FEATURES

IQ Modulator with Integrated Fractional-N PLL and VCO Gain Control Span: 47 dB in 1 dB steps
Output frequency range: 950 MHz to $1575 \mathbf{~ M H z}$
Output Compression: $\mathbf{+ 8 . 5 \mathrm { dBm }}$
Output Intercept: +21 dBm
Noise Floor: - $148 \mathrm{dBc} / \mathrm{Hz}$
Baseband Modulation bandwidth: 250 MHz (1 dB)
Output Frequency Increment: $10 \mathbf{~ H z}$
Functions with External VCO
SPI/ $/{ }^{2} \mathrm{C}$ Serial Interface
Power Supply: +5 V/310 mA

DESCRIPTION

The ADRF6750 is a highly integrated quadrature modulator, frequency synthesizer, and programmable attenuator. The device covers an operating frequency range from 950 MHz to 1575 MHz and is primarily for use in satellite communication systems.

The ADRF6750 modulator includes a high modulus fractionalN frequency synthesizer with integrated VCO providing 10 Hz frequency resolution, and a 47 dB digitally controlled output attenuator with 1 dB steps.

Control of all the on-chip registers is through a user selected SPI interface or I2C interface. The device operates from a single power supply ranging from 4.75 V to 5.25 V .

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

SPECIFICATIONS

Table 1. $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$; Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$; I / Q inputs $=0.9 \mathrm{~V}$ p-p differential sine waves in quadrature on a 500 mV dc bias; Minimum attenuation; $\mathrm{Z}_{\mathrm{L}}=50 \Omega$; Loop Bandwidth $=80 \mathrm{kHz} ;$ REFIN $=10 \mathrm{MHz}$ PFD $=20 \mathrm{MHz}$ Baseband frequency $=1 \mathrm{MHz}$, unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Unit
RF OUTPUT Operating Frequency Range Nominal Output Power Gain Flatness Group Delay Flatness Output P1dB Output IP3 Output Return Loss LO Carrier Feedthrough Vs. Gain $2 \times$ LO Carrier Feedthrough Sideband Suppression Noise Floor	Pin RFOUT Any 40 MHz Any 20 MHz $\mathrm{F}_{1 \mathrm{BB}}=3.5 \mathrm{MHz}, \mathrm{F}_{\mathrm{BB}}=4.5 \mathrm{MHz}$, Pout $=-6 \mathrm{dBm}$ per tone Minimum Attenuation, 50Ω reference impedance Pout $=0 \mathrm{dBm}$ Pout $=0 \mathrm{dBm}$ to -20 dBm Pout $=-20 \mathrm{dBm}$ to -48 dBm Pout $=0 \mathrm{dBm}$ Pout $=0 \mathrm{dBm}$ to -20 dBm , Carrier Offset $=15 \mathrm{MHz}$ Pout $=-20 \mathrm{dBm}$ to -47 dBm , Carrier Offset $=15 \mathrm{MHz}$	950	$\begin{gathered} -2 \\ 1 \\ 2 \\ 8.5 \\ 21 \\ -7 \\ -45 \\ -40 \\ -60 \\ \text { TBD } \\ -45 \\ -148 \\ -143 \\ -163 \end{gathered}$	1575	MHz dBm dB ns dBm dBm dB dBc dBc dBm dBc $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBc} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$
REFERENCE CHARACTERISTICS REFIN Input Frequency REFin Input Sensitivity REFin Input Capacitance REFin Input Current		$\begin{aligned} & 10 \\ & 0.4 \end{aligned}$		20 VREG 10 ± 100	MHz V p-p pF $\mu \mathrm{A}$
CHARGE PUMP Icp Sink/Source High Value Low Value Absolute Accuracy	Programmable With $\mathrm{R}_{\text {Set }}=4.7 \mathrm{k} \Omega$ With $\mathrm{R}_{\text {SET }}=4.7 \mathrm{k} \Omega$		$\begin{aligned} & 5 \\ & 312.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \% \end{aligned}$
VCO Gain	Kıco		15		MHz/V
SYNTHESIZER SPECIFICATIONS Frequency Increment SPURS HARMONICS PHASE NOISE Integrated Phase Noise Frequency Settling Phase Detector Frequency	Loop bandwidth $=80 \mathrm{kHz}$ FREF $=20 \mathrm{MHz}$ Integer Boundary < Loop BW $>10 \mathrm{MHz}$ Offset from Carrier Frequency $=950$ to $1575 \mathrm{MHz}^{1}$ @ 100 Hz offset, 20 MHz PFD frequency @ 1 kHz offset, 20 MHz PFD frequency @ 10 kHz offset, 20 MHz PFD frequency @ 100 kHz offset, 20 MHz PFD frequency @ 1 MHz offset, 20 MHz PFD frequency > 10 MHz offset, 20 MHz PFD frequency 1 KHz to 6 MHz integration bandwidth Any step size, Max Frequency Error $=100 \mathrm{~Hz}$		10 -45 -65 -50 -74 -81 -89 -104 -115 -147 0.7 240		Hz dBc dBc dBc $\mathrm{dBc} / \mathrm{Hz}$ ${ }^{\circ} \mathrm{rms}$ $\mu \mathrm{s}$ MHz
GAIN CONTROL Gain Range Step Size Relative Step Accuracy	Fixed Frequency, Adjacent Steps		$\begin{gathered} 47 \\ 1 \\ \pm 0.5 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

