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 Abstract: Notions of the externally and internally positive standard and singular discrete-time and continuous-
time linear systems are introduced. Necessary and sufficient conditions for the external and internal positivity of 1D and 2D linear systems are 
established. It is shown that the reachability and controllability of the internally positive 1D and 2D linear systems are not invariant under the state-
feedbacks. By suitable choice of the state-feedbacks an unreachable internally positive linear systems can be made reachable and a controllable 
internally positive system can be made uncontrollable.  
 
1. Introduction 

The positive discrete-time and continuous-time linear systems have been considered in many papers [5,7,8,38,39]. The most popular 
models of two – dimensional (2D) linear systems are the models introduced by Roesser [41], Fornasini and Marchesini [9,10] and Kurek [32]. An 
overview of recent developments in reachability and controllability of 2D linear systems can be found in [28–31,25, 16]. The positive (non – 
negative) 2D Roesser type model has been introduced in [21] and its reachability and controllability has been considered in [21–23]. The 
reachability and controllability of weakly positive systems have been studied in [24, 26]. Some recent developments in 2D positive system theory 
have been given in [11, 42]. In this paper an overview of recent developments and new results in 1D and 2D positive linear systems will be 
presented. It is well – known [16, 28] that the reachability  and controllability of standard linear 1D and 2D systems are invariant under the state – 
feedbacks. To the best author’s knowledge the reachability and controllability of positive 1D and 2D linear systems with state – feedbacks have 
been not considered yet. In this paper it will be shown that the reachability and controllability of linear positive 1D and 2D systems are not invariant 
under the state – feedbacks. 

Externally and internally positive standard 1D linear systems. 
 
2.1. Discrete-time systems 

Let  
mnR ×

 be the set of mn×  matrices with entries from the field of real numbers  R  and 
1: ×= nn RR . The set of mn×  

matrices with real non-negative entries will be denoted by 
mnR ×

+  and 
1: ×

++ = nn RR . The set of non-negative integers will be denoted by +Z . 

Consider the discrete-time linear system 

(1a)                 iii BuAxEx +=+1  ,    +∈Zi  

(1b)                      iii DuCxy +=                

where 
n

i Rx ∈ , 
m

i Ru ∈  and  
p

i Ry ∈  are the state, input and output vectors and   
mnnn RBRAE ×× ∈∈ ,, , 

mpnp RDRC ×× ∈∈ , . 

The system (1) is called singular if  0det =E . If  0det ≠E  then premultiplying (1a) by 
1−E  we obtain the standard system 

(2a)                 iii BuAxx +=+1  ,    +∈Zi  

(2b)                      iii DuCxy +=      

For the singular system (1) it is assumed that 

                             0][det ≠− AEz  for some  C∈z    (the field of complex numbers) 

Definition 1.  The standard system (2) is called externally positive if for 00 =x  and every  
m

i Ru +∈ , +∈Zi  we have 

p
i Ry +∈  for +∈Zi . 

Theorem 1. [24] The standard system (2) is externally positive if and only if its impulse response matrix  

(4)                                         





=
>

=
0

0

iforD

iforBCA
g

i

i  

is non-negative,  
mp

i Rg ×
+∈    for +∈Zi  

Definition 2.  The standard system (2) is called internally positive if for every 
nRx +∈0  and all inputs  

m
i Ru +∈ , +∈Zi  we 

have  
n

i Rx +∈   and  
p

i Ry +∈  for  +∈Zi . 

  
Theorem 2. [24] The standard system (2) is internally positive if and only if  

(5)                               
mpnpmnnn RDRCRBRA ×

+
×

+
×

+
×

+ ∈∈∈∈ ,,,  

The standard internally positive system (2) is always externally positive. 
 
2.2. Continuous-time systems. 
Consider the continuous-time linear system 

(6a)                   BuAxxE +=   

(6b)                 DuCxy +=                
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dt

dx
x = , 

nRtxx ∈= )( , 
mRtuu ∈= )( , 

pRtyy ∈= )(  are the state, input and output vectors, and 

mnnn RBRAE ×× ∈∈ ,, , 
mpnp RDRC ×× ∈∈ , . 

The system (6) is called singular if  0det =E . If  0det ≠E  then premultiplying (6a) by 
1−E  we obtain the standard system 

(7a)                       BuAxx +=   

(7b)                   DuCxy +=            

For the singular system (6) it is assumed that 

                                   0][det ≠− AEs  for some  C∈s   

 
Definition 3.  The standard system (7) is called externally positive if for 0)0(0 == xx  and every 

mRtu +∈)( , 0≥t  we have  

pRty +∈)( ,  for  0≥t . 

