

Six Degrees of Freedom Inertial Sensor

ADIS16364

FEATURES

Tri-axis, digital gyroscope with range scaling ±75°/sec, ±150°/sec, ±300°/sec settings

Tri-axis, digital accelerometer ±5 g measurement range

Automatic start-up and operation 180 ms start-up time, no external configuration

Standard digital serial interface, SPI

Factory-calibrated sensitivity, bias, and axial alignment Calibration temperature range: -20°C to +70°C

Digital bias correction control

Digital sample rate control

Internal clock up to 819.2 SPS

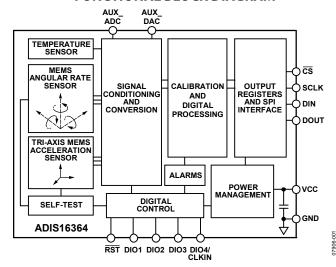
Digital filter configuration control Bartlett window FIR Programmable condition monitoring Auxiliary digital input/output
Digitally activated self-test
Programmable power management
Embedded temperature sensor
Auxiliary, 12-bit ADC input and DAC output
Single-supply operation: 4.75 V to 5.25 V
2000 g shock survivability
Operating temperature range: -40°C to +105°C

External clock up to 1200 SPS

APPLICATIONS

Medical instrumentation Robotics Platform control Navigation

GENERAL DESCRIPTION


The ADIS16364 *i*Sensor* is a complete inertial system that includes a tri-axis gyroscope and tri-axis accelerometer. Each sensor in the ADIS16364 combines industry-leading *i*MEMS* technology with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyro bias). As a result, each sensor has its own dynamic compensation formulas that provide accurate sensor measurements over a temperature range of -20° C to $+70^{\circ}$ C.

The ADIS16364 provides a simple, cost-effective method for integrating accurate, multi-axis, inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. All necessary motion testing and calibration are part of the production process

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Fiaure 1.

at the factory, greatly reducing system integration time. Tight orthogonal alignment simplifies inertial frame alignment in navigation systems. An improved SPI interface and register structure provide faster data collection and configuration control. By using a compatible pinout and the same package as the ADIS1635x family, systems that currently use the ADIS1635x family can upgrade their performance with minor firmware adjustments in their processor designs.

This compact module is approximately 23 mm \times 23 mm \times 23 mm and provides a flexible connector interface, which enables multiple mounting orientation options.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS	
Features	Theory of Operation
Applications1	Basic Operation
Functional Block Diagram	Reading Sensor Data
General Description	Device Configuration
Revision History	Burst Mode Data Collection
Specifications	Output Data Registers
Timing Specifications	Calibration1
Timing Diagrams5	Operational Control1
Absolute Maximum Ratings6	Input/Output Functions1
ESD Caution6	Diagnostics1
Pin Configuration and Function Descriptions7	Outline Dimensions
Typical Performance Characteristics	Ordering Guide
REVISION HISTORY	
3/09—Rev. A to Rev. B	
Changes to Features Section	3/09—Rev. 0 to Rev. A
Changes to Figure 5 and Figure 6	Changes to Features Section and General Description Section
Changes to Figure 78	Changes to Table 1
Changes to Devices Configuration Section9	Changes to Table 91
Changes to Figure 12	Changes to Table 20
Changes to Output Data Registers Section	1/09—Revision 0: Initial Version
Changes to Internal Sample Rate Section, Power Management	2,00 200,000 01 200,000 01 01 01 01 01 01 01 01 01 01 01 01
Section, Digital Filtering Section, and the Dynamic Range	

SPECIFICATIONS

 $T_A = 25^{\circ}\text{C}$, VCC = 5.0 V, angular rate = 0°/sec, dynamic range = $\pm 300^{\circ}$ /sec, ± 1 g, unless otherwise noted.

Table 1.

Parameter	Test Conditions	Min	Тур	Max	Unit
GYROSCOPES					
Dynamic Range		±300	±350		°/sec
Initial Sensitivity	Dynamic range = ±300°/sec	0.0495	0.05	0.0505	°/sec/LSB
	Dynamic range = ±150°/sec		0.025		°/sec/LSB
	Dynamic range = ±75°/sec		0.0125		°/sec/LSB
Sensitivity Temperature Coefficient	-20 °C $\leq T_A \leq +70$ °C		50		ppm/°C
Misalignment	Reference to z-axis accelerometer		±0.05		Degrees
	Axis-to-frame (package)		±0.5		Degrees
Nonlinearity	Best fit straight line		0.1		% of FS
Initial Bias Error	±1 σ		±3		°/sec
In-Run Bias Stability	1 σ, SMPL_PRD = 0x01		0.007		°/sec
Angular Random Walk	1σ , SMPL_PRD = $0x01$		2.0		°/√hr
Bias Temperature Coefficient	$-20^{\circ}\text{C} \le \text{T}_{A} \le +70^{\circ}\text{C}$		0.01		°/sec/°C
Linear Acceleration Effect on Bias	Any axis, 1 σ (MSC_CTRL, Bit 7 = 1)		0.05		°/sec/g
Bias Voltage Sensitivity	VCC = 4.75 V to 5.25 V		0.32		°/sec/V
Output Noise	±300°/sec range, no filtering		0.9		°/sec rms
Rate Noise Density	$f = 25 \text{ Hz}, \pm 300^{\circ}/\text{sec}$, no filtering		0.05		°/sec/√Hz rms
3 dB Bandwidth			330		Hz
Sensor Resonant Frequency			14.5		kHz
Self-Test Change in Output Response	±300°/sec range setting	±696	±1400	±2449	LSB
ACCELEROMETERS	Each axis				
Dynamic Range		±5	±5.25		g
Initial Sensitivity		0.99	1.00	1.01	mg/LSB
Sensitivity Temperature Coefficient	$-20^{\circ}\text{C} \le \text{T}_{A} \le +70^{\circ}\text{C}$		50		ppm/°C
Misalignment	Axis-to-axis, $\Delta = 90^{\circ}$ ideal		0.2		Degrees
-	Axis-to-frame (package)		±0.5		Degrees
Nonlinearity	Best fit straight line		0.1		% of FS
Initial Bias Error	±1 σ		8		m <i>g</i>
In-Run Bias Stability	1 σ		0.1		m <i>g</i>
Velocity Random Walk	1 σ		0.12		m/sec/√hr
Bias Temperature Coefficient	$-20^{\circ}\text{C} \le \text{T}_{\text{A}} \le +70^{\circ}\text{C}$		0.05		mg/°C
Bias Voltage Sensitivity	VCC = 4.75 V to 5.25 V		2.5		mg/V
Output Noise	No filtering		5		mg rms
Noise Density	No filtering		0.27		mg/√Hz rms
3 dB Bandwidth			330		Hz
Sensor Resonant Frequency			5.5		kHz
Self-Test Change in Output Response	X-axis and y-axis	140		570	LSB
TEMPERATURE SENSOR	,				
Scale Factor	Output = $0x0000 @ +25^{\circ}C (\pm 5^{\circ}C)$		0.14		°C/LSB
ADC INPUT					
Resolution			12		Bits
Integral Nonlinearity			±2		LSB
Differential Nonlinearity			±1		LSB
Offset Error			±4		LSB
Gain Error			±2		LSB
Input Range		0		+3.3	V
Input Capacitance	During acquisition		20		pF