Parameter	Conditions	Min	Typ	Max	Unit
Output Settling Time	Vs. Frequency, 500 MHz , Adjacent Steps Any step. Output power settled to $=+/-0.2 \mathrm{~dB}$		$\begin{aligned} & \pm 2 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mu \mathrm{~s} \end{aligned}$
OUTPUT DISABLE Off Isolation Turn-On Settling Time Turn-Off Settling Time TXDIS High Level (Logic 1) TXDIS Low Level (Logic 0)	Pin TXDIS Gain $=0 \mathrm{~dB}$ to -20 dB , TXDIS High Pout $=-20 \mathrm{~dB}$ to -48 dB , TXDIS High TXDIS High to Low (90\% of envelope) TXDIS Low to High (10\% of envelope)	1.4	$\begin{aligned} & -55 \\ & -75 \\ & 500 \\ & 500 \end{aligned}$	0.6	dBc dBm ns ns V V
MONITOR OUTPUT Nominal Output Power	Pins LOMONP, LOMONN		-24		dBm
BASEBAND INPUTS I and Q Input Bias Level Bandwidth (1 dB)	Pins IBBP, IBBN, QBBP, QBBN		$\begin{aligned} & 500 \\ & 250 \end{aligned}$		$\begin{gathered} \mathrm{mV} \\ \mathrm{MHz} \end{gathered}$
LOGIC INPUTS Vinh, Input High Voltage $\mathrm{V}_{\text {ILL }}$, Input Low Voltage linh/linl, Input Current Civ, Input Capacitance	SDI/SDA, CLK/SCL, CS	1.4		$\begin{aligned} & 0.6 \\ & \pm 1 \\ & 10 \end{aligned}$	V V $\mu \mathrm{A}$ pF
LOGIC OUTPUTS Vон, Output High Voltage Іон Vol, Output Low Voltage	SDO $\mathrm{loL}=500 \mu \mathrm{~A}$	$\begin{aligned} & \text { VREG- } \\ & 0.4 \end{aligned}$		$\begin{aligned} & 100 \\ & 0.4 \end{aligned}$	V $\mu \mathrm{A}$ V
1^{2} C INTERFACE TIMING SCL Clock Frequency SCL Pulse Width High SCL Pulse Width Low Start Condition Hold Time Start Condition Setup Time Data Setup Time Data Hold Time Stop Condition Setup Time Data Valid Time Data Valid Acknowledge Time Bus Free Time	(see Figure 5) t HIGH tow thd;STA tsu;STA tsu;Dat tho;Dat tsu:sto tvo;DAT tvo;Ack $t_{\text {BuF }}$	600 1300 600 600 100 300 600 1300		400 900 900	kHz ns
SPI INTERFACE TIMING fsclk CLK high pulse width CLK low pulse width Hold time (Start Condition) Data setup time Data hold time Setup time (Stop Condition) SDO Access Time CS to SDO High Impedance	(see Figure 9) t_{1} t_{2} t_{3} t_{4} t5 t_{6} t_{7} t_{8}	$\begin{aligned} & 15 \\ & 15 \\ & 5 \\ & 10 \\ & 5 \\ & 5 \\ & 15 \end{aligned}$		20	MHz ns
POWER SUPPLIES	Pins VCC1, VCC2, VCC3, VCC4, VREG1, VREG2, VREG3, VREG4, REGVOUT REGVOUT normally connected to VREG1, VREG2, VREG3, VREG4 VCC1, VCC2, VCC3, VCC4 VREG1, VREG2, VREG3, VREG4 REGVOUT	4.75	$\begin{gathered} 5 \\ 3.3 \\ 3.3 \end{gathered}$	5.25	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

Parameter	Conditions	Min	Typ	Max
Supply Current	VCC1,VCC2, VCC3 and VCC3 combined			
	(REGVOUT connected to VREG1, VREG2, VREG3, VREG4)		310	
Operating Temperature		0	mA	

ABSOLUTE MAXIMUM RATINGS

Table 2. S-MOD Absolute Maximum Ratings

Parameter	Rating
Supply Voltage VCC1, VCC2, VCC3, VCC4	-0.3 to 6 V
Supply Voltage VREG1, VREG2, VREG3, VREG4	-0.3 to 4 V
IBBP, IBBN, QBBP, QBBN	0 to 2.5 V
Digital I/O	-0.3 to 4 V
REFIN, CP, RSET, CCOMP1, CCOMP2	-0.3 to 4 V
$\theta_{\mathrm{JA}}($ Exposed Paddle Soldered Down)	$26^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$120^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS

Table 3. Pin Function Descriptions

Pin Nr.	Mnemonic	Description
11	VCC1	3.3 V Regulator Power Supply: A 5 V power supply should be applied to VCC1 which should be decoupled with power supply decoupIng capacitors. VCC2, VCC3 and VCC4 should be connected to the same 5 V power supply.
55,56	VCC2	Positive Power Supplies for IQ Modulator: Connect to the same 5 V power supply as VCC1. Each VCC
41,42	VCC3	pin should have separate power supply decoupling.
1	VCC4	
12	REGOUT	3.3 V Regulator Output: REGVOUT provides a 3.3 V output supply which drives VREG1, VREG2, VREG3, VREG4, VREG5 and VREG6.
13	VREG1	Positive Power Supplies for PLL Synthesizer, VCO and Serial Port: These pins should be connected
14	VREG2	to REGVOUT (3.3 V) and should be separately decoupled.
15	VREG3	
16	VREG4	
31	VREG5	
36	VREG6	
6,19, 20, 21, 24,	AGND	Analog Ground: Connect to a low-impedance ground plane
$\begin{aligned} & 37,39,40,46,47, \end{aligned}$		
54		
32	DGND	Digital Ground: Connect to the same low-impedance ground plane as the AGND pins
2	IBBP	Differential In-Phase and Quadrature Baseband Inputs: These high impedance inputs must be dcbiased to approximately 500 mV dc , and should be driven from a low impedance source. Nominal
3	IBBN	characterized ac signal swing is 450 mV p -p on each pin. This results in a differential drive of $0.9 \mathrm{Vp-p}$ with a 500 mV dc bias, resulting in a single sideband output power of approximately 0 dBm . These
4	QBBN	inputs are not self-biased and must be externally biased.
5	QBBP	
33	CCOMP1	Internal Compensation Node: This pin must be decoupled to ground with a 100 nF capacitor.
34	CCOMP2	Internal Compensation Node: This pin must be decoupled to ground with a 100 nF capacitor.
35	CCOMP3	Internal Compensation Node: This pin must be decoupled to ground with a 100 nF capacitor
38	VTUNE	Control Input to the VCO: This voltage determines the output frequency and is derived from filtering the CP output voltage.
7	RSET	Charge Pump Current Set: Connecting a resistor between this pin and ground sets the maximum charge pump output current. The relationship between Icp and Rset is $I_{C P \max }=\frac{23.5}{R_{S E T}}$ where: $R_{S E T}=4.7 \mathrm{k} \Omega .$ $I_{C P \max }=5 \mathrm{~mA}$.
9	CP	Charge Pump Output: When enabled, this provides $\pm I_{C P}$ to the external loop filter, which in turn, drives the internal VCO.
27	CS	Chip Select: CMOS Input. When CS is high, the data stored in the shift registers is loaded into one of thirty latches. In $I^{2} \mathrm{C}$ mode when CS is high, the slave address of the device is 60 H and when low, the slave address is 40 H .
29	SDI/SDA	Serial Data Input for SPI/I ${ }^{2}$ C Port: This input is a high impedance CMOS data input. Data is loaded in an 8-bit word in SPI mode.
30	CLK/SCL	Serial Clock Input for SPI/I ${ }^{2} \mathbf{C}$ Port: This serial clock is used to clock in the serial data to the registers. This input is a high impedance CMOS input.
28	SDO	Serial Data Output for SPI Port: Register states can be read back on the SDO data output line.
17	REFIN	Reference Input: This is a high impedance CMOS input which should be ac-coupled.
18	REFINB	Reference Input B: This should be either be grounded or ac-coupled to ground.
48	RFOUT	RF Output: Single-ended, 50Ω internally biased RF output. Pin must be ac-coupled to the load. Nominal ouptut power is 0 dBm for a single sideband baseband drive of 0.9 V pp differential on the I and Q inputs (Attenuation $=\mathrm{Min}$)
45	TXDIS	Output Disable: This pin can be used to disable the RF output. Connect to high logic level to disable output. Connect to low logic level for normal operation.

