Preliminary Technical Data

FEATURES

Power Conversion Loss of 7.0dB
 RF Frequency 500 MHz to 1500 MHz

IF Frequency DC to 450 MHz
SSB Noise Figure with 10dBm Blocker of 17dB
Input IP3 of 37dBm
Input $\mathrm{P}_{1 \mathrm{~dB}}$ of $\mathbf{2 5 ~ d B m}$
Typical LO Drive of 0 dBm
Single-ended, 50Ω RF and LO Input Ports
High Isolation SPDT LO Input Switch
Single Supply Operation: 3.3 to 5 V
Exposed Paddle $5 \times 5 \mathrm{~mm}, 20$ Lead LFCSP Package
2000V HBM / 500V FICDM ESD Performance

APPLICATIONS

Cellular Base Station Receivers

Transmit Observation Receivers

Radio Link Downconverters

GENERAL DESCRIPTION

The ADL5367 utilizes a highly linear doubly balanced passive mixer core along with integrated RF and LO balancing circuitry to allow for single-ended operation. The ADL5367 incorporates an RF balun allowing for optimal performance over a 700 to 1000 MHz RF input frequency range using high-side LO injection. (Pin compatible parts for low side injection are also available). The balanced passive mixer arrangement provides good LO to RF leakage, typically better than -20 dBm , and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity allowing the device to be used in demanding cellular applications where inband blocking signals may otherwise result in the degradation of dynamic performance. For low voltage applications, the ADL5367 is capable of operation at voltages down to 3 V with substantially reduced current.

Two digital logic inputs allowed the user to control an internal resistor string D/A converter to optimize the intermodulation or noise performance of the application. LO current can be

REV. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

Figure 1. Functional Block Diagram
externally set using a resistor to minimize DC current commensurate with the desired level of performance. An additional logic pin is provided to power down $(<100 \mathrm{uA})$ the circuit when desired.

The ADL5367 is fabricated using a BiCMOS high performance IC process. The device is available in a $5 \mathrm{~mm} \times 5 \mathrm{~mm} 20$-lead LFCSP package and operates over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. An evaluation board is also available.

RF Frequency	Single Mixer	Single Mixer + IF Amp	Dual Mixer + IF Amp
500 MHz to 1500 MHz	ADL5367	ADL5357	ADL5358
1500 MHz to 2500 MHz	ADL5365	ADL5355	ADL5356

[^0]
ADL5367-Specifications

Table 1. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1103 \mathrm{MHz}$, LO power $=0 \mathrm{dBm}, \mathrm{Zo}=50 \Omega$, unless otherwise noted

ADL5367

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, V Vos	5.5 V
PWDN, LOSW, VGSO, VGS1	TBD
RF Input Power RFIN	TBD
Internal Power Dissipation	TBD
θ_{JA} (Exposed Paddle Soldered Down)	TBD
θ_{A} (At Exposed Paddle)	TBD
Maximum Junction Temperature	TBD
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	VPMX	Positive Supply Voltage for the mixer: 5.00 V.
2	RFIN	RF Input. Must be ac-coupled.
3	RFCT	RF Balun Center Tap (AC Ground).
$4,5,16$	COMM	Device Common (DC Ground).
6,8	VLO3, VLO2	Positive Supply Voltage for LO Amplifier.
7	LGM3	LO Amplifier Bias Control.
9	LOSW	LO Switch.
10	NC	No Connect.
11,15	LOI1, LOI2	LO Input. Must be ac-coupled.
12,13	VGSO, VGS1	Mixer Gate Bias Control. Ground for nominal operation.
14	VPSW	Positive Supply Voltage for LO Switch.
17	PWDN	Connect to Ground for Normal Operation. Connect pin to 3.3V for disable mode.
18,19	IFON, IFOP	Differential IF Output.
20	VCMI	No Connect.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, as measured using typical circuit schematic with high-side LO unless otherwise noted.

Figure 3. Conversion Gain versus RF Frequency

Figure 4. IIP3 versus RF Frequency

Figure 5. IP1dB versus RF Frequency

Figure 6. Single-Sideband NF versus RF Frequency

Figure 8. LO to RF Leakage versus LO Frequency

Figure 8. Up Conversion: Conversion Gain vs. RF frequency

Figure 9. Up Conversion: Input IP3 vs. RF Frequency

Preliminary Technical Data

EVALUATION BOARD
An evaluation board is available for the family of double balanced mixers, including ADL5365 and ADL5367. The standard evaluation board schematic is presented in Figure 10. The evaluation board is fabricated on a multilayer Rogers board. Table 4 details the various configuration options of the evaluation board.

