

Quad Low-Offset, **Low-Power Operational Amplifier**

OP400

1.0 SCOPE

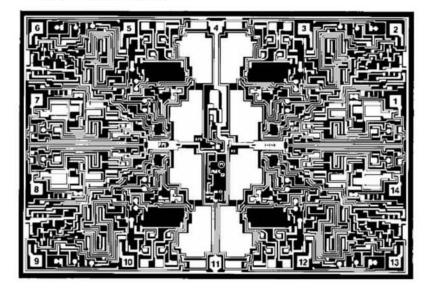
This specification documents the detail requirements for space qualified die manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38534 class K except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/aerospace is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/OP400

2.0 Part Number. The complete part number(s) of this specification follow:

> Description Part Number


OP400-000C Quad Low-Offset, Low-Power Operational Amplifier

3.0 **Die Information**

3.1 **Die Dimensions**

Die Size	Die Thickness	Bond Pad Metalization		
181 mil x 123 mil	19 mil ± 2 mil	Al/Cu		

Die Picture 3.2

- 1. OUT A
- 2. -IN A
- 3. +IN A
- 4. V_{CC}+
- 5. +IN B
- 6. -IN B
- 7. OUT B
- 8. OUT C
- 9. -IN C
- 10. +IN C
- 11. V_{CC}-
- 12. +IN D
- 13. -IN D
- 14. OUT D

3.3 Absolute Maximum Ratings 1/

Supply Voltage (V _{CC})	$\pm 20V$
Differential Input Voltage	±30V
Input Voltage	Supply Voltage
Output Short-Circuit Duration	Continuous
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	

Absolute Maximum Ratings Notes:

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen test post assembly required prior to die qualification, to remove all assembly related rejects.

Table I - Dice Electrical Characteristics							
Parameter	Symbol Conditions $\frac{1}{2}$		Limit Min	Limit Max	Units		
Input Offset Voltage	V _{IO}		-150	+150	μV		
Input Offset Current	I_{IO}	$V_{CM} = 0V$	-1	+1	nA		
Input Bias Current	$\pm I_{\mathrm{IB}}$	$V_{CM} = 0V$	-3	+3	nA		
Input Voltage Range	IVR		±12		V		
Common Mode Rejection Ratio	CMRR	$V_{CM} = IVR$	120		dB		
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$		1.8	μV/V		
Supply Current 2/	I_{SY}	No Load		2.9	mA		
Large Signal Voltage Gain	A _{VS}	$V_{OUT} = \pm 10V, R_L = 2k\Omega$	1500		V/mV		
Output Voltage Swing	V_{OP}	$R_L = 2k\Omega$	±11		V		

Table I Notes:

- $1/V_S = \pm 15V$, $T_A = 25$ °C, unless otherwise specified.
- $\underline{2/}$ I_{SY} limit = total all four amplifiers.

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions $\frac{1}{}$	Sub- groups	Limit Min	Limit Max	Units	
Input Offset Voltage	V _{IO}		1 2, 3	-150 -270	+150 +270	μV	
Input Offset Current	I _{IO}	$V_{CM} = 0V$	1 2, 3	-1 -2.5	+1 +2.5	nA	
Input Bias Current	$\pm I_{IB}$	$V_{CM} = 0V$	1 2, 3	-3 -5	+3 +5	nA	
Input Voltage Range	IVR		1, 2, 3	±12		V	
Common Mode Rejection Ratio	CMRR	$V_{CM} = IVR$	1 2, 3	120 115		dB	
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	1 2, 3		1.8 3.2	μV/V	
Supply Current <u>2/</u>	I _{SY}	No Load	1 2, 3		2.9 3.1	mA	
Large Signal Voltage Gain	A _{VS}	$V_{OUT} = \pm 10V, R_L = 2k\Omega$	4 5, 6	1500 1000		V/mV	
Output Voltage Swing	+V _{OP}	$R_L = 2k\Omega$	4, 5, 6	±11		V	
Average Input Offset Voltage Drift	TCV _{IO}	-55 °C $\leq T_A \leq +125$ °C	8		1.2	μV/°C	

Table II Notes:

 $[\]underline{1/}$ V_S = ±15V, unless otherwise specified.

 $[\]overline{2}$ / I_{SY} limit = total all four amplifiers.

Table III - Life Test Endpoint and Delta Parameter								
(Product is tested in accordance with Table II with the following exceptions)								
Parameter	Symbol		Post	Post	Post Life	Post Life		
		Sub-	Burn In	Burn In	Test	Test	Life Test	Units
		groups	Limit	Limit	Limit	Limit	Delta	Office
			Min	Max	Min	Max		
Input Offset Voltage	V _{IO}	1		±225		±300	±75	μV
		2, 3				±420		μν
Input Bias Current	$\pm I_{IB}$	1		±5		±7	±2	n 1
		2, 3				±9		nA
Input Offset Current	I _{IO}	1		±2		±2.5		nA
		2, 3				±4.5		

5.0 Life Test/Burn-In Information

- **5.1** HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

OP400 Quad Low-Offset, Low-Power Operational Amplifier

Rev	Description of Change	Date
A	Initiate	08-JAN-02
В	Update web address. Table III; add "post" to Burn-in and Life Test title.	17-APR-03