I²C INTERFACE TIMING

Figure 1. Slave Address Configuration

Figure 2. I ${ }^{2} \mathrm{C}$ Write Data Transfer

Figure 3. I ${ }^{2} \mathrm{C}$ Read Data Transfer

Figure 4. $I^{2} \mathrm{C}$ Data Transfer Timing

Figure 5. $\mathrm{I}^{2} \mathrm{C}$ Port Timing Diagram

SPI INTERFACE TIMING

Figure 6. Selecting the SPI Protocol

Figure 7. SPI Byte Write Example

ADRF6750

Figure 8. SPI Byte Read Example

Figure 9. SPI Port Timing Diagram

REGISTER MAP.

Table 4. CR33 - Revision Register

CR33 - Addr $=\mathbf{2 1} \mathbf{h}$	Revision Register
Bit	Function
CR33[7]	Revision Code
CR33[6]	Revision Code
CR33[5]	Revision Code
CR33[4]	Revision Code
CR33[3]	Revision Code
CR33[2]	Revision Code
CR33[1]	Revision Code
CR33[0]	Revision Code

Table 5. CR32 - Reserved Register

CR32 - Addr = 20h	Reserved Register
Bit	Function
CR32[7]	Reserved
CR32[6]	Reserved
CR32[5]	Reserved
CR32[4]	Reserved
CR32[3]	Reserved
CR32[2]	Reserved
CR32[1]	Reserved
CR32[0]	Reserved

Table 6. CR31 - Reserved Register

CR31 $\boldsymbol{-}$ Addr $=\mathbf{1 F h}$	Reserved Register
Bit	Function
CR31[7]	Reserved
CR31[6]	Reserved
CR31[5]	Reserved
CR31[4]	Reserved
CR31[3]	Reserved
CR31[2]	Reserved
CR31[1]	Reserved
CR31[0]	Reserved

Table 7. CR30 - Attenuator Register

CR30 - Addr = 1Eh	Attenuator Register
Bit	Function
CR30[7]	Reserved. Set to '0'
CR30[6]	Reserved. Set to '0'
CR30[5:0]	Attenuator A5:AO
	$000000: 0 \mathrm{~dB}$
	$000001: 1 \mathrm{~dB}$
	$000010: 2 \mathrm{~dB}$
	$\ldots \ldots \ldots \ldots \ldots .$.
	$101101: 45 \mathrm{~dB}$
	$101110: 46 \mathrm{~dB}$
	$101111: 47 \mathrm{~dB}$

Table 8. CR29 - Modulator Register

CR29 - Addr = 1Dh	Modulator
Bit	Function
CR29[7]	Reserved. Set to '0'
CR29[6]	Reserved. Set to '0'
CR29[5]	Reserved. Set to '0'
CR29[4]	Reserved. Set to '0'
CR29[3]	Reserved. Set to '0'
CR29[2]	Reserved. Set to '0'
CR29[1]	Reserved. Set to '0'
CR29[0]	Power Up Modulator: 0: Power Down (D) 1: Power Up

Table 9. CR28 - Reserved Register

CR28 - Addr =1Ch	Reserved
Bit	Function
CR28[7]	Reserved. Set to '0'
CR28[6]	Synth Power Down: 0: Power Up (D) 1: Power Down
CR28[5]	VCO Power Down: 0: Power Up (D) 1: Power Down
CR28[4]	Reserved. Set to '0'
CR28[3]	Reserved. Set to '0'
CR28[2]	Reserved. Set to '0'
CR28[1]	Reserved. Set to '0'
CR28[0]	Reserved. Set to ' $1 '$

Table 10. CR27-RF Monitor Output Register

CR27 - Addr $=\mathbf{1 B h}$	Reserved
Bit	Function
CR27[7]	Reserved. Set to '0'
CR27[6]	Reserved. Set to '0'
CR27[5]	Reserved. Set to '0'
CR27[4]	Reserved. Set to '0'
CR27[3]	Modulator LO Control:
	0: Internal VCO -> Modulator
	1: External LO -> Modulator
CR27[2]	Power Up Monitor Output:
	0: Power Down (D)
	1: Power Up
CR27[1:0]	Monitor Output Power into 50ת:
	$00:-24 d B m$ (D)
	$01:-18 \mathrm{dBm}$
	$10:-12 \mathrm{dBm}$
	$11:-6 d B m$

Table 11. CR26 - Reserved Register

CR26 - Addr = 1Ah	Reserved
Bit	Function
CR26[7]	Reserved. Set to '0'
CR26[6]	Reserved. Set to '0'
CR26[5]	Reserved. Set to '0'
CR26[4]	Reserved. Set to '0'
CR26[3]	Reserved. Set to '0'
CR26[2]	Reserved. Set to '0'
CR26[1]	Reserved. Set to 0^{\prime}
CR26[0]	Reserved. Set to '0'

Table 12. CR25 - Reserved Register

CR25-Addr $=19 \mathrm{~h}$	Reserved
Bit	Function
CR25[7]	Reserved. Set to '0'
CR25[6]	Reserved. Set to '0'
CR25[5]	Reserved. Set to ${ }^{1} 1{ }^{\prime}$
CR25[4]	Reserved. Set to '1'
CR25[3]	Reserved. Set to '0'
CR25[2]	Reserved. Set to '0'
CR25[1]	Reserved. Set to '1'
CR25[0]	Reserved. Set to '0'

