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Necessary and sufficient conditions for the reachability and controllability of positive 2D Roesser 

model will be established. It will be shown that the reachability and observability of the positive 2D Roesser 
model will be not invariant under the state-feedbacks. New canonical forms of matrices of singular 2D 
Roesser model will be introduced. Necessary and sufficient conditions for the existence of a pair of non-
singular diagonal matrices transforming the matrices of singular 2D Roesser model to their canonical forms 
will be established and a procedure for computation of the matrices will be  given.  
 

Main results 
Let  mnR ×

+  be the set of mn×  real matrices with non-negative entries and 1: ×
++ = nn RR . The set of 

non-negative integers will be denoted by +Z . 
Consider the 2D Roesser model [1] 
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where x Rij
h n∈ 1  and x Rij

v n∈ 2  are the horizontal and vertical state vectors at the point ),( ji , 

respectively,  u Rij
m∈   is the input vector, y Rij

p∈  is the output vector and mn
k

nn
kl

klk RBRA ×× ∈∈ , , 

knp
k RC ×∈ , 2,1, =lk , mpRD ×∈ .  

The Roesser model (1) is called externally positive if for zero boundary conditions +∈= Zjxhj ,00 , 

+∈= Zixvi ,00  and all inputs  u Rij
m∈ + , i j Z, ∈ +  we have p

ij Ry +∈   for i j Z, ∈ +  

Theorem 1. The Roesser model (1) is externally positive if and only if its impulse response matrix 
mp

ij Rg ×
+∈  for  i j Z, ∈ + . 
The Roesser model (1) is called internally positive (shortly positive) if for all boundary conditions 
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Theorem 2. The Roesser model (1) is positive if and only if 
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The transition matrix  Tij  for (1) is defined as follows [1] 
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From (5) it follows that the transition matrix Tij  of the positive model (1) is a positive matrix, 
nn

ij RT ×
+∈  for all +∈ Zji, . 
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The positive Roesser model (1) is called reachable for zero boundary conditions (2) (ZBC) at the 
point )0,,,(,),( >∈ + khZkhkh , if for every x Rf

n∈ +  there exists a sequence of inputs u Rij
m∈ +  for 

hkDji ∈),(  such that x xhk f= , where 
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The positive Roesser model (1) is called controllable to zero (shortly controllable) at the point 
)0,,,(,),( >∈ + khZkhkh  if for any nonzero boundary conditions  

(6)        kjRx nh
j ≤≤∈ + 0,10  and hiRx nv

i ≤≤∈ + 0,2
0  

 
there exists a sequence of inputs m

ij Ru +∈  for ( , )i j Dhk∈  such that 0=hkx . 
 
Theorem 3. The positive Roesser model (1) is reachable for ZBC at the point ( , )h k if and only if 

there exists a monomial matrix Rn  consisting of n linearly independent columns of the reachability matrix 
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Theorem 4. The positive Roesser model (1) is controllable if and only if the matrix  A  is nilpotent 

matrix, i.e. 
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Consider the Roesser model (1) with the state-feedback 
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where [ ] 21 1
2

1
121 ,,, nn RKRKKKK ×× ∈∈=  and m

ij Rv ∈  is a new input vector. Substitution of (10) into 
(1a) yields 
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The standard closed-loop system (10) is reachable (controllable) if and only if the standard 2D 
Roesser model (1) is reachable (controllable). It is easy to show that if at least one of 1,...,1,0 nlal =≠  or 

2,...,1,0 nkbk =≠  then the condition of theorem 3 is not satisfied and the positive model (1) is not reachable 
at the point ),( 21 nn .   

             
Theorem 4. Let the positive system (1) be unreachable at the point ),( 21 nn . Then the closed-loop 

system (11) is reachable at the point ),( 21 nn  if the state-feedback gain matrix  K  has the form  

(11)                                                       [ ]0,...,0,1,,...,,
121 −−−−= naaaK   

The reachability of positive Roesser model (1) is not invariant under the state-feedback (9). 
According the theorem 4 the positive system is controllable (to zero) if and only if the matrix A  is 

nilpotent.  
It is said that the state-feedback (9) violetes the nilpotency of` A if and only if the closed-loop cA  is 

not nilpotent. From theorem 4 the following theorem follows. 
 
Theorem 5. The closed-loop system (10) is uncontrollable at the point ),( 21 nn  if the state-feedback 

(9) violetes the nilpotency of A.  
The controllability of positive Roesser model (1) is not invariant under the state-feedback (9). 
Consider the single–input single–output 2D Roesser model 
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ij Rx ∈ , m

ij Ru ∈  and m
ij Ry ∈  are the same as for (1) and 
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where z denotes the field of complex numbers. 
The transfer matrix of the system (12) is given by  
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It is said that the matrices (13) have the canonical form if 012 =E , 021 =E ,  
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For matrices (13) we shall establish the conditions under which they can be transformed to their 
canonical forms (15) and we shall find nonsingular matrices  
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have the canonical forms (15). 
Necessary conditions and sufficient conditions for the existence of (16) transforming the matrices 

BAE ,,  and C  to their canonical form (15) and a procedure for computation of the matrices are given in [2]. 
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