ЦИФРОВЫЕ ФИЛЬТРЫ НА БАЗЕ ДРОБЕЙ ЧЕБЫШЕВА

Еремеев В.П., Мизиненко О.В.

Цифровые фильтры с несимметричными характеристиками весьма желательны во многих приложениях. Проектировать такие фильтры с помощью стандартных методик достаточно сложно из-за необходимости использования многостадийных итеративных процедур. Предложен новый алгоритм и программа синтеза таких фильтров.

1. Введение

В основу решения задачи синтеза цифровых фильтров минимального порядка, удовлетворяющего заданным требованиям к его частотным характеристикам должны быть положены методы наилучшего приближения функций [1,4]. Однако разработанные процедуры плохо алгоритмизированы [2,3], что препятствует их широкому использованию при практическом проектировании. В идейном смысле предлагаемый метод опирается на рекуррентную процедуру построения дробей Чебышева, гарантирующую равнопульсирующую АЧХ в полосе пропускания при любых полюсах в полосах задерживания. Выбор же последних относится к классу ремезовских методов, специальным способом исключающим этап решения систем уравнений на каждой итерации.

С помощью предложенного алгоритма можно синтезировать фильтры с гарантированно равнопульсирующими характеристиками в полосе пропускания и как с изоэкстремальными характеристиками в полосах задерживания, так и с характеристиками общего вида. В частности, можно синтезировать полосовой фильтр с разным количеством полюсов затухания в верхней и нижней полосах задерживания. Как будет показано ниже можно синтезировать структуры с ранее недостижимыми рекордными характеристиками - суперузкополосные фильтры и фильтры с очень низким уровнем пульсаций АЧХ в полосе пропускания.

Сходимость алгоритма иллюстрируют примеры, приведенные в работе.

2. Дроби Чебышева

Метод синтеза фильтров с характеристиками указанного вида описан в [2,3]. В [2] для получения дробей Чебышева использовалась область, связанная с *p* – областью преобразованием А.Ф. Белецкого. Однако это существенно усложняет расчеты. Нами предлагается другая процедура нахождения дробей Чебышева.

Пусть задан знаменатель дроби

$$D(N) = \prod_{k=1}^{N} (a_k - y) ,$$

где $a_k \ge$

Требуется найти числитель той же степени так, чтобы на интервале у ∈ [-1, 1] получить равномерное единичное отклонение. Обозначим

$$f_k = a_k \cdot y - 1;$$

$$b_k = \sqrt{a_k^2 - 1} \cdot sign(a_k);$$

$$y_2 = y^2 - 1,$$

тогда имеет место теорема :

Числитель дроби Чебышева
$$C_N \equiv \frac{R_N}{D_N}$$
 вычисляется рекуррентно:

 $R_{I} = f_{I}$; $T_{I} = l_{I}$; $R_{N} = f_{N} \cdot R_{N-I} + l_{N} \cdot y_{2} \cdot T_{N-I}$; $T_{N} = f_{N} \cdot T_{N-I} + l_{N} \cdot R_{N-I}$. Если числитель имеет степень на единицу выше знаменателя, то

 $R_{N+1} = y \cdot R_N + y_2 \cdot T_N \quad .$

Наконец, если степень числителя более, чем на единицу превышает степень знаменателя, используется соотношение А.Ф.Белецкого

$$R_{N+M} = 2 \cdot y \cdot R_{N+M-1} - R_{N+M-2} .$$

Таким образом, можно легко рассчитать числитель дроби Чебышева по любым известным полюсам *a_k* знаменателя. Дробь Чебышева

$$C_N \equiv \frac{R_N}{D_N} \tag{1}$$

имеет равнопульсирующую характеристику на интервале $y \in [-1, 1]$ (например, рис. 1).

3. Расчет передаточной функции полосовых фильтров

Так как для расчета фильтров будем использовать классическую формулу :

$$\left|H\right|^{2} = \frac{K^{2}}{1 + \varepsilon \cdot C_{N}\left(w^{2}\right)},$$
(2)

необходимо такое частотное преобразование, которое связывает у - плоскость с квадратом аналоговой частоты w^2 . Одним из возможных вариантов такого преобразования является :

$$y = 2\frac{w_{-1}^2 - w^2}{w_{-1}^2 - w_1^2} - 1$$

Если использовать обычную нормировку частот, имеем

$$y = 2\frac{1+p^2}{1-w_1^2} - 1 \quad . \tag{3}$$

Данное преобразование переводит часть плоскости у правее точки $y_0 = (1 + w_1^2)/(1 - w_1^2)$ в аналоговую плоскость р. Поэтому все полюса необходимо разместить в плоскости у правее этой точки. Полюс в y_0 соответствует полюсу $w_0 = 0$.