Parameter	Test Conditions	Min	Тур	Max	Unit
DAC OUTPUT	5 kΩ/100 pF to GND				
Resolution			12		Bits
Relative Accuracy	For Code 101 to Code 4095		±4		LSB
Differential Nonlinearity			±1		LSB
Offset Error			±5		mV
Gain Error			±0.5		%
Output Range		0		3.3	V
Output Impedance			2		Ω
Output Settling Time			10		μs
LOGIC INPUTS ¹					
Input High Voltage, VINH		2.0			V
Input Low Voltage, V _{INL}				0.8	V
	CS signal to wake up from sleep mode			0.55	V
CS Wake-Up Pulse Width		20			μs
Logic 1 Input Current, I _{INH}	V _H = 3.3 V		±0.2	±10	μΑ
Logic 0 Input Current, I _{INL}	$V_{IL} = 0 V$		_0,_		Par. 1
All Pins Except RST			-40	-60	μΑ
RST Pin			-1	00	mA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS ¹			10		pr
Output High Voltage, V _{OH}	1 – 16 mA	2.4			V
	$I_{SOURCE} = 1.6 \text{ mA}$ $I_{SINK} = 1.6 \text{ mA}$	2.4		0.4	V
Output Low Voltage, Vol	2	10.000		0.4	
FLASH MEMORY	Endurance ²	10,000			Cycles
Data Retention ³	T _J = 85°C	10			Years
FUNCTIONAL TIMES ⁴	Time until data is available		100		
Power-On Start-Up Time	Normal mode, SMPL_PRD ≤ 0x09		180		ms
D 10 T	Low power mode, SMPL_PRD ≥ 0x0A		250		ms
Reset Recovery Time	Normal mode, SMPL_PRD ≤ 0x09		60		ms
	Low power mode, SMPL_PRD ≥ 0x0A		130		ms
Sleep Mode Recovery Time	Normal mode, SMPL_PRD ≤ 0x09		4		ms
	Low power mode, SMPL_PRD ≥ 0x0A		9		
Flash Memory Test Time	Normal mode, SMPL_PRD ≤ 0x09		17		ms
	Low power mode, SMPL_PRD ≥ 0x0A		90		ms
Automatic Self-Test Time	$SMPL_PRD = 0x01$		12		ms
CONVERSION RATE	$SMPL_PRD = 0x01 \text{ to } 0xFF$	0.413		819.2	SPS
Clock Accuracy				±3	%
Sync Input Clock				1.2	kHz
POWER SUPPLY	Operating voltage range, VCC	4.75	5.0	5.25	V
Power Supply Current	Low power mode		24		mA
	Normal mode		49		mA
	Sleep mode		500		μΑ

¹ The digital I/O signals are driven by an internal 3.3 V supply, and the inputs are 5 V tolerant.

² Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at –40°C, +25°C, and +125°C.

³ The data retention lifetime equivalent is at a junction temperature (T₂) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with junction temperature.

4 These times do not include thermal settling and internal filter response times (330 Hz bandwidth), which may affect overall accuracy.

TIMING SPECIFICATIONS

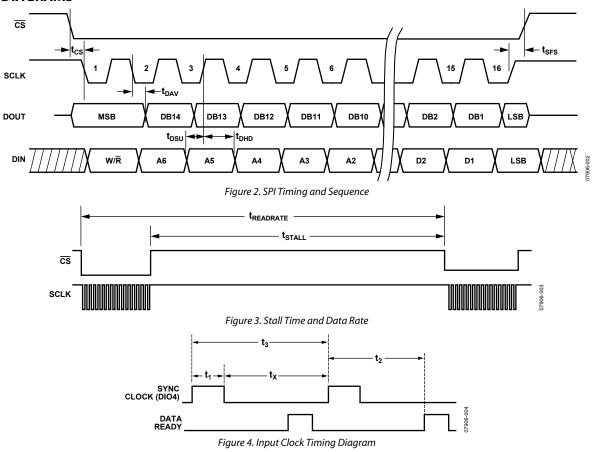

 $T_A = 25$ °C, VCC = 5 V, unless otherwise noted.

Table 2.

