ФРАКТАЛЬНОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ В МОДЕЛИ СЛУЧАЙНЫХ БЛУЖДАНИЙ С ГИСТЕРЕЗИСОМ ВЕРОЯТНОСТЕЙ ПЕРЕХОДА

Корниенко В.Н., Привезенцев А.П.

Институт радиотехники и электроники РАН, Челябинский государственный университет

В докладе приведены результаты анализа временных последовательностей, генерируемых дискретной стохастической системой, предназначенной для моделирования динамики потока пространственного заряда в режиме сверхкритического тока.

Рассматривается одномерное движение частиц, которые равномерно с интервалом Dt инжектируются в промежуток $0 \pm x \pm 1$ в точке x=0 со скоростью v. Закон движения k-ой частицы в дискретном времени $t_i=iDt$ (i=1,2,...) задается равенством

$$X_{k}(i+1) = X_{k}(i) + V_{k}(i)Dt.$$

Скорость каждой частицы можно представить в виде трех слагаемых:

$$v_k(i)=v_0+Dv_{z_k}+g_y(i)$$
,

где v_0 =1; Dv<1/2 — параметр, определяющий разброс скоростей частиц, z_k — случайная величина, распределенная по нормальному закону; g — коэффициент связи с внешним воздействием. Периодическая составляющая скорости y(i) определяется системой второго порядка, называемой в теории фильтров цифровым резонатором:

$$y(i)-a_1 y(i-1)-a_2 y(i-2)=0$$
,

где $a_1 = 2\cos w_0$, $a_2 = -1$, $w_0 = 4$ астота последовательности.

Введение слагаемого gy(i) позволяет исследовать эффекты вынужденной синхронизации в рассматриваемой системе. При переходе частицы через центр масс потока

$$x_c(i) = \sum_{k=1}^{M} x_k(i)/M,$$

где М -полное число частиц в і - й момент времени, происходит случайный выбор направления движения. Скорость частицы может один раз изменить знак с вероятностью q, либо оставить направление скорости неизменным с вероятностью p, p+q=1. Особенности динамики потока определяются зависимостью вероятностей перехода от положения центра масс потока, которая имеет гистерезис

$$p(x_c)=p_f$$
, $0 \in x_c \in x_r$, $p(x_c)=p_b$, $x_l \in x_c \in 1$,

где $x_r > x_l$, $p_f > 1/2$, $p_b < 1/2$.

Численное исследование системы показало, что в некотором диапазоне временных интервалов зависимость $x_c(i)$ представляет собой фрактальное броуновское движение. Приращения

$$Dx_c(m)=x_c(i+m)-x_c(i)$$

имеют гауссовское распределение со среднеквадратичным отклонением $s(m extstyle t)^H$. Режим движения, определяемый параметром H, зависит от положения точек равновесия потока $x_0(p_f)$, $x_0(p_b)$. Координата точки равновесия для данной вероятности сохранения знака скорости задается выражением $x_0(p) = p((1+2q/p)^{1/2}-1)/2q$. При выполнении неравенств

$$x_1 \neq x_0(p_b), x_0(p_f) \neq x_r,$$

в системе устанавливается колебательный режим с полупериодом, равным среднему времени движения центра тяжести между границами гистерезиса. Броуновское движение является при этом персистентным (H>1/2). Если хотя бы одна из точек равновесия достаточно глубоко попадает внутрь области гистерезиса $x_i < x_0(p_b)$ или $x_0(p_f) < x_r$, режим движения центра масс становится антиперсистентным (H<1/2). Регулярный характер колебаний сменяется широкополосными флуктуационными биениями, имеющими характер фликкер-шума. При переходе от колебаний, имеющих интенсивную периодическую компоненту, к фликкер-шуму наблюдается область перемежаемости, где два процесса нерегулярным образом сменяют друг друга. Для персистентного движения наблюдается эффект вынужденной синхронизации с захватом частоты, подобно тому, как это происходит в классическом генераторе Ван дер Поля.

FRACTAL BROWINIAN MOTION IN THE MODEL OF RANDOM WALKS WITH HYSTERESIS OF TRANSITION PROBABILITIES

Kornienko V., Privezentsev A.

The paper provides analysis of time sequences generated by a discrete stochastic system designed for modeling complex dynamics of space charge flow in super-critical current mode.

For the sake of notation of the equation of the set let us consider one-dimensional motion of particles, which are evenly, with the interval $\mathbb{D}t$, injected into the gap $0 \in x \in 1$ in the point x=0 with constant speed. The law of motion of k-th particle in discrete time $t_i=i\mathbb{D}t$ (i=1,2,...) is set by inequality

$$X_k(i+1) = X_k(i) + V_k(i)Dt.$$

The speed of the particles has three components $v_k(i) = v_0 + Dvz_k + gy(i)$ where $v_0 = 1$, Dv < 1/2 is parameter, which determines the dispersion of particle speeds, z_k is random variable of distribution under normal law and g is coefficient of connection with external impact. Periodic component of speed y(i) is determined by a second order system, which is called digital resonator in filter theory

$$y(i)-a_1 y(i-1)-a_2 y(i-2)=0$$

where a_1 =2cos w_0 , a_2 =-1, w_0 the frequency of sequences. Introduction periodic value by gy(i) allows to research the effects of forced synchronizing in considereded system. When going particles through centre of masses of flow

$$X_{c}(i) = \sum_{k=1}^{M} X_{k}(i)/M,$$

where M is complete number of particles in i-th moment there is a random choice of particle direction. Particle speed can change sign once with probability q or it can remain unchanged with probability p, p+q=1. Peculiarities of flow dynamics are determined by the dependence of transition probabilities on the position mass center of the flow, which has hysteresis $p(x_c)=p_f$, $0 \pm x_c \pm x_r$, $p(x_c)=p_h$, $x_1 \pm x_c \pm 1$, where $x_r > x_1$. $p_f > 1/2$, $p_b < 1/2$. Numeric study of the system showed that $x_c(i)$ is fractal Brownian motion in a certain range of time intervals. Increments $Dx_c(m)=x_c(i+m)-x_c(i)$ have Gaussian distribution with root mean square deflection $s(mDt)^H$. Motion mode, determined by H parameter, depends equilibrium points of the flow $x_0(p_f)$. $x_0(p_b)$. Co-ordinate of equilibrium point for the given probability of retaining the speed sign is set by $x_0(p)=p((1+2q/p)^{1/2}-1)/2q$. When inequalities $x_1 \neq x_0(p_b)$, $x_0(p_f) \neq x_r$, are fulfilled the system acquires oscillatory mode with half-period equal to mean time of motion of center of masses between hysteresis boundaries. Brownian motion here is persistent (H>1/2). If at least one of equilibrium points penetrates deep enough into the domain of hysteresis $x_1 < x_0(p_b)$ or $x_0(p_f) < x_r$ () motion mode of center of mass becomes anti-persistent (H<1/2). Regular character of fluctuations is replaced by wide-band flicker-noise-like fluctuations. When fluctuations with intensive periodic component transfer to flicker-noise there is an intermittency zone, where the two processes alternate irregularly. Persistent motion shows effect of forced synchronization with frequency locking like in the classical Van der Pol generator.