Table 13. CR24 Reserved Register

CR24- Addr $=18 \mathrm{~h}$	Autocal
Bit	Function
CR24[7]	Reserved. Set to ' 0 '
CR24[6]	Reserved. Set to '0'
CR24[5]	Reserved. Set to '0'
CR24[4]	Reserved. Set to '1'
CR24[3]	Reserved. Set to ' 1 '
CR24[2]	Reserved. Set to '0'
CR24[1]	Reserved. Set to '0'
CR24[0]	Reserved. Set to '0'

Table 14. CR23 - Lock Detector Control Register

CR23 - Addr = 17h	Lock Detector Control
Bit	Function
CR23[7]	Reserved. Set to '0'
CR23[6]	Reserved. Set to '1'
CR23[5]	Reserved. Set to '1'
CR23[4]	Lock Detector Enable: 0: LD Disabled (D) $1:$ LD Enabled
CR23[3]	Reserved. Set to '0'
CR23[2]	Reserved. Set to '1'
CR23[1]	Reserved. Set to '0'
CR23[0]	Reserved. Set to '0'

Table 15. CR22 - Reserved Register

CR22 - Addr $=\mathbf{1 6 h}$	Reserved
Bit	Function
CR22[7]	Reserved. Set to '0'
CR22[6]	Reserved. Set to '0'
CR22[5]	Reserved. Set to '0'
CR22[4]	Reserved. Set to '0'
CR22[3]	Reserved. Set to '0'
CR22[2]	Reserved. Set to '0'
CR22[1]	Reserved. Set to '0'
CR22[0]	Reserved. Set to '0'

Table 16. CR21 - Reserved Register

CR21-Addr $=15 \mathrm{~h}$	Reserved
Bit	Function
CR21[7]	Reserved. Set to '0'
CR21[6]	Reserved. Set to '0'
CR21[5]	Reserved. Set to '0'
CR21[4]	Reserved. Set to '0'
CR21[3]	Reserved. Set to '0'
CR21[2]	Reserved. Set to '0'
CR21[1]	Reserved. Set to '0'
CR21[0]	Reserved. Set to '0'

Table 17. CR20 - Reserved Register

CR20 - $\operatorname{Addr}=14 \mathrm{~h}$	Reserved
Bit	Function
CR20[7]	Reserved. Set to '0'
CR20[6]	Reserved. Set to '0'
CR20[5]	Reserved. Set to '0'
CR20[4]	Reserved. Set to '0'
CR20[3]	Reserved. Set to '0'
CR20[2]	Reserved. Set to '0'
CR20[1]	Reserved. Set to '0'
CR20[0]	Reserved. Set to '0'

Table 18. CR19 - Reserved Register

CR19 - Addr $=13 \mathrm{~h}$	Reserved
Bit	Function
CR19[7]	Reserved. Set to '0'
CR19[6]	Reserved. Set to ' 0 '
CR19[5]	Reserved. Set to '0'
CR19[4]	Reserved. Set to '0'
CR19[3]	Reserved. Set to '0'
CR19[2]	Reserved. Set to '0'
CR19[1]	Reserved. Set to '0'
CR19[0]	Reserved. Set to '0'

Table 19. CR18 - Reserved Register

CR18- Addr $=12 \mathrm{~h}$	Reserved
Bit	Function
CR18[7]	Reserved. Set to '0'
CR18[6]	Reserved. Set to '0'
CR18[5]	Reserved. Set to '0'
CR18[4]	Reserved. Set to '0'
CR18[3]	Reserved. Set to '0'
CR18[2]	Reserved. Set to '0'
CR18[1]	Reserved. Set to '0'
CR18[0]	Reserved. Set to '0'

Table 20. CR17 - Reserved Register

CR17- $\mathrm{Addr}=11 \mathrm{~h}$	Reserved
Bit	Function
CR17[7]	Reserved. Set to '0'
CR17[6]	Reserved. Set to '0'
CR17[5]	Reserved. Set to '0'
CR17[4]	Reserved. Set to '0'
CR17[3]	Reserved. Set to '0'
CR17[2]	Reserved. Set to '0'
CR17[1]	Reserved. Set to '0'
CR17[0]	Reserved. Set to '0'

Table 21. CR16 - Reserved Register

CR16 - Addr $=\mathbf{1 0 h}$	Reserved
Bit	Function
CR16[7]	Reserved. Set to '0'
CR16[6]	Reserved. Set to '0'0'
CR16[5]	Reserved. Set to '0'
CR16[4]	Reserved. Set to '0'
CR16[3]	Reserved. Set to '0'
CR16[2]	Reserved. Set to '0'
CR16[1]	Reserved. Set to $\mathbf{0}^{\prime}$
CR16[0]	Reserved. Set to '0'

Table 22. CR15 - Reserved Register

CR15 - Addr $=\mathbf{0 F h}$	Reserved
Bit	Function
CR15[7]	Reserved. Set to ${ }^{\prime} 0^{\prime}$
CR15[6]	Reserved. Set to 0^{\prime}
CR15[5]	Reserved. Set to '0' ${ }^{\prime}$
CR15[4]	Reserved. Set to '0'
CR15[3]	Reserved. Set to '0'
CR15[2]	Reserved. Set to ' 0^{\prime}
CR15[1]	Reserved. Set to '0'
CR15[0]	Reserved. Set to ' 0^{\prime}

Table 23. CR14 - TxDis Control Register

CR14 - $\mathrm{Addr}=0 \mathrm{Eh}$	Reserved
Bit	Function
CR14[7]	Reserved. Set to '0'
CR14[6]	Reserved. Set to '0'
CR14[5]	TxDis_Attenuator: 0: Atten always Enabled (D) 1: Disable Atten when TxDis $=1$
CR14[4]	TxDis_LOBuf: 0: LOBuf always Enabled (D) 1: Disable LOBuf when TxDis =1
CR14[3]	TxDis_QuadDiv: 0: QuadDiv always Enabled (D) 1: Disable QuadDiv when TxDis =1
CR14[2]	Reserved. Set to '0'
CR14[1]	TxDis_LOX2: 0: LOX2 always Enabled (D) 1: Disable LOX2 when TxDis =1
CR14[0]	TxDis_RFMON: 0: RFMON always Enabled (D) 1: Disable RFMON when TxDis $=1$

