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Abstract. A new concept of the perfect singular observer for singular 2D Roesser model is proposed. Necessary and sufficient 

conditions are established for the existence of the perfect observer for singular 2D Roesser model. A procedure for design of the perfect observer  is 
also derived. 
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1. Introduction. 
The most popular models of two-dimensional (2D) systems are the models introduced by Roesser [11], Fornasini and Marchesini [3,4] 

and Kurek [10]. The models have been generalised for singular systems in [7,6]. The existence and design methods of the observers for singular 1D 
linear systems have been considered in many papers and books [1,2,6,8,12-14]. Dai has shown [2] that it is possible to construct a singular observer 

which reconstruct exactly the state vector )(kx  of the singular system )()()1( kBukAxkEx +=+  for all ,...1,0=k   

The main subject of this short paper is to extend the concept of perfect observer for singular 2D Roesser model. 
Necessary and sufficient conditions will be established for the existence of the perfect observer for singular 2D Roesser model and a 

procedure for design of this perfect observer  will be derived. 
 

2. Preliminaries and problem formulation.  

Let 
mnR ×

 be the set of mn×  real matrices and 
1: ×= nn RR . The set of non-negative integers will be denoted by +Z . 

Consider the singular 2D Roesser model [11,6] 
 

(1a)                                    













+

+

v
ji

h
ji

x

x
E

1,

,1

ijv
ij

h
ij

Bu
x

x
A +












=    

(1b)         












=

v
ij

h
ij

ij
x

x
Cy     , i j Z, ∈ +  

where x Rij
h n∈ 1  and x Rij

v n∈ 2  are the horizontal and vertical semi-state vectors ate the point ),( ji ,  u Rij
m∈  is the input 

vector, 
p

ij Ry ∈  is the output vector and  
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It is assumed that 0det =E  and 

(2)   0det][det
2222221121

1221211111 ≠
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AzEAzE

AzEAzE
AEZ   for some C∈21,zz  (the field of complex 

numbers) 
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If (2) holds then 
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where 
nn

ij RT ×∈  are the transition matrices and ),( 21 µµ  is the nilpotence index. 

The solution to (1a) with the boundary conditions 

(4)                                   +∈ Zjxh
j ,0   and   +∈ Zixv

i ,0  

is  given by [6] 
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Consider the singular 2D system 

(6)                           
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where 1ˆ nh
ij Rx ∈  and 2ˆ nv

ij Rx ∈  are estimates of 
h
ijx  and  

v
ijx , respectively and 

pnRK ×∈ . 

Definition .  The system (6) is called the perfect observer of (1) if and only if  
 

(7)                          
h
ij

h
ij xx =ˆ  and  

v
ij

v
ij xx =ˆ   for  i j Z, ∈ +  

We shall establish conditions for the existence of the perfect observer (6) for (1) and derive a procedure for designing of this observer. 
 
 

3. Main result.  
In the sequel the following elementary operations [5, 6] will be used  
 
Multiplication of any row (column) by a nonzero number c  
Addition to any row (column) of any other row (column) multiplied by any polynomial (number) 
Interchange of any two rows (columns) 

Lemma. Let 
nnRAE ×∈, , ( 0det =E ) and 

npRC ×∈  be given. There exists  
pnR

K
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(α  is a constant independent of 1z  and 2z ) 

if and only if 
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Proof. Necessity. From the equality 
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it follows that (8) implies (9) 

Sufficiency. To simplify the notation it is assumed that  1=p . Using the elementary operations it is easy to show that if (9) holds 

then there exists nonsingular matrices 
nnRQP ×∈,  such that 
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Let (for )1=p  
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Example 1. For given 
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It is easy to check that the matrices (12) satisfy the assumptions (9) since        
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Using the elementary operations the matrix 
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can be reduced to the form 
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From (11) we obtain 
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Theorem.  Let the assumption (2) for the singular model (1) be satisfied. There exists the perfect observer (6) for (1) if and only if (9) 
holds. 

Proof.  Let us define 
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Using (14), (1) and (6) we obtain 
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Let K  be chosen so that (8) holds. Then from (3) we obtain 
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0=ijT  for 0≥i  and/or 0≥j  

Hence the solution to (15) by (5) for 0=iju  and any boundary conditions +∈ Zjeh
oj , , +∈ Ziev

io ,  is equal to zero, i.e. 

0=h
ije  and  

v
ije   for +∈ Zji,  and the condition (6) is satisfied.   

If the conditions (9) are satisfied then the perfect observer (6) for (1) can be calculated by the use of the following procedure 
Procedure 
Step 1. Knowing E, A and C find K satisfying (8) for some constant α . To compute K the following two approaches can be used. In the 

first approach K is chosen so that 0)( =Kaij  for qjpi ,...,1,,...,1 ==  and  0)(00 ≠Ka  where )(Kaij  are coefficients of the 

polynomial 
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The second approach is based on elementary operations and the formula (11). 
Step 2.  Using (6) find the perfect observer in the form 
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Example 2.  Consider the singular model (1) with (12) and  

(20)                                           
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It is easy to check that the model (1) with (12) and (20) satisfies the conditions (9) (see Example 1) 
Using the procedure we calculate 
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For 2,0 21 −== kk  and 03 =k  we obtain (8) for 1−=α . The same result we obtain using the second approach (see Example 1). 

Step2. The desired perfect observer (19) has the form 
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4. Concluding remarks.  
 

A new concept of the perfect observer (6) for sing
the existence of the perfect observer (6) for (1) have been
illustrated by a numerical example. This new concept of pe
Marchesini type models [7,6]. An extension of these consider
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ular 2D Roesser model (1) has been proposed. Necessary and sufficient conditions for 
 established. A procedure for design of the perfect observer has been derived and 
rfect observer can be extended with slight modifications for singular 2D Fornasini-
ations for standard 2D linear systems will be considered in a separate paper. 
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