			Normal Mode (SMPL_PRD ≤ 0x09)		Low Power Mode (SMPL_PRD ≥ 0x0A)			Burst Mode			
Parameter	Description	Min ¹	Тур	Max	Min ¹	Тур	Max	Min ¹	Тур	Max	Unit
f _{SCLK}		0.01		2.0	0.01		0.3	0.01		1.0	MHz
t _{STALL}	Stall period between data	9			75			1/f _{SCLK}			μs
t _{READRATE}	Read rate	40			100						μs
t cs	Chip select to clock edge	48.8			48.8			48.8			ns
t_{DAV}	DOUT valid after SCLK edge			100			100			100	ns
t _{DSU}	DIN setup time before SCLK rising edge	24.4			24.4			24.4			ns
t _{DHD}	DIN hold time after SCLK rising edge	48.8			48.8			48.8			ns
tsclkr, tsclkf	SCLK rise/fall times		5	12.5		5	12.5		5	12.5	ns
t_{DF} , t_{DR}	DOUT rise/fall times		5	12.5		5	12.5		5	12.5	ns
t _{SFS}	CS high after SCLK edge	5			5			5			ns
t_1	Input sync positive pulse width	5									μs
t _x	Input sync low time	100									μs
t_2	Input sync to data ready output		600								μs
t ₃	Input sync period	833									μs

¹ Guaranteed by design and characterization, but not tested in production.

TIMING DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Table 3.

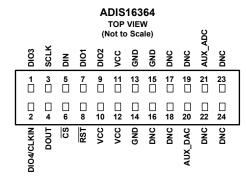
Parameter	Rating
Acceleration	
Any Axis, Unpowered	2000 g
Any Axis, Powered	2000 g
VCC to GND	-0.3 V to +6.0 V
Digital Input Voltage to GND	-0.3 V to +5.3 V
Digital Output Voltage to GND	-0.3 V to VCC + 0.3 V
Analog Input to GND	-0.3 V to +3.6 V
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	−65°C to +125°C ^{1,2}

 $^{^1}$ Extended exposure to temperatures outside the specified temperature range of -40°C to $+105^{\circ}\text{C}$ can adversely affect the accuracy of the factory calibration. For best accuracy, store the parts within the specified operating range of -40°C to $+105^{\circ}\text{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Package Characteristics

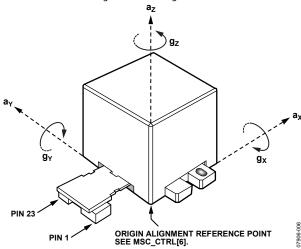
Package Type	θја	θις	Device Weight
24-Lead Module	39.8°C/W	14.2°C/W	16 grams


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Although the device is capable of withstanding short-term exposure to 150°C, long-term exposure threatens internal mechanical integrity.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES

- 1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT
- FOR THE MATING SOCKET CONNECTOR.

 2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM THE TOP VIEW.
- 3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT. 4. DNC = DO NOT CONNECT.

NOTES

I. ACCELERATION (a_X,a_Y,a_Z) AND ROTATIONAL (g_X,g_Y,g_Z) ARROWS INDICATE THE DIRECTION OF MOTION THAT PRODUCES A POSITIVE OUTPUT.

Figure 6. Axial Orientation

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
1	DIO3	I/O	Configurable Digital Input/Output.
2	DIO4/CLKIN	I/O	Configurable Digital Input/Output or Sync Clock Input.
16, 17, 18, 19, 22, 23, 24	DNC	N/A	Do Not Connect.
3	SCLK	1	SPI Serial Clock.
4	DOUT	0	SPI Data Output. Clocks output on SCLK falling edge.
5	DIN	1	SPI Data Input. Clocks input on SCLK rising edge.
6	CS	1	SPI Chip Select.
7, 9	DIO1, DIO2	I/O	Configurable Digital Input/Output.
8	RST	1	Reset.
10, 11, 12	VCC	S	Power Supply.
13, 14, 15	GND	S	Power Ground.
20	AUX_DAC	0	Auxiliary, 12-Bit DAC Output.
21	AUX_ADC	1	Auxiliary, 12-Bit ADC Input.

¹ S is supply, O is output, I is input, N/A is not applicable.

TYPICAL PERFORMANCE CHARACTERISTICS

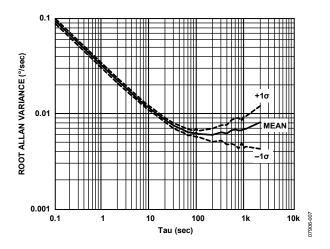


Figure 7. Gyroscope Allan Variance

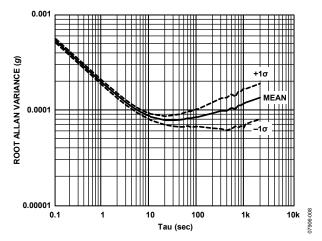


Figure 8. Accelerometer Allan Variance

THEORY OF OPERATION BASIC OPERATION

The ADIS16364 is an autonomous sensor system that starts up after it has a valid power supply voltage and begins producing inertial measurement data at the factory default sample rate setting of 819.2 SPS. After each sample cycle, the sensor data loads into the output registers and DIO1 pulses, providing a new data ready control signal for driving system-level interrupt service routines. In a typical system, a master processor accesses the output data registers through the SPI interface, using the hook-up diagram shown in Figure 9. Table 6 provides a generic functional description for each pin on the master processor. Table 7 describes the typical master processor settings normally found in a configuration register and used for communicating with the ADIS16364.

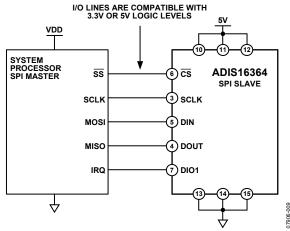


Figure 9. Electrical Hook-Up Diagram

Table 6. Generic Master Processor Pin Names and Functions

Pin Name	Function
SS	Slave select
IRQ	Interrupt request
MOSI	Master output, slave input
MISO	Master input, slave output
SCLK	Serial clock

Table 7. Generic Master Processor SPI Settings

Processor Setting	Description
Master	The ADIS16364 operates as a slave.
SCLK Rate ≤ 2 MHz ¹	Normal mode, SMPL_PRD[7:0] ≤ 0x08.
SPI Mode 3	CPOL = 1 (polarity), CHPA = 1 (phase).
MSB-First Mode	Bit sequence.
16-Bit Mode	Shift register/data length.