Table 24. CR13 - Reserved Control Register

CR13 - $\mathrm{Addr}=0 \mathrm{Dh}$	Reserved
Bit	Function
CR13[7]	Reserved. Set to '0'
CR13[6]	Reserved. Set to '0'
CR13[5]	Reserved. Set to '0'
CR13[4]	Reserved. Set to '1'
CR13[3]	Reserved. Set to '1'
CR13[2]	Reserved. Set to '0'
CR13[1]	Reserved. Set to '0'
CR13[0]	Reserved. Set to '0'

Table 25. CR12 - Power Up Register

CR12 - Addr $=\mathbf{0 C h}$	Reserved
Bit	Function
CR12[7]	Reserved. Set to '0'
CR12[6]	Reserved. Set to 0^{\prime}
CR12[5]	Reserved. Set to $0^{\prime} 0^{\prime}$
CR12[4]	Reserved. Set to 0^{\prime}
CR12[3]	Reserved. Set to '1'
CR12[2]	Power Down: 0: Power Up PLL (D) 1: Power Down PLL
CR12[1]	Reserved. Set to '0'
CR12[0]	Reserved. Set to '0'

Table 26. CR11 - Reserved Register

CR11-Addr $=0 \mathrm{OH}$	Reserved
Bit	Function
CR11[7]	Reserved. Set to '0'
CR11[6]	Reserved. Set to '0'
CR11[5]	Reserved. Set to '0'
CR11[4]	Reserved. Set to '0'
CR11[3]	Reserved. Set to '0'
CR11[2]	Reserved. Set to '0'
CR11[1]	Reserved. Set to '0'
CR11[0]	Reserved. Set to '0'

Table 27. CR10 - Reference Frequency Control Register

CR10 - Addr $=0 \mathrm{Ah}$	Reserved
Bit	Function
CR10[7]	Reserved. Set to '0, ${ }^{\text {DB }}$:
CR10[6]	R/2 Divider Enable ${ }^{\mathrm{DB}}$: 0: Bypass R/2 Divider 1: Enable R/2 Divider
CR10[5]	R Doubler Enable ${ }^{\mathrm{DB}}$: 0 : Disable Doubler (D) 1: Enable Doubler
CR10[4:0]	5-Bit R Divider Setting ${ }^{\text {DB: }}$ 00001: Divide by 1 00010: Divide by 2 11111: Divide by 31 00000: Divide by 32 (D)

Table 28. CR9 - Charge Pump Current Setting Register

CR9 - Addr $=\mathbf{0 9 h}$	Charge Pump Current Setting
Bit	Function
CR9[7:4]	Charge Pump Current (Rset $=4 \mathrm{k} 7$) ${ }^{\text {DB: }}$:
	$0000: 0.31 \mathrm{~mA}$ (D)
	$0001: 0.63 \mathrm{~mA}$
	$0010: 0.94 \mathrm{~mA}$
	$0011: 1.25 \mathrm{~mA}$
	$0100: 1.57 \mathrm{~mA}$
	$0101: 1.88 \mathrm{~mA}$
	$0110: 2.19 \mathrm{~mA}$
	$0111: 2.50 \mathrm{~mA}$
	$1000: 2.81 \mathrm{~mA}$
	$1001: 3.13 \mathrm{~mA}$
	$1010: 3.44 \mathrm{~mA}$
	$1011: 3.75 \mathrm{~mA}$
	$1100: 4.06 \mathrm{~mA}$
	$1101: 4.38 \mathrm{~mA}$
	$1110: 4.69 \mathrm{~mA}$
	$1111: 5.00 \mathrm{~mA}$
CR9[3]	Reserved. Set to '0'
CR9[2]	Reserved. Set to '0'
CR9[1]	Reserved. Set to '0'
CR9[0]	Reserved. Set to '0'

Table 29. CR8 - Reserved Register

CR8 - $\mathrm{Addr}=08 \mathrm{~h}$	Reserved
Bit	Function
CR8[7]	Reserved. Set to '0'
CR8[6]	Reserved. Set to '0'
CR8[5]	Reserved. Set to '0'
CR8[4]	Reserved. Set to '0'
CR8[3]	Reserved. Set to '0'
CR8[2]	Reserved. Set to '0'
CR8[1]	Reserved. Set to '0'
CR8[0]	Reserved. Set to '0'

Table 30. CR7 - Integer Word Setting (MSB) Register

CR7 - $\mathbf{A d d r}=\mathbf{0 7 h}$	Integer Word Setting (MSB)
Bit	Function
CR7[7]	Reserved. Set to '0'
CR7[6]	Reserved. Set to '0'
CR7[5]	Reserved. Set to '0'
CR7[4]	Reserved. Set to '0'
CR7[3]	Integer Word N11 ${ }^{\text {DB }}$
CR7[2]	Integer Word N10 ${ }^{\text {DB }}$
CR7[1]	Integer Word N9 ${ }^{\text {DB }}$
CR7[0]	Integer Word N8 ${ }^{\text {DB }}$

Table 31. CR6 - Integer Word Setting (LSB) Register

CR6 - Addr $=\mathbf{0 6 h}$	Integer Word Setting (MSB)
Bit	Function
CR6[7]	Integer Word N7 ${ }^{\mathrm{DB}}$
CR6[6]	Integer Word N6
CR6[5]	Integer Word N5 5^{DB}
CR6[4]	Integer Word N4 ${ }^{\mathrm{DB}}$
CR6[3]	Integer Word N3 ${ }^{\mathrm{DB}}$
CR6[2]	Integer Word N2 ${ }^{\mathrm{DB}}$
CR6[1]	Integer Word 1
CR6 0$]$	Integer Word 0^{DB}

Table 32. CR5 - Reference Divider Enable Register

CR5 - Addr = 05h	Reference Divider Enable
Bit	Function
CR5[7]	Reserved. Set to '0'
CR5[6]	Reserved. Set to '0'
CR5[5]	Reserved. Set to '0'
CR5[4]	$5-$ Bit R Divider Enable $\mathrm{DB}:$ 0: Disable 5-Bit R Divider (D) 1: Enable 5-Bit R Divider
CR5[3]	Reserved. Set to '0'
CR5[2]	Reserved. Set to '0'
CR5[1]	Reserved. Set to '0'
CR5[0]	Reserved. Set to '0'

