1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.
The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/MAT03
2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description
MAT03-903H
Low noise, matched, dual PNP transistor
Low noise, matched, dual PNP transistor
MAT03-903L
MAT03-913H Radiation Tested, Low noise, matched, dual PNP transistor
MAT03-913L Radiation Tested, Low noise, matched, dual PNP transistor

2.1 Case Outline.

Letter Descriptive designator Case Outline (Lead Finish per MIL-PRF-38535)
H MACY1-X6 \quad 6-Lead can package (TO)

L GDFP1-F10 10-Lead ceramic flatpack (cerpak)

Figure 1 - Terminal connections.

3.0 | Absolute Maximum Ratings. $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted) | |
| :--- | :--- |
| Colector to base voltage $\left(\mathrm{BV}_{\mathrm{CBO}}\right) \ldots . ~$ | 36 V |

Collector to emitter voltage ($\mathrm{BV}_{\mathrm{CEO}}$)..36V
Collector to collector voltage ($\mathrm{BV}_{\mathrm{CC}}$) ... 36 V
Emitter to emitter voltage ($\mathrm{BV}_{\mathrm{EE}}$)...36V
Collector current (I_{C})... 20 mA
Emitter current (I_{E}).. 20 mA
Total power dissipation 1/.. 500 mW
Operating ambient temperature range... 55 to $+125^{\circ} \mathrm{C}$
Operating junction temperature range .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range .. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature (soldering, 60 sec).. $+300^{\circ} \mathrm{C}$
Dice junction temperature range... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1/ Rating applies to applications not using heat sinking, device is free air only.

3.1 Thermal Characteristics:

Thermal Resistance, TO-78 (H) Package
Junction-to-Case $\left(\Theta_{\mathrm{JC}}\right)=45^{\circ} \mathrm{C} / \mathrm{W}$ Max
Junction-to-Ambient $\left(\Theta_{\mathrm{JA}}\right)=150^{\circ} \mathrm{C} / \mathrm{W}$ Max
Derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $70^{\circ} \mathrm{C}$.
Thermal Resistance, cerpac (L) Package
Junction-to-Case $\left(\Theta_{\mathrm{JC}}\right)=80^{\circ} \mathrm{C} / \mathrm{W}$ Max
Junction-to-Ambient $\left(\Theta_{\mathrm{JA}}\right)=180^{\circ} \mathrm{C} / \mathrm{W}$ Max
Derate linearly at $5.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $70^{\circ} \mathrm{C}$.

Terminal Connections 1//		
Terminal	6 lead TO	10 lead flatpack
1	C1	C1
2	B1	nc
3	E1	B1
4	E2	nc
5	B2	E1
6	C2	E2
7		nc
8		B2
9		nc
10		C2
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

1/ Substrate is connected to case on TO-78 package. Substrate is normally connected to the most negative circuit potential, but can be floated.

4.0 Electrical Table:

Table I							
Parameter See notes at end of table	Symbol	Conditions 1/		Subgroup	Limit Min	Limit Max	Units
Current gain	$\mathrm{h}_{\text {FE }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V},-36 \mathrm{~V}$		1	100		
				2, 3	70		
		$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V},-36 \mathrm{~V}$		1	90		
		$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=-36 \mathrm{~V}$		2, 3	60		
		$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V},-36 \mathrm{~V}$		1	80		
		$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=-36 \mathrm{~V}$		2, 3	50		
Current gain match 2/	$\Delta \mathrm{h}_{\text {FE }}$	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V}$		1		3	\%
Offset voltage	$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$		1		100	$\mu \mathrm{V}$
				2,3		150	
Change in offset voltage vs temperature 3/	TCV ${ }_{\text {OS }}$	$\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$				0.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset voltage change vs V_{CB}	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{OS}} \\ / \Delta \mathrm{V}_{\mathrm{CB}} \end{gathered}$	VCB $=0 \mathrm{~V},-36 \mathrm{~V}$		1		150	$\mu \mathrm{V}$
Offset voltage change vs collector current	$\Delta \mathrm{V}_{\mathrm{OS}} /$ $\Delta \mathrm{I}_{\mathrm{C}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} 1=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}} 2=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V} \end{aligned}$		1		50	
Input offset current	I_{OS}	$\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$		1		35	nA
Bulk emitter resistance	$\mathrm{r}_{\text {BE }}$			1		0.75	Ohm
Collector base leakage current	$\mathrm{I}_{\text {CBO }}$	$\mathrm{V}_{\mathrm{CB}}=-36 \mathrm{~V}$		1		200	pA
Collector saturation voltage	$\mathrm{V}_{\mathrm{CE}} \mathrm{SAT}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$		1		0.1	V
Breakdown voltage	BV ${ }_{\text {CEO }}$			1	36		V
Noise voltage density	e_{N}	$\begin{aligned} & \mathrm{IC}=1 \mathrm{~mA} \\ & \mathrm{VCB}=0 \mathrm{~V} \end{aligned}$	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	7		2	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$			1	
			$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$			1	
			$\mathrm{f}_{\mathrm{O}}=10000 \mathrm{~Hz}$			1	