Theorem 3. [24] The standard system (7) is externally positive if and only if its impulse response matrix 
  

(9)                





=
>

=
0)(

0
)(

tfortD

tforBCe
tg

At

δ
 

is non-negative, 
mpRtg ×

+∈)(  for 0≥t , where )(tδ  is the Dirac impulse. 

Definition 4.  The standard system (7) is called internally positive if for every 
nRx +∈0  and all inputs 

mRtu +∈)( , 0≥t  we 

have  
nRtx +∈)(  and  

pRty +∈)(   for  0≥t . 

Theorem 4. [24]  The standard system (7) is internally positive if and only if   A  is a Metzler matrix (all off-diagonal entries are non-

negative) and 
mnRB ×

+∈ , 
mpnp RDRC ×

+
×

+ ∈∈ ,  

The standard internally positive system (7) is always externally positive. The standard internally positive system (2) and (7) will be 
shortly called positive. 

 
2.3. Reachability and controllability of positive 1D systems. 

Definition 5. The positive system (2) is called h-step reachable if for every n
f Rx +∈  (and 00 =x ) there exists a input sequence 

m
i Ru +∈ , 1,...,1,0 −= hi  such that fh xx = .  

Definition 6. The positive system (2) is called reachable if for every n
f Rx +∈  (and 00 =x ) there exists +∈Zh   and  m

i Ru +∈ , 

1,...,1,0 −= hi  such that fh xx = .  

Definition 7. The positive system (2) is called controllable if for every nonzero n
f Rxx +∈0,  there exists +∈Zh  and m

i Ru +∈ , 

1,...,1,0 −= hi  such that fh xx = . 

Definition 8. The positive system (2) is called controllable to zero if for every nRx +∈0  there exists +∈Zh  and m
i Ru +∈ , 

1,...,1,0 −= hi  such that  0=hx .  

Theorem 5. [7,24] The positive system (2) is n-step reachable if and only if: 

rank nRn =  

there exists a nonsingular matrix nR  consisting of  n  columns of nR  such that nn
n RR ×

+
− ∈1  or equivalently nR  has  n  linearly independent 

columns each containing only one positive entry 
where  

(10)                  [ ] nmnn
n RBAABBR ×

+
− ∈= 1,...,,:  

If the positive system (2) is reachable then it is always n-step reachable [7,8]. □ 
Theorem 6. [7,24] The positive system (2) is controllable if and only if: 

the matrix  nR  has  n  linearly independent columns each containing only one positive entry. 

the spectral radius )(Aρ  of  A  is 1)( <Aρ  if the transfer from 0x  to fx  is allowed in an infinite number of steps and 

0)( =Aρ  if the transfer from 0x  to fx  is required in a finite number of steps. □ 

Let us assume that for 1=m  the matrices A  and B  of (2) have the canonical form 

(11)           ,
1000

0100

0010

1210

nn

n

R

aaaa

A ×
+

−

∈


















−−−−

=

!

!

!

!

nRB +∈


















=

1

0

0

"  

It is easy to see that for (11) 
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(12)                      [ ] nBAABBrank n =−1,...,,  

but the condition ii) of theorem 5 is not satisfied if at least one 0≠ia  for 1,...,1 −= ni . In this case the positive system (2) with 

(11) is not n-step reachable.  
Consider the system (2) with state-feedback 

(13)                             iii Kxvu +=  

where nRK ×∈ 1  and iv  is the new input. 

Substitution of (13) into (2) yields 

(14)                 iici BvxAx +=+1 ,  +∈Zi  

where 

(15)                         BKAAc +=  

For (11) and 

(16)                   [ ]110 ,...,, −= naaaK  

the matrix (15) has the form 

(17)          [ ]


















=



















+



















−−−−

= −

− 0000

1000

0100

0010

,...,,

1

0

0

1000

0100

0010

110

1210 !

!

!

!

"

!

!

!

!

n

n

c aaa

aaaa

A  

Using (17) we obtain 

                                               [ ]


















=−

0001

0010

0100

1000

,...,, 1

!

!

!

!

BABAB n
cc

 

Then the conditions of theorem 5 are satisfied and the closed-loop system is n-step reachable.  
Therefore, the following theorem has been proved. 
Theorem 7.  Let the positive system (2) with (11) be not n-step reachable. Then the closed-loop system (14) with (17) is n-step 

reachable if the state-feedback gain matrix  K  has the form (16). □ 
Corollary 1. The n-step reachability of positive system (2) with (11) is not invariant under the state-feedback (13). 