Table 33. CR4 - Reserved Register

CR4 - Addr $=\mathbf{0 4 h}$	Reserved
Bit	Function
CR4[7]	Reserved. Set to ${ }^{\prime} 0^{\prime}$
CR4[6]	Reserved. Set to 0^{\prime}
CR4[5]	Reserved. Set to ${ }^{\prime} 0^{\prime}$
CR4[4]	Reserved. Set to 0^{\prime}
CR4[3]	Reserved. Set to 0^{\prime}
CR4[2]	Reserved. Set to 0^{\prime}
CR4[1]	Reserved. Set to $0^{\prime} 0^{\prime}$
CR4[0]	Reserved. Set to ${ }^{\prime} 1^{\prime}(\mathrm{D})$

Table 34. CR3 - Fractional Word 1 Register

CR3 $\mathbf{-}$ Addr $=\mathbf{0 3 h}$	Fractional Word $\mathbf{1}$
Bit	Function
CR3[7]	Reserved. Set to ${ }^{\prime} 0^{\prime}$
CR3[6]	Reserved. Set to 0^{\prime}
CR3[5]	Reserved. Set to $0^{\prime} \mathbf{O}^{\prime}$
CR3[4]	Reserved. Set to 0^{\prime}
CR3[3]	Reserved. Set to 0^{\prime}
CR3[2]	Reserved. Set to 0^{\prime}
CR3[1]	Reserved. Set to $0^{\prime} 0^{\prime}$
CR3[0]	Fraction Word $\mathrm{F} 24-\mathrm{MSB}^{\text {DB }}$

Table 35. CR2 - Fractional Word 2 Register

CR2 $-\mathbf{A d d r}=\mathbf{0 2 h}$	Fractional Word 2
Bit	Function
CR2[7]	Fraction Word F23 ${ }^{\mathrm{DB}}$
CR2[6]	Fraction Word F22 ${ }^{\mathrm{DB}}$
CR2[5]	Fraction Word F21 ${ }^{\mathrm{DB}}$
CR2[4]	Fraction Word F20 0^{DB}
CR2[3]	Fraction Word F19 ${ }^{\mathrm{DB}}$
CR2[2]	Fraction Word F18 ${ }^{\mathrm{DB}}$
CR2[1]	Fraction Word F17 ${ }^{\mathrm{DB}}$
CR2[0]	Fraction Word F16 ${ }^{\text {DB }}$

Table 36. CR1 - Fractional Word 3 Register

CR1 - Addr $=\mathbf{0 1 h}$	Fractional Word $\mathbf{3}$
Bit	Function
CR1[7]	Fraction Word F15 ${ }^{\text {DB }}$
CR1[6]	Fraction Word F14 ${ }^{\text {DB }}$
CR1[5]	Fraction Word F13 ${ }^{\text {DB }}$
CR1[4]	Fraction Word F12 ${ }^{\text {DB }}$
CR1[3]	Fraction Word F11 ${ }^{\text {DB }}$
CR1[2]	Fraction Word F10 ${ }^{\text {DB }}$
CR1[1]	Fraction Word F9
CR1[0]	Fraction Word F8

Table 37. CR0 - Fractional Word 4 Register

CR0 $-\mathbf{A d d r}=\mathbf{0 0 h}$	Fractional Word $\mathbf{3}$
Bit	Function
CRO[7]	Fraction Word F7 ${ }^{\text {DB }}$
CRO[6]	Fraction Word F6 ${ }^{\text {DB }}$
CRO[5]	Fraction Word F5 ${ }^{\text {DB }}$
CRO[4]	Fraction Word F4 ${ }^{\text {DB }}$
CRO[3]	Fraction Word F3 ${ }^{\text {DB }}$
CRO[2]	Fraction Word F2
CRO[1]	Fraction Word F1
CRO[0]	Fraction Word FO ${ }^{\text {DB }}$

NOTE: $\mathrm{DB}=$ Double Buffered. Load on CR0 write.

SUGGESTED POWER UP SEQUENCE

INITIAL REGISTER WRITE SEQUENCE

After applying power to the part, the following register write sequence should be adhered to. Please note that CR33, 32 and 31 are readback only registers. Also note that all writeable registers should be written to on power up. Please refer to the register map for more details on all registers.

W CR30 00h: Set attenuator to 0dB gain.
W CR29 00h: Modulator is powered down. The modulator is powered down by default to ensure that no spurious signals occur on the RF output when the PLL is carrying out it's first acquisition. To avoid spurious signals, the modulator should be powered up only when the PLL is locked.

W CR28 01h: The default setting is 01 h . When using an external VCO with the internal PLL synthesizer, the internal VCO needs to be powered down. This is acheived by setting CR28[5] $=1$ and thus CR28 $=21 \mathrm{~h}$.

W CR27 00h: Power down the LO monitor. When using an external VCO or LO (whether the internal PLL synthesizer is used or not), this signal needs to be muxed through to the modulator by programming CR27[4:3] to be 01h thus making $\mathrm{CR} 27=08 \mathrm{~h}$.

W CR26 00h: Reserved register.
W CR25 32h: Reserved register.
W CR24 18h: Reserved register.
W CR23 74h: Enable lock detector.
W CR22 00h: Reserved register.
W CR21 00h: Reserved register.
W CR20 00h: Reserved register.
W CR19 00h: Reserved register.
W CR18 00h: Reserved register.
W CR17 00h: Reserved register.
W CR16 00h: Reserved register.
W CR15 00h: Reserved register.
W CR14 1Bh: Attenuator is always enabled, other referenced blocks always disabled when TxDis is asserted.

W CR13 18h: Reserved register.
W CR12 08h: PLL powered up. When using an external LO without the internal PLL circuitry, the internal PLL needs to be
powered down. This is achieved by setting CR12[2] $=1$ and thus CR12 $=0 \mathrm{Ch}$.

W CR11 00h: Reserved register.
W CR10 21h: Reference path doubler enabled and R/2 divider bypassed.

W CR9 70h: With the recommended loop filter component values and Rset $=4 \mathrm{k} 7$ as outlined in Fig. 8, the charge pump current is set to 2.5 mA for a loop bandwidth of 80 kHz .

W CR8 00h: Reserved Register.
W CR7 0xh: Set according to equation 1 below.
The LO frequency is governed by the following equation:
$\mathrm{LO}=\mathrm{FPFD} \mathrm{x}\left(\mathrm{INT}+\left(\mathrm{FRAC} / 2^{25}\right)\right) \quad(\mathrm{Eq} .1)$
Where:
LO is the PLL output frequency.
FPFD is the PFD input frequency.
INT is the divide ratio of the binary 12-bit counter controlled by CR7 and CR6 (31 to 4095).

