

Quad Matched 741-Type Operational Amplifier

OP11

1.0 SCOPE

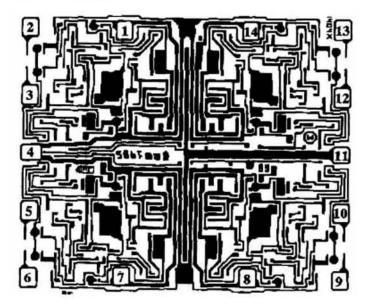
This specification documents the detail requirements for space qualified die manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38534 class K except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/aerospace is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/OP11

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description


OP11-000C Quad Matched 741-Type Operational Amplifier

3.0 Die Information

3.1 Die Dimensions

Die Size	Die Thickness	Bond Pad Metalization	
72 mil x 86 mil	19 mil ± 2 mil	Al/Cu	

3.2 Die Picture

- 1. OUTPUT 1
- 2. -INPUT 1
- 3. +INPUT 1
- $4. +V_S$
- 5. +INPUT 2
- 6. -INPUT 2
- 7. OUTPUT 2
- 8. OUTPUT 3
- 9. -INPUT 3
- 10. +INPUT 3
- $11. -V_S$
- 12. +INPUT 4
- 13. -INPUT 4
- **14. OUTPUT 4**

3.3 Absolute Maximum Ratings 1/

Positive Supply Voltage (+V _S)	+22V dc
Negative Supply Voltage (-V _S)	-22V dc
Differential Input Voltage	±30V dc
Input Voltage (V _{IN})	Supply Voltage
Output Short Circuit Duration	Continuous
Storage Temperature Range	-65°C to +150°C
Ambient Operational Temperature Range	-55°C to +125°C

Absolute Maximum Ratings Notes:

Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen test post assembly required prior to die qualification, to remove all assembly related rejects.

Table I - Dice Electrical Characteristics					
Parameter	Symbol	Conditions <u>1/</u>	Limit Min	Limit Max	Units
Input Offset Voltage	Vos	$R_S = 50\Omega$, $10k\Omega$		±0.5	mV
Input Offset Current	Ios			±20	nA
Input Bias Current	I_{IB}			±300	nA
Input Voltage Range	IVR		±12		V
Common Mode Rejection Ratio	CMRR	$V_{CM} = IVR$ $R_S = 50\Omega$ and $10k\Omega$	100		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V, \pm 15V$ $R_S = 50\Omega \text{ and } 10k\Omega,$		32	μV/V
Large Signal Voltage Gain	A_{VOL}	$V_{OUT} = \pm 10V, R_L = 2k\Omega$	100		V/mV
Output Voltage Swing	V_{OUT}	$R_L = 2k\Omega$	±11		V
Supply Current (All Four Amplifiers)	I_{SY}	$V_{O} = 0V$		6	mA

Table I Notes:

$$1/$$
 $\pm V_S = \pm 15V$, $R_S = 50\Omega$, $T_A = +25$ °C, and $V_{CM} = 0V$, unless otherwise specified.

Table II - Electrical Characteristics for Qual Samples						
Parameter	Symbol	Conditions <u>1/</u>	Sub- groups	Limit Min	Limit Max	Units
Input Offset Voltage	Vos	$R_S = 50\Omega$, $10k\Omega$	1 2, 3		±0.5 ±1.0	mV
Input Offset Current	Ios		1 2, 3		±20 ±40	nA
Input Bias Current	I_{IB}		1 2, 3		±300 ±375	nA
Input Voltage Range	IVR		1, 2, 3	±12		V
Common Mode Rejection Ratio	CMRR	$R_S = 50\Omega$ and $10k\Omega$, $V_{CM} = IVR$	1, 2, 3	100		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V, \ \pm 15V$ $R_S = 50\Omega$ and $10k\Omega$	1, 2, 3		32	μV/V
Large Signal Voltage Gain	A _{VOL}	$V_{OUT} = \pm 10V, R_L = 2k\Omega$	4 5, 6	100 50		V/mV
Output Voltage Swing	V _{OUT}	$R_L = 2k\Omega$	4, 5, 6	±11		V
Supply Current (All Four Amplifiers)	I _{SY}	$V_O = 0V$	1 2, 3		6 6.7	mA

Table II Notes:

1/2 $\pm V_S = \pm 15V$, $R_S = 50\Omega$, and $V_{CM} = 0V$, unless otherwise specified.

OP11 Quad Matched 741-Type Operational Amplifier

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions) Life Post Burn In Limit Post Life Test Limit Sub-Symbol Units Parameter Test groups Min Min Max Max Delta ± 0.7 ± 0.9 ± 0.2 1 Input Offset Voltage Vos mV 2, 3 ±1.4 ± 350 ± 400 1 ± 50 Input Bias Current I_{IB} nΑ 2, 3 ±475 ± 25 ± 30 1 Input Offset Current I_{OS} nA 2, 3 ± 50

5.0 Life Test/Burn-In Information

- **5.1** HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	25-Sep-071
В	Update web address	Jan. 25, 2002
С	Update web address	Aug. 5, 2003