¹ For burst mode, SCLK rate \leq 1 MHz. For low power mode, SCLK rate \leq 300 kHz.

The user registers provide addressing for all input/output operations on the SPI interface. Each 16-bit register has two 7-bit addresses: one for its upper byte and one for its lower byte.

Table 8 lists the lower byte address for each register, and Figure 10 shows the generic bit assignments.

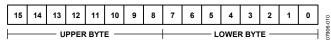


Figure 10. Output Register Bit Assignments

READING SENSOR DATA

Although the ADIS16364 produces data independently, it operates as a SPI slave device, which communicates with system (master) processors using the 16-bit segments displayed in Figure 11. Individual register reads require two of these 16-bit sequences. The first 16-bit sequence provides the read command bit (R/W = 0) and the target register address (A6 to A0). The second sequence transmits the register contents (D15 to D0) on the DOUT line. For example, if DIN = 0x0A00, then the content of XACCL_OUT shifts out on the DOUT line during the next 16-bit sequence.

The SPI operates in full duplex mode, which means that the master processor can read the output data from DOUT while using the same SCLK pulses to transmit the next target address on DIN.

DEVICE CONFIGURATION

The user register memory map (Table 8) identifies configuration registers with either a W or R/W. Configuration commands also use the bit sequence displayed in Figure 12. If the MSB is equal to 1, the last eight bits (DC7 to DC0) in the DIN sequence load into the memory address associated with the address bits (A6 to A0). For example, if DIN = 0xA11F, then 0x1F loads into Address Location 0x21 (XACCL_OUT, upper byte) at the conclusion of the data frame.

Most of the registers have a backup location in nonvolatile flash memory. The master processor initiates the backup function by setting GLOB_CMD[3] = 1 (DIN = 0xBE04). This command copies the user registers into their respective flash memory locations and requires the power supply to stay within its normal operating range for the entire 50 ms process. The FLASH_CNT register provides a running count of these events for managing the long-term reliability of the flash memory.

BURST MODE DATA COLLECTION

Burst mode data collection offers a more process-efficient method for collecting data from the ADIS16364. In sequential data cycles (each separated by one SCLK period), all output registers clock out on DOUT. This sequence starts by setting $GLOB_CMD[7:0] = 0x00$ (DIN = 0x3E00). Next, the contents of each output register are output from DOUT, starting with SUPPLY_OUT and ending with AUX_ADC (see Figure 12). The addressing sequence shown in Table 8 determines the order of the outputs in burst mode.

Table 8. User Register Memory Map

Name	R/W	Flash Backup	Address ¹	Default	Function	Bit Assignments
FLASH_CNT	R	Yes	0x00	N/A	Flash memory write count	N/A
SUPPLY_OUT	R	No	0x02	N/A	Power supply measurement	Table 9
XGYRO_OUT	R	No	0x04	N/A	X-axis gyroscope output	Table 9
YGYRO_OUT	R	No	0x06	N/A	Y-axis gyroscope output	Table 9
ZGYRO_OUT	R	No	0x08	N/A	Z-axis gyroscope output	Table 9
XACCL_OUT	R	No	0x0A	N/A	X-axis accelerometer output	Table 9
YACCL_OUT	R	No	0x0C	N/A	Y-axis accelerometer output	Table 9
ZACCL_OUT	R	No	0x0E	N/A	Z-axis accelerometer output	Table 9
XTEMP_OUT	R	No	0x10	N/A	X-axis gyroscope temperature measurement	Table 9
YTEMP_OUT	R	No	0x12	N/A	Y-axis gyroscope temperature measurement	Table 9
ZTEMP_OUT	R	No	0x14	N/A	Z-axis gyroscope temperature measurement	Table 9
AUX_ADC	R	No	0x16	N/A	Auxiliary ADC output	Table 9
N/A	N/A	N/A	0x18	N/A	Reserved	N/A
XGYRO_OFF	R/W	Yes	0x1A	0x0000	X-axis gyroscope bias offset factor	Table 10
YGYRO_OFF	R/W	Yes	0x1C	0x0000	Y-axis gyroscope bias offset factor	Table 10
ZGYRO_OFF	R/W	Yes	0x1E	0x0000	Z-axis gyroscope bias offset factor	Table 10
XACCL_OFF	R/W	Yes	0x20	0x0000	X-axis acceleration bias offset factor	Table 11
YACCL_OFF	R/W	Yes	0x22	0x0000	Y-axis acceleration bias offset factor	Table 11
ZACCL_OFF	R/W	Yes	0x24	0x0000	Z-axis acceleration bias offset factor	Table 11
ALM_MAG1	R/W	Yes	0x26	0x0000	Alarm 1 amplitude threshold	Table 22
ALM_MAG2	R/W	Yes	0x28	0x0000	Alarm 2 amplitude threshold	Table 22
ALM_SMPL1	R/W	Yes	0x2A	0x0000	Alarm 1 sample size	Table 23
ALM_SMPL2	R/W	Yes	0x2C	0x0000	Alarm 2 sample size	Table 23
ALM_CTRL	R/W	Yes	0x2E	0x0000	Alarm control	Table 24
AUX_DAC	R/W	No	0x30	0x0000	Auxiliary DAC data	Table 18
GPIO_CTRL	R/W	No	0x32	0x0000	Auxiliary digital input/output control	Table 16
MSC_CTRL	R/W	Yes	0x34	0x0006	Miscellaneous control	Table 17
SMPL_PRD	R/W	Yes	0x36	0x0001	Internal sample period (rate) control	Table 13
SENS_AVG	R/W	Yes	0x38	0x0402	Dynamic range and digital filter control	Table 15
SLP_CNT	W	No	0x3A	0x0000	Sleep mode control	Table 14
DIAG_STAT	R	No	0x3C	0x0000	System status	Table 21
GLOB_CMD	W	N/A	0x3E	0x0000	System command	Table 12