Для расчета цифровых фильтров можно использовать обычное НЧ - преобразование

$$p = m \frac{1 - z}{1 + z^{-1}} ,$$

$$m = ctg (\pi \cdot \frac{f_{-1}}{f_d}) ,$$

$$w_1 = m \cdot tg (\pi \cdot \frac{f_1}{f_d}) .$$

Обозначим

$$\begin{array}{rcl} c_1 &=& 1 &+& w_1^2 &, \\ c_2 &=& 1 &-& w_1^2 &, \\ c_3 &=& c_1 &+& 2 \cdot m^2 \\ c_4 &=& c_1 &-& 2 \cdot m^2 \end{array}$$

тогда преобразование (2) примет вид :

$$y = \frac{c_3}{c_2} \cdot \frac{z^{-2} + 2\frac{c_4}{c_3} \cdot z^{-1} + 1}{z^{-2} + 2 \cdot z^{-1} + 1}$$

Теперь осталось определить дислокацию полюсов, имея требования к фильтру. Для этого разработана итерационная процедура, представляющая собой модификацию алгоритма Ремеза, которая в отличие от него не требует решения систем уравнений и самое главное - в полосе пропускания в любом случае будет равнопульсирующая характеристика с заданной величиной пульсаций.

На первом этапе выбираем на отрезках плоскости у, соответствующих полосам задерживания фильтра, N равноотстоящих точек, a1,....,aN. Подставив их в функцию (1), находим значения локальных максимумов $\delta_1, \delta_2, \dots, \delta_{N-2}$ функции $|C_N|$ на отрезке $|y| \ge$ 1. Система точек ак образует валлепуссеновский альтернанс.

Далее необходимо совершить переход к чебышевскому альтернансу, т.е. за счет перемещения альтернансных точек осуществить выравнивание локальных максимумов функции $|C_{N}|$ на отрезке . Для этого используем итерационный процесс, в котором происходит корректировка \geq 1 y точек **a**₁,**a**₂,....,**a**_N до тех пор, пока разность **б**_M-**б**_m не станет меньше или равной требуемой точности аппроксимации.

На практике наилучшие результаты дает циклическая корректировка значений ак сначала двух наибольших, затем через 5 итераций двух наименьших экстремумов и т.д. Корректировка осуществляется следующим образом. Если между двумя полюсами затухания \mathbf{a}_i и \mathbf{a}_{i+1} расположен локальный максимум, то

$$\mathbf{a}_{\mathbf{j}} = \mathbf{a}_{\mathbf{j}} + \mathbf{\delta}$$

$$\mathbf{a}_{\mathbf{j}+1} = \mathbf{a}_{\mathbf{j}+1} - \mathbf{\delta},$$

если минимум, то

 X_R

 $a_i = a_i - \delta_i$

$$\mathbf{a}_{\mathbf{j}+1} = \mathbf{a}_{\mathbf{j}+1} + \mathbf{\delta},$$

где знак равенства означает операцию присвоения, а **б** - постоянная величина. Два полюса, граничащих с полосой пропускания, не меняются, так как они контролируют границы полос задерживания. На рис. 2 показан пример корректировки наименьшего и наибольшего по абсолютной величине экстремумов.

Расчет коэффициентов цифрового фильтра требует отдельного рассмотрения. Вычислив коэффициенты полиномов R_N и D_N , нужно найти корни знаменателя функции (2), а именно D_N · $D_N + \varepsilon$ · R_N · R_N . Число комплексно сопряженных пар корней равно количеству полюсов. Обозначим действительную и мнимую часть корней x_R и x_I соответственно.

Рис. 2 Тогда множитель функции (2) для каждого полюса

$$\frac{(a - y)^2}{x_R + x_I - 2x_Ry + y^2}$$
.
Используя преобразование (3), получим

$$\frac{((ac_2 - c_3) + 2(ac_2 + c_4)z^{-1} + (ac_2 - c_3)z^{-2})^2}{b_1 + b_2z^{-1} + b_3z^{-2} + b_2z^{-3} + b_1z^{-4}}, \quad (4)$$
где

$$b_1 = c_3^2 - 2x_Rc_2c_3 + c_5 ,$$

$$b_2 = 4c_3c_4 - 4x_Rc_2(c_3 + c_4) + 4c_5 ,$$

$$b_3 = 2c_3^2 + 4c_4^2 - 4x_Rc_2(c_3 + 2c_4) + 6c_5$$

$$c_5 = c_2^2(x_R^2 + x_I^2) .$$

Так как коэффициенты знаменателя симметричны, корни можно найти аналитически. В результате получим две комплексно-сопряженные пары корней, причем одна из них в области неустойчивости. Интересующая нас пара корней вычисляется следующим образом

(...

