] = 1 (DIN = 0x3E01) to execute the autonull function, which loads the offset registers with a value derived from a 678 ms average of the acceleration data.

Bit	Description (Default = 0x0000)
[15:0]	Data bits, twos complement, 19.073 mg/LSB sensitivity. See Figure 15 for impact on output. Range = +8191/–8192 LSBs

Table 24. AIN1_NULL, AIN2_NULL Bit Descriptions

Bit	Description (Default = 0x0000)			
[15:0]	Data bits, twos complement, 350.18 μ V/LSB sensitivity. Signal path is similar to Figure 15. Range = +8191/-8192 LSBs			

INPUT/OUTPUT FUNCTIONS

DIO1 and DIO2 are configurable as I/O lines that serve multiple purposes. The following register priority governs their operation: DIO_CTRL, then GPIO_CTRL. The DIO_CTRL register has four application-specific configuration options for each signal. The capture trigger input option works in conjunction with the manual capture mode and provides a hardware option for driving a data capture event. When enabled, this function searches for a positive pulse and the capture starts on the falling edge of this pulse. The busy indicator output is active during capture events and can help prevent undesirable interruptions. For example, set $DIO_CTRL[5:0] = 101111$ (DIN = 0xB62F) to establish DIO2 as a capture trigger input and keep DIO1 as a positive polarity, busy indicator output. Using the busy indicator as an interrupt driver enables the master processor to gather capture data as soon as it is available, without having to poll inputs or estimate execution times. The alarm indicator output is active when the trigger set by ALM_CTRL and ALM_MAGx activates. When configured as general-purpose lines, the GPIO_CTRL register configures DIO1 and DIO2. For example, set GPIO CTRL = 0x0103 (DIN = 0xB203, then 0xB301) to set DIO1 and DIO2 as outputs, with DIO1 in a 1 state and DIO2 in a 0 state.

Table 25. DIO_CTRL Bit Descriptions

Bit	Description (Default = 0x000F)
[15:6]	Not used
[5:4]	DIO2 function selection
	00 = general-purpose I/O (use GPIO_CTRL)
	01 = alarm indicator output (per ALM_CTRL)
	10 = capture trigger inputs
	11 = busy indicator output
[3:2]	DIO1 function selection
	00 = general-purpose I/O (use GPIO_CTRL)
	01 = alarm indicator output (per ALM_CTRL)
	10 = capture trigger inputs
	11 = busy indicator output
[1]	DIO2 line polarity, If [5:4] = 00, see GPIO_CTRL
	1 = active high
	0 = active low
[0]	DIO1 line polarity, If [3:2] = 00, see GPIO_CTRL
	1 = active high
	0 – active low

Preliminary Te	chnical Data
-----------------------	--------------

Table	26.	GPIO	CTRL	Bit	Descriptions	
1 4010		UL L U_		~	Deseription	

Bit	Description (Default = 0x0000)
[15:10]	Not used
[9]	General-Purpose I/O Line 2 data level
[8]	General-Purpose I/O Line 1 data level
[7:2]	Not used
[1]	General-Purpose I/O Line 2, data direction control
	1 = output, 0 = input
[0]	General-Purpose I/O Line 1, data direction control
	1 = output, 0 = input

DIAGNOSTICS

In all of the error flags in DIAG_STAT, a 1 identifies an error condition while a 0 signals normal operation. All of the flags remain until the next capture or reset command (GLOB_CMD[4] = 1). DIAG_STAT[1:0] return to 1 after the next sample (or capture) if the error conditions still exist. DIAG STAT[14:12] provide flags to check the source of an event capture, prior to reading the entire capture buffer. DIAG_STAT[10:8] offers flags that check the peak values in the capture against the conditions in the ALM_CTRL and ALM_MAGx registers. The flash test produces an error flag in DIAG_STAT[6] to check if the sum of the internal operating memory matches the sum of the same flash memory locations. The capture period violation flag (DIAG_STAT[4]) rises to Logic 1 when the user attempts to use the SPI while a capture sequence is in progress. Using the DIO1 line in the factory default configuration as a busy indicator can help prevent this violation. The SPI communication flag in DIAG_STAT[3] raises to a Logic 1 when the total number of SCLK clocks is not a multiple of 16 during a SPI transfer.

Table 27. DIAG_STAT Bit Descriptions

Table 27. DIAG_STAT Dit Descriptions			
Bit	Description (Default = 0x0000)		
[15]	Not used		
[14]	AIN2 sample > ALM_MAG2		
[13]	AIN1 sample > ALM_MAG1		
[12]	Acceleration sample > ALM_MAGA		
[11]	Error condition programmed into ALM_MAGS[11:0] and ALM_CTRL[5:4] is true		
[10]	Peak value in AIN2 data capture > ALM_MAG2		
[9]	Peak value in AIN1 data capture > ALM_MAG1		
[8]	Peak value in acceleration data capture > ALM_MAGA		
[7]	Data ready, capture complete		
[6]	Flash test, checksum flag		
[5]	Self-test diagnostic error flag		
[4]	Capture period violation/interruption		
[3]	SPI communications failure		
[2]	Flash update failure		
[1]	Power supply above 3.625 V		
[0]	Power supply below 3.15 V		

Self-Test

The internal MEMS sensing element has an electrostatic selftest function that simulates the physical displacement associated with an acceleration event. There are two options for using this feature to verify the integrity of the entire sensor signal chain. Set $GLOB_CMD[2] = 1$ to execute an automatic self-test sequence, which exercises the sensing element, observes the change in output, records it into ST_DELTA, compares it with the acceptable self-test response range in Table 1, and reports the pass/fail result in DIAG_STAT[5].