¹ Each register contains two bytes. The address of the lower byte is displayed. The address of the upper byte is equal to the address of the lower byte plus 1. $\overline{\text{cs}}$ SCLK R̄/W A5 DIN A6 R/W A6 Α5 А3 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0 DOUT D12 D11 D10 D9 D8 D6 D5 D4 1. DOUT BITS ARE BASED ON THE PREVIOUS 16-BIT SEQUENCE (\overline{R} = 0). Figure 11. Output Register Bit Assignments $\overline{\mathsf{cs}}$ 12 5 SCLK 0x3E00 DON'T CARE DIN DOUT **PREVIOUS** SUPPLY_OUT XGYRO_OUT YGYRO_OUT ZGYRO_OUT AUX_ADC

NOTES
1. THE DOUT LINE HAS BEEN SIMPLIFIED FOR SPACE CONSTRAINTS BUT, IDEALLY, SHOULD INCLUDE ALL REGISTERS FROM SUPPLY_OUT THROUGH AUX_ADC.

Figure 12. Burst Mode Read Sequence

OUTPUT DATA REGISTERS

Figure 6 provides the positive measurement direction for each inertial sensor (gyroscope and accelerometers). Table 9 provides the configuration and scale factor for each output data register. All inertial sensor outputs are in a 14-bit, twos complement format, which means that 0x0000 is equal to 0 LSB, 0x0001 is equal to +1 LSB, and 0x3FFF is equal to -1 LSB. The following is an example of how to calculate the sensor measurement from the XGYRO_OUT:

$$XGYRO_OUT = 0x3B4A$$

 $0x0000 - 0x33B4A = -0x04B6 = -(4 \times 256 + 11 \times 16 + 6)$
 $-0x04B6 = -1206 LSB$
 $Rate = 0.05^{\circ}/sec \times (-1206) = -60.3^{\circ}/sec$

Therefore, an XGYRO_OUT output of 0x3B4A corresponds to a clockwise rotation about the z-axis (see Figure 6) of 60.3°/sec when looking at the top of the package.

Table 9. Output Data Register Formats

		O	
Register	Bits	Format	Scale
SUPPLY_OUT	12	Binary, 5 V = 0x0814	2.42 mV
XGYRO_OUT1	14	Twos complement	0.05°/sec
YGYRO_OUT1	14	Twos complement	0.05°/sec
ZGYRO_OUT ¹	14	Twos complement	0.05°/sec
XACCL_OUT	14	Twos complement	1 m <i>g</i>
YACCL_OUT	14	Twos complement	1 m <i>g</i>
ZACCL_OUT	14	Twos complement	1 m <i>g</i>
XTEMP_OUT ²	12	Twos complement	0.14°C
YTEMP_OUT ²	12	Twos complement	0.14°C
ZTEMP_OUT ²	12	Twos complement	0.14°C
AUX_ADC	12	Binary, 1 V = 0x04D9	0.81 mV

 $^{^1}$ Assumes that the scaling is set to $\pm 300^\circ\!/sec$. This factor scales with the range. 2 0x0000 = +25°C (±5°C).

Each output data register uses the bit assignments shown in Figure 13. The ND flag indicates that unread data resides in the output data registers. This flag clears and returns to 0 during an output register read sequence. It returns to 1 after the next internal sample updates the registers with new data. The EA flag indicates that one of the error flags in the DIAG_STAT register (see Table 21) is active (true). The remaining 14 bits are for data.

Figure 13. Output Register Bit Assignments

Auxiliary ADC

The AUX_ADC register provides access to the auxiliary ADC input channel. The ADC is a 12-bit successive approximation converter, which has an equivalent input circuit to the one shown in Figure 14. The maximum input is +3.3 V. The ESD protection diodes can handle 10 mA without causing irreversible damage. The on resistance (R1) of the switch has a typical value of 100 Ω . The sampling capacitor, C2, has a typical value of 16 pF.

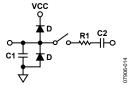


Figure 14. Equivalent Analog Input Circuit (Conversion Phase: Switch Open, Track Phase: Switch Closed)

CALIBRATION

Manual Bias Calibration

The bias offset registers in Table 10 and Table 11 provide a manual adjustment function for the output of each sensor. For example, if XGYRO_OFF equals 0x1FF6 (DIN = 0x9B1F, 0x9AF6), the XGYRO_OUT offset shifts by -10 LSBs, or -0.125° /sec.

Table 10. XGYRO_OFF, YGYRO_OFF, ZGYRO_OFF

Bits	Description
[15:13]	Not used.
[12:0]	Data bits. Twos complement, 0.0125°/sec per LSB.
	Typical adjustment range = $\pm 50^{\circ}$ /sec.

Table 11. XACCL OFF, YACCL OFF, ZACCL OFF

Bits	Description
[15:12]	Not used.
[11:0]	Data bits, twos complement 1 mg/LSB. Typical adjustment range = ± 2 g.

Gyroscope Automatic Bias Null Calibration

Set $GLOB_CMD[0] = 1$ (DIN = 0xBE01) to execute this function, which measures all three gyroscope output registers and then loads each gyroscope offset register with the opposite value to provide a quick bias calibration. Then, all sensor data resets to 0, and the flash memory updates automatically within 50 ms (see Table 12).

Gyroscope Precision Automatic Bias Null Calibration

Set GLOB_CMD[4] = 1 (DIN = 0xBE10) to execute this function, which takes the sensor offline for 30 sec while it collects a set of data and calculates more accurate bias correction factors for each gyroscope. Once calculated, the correction factor loads into the gyroscope offset registers, all sensor data resets to 0, and the flash memory updates automatically within 50 ms (see Table 12).

Restoring Factory Calibration

Set $GLOB_CMD[1] = 1$ (DIN = 0xBE02) to execute this function, which resets each user calibration register (see Table 10 and Table 11) to 0x0000, resets all sensor data to 0, and automatically updates the flash memory within 50 ms (see Table 12).