Figure 10. Evaluation Board Schematic.

Table 4. Eval Board Configuration

Components	Function	Default Conditions
C2, C6, C8, C20, C21	Power Supply Decoupling. Nominal supply decoupling consists a $10 \mu \mathrm{~F}$ capacitor to ground in parallel with 10 pF capacitors to ground positioned as close to the device as possible.	$\begin{aligned} & C 2=10 \mu F(\text { size 0603) } \\ & C 6, C 8, C 20, C 21=10 \mathrm{pF} \text { (size 0402) } \end{aligned}$
C1, C4, C5	RF Input Interface. The input channels is ac-coupled through C1. C4 and C5 provide bypassing for the center taps of the RF input baluns.	$\begin{aligned} & \mathrm{C} 1=22 \mathrm{pF}(\text { size 0402) } \\ & \mathrm{C} 4=10 \mathrm{pF}(\text { size } 0402) \\ & \mathrm{C} 5=0.01 \mu \mathrm{~F}(\text { size } 0402) \end{aligned}$
T1, R1, R24, R25	IF Output Interface. T1 is a 1:1 impedance transformer used to provide a single ended IF output interface. R1 should be removed for balanced output operation.	$\begin{aligned} & \mathrm{T} 1=\mathrm{TC} 1-1-13 \mathrm{M}+\text { (MiniCircuits) } \\ & \mathrm{R} 1=0 \Omega \text { (size } 0402 \text {) } \\ & \mathrm{R} 24, \mathrm{R} 25=560 \mathrm{pF} \text { (size 0402) } \end{aligned}$

C10, C12, R4	LO Interface. C10 and C12 provide ac-coupling for the LO1_IN and LO2_IN local oscillator inputs. LOSEL selects the appropriate LO input for both mixer cores. R4 provides a pull-down to ensure LO1_IN is enabled when the LOSEL test point has logic low. LO2_IN is enabled when LOSEL is pulled to logic high.	$\begin{aligned} & \mathrm{C} 10, \mathrm{C} 12=22 \mathrm{pF}(\text { size 0402) } \\ & \mathrm{R} 4=10 \mathrm{k} \Omega(\text { size } 0402) \end{aligned}$
R21	PWDN Interface. R21 pulls the PWDN logic low and enables the device. PWR_UP test point allows PWDN interface to be excercised using external logic generator. It is permissible to ground the PWDN pin for nominal operation.	$\mathrm{R} 21=10 \mathrm{k} \Omega$ (size 0402)
$\begin{aligned} & \text { C22, L3, R9, R14, R22, R23, } \\ & \text { VGSO, VGS1 } \end{aligned}$	Bias Control. R22 and R23 form a voltage divider to provide a 3 V for logic control, bypassed to ground through C22. VGS0 and VGS1 jumpers provide programmability at pin VGS0 and VGS1. It is recommeded to pull these two pins to ground for nominal operation. R9 sets the bias point for the internal LO buffers. R14 is essentially no connect.	$\begin{aligned} & \mathrm{C} 22=1 \mathrm{nF}(\text { size 0402 }) \\ & \mathrm{L} 3=0 \Omega(\text { size 0603 }) \\ & \mathrm{R} 9=1.1 \mathrm{k} \Omega(\text { size 0402 }) \\ & \mathrm{R} 14=\mathrm{OPEN} \\ & \mathrm{R} 22=10 \mathrm{k} \Omega(\text { size } 0402) \\ & \mathrm{R} 23=15 \mathrm{k} \Omega(\text { size } 0402) \\ & \mathrm{VGS}=\mathrm{VGS} 1=3 \text {-pin shunt } \end{aligned}$

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-VHHC
Figure 11. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body, Very Thin Quad (CP-20-5)
Dimensions shown in millimeters
ORDERING GUIDE

Models	Temperature Range	Package Description	Package Option	Branding	Transport Media Quantity
ADL5367XCPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] ADL5367-EVALZ	CP-20-5	TBD	TBD, Reel

[^1]
[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2009 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1} Z=P b$-free part.