Remark 1.  It is well-known [16] that if the pair ),( BA  satisfies the condition (12) then it can be transformed by linear state 

transformation 0det, ≠= PPxx ii  to the canonical form (11) 

                           PBBPAPA == − ,1
 

and 

],...,,[],...,,[ 11 BAABBPBABAB nn −− =  

Note that the conditions of theorem 5 are satisfied if and only if  P  is a monomial matrix  (in each row and column has only one positive 
entry and the remaining entries are zero). 

Consider the single-input system (2) with matrices  A,B  in the canonical form (11). In a similar way as in the reachability case it can be 

shown that the condition i) of theorem 6 is not satisfied if at least one of the coefficients 0≠ia  for 1,...,1 −= ni . In this case the positive 

system (2) with (11) is not controllable. The closed-loop system matrix (15) with (11) and state-feedback gain matrix (16) has the form (17). Note 

that the matrix (17) has all zero eigenvalues and its spectral radius ( ) 0=cAρ .  

Therefore, the following theorem has been proved. 
Theorem 8.  Let the positive system (2) with (11) be not controllable. Then the closed-loop system (14) with (17) is controllable in a 

finite number of steps if the state-feedback gain matrix  K  has the form (16). □ 
The considerations can be extended with some modifications for continuous-time positive linear systems. 
Externally and internally positive singular 1D linear systems.  
 
3.1. Discrete-time systems. 

Consider the singular discrete-time system (1) with 1== pm  and 

nnn R
I

E ×− ∈







=

00

01
,  

nnn
R

a

I
A ×− ∈












= 10

, [ ]001110 !! −= −raaaa ,   

                                        
nRB ∈



















=

1

0

0

"
, [ ] n

n RbbbC ×
− ∈= 1
110 ! , 0=D  

If (3) holds then  

 

 

 

 

 

 



3-я Международная Конференция DSPA-2000 

 
 - 4 - 

                        ∑
∞

−=

+−− Φ=−
µi

i
i zAEz )1(1][                  

where µ  is the nilpotence index of  (E,A)  and Φi  are  the fundamental matrices satisfying the relation  

               





≠
=

=Φ−Φ=Φ−Φ −− 0)(0

0)(
11 iformatrixzerothe

iformatrixidentitytheI
AEAE iiii  

Theorem 9. If the matrices  E,A,B,C  have the canonical form (18) and  

(19)   1,...,1,0,0 −=≥ riai ,  1,...,1,0,0 −=≥ njbj   )( rn >  

then 

(20)          
n

k RB +∈Φ   for   ,...1, µµ −−=k  

         
nn

i R ×
+∈Φ    for  +∈Zi  

         
mp

j Rg ×
+∈   for  ,...2,1 µµ −−=j  

The proof is given in [15] 
Theorem 10. The singular system (1) with (18) is externally and internally positive if (19) hold. 
The proof follows from the relations (20)-(22). 
 
3.2. Continuous-time systems. 

Consider the singular continuous-time single-input single-output ( 0,, === DcCbB ) linear system (6). It is assumed that 

0det =E  and 

(23                         0][det ≠− AEs  for some  C∈s   

If (23) holds then  

(24)    ∑
∞

−=

+−− Φ=−
µi

i
i sAEs )1(1][                  

where µ  is the nilpotence index of  (E, A)  and Φi  are  the fundamental matrices defined by  

       





≠
=

=Φ−Φ=Φ−Φ −− 0)(0

0)(
11 iformatrixzerothe

iformatrixidentitytheI
AEAE iiii  

and 0=Φ i  for µ−<i . 

Using (25) it is easy to show that [37] 

(26a)     





<
≥Φ

=ΦΦ +

00

01
0 ifor

ifor
A i

i  

and 

(26b)    





<Φ
≥

=ΦΦ−
−

− 0

00

1
1 ifor

ifor
E

i
i  

The solution )(tx  of the equation (6a) with initial conditions 0x  is given by [26] 

(27)        ( )∑∫
=

−−
−

−ΦΦ +Φ+Φ+Φ=
µ

τ δττ
1

)1(
0

)1(
0

0

)(
00 )()()()( 00

j

jj
j

t
tAAt tExtbudbueExetx  

and 

(28)     ( )∑∫
=

−−
−

−ΦΦ +Φ+Φ+Φ==
µ

τ δττ
1

)1(
0

)1(
0

0

)(
00 )()()()()( 00

j

jj
j

t
tAAt tExtbucdbuceExcetcxty  

where 1,...,1)( −== µj
dt

ud
u

j

j
j

. 