Linear Acceleration Bias Compensation (Gyroscope)

Set $MSC_CTRL[7] = 1$ (DIN = 0xB486) to enable correction for low frequency acceleration influences on gyroscope bias. Note that the DIN sequence also preserves the factory default condition for the data ready function (see Table 17).

OPERATIONAL CONTROL

Global Commands

The GLOB_CMD register provides trigger bits for several useful functions. Setting the assigned bit to 1 starts each operation, which returns the bit to 0 after completion. For example, set $GLOB_CMD[7] = 1$ (DIN = 0xBE80) to execute a software reset, which stops the sensor operation and runs the device through its start-up sequence. This includes loading the control registers with their respective flash memory locations prior to producing new data. Reading the GLOB_CMD registers (DIN = 0x3E00) starts the burst mode read sequence.

Table 12. GLOB_CMD

Bits	Description
[15:8]	Not used
[7]	Software reset command
[6:5]	Not used
[4]	Precision autonull command
[3]	Flash update command
[2]	Auxiliary DAC data latch
[1]	Factory calibration restore command
[0]	Autonull command

Internal Sample Rate

The SMPL_PRD register provides discrete sample rate settings, using the bit assignments in Table 13 and the following equation:

$$t_S = t_B \times N_S + 1$$

For example, when $SMPL_PRD[7:0] = 0x0A$, the sample rate = 149 SPS.

Table 13. SMPL_PRD

Bits	Description
[15:8]	Not used
[7]	Time base (t _B)
	0 = 0.61035 ms, 1 = 18.921 ms
[6:0]	Increment setting (N₅)
	Internal sample period = $t_S = t_B \times N_S + 1$

The default sample rate setting of 819.2 SPS preserves the sensor bandwidth and provides optimal performance. For systems that value slower sample rates, simply read the device at a slower rate and keep the internal sample rate of 819.2 SPS. Use the programmable filter (SENS_AVG) to reduce the bandwidth along with the reduced read rates. The data-ready function (MSC_CTRL) can drive an interrupt routine that uses a counter to help ensure data coherence at the reduced update rates.

Power Management

Setting SMPL_PRD \geq 0x0A also sets the sensor in low power mode. For systems that require lower power dissipation, in-system characterization helps users quantify the associated performance trade-offs. In addition to sensor performance, this mode affects SPI data rates (see Table 2). Set SLP_CNT[8] = 1 (DIN = 0xBB01) to

start the indefinite sleep mode, which requires a \overline{CS} assertion (high to low), reset, or power cycle to wake up. Use SLP_CNT[7:0] to put the device in sleep mode for a given period. For example, SLP_CNT[7:0] = 0x64 (DIN = 0xBA64) puts the ADIS16364 to sleep for 50 seconds.

Table 14. SLP_CNT

Bits	Description
[15:9]	Not used
[8]	Indefinite sleep mode, set to 1
[7:0]	Programmable sleep time bits, 0.5 sec/LSB

Digital Filtering

A programmable low-pass filter provides additional opportunity for noise reduction on the inertial sensor outputs. This filter contains two cascaded averaging filters that provide a Bartlett window, FIR filter response (see Figure 15). For example, SENS_AVG[2:0] = 100 sets each stage tap to 16. When used with the default sample rate of 819.2 SPS, this reduces the sensor bandwidth to approximately 16 Hz.

Figure 15. Bartlett Window FIR Frequency Response (Phase = N Samples)

Dynamic Range

SENS_AVG[10:8] provides three dynamic range settings for this gyroscope. The lower dynamic range settings ($\pm 75^{\circ}$ /sec and $\pm 150^{\circ}$ /sec) limit the minimum filter tap sizes to maintain resolution. For example, set SENS_AVG[10:8] = 010 (DIN = 0xB902) for a measurement range of $\pm 150^{\circ}$ /sec. Because this setting can influence the filter settings, program SENS_AVG[10:8] and then SENS_AVG[2:0], if more filtering is required.

Table 15. SENS AVG

1401c 13.0E110_111 G		
Bits	Settings	Description
[15:11]		Not used
[10:8]		Measurement range (sensitivity) selection
	100	±300°/sec (default condition)
	010	$\pm 150^{\circ}$ /sec, filter taps ≥ 4 (Bits[2:0] $\geq 0x02$)
	001	$\pm 75^{\circ}$ /sec, filter taps ≥ 16 (Bits[2:0] $\geq 0x04$)
[7:3]		Not used
[2:0]		Number of taps in each stage $N = 2^{M}$

INPUT/OUTPUT FUNCTIONS

General-Purpose I/O

DIO1, DIO2, DIO3, and DIO4 are configurable, general-purpose I/O lines that serve multiple purposes according to the following control register priority: MSC_CTRL, ALM_CTRL, and GPIO_CTRL. For example, set GPIO_CTRL = 0x080C (DIN = 0xB508, and then 0xB40C) to set DIO1 and DIO2 as inputs and DIO3 and DIO4 as outputs, with DIO3 set low and DIO4 set high.

Table 16. GPIO_CTRL

Bits	Description
[15:12]	Not used.
[11]	General-Purpose I/O Line 4 (DIO4) data level.
[10]	General-Purpose I/O Line 3 (DIO3) data level.
[9]	General-Purpose I/O Line 2 (DIO2) data level.
[8]	General-Purpose I/O Line 1 (DIO1) data level.
[7:4]	Not used.
[3]	General-Purpose I/O Line 4 (DIO4) direction control.
	1 = output, 0 = input.
[2]	General-Purpose I/O Line 3 (DIO3) direction control.
	1 = output, 0 = input.
[1]	General-Purpose I/O Line 2 (DIO2) direction control.
	1 = output, 0 = input.
[0]	General-Purpose I/O Line 1 (DIO1) direction control.
	1 = output, 0 = input.