FRAC is the 25 -bit numerator of the fractional division controlled by CR3, CR2, CR1 and CR0 (0 to $2^{25}-1$).

W CR6 xxh: Set according to equation 1.
W CR5 00h: Disable the 5-bit reference divider.
W CR4 01h: Reserved register.
W CR3 0xh: Set according to equation 1.
W CR2 xxh: Set according to equation 1.
W CR1 xxh: Set according to equation 1.
W CR0 xxh: Set according to equation 1.
CR0 needs to be the last register written to in order for all the double-buffered bit writes to take effect.

Monitor LDET output or wait 1 ms to ensure PLL is locked.
W CR29 01h: Power up modulator.
The write to CR29 does not need to be followed by a write to CR0 as it is not double-buffered.

EXAMPLE: Changing the LO Frequency

After the initialization sequence, the following is an example of how to change the LO frequency. Assume that the PLL is locked to 1.2 GHz . In this case, the following conditions apply:

Preliminary Technical Data	ADRF6750

FPFD $=20 \mathrm{MHz}$ (assumed)
The divide ratio $\mathrm{N}=60$ so:
$\mathrm{INT}=60$ decimal so $\mathrm{CR} 7=00 \mathrm{~h}$ and CR6 $=3 \mathrm{Ch}$.
FRAC $=0$ so CR3 $=00 \mathrm{~h}, \mathrm{CR} 2=00 \mathrm{~h}, \mathrm{CR} 1=00 \mathrm{~h}$ and CR $0=$ 00h.

Now assume the new frequency is 1.230 GHz . In the case the new registers values would be:

The divide ratio $\mathrm{N}=61.5$ so:
$\mathrm{INT}=61$ decimal so $\mathrm{CR} 7=00 \mathrm{~h}$ and $\mathrm{CR} 6=3 \mathrm{Dh}$.
FRAC $=16777216$ so CR3 $=01 \mathrm{~h}, \mathrm{CR} 2=00 \mathrm{~h}, \mathrm{CR} 1=00 \mathrm{~h}$ and $C R 0=00 h$.

Note CR0 should be the last write in this sequence.

APPLICATIONS SOLUTION

GENERAL DESCRIPTION

This board is designed to allow the user to evaluate the performance of the ADRF6750 using the integrated VCO. It contains the following:

- the ADRF6750 IQ modulator with integrated Fractional-N PLL and VCO
- SPI and $\mathrm{I}^{2} \mathrm{C}$ interface connectors
- dc biasing and filter circuitry for the baseband inputs
- low pass loop filter circuitry
- a 10 MHz reference clock
- the ability to monitor the LOMON outputs
- SMA connectors for power supplies and the RF output

The board comes with associated software to allow easy programming of the ADRF6750.

HARDWARE DESCRIPTION

The circuit diagram is shown in Figure 11. References to it are made in the following description.

Power Supplies

An external +5 V supply (DUT +5 V) drives both an on-chip +3.3 V regulator as well as the quadrature modulator. A breakdown of these +5 V supply pins is as follows:

- $\mathrm{VCC1}$ - This is the +5 V regulator supply.
- VCC2 - This is the modulator output stage supply.
- VCC3 - This is the LO buffers and quadrature divider supply.
- VCC4 - This is the baseband supply.

The regulator feeds the various VREG pins on the chip with +3.3 V . These VREG pins drive the following circuitry:

- VREG1 - This is the charge pump and PFD supply.
- VREG2 - This is the N-counter and bias circuit supply.
- VREG3 - This is the N-counter output supply.
- VREG4 - This is the reference clock, lock detect and autocal supply.

Figure 10. SPI PC Cable Diagram
There is also an option to use the $\mathrm{I}^{2} \mathrm{C}$ interface by using the $\mathrm{I}^{2} \mathrm{C}$ receptacle connector. This is a standard $\mathrm{I}^{2} \mathrm{C}$ connector. +5 V power is provided by the $\mathrm{I}^{2} \mathrm{C}$ bus master. Pull-up resistors are required on the signal lines. CS can be used to set the slave address of the AD45110. CS high sets the slave address to 60 H and CS low sets the slave address to 40 H .

Baseband Inputs

The pair of I and Q baseband inputs are served by SMA inputs so that they can be driven directly from an external generator which may also provide the dc bias required. An option is provided to supply this de bias through connector J1 as well. The option to filter the baseband inputs is also provided although these may not be required depending on the quality of the baseband source.

Loop Filter

A $4^{\text {th }}$ order loop filter is provided at the output of the charge pump. With the charge pump current set to a mid-scale value of 2.5 mA and using the on-chip VCO, the loop bandwidth is approximately 80 kHz and the phase margin 55°. COG capacitors are recommended for use in the loop filter as they have low dielectric absorption which is required for fast and accurate settling time. The use of non-COG capacitors may result in a long tail being introduced into the settling time
transient.

Reference Input

The reference input can be supplied by a 10 MHz clock generator or by an external clock through the use of J7. The frequency range of the reference input is from 10 MHz to 20 MHz and thus if the lower frequency is used, the on-chip reference doubler should be employed to set the PFD frequency to 20 MHz in order to optimise phase noise performance.

LOMON Outputs

These are differential LO monitor outputs which provide a replica of the internal LO frequency at $1 x L O$. The single-ended power in a 50Ω load can be programmed to either -24 dBm , $18 \mathrm{dBm},-12 \mathrm{dBm}$ or -6 dBm . The outputs are open-collector outputs which need to be terminated to +3.3 V . As both outputs need to be terminated to 50Ω, options are provided to terminate to +3.3 V by on-board 50Ω resistors or by series inductors (or a ferrite bead) in which case the 50Ω, termination would be provided by the measuring instrument. If not used, these outputs should be grounded.

CCOMP Pins

These are internal compensation nodes which need to be decoupled to ground with a 100 nF capacitor.

MUXOUT

This is a test output which allows different internal nodes to be monitored. It is a CMOS output stage which can be driven unterminated.

LDET

Lock detect is a CMOS output which indicates the state of the PLL, a high level indicates a locked condition while a low level indicates a loss of lock condition.

TXDIS

This input disables the RF output. It can be driven from an external stimulus or just connected high or low by jumper J18.

RF Output

RFOUT is the RF output of the ADRF6750.