Substituting 00 =x  and )()( ttu δ=  into (28) we obtain the impulse response )(tg  of the system  

(29)                                 









=Φ+Φ

>Φ
=

∑
=

−
−

Φ

Φ

µ

δ
1

)1(
0

0

0)(

0

)(
0

0

j

j
j

At

At

tfortbcbce

tforbce

tg  

The transfer function of the system is given by 
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(30a)                                                 bAEscsT 1][)( −−=  

The substitution of (24) into (30a) yields 

(30b)                                    ∑∑
=

−
−

∞

=

+− Φ+Φ=
µ

1

1

0

)1()(
j

j
j

i

i
i bscbscsT  

From (26a) for 0≥i  we have 0
2

0102001 )(, ΦΦ=ΦΦ=ΦΦΦ=Φ AAA  and 

                                    00 )( ΦΦ=Φ i
i A   for  0≥i  

Substituting (31) into (30b) we obtain 

(32)                                     ∑∑
=

−
−

∞

=

+− Φ+Φ



 Φ=

µ

1

1
0

0

)1(
0 )()(

j

j
j

i

ii bscbsAcsT  

Applying to (32) the Laplace inverse transform we obtain (29). 

Using the impulse response (29) the formula (28) for 0>t  can be rewritten in the form 

(33)             ∑∫
=

−
−

Φ Φ+−+Φ=
µ

τττ
1

)1(

0

00 )()()()( 0

j

j
j

t
At tbucdutgExcety   for 0>t  

Definition 9.  The singular system (6) is called externally positive if for 00 =x  and any nonnegative input 0)( ≥tu  with 

0)()( ≥tu j
 for 1,...,1 −= µj  for +∈Rt  the output )(ty  is also nonnegative, 0)( ≥ty  for 0>t .  

Theorem 11. The singular system (6) with 0,, === DcCbB  is externally positive if and only if its impulse response )(tg  

is nonnegative 

(34)                                       +∈Rtg )(    for  +∈Rt  

Proof. The necessity follows immediately from the definition of impulse response and the definition 9. To prove the sufficiency we 

assume  that (34) holds. Then from (33) for 00 =x  and 0)()( ≥tu j
 for 1,...,1,0 −= µj  for +∈Rt  we obtain 0)( ≥ty  for  

0>t .   
Example 1. Consider the system (6) with the matrices 

(35)                      [ ]210,

1

0

0

,

01

100

010

,

000

010

001

bbbcb

a

AE =















=

















−
=
















=  

and 2,1,0,0,0 =≥≥ iba i . 

In this case using (24) and (31) we obtain  
(36a)        

!+Φ+Φ+Φ+Φ=
















−
−

=
















−
−

−
=− −−

−−

−

− 2
1

1
012

2

1

1 0

101
1

01

10

01

][ sss

ssaas

sa
as

a

s

s

AEs  

where 

(36b)                            

,

00

00

00

,1)(

,

0

0

101

,

1

100

000

,

100

000

000

3

2
000

22
012
















=Φ≥ΦΦ=Φ
















=Φ

















−
=Φ
















=Φ −−

a

a

a

AiforA

aa

aa

aa

i
i

 

To find the impulse response of the system we calculate 

(37)                                           

















−
−=Φ

10)1(

01)1(

00

2

0

at

at

at

At

ea

ea

e

e  

and 

(38a)                              
atAt eababbbce )( 2

2100
0 ++=ΦΦ

  for  0≥t  
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(38b)        )()()()()()( )1(
221

)1(
21

)1(

1

tbtbbtbctbctbc j
j

j

δδδδδ
µ

++=Φ+Φ=Φ −−
−

=
∑   for 0=t  

From (38) it follows that if 0≥a  and 0≥ib  for 2,1,0=i  then the impulse response )(tg  of the system satisfies the 

condition (34). Thus, the system is externally positive. 
Consider the singular system (6) with (18). 

The initial conditions 0x  of the system (6) with (18) are called admissible for 0=u  if 

00,1012011000 =−+++= +− rrr xxaxaxaax ! , where [ ]Tnxxxx 020100 !=  (T  denotes the transpose) 

It is easy to show that if  00 =ax  then 

∑∑
=

−
=

=Φ=Φ
µµ

2
0

1
0 0

j
j

j
j AxEx  

and the solution of (6a) with admissible initial conditions has the form (33) for 0>t . 
Theorem 12. If  

          0≥ia   for   1,...,1,0 −= ri  and  0≥jb   for  1,...,1,0 −= nj  

for the matrices (18) then 

(40)                                     
n

i Rb +∈Φ   for   µ−≥i  

and 

(41)                                      
nn

i R ×
+∈Φ  for  0≥i  

Proof.  If  E,A  and  b  have the canonical form (18) then it is easy to show that 

(42a)              bHbsHbsH

s

s

sd
bAEs n

n

n

ad 01
1

1

1

1

)(

1
][ +++=





















=− −
−

−

!
"  

where 

(42b)                      



