Input Clock Configuration

The input clock configuration function allows for external control over sampling in the ADIS16364. Set GPIO_CTRL[3] = 0 (DIN = 0x0B200) and SMPL_PRD[7:0] = 0x00 (DIN = 0xB600) to enable this function. See Table 2 and Figure 4 for timing information.

Data Ready I/O Indicator

The factory default sets DIO1 as a positive data ready indicator signal. The MSC_CTRL[2:0] register provides configuration options for changing this. For example, set MSC_CTRL[2:0] = 100 (DIN = 0xB404) to change the polarity of the data ready signal for interrupt inputs that require negative logic inputs for activation. The pulse width will be between 100 μs and 200 μs over all conditions.

Table 17. MSC CTRL

Table 17	Table 17: M3C_CTRL	
Bits	Description	
[15:12]	Not used.	
[11]	Memory test (clears upon completion).	
	1 = enabled, 0 = disabled.	
[10]	Internal self-test enable (clears upon completion).	
	1 = enabled, 0 = disabled.	
[9]	Manual self-test, negative stimulus.	
	1 = enabled, 0 = disabled.	
[8]	Manual self-test, positive stimulus.	
	1 = enabled, 0 = disabled.	
[7]	Linear acceleration bias compensation for gyroscopes.	
	1 = enabled, 0 = disabled.	
[6]	Linear accelerometer origin alignment.	
	1 = enabled, 0 = disabled.	
[5:3]	Not used.	
[2]	Data ready enable.	
	1 = enabled, 0 = disabled.	
[1]	Data ready polarity.	
	1 = active high, 0 = active low.	
[0]	Data ready line select.	
	1 = DIO2, 0 = DIO1.	

Auxiliary DAC

The 12-bit AUX_DAC line can drive its output to within 5 mV of the ground reference when it is not sinking current. As the output approaches 0 V, the linearity begins to degrade (~100 LSB beginning point). As the sink current increases, the nonlinear range increases. The DAC latch command moves the values of the AUX_DAC register into the DAC input register, enabling both bytes to take effect at the same time.

Table 18. AUX DAC

Bits	Description
[15:12]	Not used.
[11:0]	Data bits, scale factor = 0.8059 mV/code.
	Offset binary format, $0 V = 0$ codes.

Table 19. Setting AUX_DAC = 1 V

DIN	Description
0xB0D9	AUX_DAC[7:0] = 0xD9 (217 LSB).
0xB104	AUX_DAC[15:8] = 0x04 (1024 LSB).
0xBE04	$GLOB_CMD[2] = 1.$
	Move values into the DAC input register, resulting in a 1 V output level.

DIAGNOSTICS

Self-Test

The self-test function offers the opportunity to verify the mechanical integrity of each MEMS sensor. It applies an electrostatic force to each sensor element, which results in mechanical displacement that simulates a response to actual motion. Table 1 lists the expected response for each sensor, which provides pass/fail criteria. Set MSC_CTRL[10] = 1 (DIN = 0xB504) to run the internal self-test routine, which exercises all inertial sensors, measures each response, makes pass/fail decisions, and reports them to error flags in the DIAG_STAT register. MSC_CTRL[10] resets itself to 0 after completing the routine. MSC_CTRL[9:8] provides manual control over the self-test function, for investigation of potential failures. Table 20 outlines an example test flow for using this option to verify the x-axis gyroscope function.

Table 20. Manual Self-Test Example Sequence

Tuble 20. Manual bell Test Example bequence		
DIN	Description	
0xB601	SMPL_PRD[7:0] = 0x01, sample rate = 819.2 SPS.	
0xB904	SENS_AVG[15:8] = $0x04$, gyro range = $\pm 300^{\circ}$ /sec.	
0xB802	SENS_AVG[7:0] = 0x02, four-tap averaging filter.	
	Delay = 50 ms.	
0x0400	Read XGYRO_OUT.	
0xB502	$MSC_CTRL[9] = 1$, gyroscope negative self-test.	
	Delay = 50 ms.	
0x0400	Read XGYRO_OUT.	
	Determine whether the bias in the gyroscope output changes according to the expectation set in Table 2.	
0xB501	MSC_CTRL[9:8] = 01, gyroscope/accelerometer positive self-test.	
	Delay = 50 ms.	
0x0400	Read XGYRO_OUT.	
	Determine whether the bias in the gyroscope changed according to the self-test response in Table 1.	
0xB500	$MSC_CTRL[15:8] = 0x00.$	

Zero motion provides results that are more reliable. The settings in Table 20 are flexible and provide opportunity for optimization around speed and noise influence. For example, using fewer filtering taps decreases delay times but increases the opportunity for noise influence.

Memory Test

Setting MSC_CTRL[11] = 1 (DIN = 0xB508) performs a checksum verification of the flash memory locations. The pass/fail result loads into the DIAG_STAT[6] register.

Status

The error flags provide indicator functions for common system level issues. All of the flags clear (set to 0) after each DIAG_STAT register read cycle. If an error condition remains, the error flag returns to 1 during the next sample cycle. DIAG_STAT[1:0] does not require a read of this register to return to 0. If the power supply voltage goes back into range, these two flags clear automatically.