Figure 11. ADL5594 Applications Circuit

BILL OF MATERIALS

Table 4: Bill Of Materials

Name	Part Type	Value	Description	Part Number
DUT	LFCSP IC		ADRF6750 LFCSP 56Lead 8X8 0.50mm	ADI Supplied
Y2	TCVCXO	10 MHz	VCO 10MHz Jauch	10.0-VX3MQ-LF
CONN1	Connector	D-SUB9MR	Connector, 9 Pin D-Sub Plug	FEC 150-750
CONN2	Connector	Molex Conn	Connector Molex Semconn Receptacle	15-83-0064
C1	CAP	10uF	25V Tantelum TAJ-C	FEC 197-518
C2	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C3	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C4	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C5	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C6	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C7	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C8	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C9	CAP	100nF	25V X7R Ceramic 0603	FEC 317-287
C10	CAP	10pF	50 V COG Ceramic 0402 Murata	FEC 881-9564
C11	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C12	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C13	CAP	100nF	25V X7R Ceramic 0603	FEC 317-287
C14	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C15	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C16	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C17	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C18	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C19	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C20	CAP	470 nF	16V Y5V Ceramic 0603	FEC 318-8851
C21	CAP	10uF	25 V Tantelum TAJ-C	FEC 197-518
C22	CAP	100nF	25V X7R Ceramic 0603	FEC 317-287
C23	CAP	270 pF	50V COG Ceramic 0603 Murata	FEC 140-3568
C24	CAP	18nF	50V COG Ceramic 1206 Murata	FEC 882-0171
C25	CAP	270 pF	50V COG Ceramic 0603 Murata	FEC 140-3568
C26	CAP	560pF	50V COG Ceramic 0603 Murata	FEC 140-3585
C38	CAP	1 nF	50V COG Ceramic 0402 Murata	FEC 881-9556
C39	CAP	1 nF	50V COG Ceramic 0402 Murata	FEC 881-9556
C40	CAP	100pF	50V COG Ceramic 0402 Murata	FEC 881-9572
C44	CAP	100 pF	50V COG Ceramic 0402 Murata	FEC 881-9572
C46	CAP	100 pF	50V COG Ceramic 0402 Murata	FEC 881-9572
C47	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C48	CAP	10 pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C49	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C50	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C51	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C52	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C53	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C54	CAP	100 nF	25V X7R Ceramic 0603	FEC 317-287
C55	CAP	10pF	50V COG Ceramic 0402 Murata	FEC 881-9564
C57	CAP	100pF	50V COG Ceramic 0402 Murata	FEC 881-9572
J18	Jumper		Jumper 3 Pin + Shunt	FEC 148-533 + FEC 150-411
J20	Jumper		Jumper 3 Pin + Shunt	FEC 148-533 + FEC 150-411

L1	IND	20 nH	0402 Murata LQW Series	LQW15AN20N
L2	IND	20nH	0402 Murata LQW Series	LQW15AN20N
L3	IND	10uH	0805 Murata LQM Series	LQM21FN1N100M
L4	IND	10uH	0805 Murata LQM Series	LQM21FN1N100M
D1	Diode	LSR976	Diode Sm LED RED HYPER-BRIGHT 20mA 0805	FEC 122-6392
R2	RES	1K	1/10W 5\% 0603 Bourns	CR0603-JW-102
R3	RES	1K	1/10W 5\% 0603 Bourns	CR0603-JW-102
R4	RES	1K	1/10W 5\% 0603 Bourns	CR0603-JW-102
R5	RES	1K	1/10W 5\% 0603 Bourns	CR0603-JW-102
R6	RES	0R	1/16W 1\% 0402	FEC 115-8241
R7	RES	0R	1/16W 1\% 0402	FEC 115-8241
R8	RES	0R	1/16W 1\% 0402	FEC 115-8241
R9	RES	0R	1/16W 1\% 0402	FEC 115-8241
R10	RES	DNI	Resistor Spacing 0402	TBD
R11	RES	DNI	Resistor Spacing 0402	TBD
R12	RES	430R	1/10W 0.1\% 0603	FEC 140-0557
R13	RES	4K7	1/10W 1\% 0603	CR0603-FX-472
R14	RES	1K2	1/16W 1\% 0603	FEC 923-3393
R15	RES	430R	1/10W 0.1\% 0603	FEC 140-0557
R16	RES	430R	1/10W 0.1\% 0603	FEC 140-0557
R17	RES	DNI	Resistor Spacing 0603	TBD
R18	RES	DNI	Resistor Spacing 0603	TBD
R35	RES	51R	1/16W 5\% 0402 Bourns	CR0402-JW-510
R36	RES	0R	1/16W 1\% 0402	FEC 115-8241
R39	RES	1K2	1/16W 1\% 0603	FEC 923-3393
R44	RES	51R	1/16W 5\% 0402 Bourns	CR0402-JW-510
R45	RES	51R	1/16W 5\% 0402 Bourns	CR0402-JW-510
R48	RES	330R	1/10W 5\% 0805 Bourns	CR0805-JW-331
R49	RES	330R	1/10W 5\% 0805 Bourns	CR0805-JW-331
R50	RES	330R	1/10W 5\% 0805 Bourns	CR0805-JW-331
R51	RES	330R	1/10W 5\% 0805 Bourns	CR0805-JW-331
R59	RES	100R	1/10W 5\% 0805	CR0805-JW-101
R60	RES	100R	1/10W 5\% 0805	CR0805-JW-101
R61	RES	100R	1/10W 5\% 0805	CR0805-JW-101
J1	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J2	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J3	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J4	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J5	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J7	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J7	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J10	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J11	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J12	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J14	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J15	SMA		SMA Side Launch Connector	Johnson 142-0701-851
J15	SMA		SMA Side Launch Connector	Johnson 142-0701-851
CS	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	
LDET	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	
MUXOUT	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	
REFIN	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	
SCLK	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	

SDA	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	
SDO	TESTPOINT		TEST POINT ONE PIN 0.35in Dia	

Preliminary Technical Data

OUTLINE DIMENSIONS

56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$8 \times 8 \mathrm{~mm}$ Body, Very Thin Quad (CP-56-3)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2
Figure 12. 56-Lead LFCSP with exposed paddle. Dimensions shown in millimeters

TABLE 38. ORDERING GUIDE

Model	Temperature Range $\left({ }^{\circ} \mathbf{C}\right)$	Package Description	Package Option
ADRF6750ACPZ ${ }^{1}$	0 to +70	Tray	LFCSP

[^0]
[^0]: ${ }^{1} \mathrm{Z}$ indicates Pb -free

