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1. Introduction 
Iterative Learning Control (ILC) and Repetitive Control (RC) are rather new techniques to control systems 
that work in a repetitive mode. These control systems form a subclass of 2-D systems, because the system 
has two independent axes, the time axis and the repetition axis.  

Recently, Positive Real (PR) systems have aroused a lot of interest both in RC and ILC research 
(Galkowski et al, 2002) because they usually give good convergence properties with reasonably simple 
algorithms. In this paper it is shown, however, that PR systems are not necessarily useful in continuous-time 
RC, because the (necessary) digital implementation of a continuous-time RC algorithm will destroy the 
stability properties of the algorithm. In the discrete-time ILC case, on the other hand, it is shown that a simple 
adaptive ILC algorithm will result in convergent learning, if the plant zG(z) is PR, demonstrating the possible 
importance of positive real systems in ILC. Simulations highlight the theoretical findings in this paper. 
 
2. Positive-Realness in Repetitive Control – sampling destroys stablity 

As a starting point in continuous-time RC it is assumed that a mathematical model 
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of the plant in question exists where [ )∞∈ ,0t , and A,B and C are matrices of appropriate dimensions. 
Furthermore, a reference signal r(t) is given, and it is known that r(t+T) = r(t) for a known T (in other words 
the actual shape of r(t) is not necessarily known). There exits a large variety of important control applications 
that fit into the RC framework, examples being robotics, rotating mechanisms and rolling processes. 

The design objective is to find a feedback controller that makes the system (1) to track the reference 
signal as accurately as possible under the assumption that the reference signal is T-periodic. As was shown 
in (Francis and Wonham, 1975), a necessary condition for zero convergence in the limit is that the control 
law 

)]([)]([ tNetMu =      (2.2) 
where M and N are suitable operators, has to have an internal model of the reference signal in the M 
operator. Because r(t) is T-periodic, its internal model is 1-σT, where [σT v](t)=v(t-T) for a arbitrary time 
function v(t). Hence for example in (Yamamoto, 1993) it was suggested that one possible (and obviously 
computationally simple) RC algorithm is 

)()()( teTtutu +−=      (2.3) 
This algorithm has been analysed by several authors (see for example (Yamamoto, 1993), (Arimoto 

and Naniwa, 2000) and (Owens et al., 2001)), and it turns out that a sufficient condition for convergence is 
that the system is positive real (PR). In this paper it is shown that in the SISO-case the algorithm (2.3) 
converges in the limit to a feedback controller u(t)=Ke(t) where ∞→K  and PR systems are the only 
dynamical systems that can cope with infinite feedback gain, resulting in a nice interpretation for the earlier 
results. The underlying problem, however, is that due the delay element in the algorithm (2.3), this algorithm 
can be never implemented with analogue components. In this paper it is shown, however, that a plant 
(A,B,C) that is sampled with zero-order hold is never PR as a discrete-time system and the discrete-time 
implementation of (2.3) can easily result in instability even if the underlying continuous-time process model 
(2.1) is positive-real. 
 
3. Positive-Realness in Iterative Learning Control 

In discrete-time Iterative Learning Control the starting point is a system model 
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where [ ]Tt ,0∈ . Furthermore, a reference signal r(t) is given, and the control objective is to make the 
system (3.1) to follow this reference signal as accurately as possible. The special feature of the ILC problem 
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is that after the system has reached the final time point t = T, the state of the system is reset to initial 
condition x0, and after the resetting the system is supposed to track the same reference signal again. 
Practical applications that fit into this framework can be found for example in robotics and chemical batch 
processing.  

The fact that the system works in a repetitive mode opens up possibilities for using information from 
previous repetitions (or “trials” or “iterations”) to come up with a new input function that gives better tracking 
performance. One of the first algorithms was 

)1()()(1 ++=+ tetutu kkk γ     (3.2) 
where γ is a “learning gain” and k is the repetition number. It can be shown that the tracking error will 
converge to zero if r(0)=Cx0 and |1- γCB|<1 (Moore, 1993). However, the algorithm suffers frequently from 
bad transient behaviour (i.e. the norm of the tracking error can be extremely large during earlier repetitions, 
see (Longman, 2000)), and more advanced algorithms are needed. One possible approach from (Owens 
and Feng, 2002) is to use an adaptive algorithm  

)1()()( 11 ++= ++ tetutu kkkk γ     (3.3) 
where γk+1 is the solution of the optimisation problem 
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where w is a weighting parameter and the norm ⋅ is the Euclidian norm. A simple interlacing result shows 

that kk ee ≤+1  resulting in monotonic convergence and the optimal γk+1 is given by the equation 
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Furthermore, it will be shown in the paper that a sufficient condition for zero convergence is that Ge 
is a positive-definite matrix and sufficient for Ge to be positive-definite is that the transfer function zG(z) 
(where G(z) = C(zI-A)-1B) is a positive real system in the context of discrete time systems (for the definition n 
of a PR system in the discrete-time case see (Desoer and Vidyasagar, 1975)). 
 
4. Conclusions 

In this paper the importance of positive-realness in RC and ILC has been discussed. In RC it turns 
out that positive-realness is required in the continuous-time case for convergence with the control law (2.3). 
However, sampling will destroy positive-realness, and in practise the control (2.3) will not work, even a 
considerable amount of research work has been published on this algorithm (see for example (Arimoto and 
Naniwa, 2000) and references therein). 

In ILC, on the other hand, it seems that positive-realness and adaptive Iterative Learning Control are 
closely connected. This is due the fact that the simple adaptive algorithm (3.3) will converge, if modified 
system matrix (3.5) is positive-definite. Furthermore, if the trial length approaches infinity, this condition is 
equivalent that zG(z) is PR (and not G(z)), broadening the applicability of this algorithm. 
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