TABLE I NOTES:

1/ $\mathrm{V}_{\mathrm{CB}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$, unless otherwise specified.
2/ Current gain match $\left(\Delta \mathrm{h}_{\mathrm{FE}}\right)$ is defined as: $\Delta \mathrm{h}_{\mathrm{FE}}=\frac{100\left(\Delta I_{B}\right) h_{F E} \text { min }}{\mathrm{I}_{\mathrm{C}}}$.
3/ Guaranteed by VOS test $\left(\mathrm{TC}_{\mathrm{VoS}}=\mathrm{V}_{\mathrm{OS}} / \mathrm{T}\right.$ for $\left.\mathrm{V}_{\mathrm{OS}} \ll \mathrm{V}_{\mathrm{BE}}\right)\left(\mathrm{T}=298^{\circ} \mathrm{K}\right.$ for $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$.

4.1 Electrical Test Requirements:

Table II	
Test Requirements	
Subgroups (in accordance with MIL-PRF-38535, Table III)	
Interim Electrical Parameters	1
Final Electrical Parameters	$1,2,3, \underline{1 /} \underline{2 /}$
Group A Test Requirements	$1,2,3,7$
Group C end-point electrical parameters	$1 \underline{2 /}$
Group D end-point electrical parameters	1
Group E end-point electrical parameters	1

1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Burn-in test delta limits.

Table III				
TEST TITLE	BURN-IN ENDPOINT	LIFETEST ENDPOINT	DELTA LIMIT	UNITS
$\mathrm{h}_{\mathrm{FE}} @ 1 \mathrm{~mA}$	100 min	60 min	± 40	
$\mathrm{~h}_{\mathrm{FE}} @ 100 \mu \mathrm{~A}$	90 min	54 min	± 36	
$\mathrm{~h}_{\mathrm{FE}} @ 10 \mu \mathrm{~A}$	80 min	48 min	± 32	
IOS	35	55	± 20	nA

5.0 Life Test/Burn-In Circuit:

5.1 HTRB is not applicable for this drawing.
5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
5.3 Steady state life test is per MIL-STD-883 Method 1005.

Low noise, matched, dual PNP transistor

Rev	Description of Change	Date
A	Initiate	July 24, 2000
B	Page 1: Update web address; correct typo for dice junction temperature. Page 2: change RC package theta JC from 18 to $35^{\circ} \mathrm{C}$ Page 3: delete text "note 1" under table I conditions; change delta hFE condition from mA to $\mu \mathrm{A}$; delete subgroups for TCVOS; format note numbers for table I; change note 3 from " This is the maximum change in VOS measured at IC $=10 \mathrm{~mA}$ with VCB $=0 \mathrm{~V}$ " TO "Guaranteed by VOS test $\left(\mathrm{TC}_{\text {VOS }}=\mathrm{V}_{\text {OS }} / \mathrm{T}\right.$ for $\left.\mathrm{V}_{\text {OS }} \ll \mathrm{V}_{\mathrm{BE}}\right)\left(\mathrm{T}=298^{\circ} \mathrm{K}\right.$ for $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$ " Page 4, Table II: delete subgroup 7 from final electricals Page 5: add resistor values to burn-in figure.	Jan. 22, 2002
C	Change R3 of BI circuit from 2.5 K to 10 K ohm.	Apr. 17, 2002
D	Update web address. Delete burn-in circuit.	June 20, 2003
E	Update package offering	Oct. 10, 2007