Another option is to set MSC_CTRL[8] = 1 to manually activate the sensing element. Then execute a manual capture, which reflects the response associated with the self-test setting.

Table 28. MSC_CTRL Bit Descriptions

Bit	Description (Default = 0x0000)
[15:9]	Not used
[8]	Self-test enable, set to 1 to activate, (returns to 0 when complete)
[7:2]	Not used
[1]	Power supply compensation, AIN1
	1 = enable, 0 = disable
[0]	Power supply compensation, AIN2
	1 = enable, 0 = disable

MSC_CTRL[1:0] provides an option for reducing the sensitivity dependence on power supply for ratiometric sensors, such as the ADXL001.

Table 29. ST_DELTA Bit Descriptions

Bit	Description (Default = 0x0000)	
[15:0]	Acceleration data, twos complement, 19.073 mg/LSB	
Table 30. FLASH_CNT Bit Descriptions		
Bit	Description (Default = 0x0000)	
[15:0]	Binary counter for writing to flash memory	
Table 31. DAY_ID Bit Descriptions		

Bit	Description
[15:12]	Factory test day, 10's digit
[11:8]	Factory test day, 1's digit
[7:0]	Reserved for internal use, do not use

Table 32. YEARMON_ID Bit Descriptions

Bit	Description
[15:12]	Factory test year, 10's digit
[11:8]	Factory test year, 1's digit
[7:4]	Factory test month, 10's digit,
[7:0]	Factory test month, 1's digit

For example, if YEARMON_ID = 0x1412 and DAY_ID = 0x2900, the factory test date would be December 29, 2014.

Table 33. SERIAL_NUM Bit Descriptions

Bit	Description
[15:0]	Serial number, binary format

APPLICATIONS INFORMATION Assembly

The ADIS16220 is a system-in-package (SIP) that integrates multiple components together in a land grid array (LGA). This configuration offers the convenience of solder-reflow installation on printed circuit boards (PCBs). In developing a process flow for installing ADIS16220 devices on PCBs, refer to the following industry standards: JEDEC J-STD-020 for solder reflow temperature profiles and JEDEC J-STD-033 for moisture sensitivity (MSL) handling requirements. The MSL rating for these devices are clearly marked on the antistatic bags, which protect these devices from ESD during shipping and handling. Prior to assembly, review the process flow for opportunity to introduce shock levels that exceed the ADIS16220's absolute maximum ratings. PCB separation (score and snap) and ultrasonic cleaning are two common areas that can introduce high levels of shock to these devices.

SERIAL IDENTIFICATION

Each lot of ADIS16220 parts has its factory program date written to the YEARMON_ID and DAY_ID registers. Each lot also has a relative serial number that starts at 0x0001 and counts up to 0xFFFF. For users that values serialization, these registers are made available for read-only access. See Table 31, Table 32, and Table 33 for bit assignments. For example, when YEARMON_ID = 0x1011 and DAY_ID[15:8] = 0x28, the programming date is November 28, 2010. The programming date and relative serial number provide enough information to provide each part with unique identification.

INTERFACE BOARD

The ADIS16220/PCBZ provides the ADIS16220 function on a 1.2 inch \times 1.3 inch printed circuit board (PCB), which simplifies the connection to an existing processor system. The four mounting holes accommodate either M2 (2mm) or Type 2-56 machine screws. These boards are made of IS410 material and are 0.063 inches thick. The second level assembly uses a SAC305-compatible solder composition (Pb-free), which has a presolder reflow thickness of approximately 0.005 inches. The pad pattern on the ADIS16220/PCBZ matches that shown in Figure 5. J1 and J2 are dual-row, 2 mm (pitch) connectors that work with a number of ribbon cable systems, including 3M Part Number 152212-0100-GB (ribbon-crimp connector) and 3M Part Number 3625/12 (ribbon cable).

Figure 16. Electrical Schematic

Rev. PrD | Page 15 of 16

052609-C

OUTLINE DIMENSIONS

igure 18. 16-Terminal Stacked Land Grid Array (L (CC-16-2) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADIS16220CCCZ1	–40°C to +125°C	16-Terminal Stacked Land Grid Array [LGA]	CC-16-2
ADIS16220/PCBZ ¹		Evaluation Board	

 1 Z = RoHS Compliant Part.

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07980-0-6/09(PrD)

www.analog.com

Rev. PrD | Page 16 of 16