где

$$D = \frac{(a - y)^2}{x_R + x_I - 2x_Ry + y^2},$$

$$D = \frac{-b_2 \pm \sqrt{b_2^2 - 4b_1(b_3 - 2b_1)}}{2b_1}$$

Обозначим действительную и мнимую часть корней u_R и u_I соответственно. С учетом этого выражение (4) примет вид

$$\left[\frac{1 + 2\frac{ac_2c_4}{ac_2c_3}z^{-1} + z^{-2}}{1 - 2\frac{u_R}{u_R^2 + u_I^2}z^{-1} + \frac{1}{u_R^2 + u_I^2}z^{-2}}\right]^2.$$

Окончательно передаточная функция цифрового фильтра

$$H = K \frac{\prod \left[1 + 2\frac{ac_2 - c_4}{ac_2 - c_3}z^{-1} + z^{-2}\right]}{\prod \left[1 - 2\frac{u_R}{u_R^2 + u_I^2}z^{-1} + \frac{1}{u_R^2 + u_I^2}z^{-2}\right]}, \quad (5)$$

где

$$K = \frac{\prod (ac_2 - c_3)}{\prod \sqrt{b_1(u_R^2 + u_I^2)(\epsilon R_N^2(1) + D_N^2(1))}}$$

4. Примеры

На рисунках 3 – 5 показаны характеристики синтезированных фильтров.

• Параметры фильтра (рис. 3) следующие :

f₁=1000 Гц, f₂=1000,1 Гц, f_s=8000 Гц, максимальное отклонение : 1 Дб, минимальное: 48,72 Дб. Коэффициенты найденной передаточной функции приведены ниже

Числитель			
1	-2.00000000	1	
1	-1.414269098	1	
1	-1.414088047	1	
1	-1.414068115	1	
1	2.00000000	1	
Знаменатель			
1	-1.414206997	0.999991495	
1	-1.414169149	0.999975892	
1	-1.414100415	0.999996910	
1	-1.414104554	0.999987546	
1	-1.414125575	0.999975033	

Параметры фильтра (рис. 4) : •

 $f_1=5$ Гц , $f_2=100$ Гц , $f_s=8000$ Гц , максимальное отклонение : 1 Дб , минимальное: 51,31 Дб. Коэффициенты вычисленной передаточной функции приведены ниже:

Числитель			
1	-2.00000000	1	
1	-1.999996761	1	
1	-1.990413793	1	
1	-1.984850179	1	
1	2.00000000	1	
Знаменатель			
1	-1.988524262	0.994655575	
1	-1.975377082	0.979709876	
1	-1.963941219	0.965232824	
1	-1.993373900	0.993421046	
1	-1.999101741	0.999117317	

• Параметры фильтра (рис. 5) :

Г.

 f_1 =1000 Гц , f_2 =2000 Гц , f_s =8000 Гц , максимальное отклонение : 2,5*10⁻⁶ Дб , минимальное : 53,75 Дб – правая полоса задерживания ; 100,5 Дб – левая полоса задерживания.

Коэффициенты найденной передаточной функции приведены ниже..

•••••			
1	-2.00000000	1	
1	-1.713121923	1	
1	-1.606251402	1	
1	-1.569883021	1	
1	-1.262531973	1	
1	-1.250077119	1	
1	-1.206910543	1	
1	2.00000000	1	
••••			
1	-1.431520048	0.980514844	
1	-1.391447942	0.943135673	
1	-1.341215186	0.912136938	
1	-1.290853954	0.899454567	
1	-1.260296621	0.914999839	
1	-1.257381292	0.946613221	
1	-1.266860476	0.973622964	
1	-1.276995983	0.992234853	

Литература

[1] А.Ф. Белецкий : "Теоретические основы электропроводной связи", ч.3, Москва, "Связь и радио", 1959 г.

[2] Д.Херреро, Г.Уиллонер : "Синтез фильтров" Москва, "Советское радио", 1971 г.

[3] "Современная теория фильтров и их проектирование", под ред. Г Темеша и С. Митры Москва, "Мир", 1977

[4] А.А.Ланнэ : "Оптимальный синтез линейных электронных схем" Москва, "Связь", 1978 г.

[5] В.П.Еремеев, О.В.Мизиненко : "Оптимизация амплитудно частотных характеристик цифровых фильтров", Сборник научных трудов ФРВС РАУ, Рига, 1998, стр.4-10

Рис. 3 АЧХ фильтра для первого примера