=























=



















=−

0

0

1

,

0

0

1

0

,...,

1

0

0

011
"

"

"
bHbHbH n  

Using the well-known equality ( ) 1][]det[][ −−−=− AEsAEsAEs ad  we may write 

(43)  

( )( )!!!! +Φ+Φ+Φ++Φ−−−−=+++ −−
−

−
−

−
−

−
−

2
1

1
01

1
01

1
101

1
1 sssasasasHsHsH r

r
rn

n
µ

µ   

The comparison of the coefficients at the same powers of 
ks  for  0,...,2,1 −− nn  of (43) yields 

          11211, −−−−−− +=Φ=Φ nrnn HaHH µµ ,  ( ) 12
2

12132 −−−−−−− +++=Φ nrrnrn HaaHaHµ  

and  

(44)                         









































=

























Φ

Φ

Φ

Φ

−

−

−

−−−
−

−

−

−

0

3

2

1

1321

12

1

1

2

1

.......
1

001

0001

00001

.......
H

H

H

H

qqqq

qq

q
n

n

n

nnn

r

!

!

!

!

µ

µ

µ

 

where µ−= nr  and  

                             ∑
=

−−=
k

i
ikirk qaq

1

:   for  2,1=k   )1:( 0 =q  

Comparing the coefficients of (43) at  ,..., 21 −− ss   we obtain 
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002211 Φ++Φ+Φ=Φ −−−− aaa rrrrr !  

101211 Φ++Φ+Φ=Φ −−−+ aaa rrrrr !  

and  

(46)                                         ∑
=

−+−+ Φ=Φ
r

j
jkrjrkr bab

1

   for  ,...1,0=k  

From (42b),(44),(45) and (46) it follows that 
n

k Rb +∈Φ  for ,...1, µµ −−=k  since 
n

j RbH +∈  for 

0,0,...,2,1 ≥−−= kqnnj  for ,...2,1=k  and 0≥ia  for 1,...,1,0 −= ri . 

Using the equality ]det[]][[ AEsIAEsAEs nad −=−−  we may write 

(47)                      [ ] ( )01
1

101
1

1][ asasasIHsHsHAEs r
r

r
n

n
n −−−−=+++− −

−
−

− !!   

 
The comparison of the coefficients at the same powers of  s  of  (47) yields 

              IEHAHIaEHAHIaEHAHIaAH rrnrrrnn −=+=+== −−−− 112110100 ,,...,, ,   

                                           0,,..., 1211 === −−−+ nnnrr EHEHAHEHAH  

The matrix 

(48)                       [ ]001:, 121
)0(

1

10

)0(

0 !! −=






−
= −

−
r

n

aaaae
Ia

a
H  

satisfies the equality nIaAH 00 = , where ie  is the ith column of nI . 

Using (18) it is easy to show that  
(49)  

=



























−−+
−+

+
+

−−−
−−−−−−

=−

−−−

−−−

−
−

−

−
−

−−
−

−

1
01

32
0

2
01

43
0

3
01

2
0

2
010

2
3

1
2

0

2
3

1
2

1
2

1
1

)()()(

0)()(

00)(

00

00)(

100

][

nnn

nnn

r
r

r

r
r

rr
r

r

ad

sspsspasassa

sspasassa

sasassa

sasasa

sasassa

asasasas

AEs

!

!

!

!

!!

!!!

 

      01
1

1 HsHsH n
n +++= −
− !  

where ]det[)( AEssp −= . 

Comparison of the coefficients at the same powers of 
ks   for  1,...,1,0 −= nk  of (49) yields  

                                          

























−

−

=

−

+
+

)(

)1(
1

)1(

)1(

iq

i
i

i

a

a

ea

a

H

"

"

  for  1,...,1 −= ri  

                         












−= −+

−

00100 11

1

)( !!
#$%

! ri

i

i aaa    

(50)                                       











=

−

0000: 0

1

)( !!
#$%

! i

j

j aaa     , iqj −= ,...,1  
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From (44), (45) and (50) we have 

                                    
nn

rn

r

rrn R

q

q

q

W

I

HHqHq ×
+

−

−− ∈





























=+++=Φ

"

"

!

1

01110

0

0

0µ  

and    

(51)                    ( ) =+++=+++=Φ −−−−− EHHqHqAHAHqAHqA rrnrrn 23121110 !! µµ  

                                           
nnR

rn
q

q

W

r
I

×
+∈































−

−

=

000

0

0

0
1

0

0

0

!