Table 21. DIAG_STAT Bit Descriptions

Di+	Bit Description	
	Description	
[15]	Z-axis accelerometer self-test failure $(1 = fail, 0 = pass)$	
[14]	Y-axis accelerometer self-test failure $(1 = fail, 0 = pass)$	
[13]	X-axis accelerometer self-test failure $(1 = fail, 0 = pass)$	
[12]	X-axis gyroscope self-test failure $(1 = fail, 0 = pass)$	
[11]	Y-axis gyroscope self-test failure $(1 = fail, 0 = pass)$	
[10]	Z-axis gyroscope self-test failure (1 = fail, 0 = pass)	
[9]	Alarm 2 status (1 = active, 0 = inactive)	
[8]	Alarm 1 status (1 = active, 0 = inactive)	
[7]	Not used	
[6]	Flash test, checksum flag (1 = fail, 0 = pass)	
[5]	Self-test diagnostic error flag (1 = fail, 0 = pass)	
[4]	Sensor overrange (1 = fail, 0 = pass)	
[3]	SPI communication failure (1 = fail, 0 = pass)	
[2]	Flash update failure (1 = fail, 0 = pass)	
[1]	Power supply above 5.25 V	
	1 = power supply \geq 5.25 V, 0 = power supply \leq 5.25 V	
[0]	Power supply below 4.75 V	
	1 = power supply \leq 4.75 V, 0 = power supply \geq 4.75 V	

Alarm Registers

The alarm function provides monitoring for two independent conditions. The ALM_CTRL register provides control inputs for data source, data filtering (prior to comparison), static comparison, dynamic rate-of-change comparison, and output indicator configurations. The ALM_MAGx registers establish the trigger threshold and polarity configurations. Table 25 gives an example of how to configure a static alarm. The ALM_SMPLx registers provide the numbers of samples to use in the dynamic rate-of-change configuration. The period equals the number in the ALM_SMPLx register multiplied by the sample period time, which is established by the SMPL_PRD register. See Table 26 for an example of how to configure the sensor for this type of function.

Table 22. ALM_MAG1, ALM_MAG2

Bits	Description
[15]	Comparison polarity.
	1 = greater than, 0 = less than.
[14]	Not used.
[13:0]	Data bits that match the format of the trigger source selection.

Table 23. ALM_SMPL1, ALM_SMPL2

Bits	Description
[15:8]	Not used
[7:0]	Data bits: number of samples (both $0x00$ and $0x01 = 1$)

Table 24. ALM_CTRL Bit Designations

Bits	Settings	Description
[15:12]		Alarm 2 source selection.
	0000	Disable.
	0001	Power supply output.
	0010	X-axis gyroscope output.
	0011	Y-axis gyroscope output.
	0100	Z-axis gyroscope output.
	0101	X-axis accelerometer output.
	0110	Y-axis accelerometer output.
	0111	Z-axis accelerometer output.
	1000	Gyroscope temperature output.
	1001	X-axis inclinometer output.
	1010	Y-axis inclinometer output.
	1011	Auxiliary ADC input.
[11:8]		Alarm 1 source selection (same as Alarm 2).
[7]		Rate-of-change (ROC) enable for Alarm 2.
		1 = rate of change, $0 = $ static level.
[6]		Rate-of-change (ROC) enable for Alarm 1.
		1 = rate of change, $0 = $ static level.
[5]		Not used.
[4] Comparison data filter setting		Comparison data filter setting.1
		1 = filtered data, $0 = $ unfiltered data.
[3]		Not used.
• • • • • • • • • • • • • • • • • • • •		Alarm output enable.
		1 = enabled, 0 = disabled.
[1]		Alarm output polarity.
		1 = active high, 0 = active low.
[0]		Alarm output line select.
		1 = DIO2, 0 = DIO1.

 $^{^{\}rm 1}$ Incline outputs always use filtered data in this comparison.

Table 25. Alarm Configuration Example 1

DIN	Description
0xAF55,	$ALM_CTRL = 0x5517.$
0xAE17	Alarm 1 input = XACCL_OUT.
	Alarm 2 input = XACCL_OUT.
	Static level comparison, filtered data.
	DIO2 output indicator, positive polarity.
0xA783,	$ALM_MAG1 = 0x8341.$
0xA641	Alarm 1 is true if XACCL_OUT $> 0.5 g$.
0xA93C,	$ALM_MAG2 = 0x3CBF.$
0xA8BF	Alarm 2 is true if XACCL_OUT $< -0.5 g$.

Table 26. Alarm Configuration Example 2

DIN	Description
0xAF76,	$ALM_CTRL = 0x7687.$
0xAE87	Alarm 1 input = ZACCL_OUT.
	Alarm 2 input = YACCL_OUT.
	Rate-of-change comparison, unfiltered data.
	DIO2 output indicator, positive polarity.
0xB601	$SMPL_PRD = 0x0001.$
	Sample rate = 819.2 SPS.
0xAB08	$ALM_SMPL1 = 0x0008.$
	Alarm 1 rate-of-change period = 9.77 ms.
0xAC50	$ALM_SMPL2 = 0x0050.$
	Alarm 2 rate-of-change period = 97.7 ms.
0xA783,	ALM_MAG1 = 0x8341.
0xA641	Alarm 1 is true if XACCL_OUT > 0.5 g .
0xA93C,	ALM_MAG2 = 0x3CBE.
0xA8BE	Alarm 2 is true if XACCL_OUT $< -0.5 g$.

OUTLINE DIMENSIONS

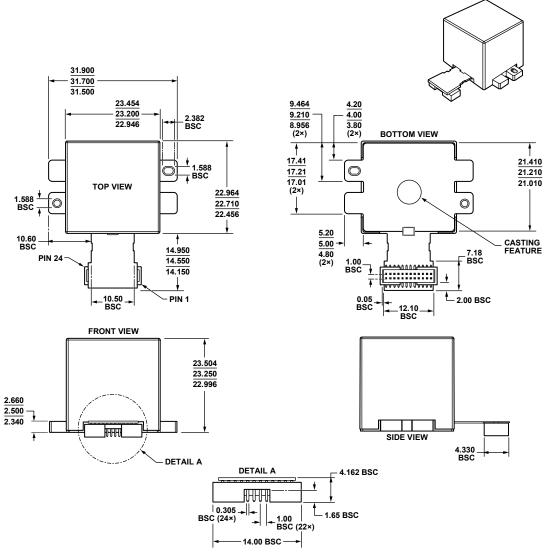


Figure 16. 24-Lead Module with Connector Interface (ML-24-2) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADIS16364BMLZ ¹	-40°C to +105°C	24-Lead Module with Connector Interface	ML-24-2
ADIS16364/PCBZ ¹		Interface Board	

 $^{^{1}}$ Z = RoHS Compliant Part.