"

""

 

where  
rrn

RwW ij

×−

+∈=
)(

][ ,  lilj

j

l
ij qaw −−

=
∑=

1

 

From (31) and (51) it follows 

                                              
nni

i RA ×
+∈ΦΦ=Φ 00 )(   for  ,...2,1=i         

Theorem 13. The singular system (6) with (18) is externally positive if the conditions (39) are satisfied. 
Proof. By theorem 11 the system (6) with (18) is externally positive if and only if (34) holds. From theorem 12 it follows that if the 

conditions (39) are satisfied then A0Φ  is the Metzler matrix. Taking into account that [24] 

                                   
nnAt Re ×

+
Φ ∈0   for  0≥t  

we obtain 

(53)                                            +
Φ ∈Rbce At0  

and 

                                            +∈Rty )(   for  0≥t  

Thus if the conditions (39) are satisfied then (34) holds and the singular system (6) with (18) is externally positive.   

Definition 10.  The singular system (6) is called internally positive if for every admissible 
nRx +∈0  and any nonnegative input 

0)( ≥tu  with 0)()( ≥tu j
¸ 1,...,1 −= µj  for   +∈Rt , the state vector  

nRtx +∈)(   and  
pRty +∈)(   for  0>t . 

From comparison of the definitions 9 and 10 it follows that every singular system (6) internally positive is always externally positive. 
Theorem 14. The singular system (6) with (18) is internally positive if the conditions (39) are satisfied. 
Proof. If the conditions (39) are satisfied then using (27),(28) and (52) we obtain 
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                      ∑∫
=

+
−

−
−ΦΦ ∈Φ+Φ+Φ=

µ
τ ττ

1

)1(

0

0
)(

00 )()()( 00

j

nj
j

t
tAAt RtbudbueExetx  for +∈Rt  

and 

                    ∑∫
=

+
−

−
−ΦΦ ∈Φ+Φ+Φ=

µ
τ ττ

1

)1(

0

0
)(

00 )()()( 00

j

nj
j

t
tAAt RtbucdbuceExcety  for +∈Rt  

since 
n

j
nnnnnAt RbRbRERe +−+

×
+

×
+

Φ ∈Φ∈Φ∈Φ∈ ,,, 00
0   for µ,...,1=j . 

Therefore, by definition 10 the system (6) with (18)  is internally positive.   
Example 2. (Continuation of Example 1) 
It will be shown that the system (6) with (35) is also internally positive if  

(54)                                        0≥a   and   0,0,0 212 ≥≥> bbb  

If the conditions (54) are satisfied then using (27), (36) and (37) we obtain 

            ∑∫
=

−−
−

−ΦΦ =+Φ+Φ+Φ=
µ

τ δτ
1

)1(
0

)1(

0

0
)(

00 )()(()()( 00

j

jj
j

t
tAAt tExtbubueExetx  

                  
3

2010
0 )(2

)(

)(
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2

)(0

0

)(

1

0

0

)(1

0

)( +
−

−

−

∈
















−
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+
















+

















+
















= ∫ Rt

xax

tutu

a

du

ea

ae

e

x

ea

ae

e
t

ta

ta

ta

at

at

at

δττ
τ

τ

τ

  

since for admissible initial conditions 02010 =− xax . 

Similarly using (28),(36), (37) and (38) we obtain 

∑∫
=

−−
−

−ΦΦ =+Φ+Φ+Φ=
µ

τ δτ
1

)1(
0

)1(

0

0
)(

00 ))()(()()( 00

j

jj
j

t
tAAt tExtbucbuceExcety  

( ) ( ) ( ) +− ∈++++++++= ∫ Rtubtuabbdueababbxeababb
t

taat

0

221
)(2

21010
2

210 )()()(  τττ
 

 for  0≥t . 
Consider the system (6) with 

(55)                             
][

,,
00

0

212

)1(
1

2

1

nnnn

nn
nnn

aaaA

RA

A

A
AR

I
E

!−

×−
×

=
∈









=∈








=  

From (6a) and (55) for 0=t  we have 

(56)                                                          )0(0 202 uBxA +=  

The equation (56) determines the set of admissible initial conditions 0x  for a given input )(tu . Note that the assumption (23) implies 

that 2A  is not zero row and the singularity of the system implies that at least 0=nna . From (56) for 0)0( =u  it follows that the equation 

002 =xA  for 0, 00 ≠∈ + xRx n
 may be satisfied if 2A  contains at least one negative entry. Therefore, we have the following important 

corollaries. 
Corollary 2. The singular system (6) with (55) is not internally positive if  A  is a Metzler matrix. 
Corollary 3. The singular weakly positive [26] system (6) with (55) is not internally positive. 
Externally and internally positive 2D linear systems. 
 
4.1. Externally and internally positive Roesser model. 
Consider the 2D Roesser model [41] 

(57a) 
ijv

ij

h
ij

v
ji

h
ji

u
B

B

x

x

AA

AA

x

x








+




















=













+

+

2

1

2221

1211

1,

,1
 

(57b)  [ ] ijv
ij

h
ij

ij Du
x

x
CCy +












= 21

 , { },...1,0:, =∈ +Zji   

where x Rij
h n∈ 1  and x Rij

v n∈ 2  are the horizontal and vertical state vectors at the point ),( ji , respectively,  u Rij
m∈   is the input vector, 

y Rij
p∈  is the output vector and 

mn
k

nn
kl

klk RBRA ×× ∈∈ , , knp
k RC ×∈ , 2,1, =lk , mpRD ×∈ .  
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Definition 11. The Roesser model (57) is called externally positive if for zero boundary conditions +∈= Zjxh
j ,00 , 

+∈= Zixv
i ,00  and all inputs  u Rij

m∈ + , i j Z, ∈ +  we have p
ij Ry +∈   for i j Z, ∈ +  

Theorem 15. [14] The Roesser model (57) is externally positive if and only if its impulse response matrix mp
ij Rg ×

+∈  for  

i j Z, ∈ + . 

Definition 12. The Roesser model (57) is called internally positive (shortly positive) if for all boundary conditions 

(58)                               ++ ∈∈ ZjRx nh
j ,1

0   and   ++ ∈∈ ZiRx nv
i ,2
0  

and all u R i j Zij
m∈ ∈+ +, ,  we have n

v
ij

h
ij

ij R
x

x
x +∈












=  , 21 nnn += and  p

ij Ry +∈  for all  i j Z, ∈ + . 

Theorem 16. [21] The Roesser model (57) is internally positive if and only if 

(59)                mnnn R
B

B
BR

AA

AA
A ×

+
×

+ ∈







=∈








=

2

1

2221

1211 , , [ ] mpnp RDRCCC ×
+

×
+ ∈∈= ,21  

The transition matrix  Tij  for (57) is defined as follows  

(60)                                     












<<=

≠+≥+

==

= −−

0/00

)0(0,

0

1,01,110

jandoriforT

jijiforTTTT

jiforI

T

ij

jiji

n

ij     

where 

                                             







=








=

2221
01

1211
10

00
:,

00
:

AA
T

AA
T  

From (60) it follows that the transition matrix Tij  of the internally positive model (57) is a positive matrix, nn
ij RT ×

+∈  for all 

+∈Zji, . 

Definition 13.  The internally positive Roesser model (57) is called reachable for zero boundary conditions (58) (ZBC) at the point 

)0,,,(,),( >∈ + khZkhkh , if for every x Rf
n∈ +  there exists a sequence of inputs u Rij

m∈ +  for hkDji ∈),(  such that 

x xhk f= , where 

(61)       








+≠+
≤≤≤≤×∈

= ++

khji

kjhiZZji
Dhk

;0,0:),(
:  

Definition 14.  The internally positive Roesser model (57) is called controllable to zero (shortly controllable) at the point 

)0,,,(,),( >∈ + khZkhkh  if for any nonzero boundary conditions  

(62)       kjRx nh
j ≤≤∈ + 0,1

0  and hiRx nv
i ≤≤∈ + 0,2
0  

there exists a sequence of inputs m
ij Ru +∈  for ( , )i j Dhk∈  such that 0=hkx . 

Theorem 17. [21] The internally positive Roesser model (57) is reachable for ZBC at the point ( , )h k if and only if there exists a 

monomial matrix Rn  consisting of n linearly independent columns of the reachability matrix 

(63)        ],,...,,,[: 10011,,1 MMMMMR khkhhkhk −−=  

where 

(64)                 







+








= −−

2
1,

1
,1

0

0
:

B
T

B
TM jijiij

 

and ijT  is defined by (60). 

Theorem 18. [21] The internally positive Roesser model (57) is controllable if and only if the matrix  A  is nilpotent matrix, i.e. 

(65)            21

2

1

21
22221

12111
det nn

n

n
zz

AzIA

AAzI
=








−−

−−
 

To simplify the notation we assume that  1=m  (the single-input systems) and the matrices A  and B  of the internally positive model 
(57) have the canonical form [25] 
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where 0,0,0 ≥≥≥ kkll baa  for  2,...,1 nk = , 1,...,1 nl = . 

Consider the Roesser model (57) with the state-feedback 

(67)                   












+=

v
ij

h
ij

ijij
x

x
Kvu ,  i j Z, ∈ +  

where [ ] 21 1
2

1
121 ,,, nn RKRKKKK ×× ∈∈=  and m

ij Rv ∈  is a new input vector. Substitution of (67) into (57a) yields 

(68)                          
ijv

ij

h
ij

cv
ji

h
ji

Bv
x

x
A

x

x
+












=













+

+

1,

,1
 

where 

(69)     







++
++

=+=
22221221

21121111

,

,

KBAKBA

KBAKBA
BKAAc

 

The standard closed-loop system (68) is reachable (controllable) if and only if the standard 2D Roesser model (57) is reachable 

(controllable). It is easy to show that if at least one of 1,...,1,0 nlal =≠  or 2,...,1,0 nkbk =≠  then the condition of theorem 17 is not 

satisfied and the positive model (57) is not reachable at the point ),( 21 nn .  Let the positive system (57) with (66) be unreachable at the point 

),( 21 nn .  It will be shown that there exists a state-feedback gain matrix  K  such the closed-loop system (68) is reachable at the point ),( 21 nn .  

Let 

(70)                  [ ]0,...,0,1,,...,,
121 −−−−= naaaK  

For (66) and (70) the matrix (69) has the form 

(71a)                







=+=
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(71b)        
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If the assumptions of the canonical form are satisfied then it can be shown that 0≥kla  for  12 ,...,1,,...,1 nlnk == .  Now we 

shall show that the closed-loop system with (71b) and 0,0
22 121 ≠==== − nn bbbb !  is reachable at the point ),( 21 nn . Using (71), (60) 

and (64) we obtain 
10

1
10 ne

B
M =








=  ( 1n  - th column of the nn×  identity matrix) 

1
11

1001
1

1020 0
,...,

0
1

11
e

B
TMe

B
TM n

nn =







==








= −

−
 

(72)                   
nn eb

B
M

2

2
01

0
=








= ,

1
2

0102 2

0
−=








= nn eb

B
TM ,

1
2

1
010 12

2

2

0
, +

− =







= nn

n
n eb

B
TM!  

Note that in this case the matrix 

[ ] [ ]11110020102010 12221121
,...,,,,...,,,...,,,,...,, +−−= nnnnnnnnnn ebebebeeeMMMMMM  

 
is monomial matrix and by the theorem 17 the positive system (57) with (71) and 0121 2

==== −nbbb ! , 0
2
≠nb  is reachable at 

the point ),( 21 nn . In the case when  0≠kb  for 2,...,1 nk =  the calculations in the proof are more complicated.  

Therefore, the following theorem has been proved. 

Theorem 19.  Let the internally positive system (57) with (66) be unreachable at the point ),( 21 nn . Then the closed-loop system (68) 

with (71) is reachable at the point ),( 21 nn  if the state-feedback gain matrix  K  has the form (70).  

Corollary 4. The reachability of internally positive Roesser model (57) with (66) is not invariant under the state-feedback (67). 
According the theorem 18 the internally positive system is controllable (to zero) if and only if the matrix A  is nilpotent. It is said that the 

state-feedback (67) violetes the nilpotency of` A if and only if the closed-loop matrix (69) is not nilpotent. From theorem 14 the following theorem 
follows. 

Theorem 20. The closed-loop system (68) is uncontrollable at the point ),( 21 nn  if the state-feedback (67) violetes the nilpotency of A.  

Corollary 5. The controllability of internally positive Roesser model (57) is not invariant under the state-feedback (69). 
 
5. Concluding remarks. 
New notions of the externally and internally positive standard and singular discrete-time and continuous-time linear systems have been 

introduced. Necessary and sufficient conditions for the external and internal positivity of 1D and 2D linear systems have been established. 
Sufficient conditions have been also established under which a single-input single-output singular continuous-time system with matrices in 
canonical forms is internally positive. 

It has been shown that: 
the reachability and controllability of positive 1D linear systems are not invariant under the state – feedbacks. 
for an unreachable (uncontrollable) positive 1D linear system it is possible to choose a suitable state – feedback so that the closed – loop 

system is reachable (controllable). 
the reachability and controllability of positive 2D Roesser model are not invariant under the state – feedbacks. 
by suitable choice of the state – feedbacks an unreachable positive 2D Roesser model can be made reachable and a controllable positive 

2D Roesser model can be made uncontrollable. 
The presented considerations can be easily extended for multi – input 1D and 2D linear systems. It is well – known [25] that the first 

Fornasini – Marchesini model [9] can be recasted in the 2D Roesser model. Therefore, the considerations can be immediately extended for the 
positive first Fornasini – Marchesini model. Extensions of the considerations for the positive second Fornasini – Marchesini model [9] and general 
2D model [32] are also possible. An open problem is an extension of the considerations for singular 2D linear systems. 
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