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Abstract. A new method for computation of realizations in singular linear systems is proposed.
The proposed method is based on a transformation of improper transfer matrices to equivalent proper
transfer matrices. A procedure is derived for computation of realizations of a given improper transfer
matrix. The procedure is illustrated by a numerical example.

1. Introduction.

The realization problem for standard and singular 1D and 2D linear systems has been considered in
many papers and books [1,2,4-7]. The realization problem has been also investigated for positive 1D and 2D
systems [1,3].

In this paper a new method for computation of realizations in singular linear systems will be
proposed. The method is based on a transformation of improper transfer matrices to equivalent proper
transfer matrices for which realizations can be found by the use of the well-known methods. A procedure for
computation of realizations of a given improper transfer matrix will be derived and illustrated by a numerical
example.

2. Problem formulation.
Let R™ be the set of mxn real matrices and R" :=R™ . Consider the singular linear time-

continuous system
Ex=Ax+Bu+ B (1a)

y=Cx+ Du (1b)
where xe R", ue R™ and ye R’ are the state, input and output vectors, respectively and
E,Ae R™,B,,B e R"™,Ce R™,De R"™.
It is assumed that det £ =0 but the pair (E,A) is regular, i.e.
det[Es — A] # 0 for some se C

where C is the field of comlex numbers.
The transfer matrix of (1) is given by

T(s)=C|Es—A]'(B, +sB)+D (3)
The transfer matrix (3) is called proper (strictly proper) if and only if
lim7(s)=Ke R™ and K#0 (K=0) (4)

otherwise it is called improper.
The equations (1) can be written as

Ex=AX+ Bu (5a)

y= Cx+Du (5b)
where

_[4 o1  _ [B ]
A:[ :|eR”x”,B=|: ' :|eR”*”’,ﬁ=n+m (5¢)

C=[C 0]eR"™,D=D

The equations (1) can be also written in the form
Ex = AX + Bu (6a)

y=C% (6b)
where
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Z_ A Bn R™ E_ 0 R™
A Rt I (6c)

C=[C D]eR"™
The matrices E, 4,B,,B,,C and D are called a realization of a given rational matrix 7'(s)e R""(s)
(the set of pxm rational matrices in s) if they satisfy the equality (3). The realization (E,4,B,,B,C,D) is
called minimal if and only if the matrices E and A have minimal dimensions amongs all realizations of
T(s).
The realization problem under the considerations can be stated as follows. Given an improper
rational matrix 7'(s)e R""(s), find its realization (£, 4,B,,B,,C,D).

3. Solution of the problem.
Any rational matrix 7'(s)e R”"(s) can be written in the form

T(s) = P(s) (7)
d(s)
where P(s) isthe pxm polynomial matrix and
d(s)=d;s"+d, s +-+ds+d, (8)

is the least common denominator.
Let N =deg P(s) be the degree of the polynomial matrix P(s) and N>gq.

The proposed method is based on the following theorem.
Theorem 1. Let s=w"'+A and d(1)#0 for the improper matrix (7), N>gq. Then the rational

matrix in @
T(@)=T(s) _P@ 9)
o d ()

is proper i.e. degd (@) = N > deg P(w).

Proof. Substitution of s=w™ + A into T(s) yields the improper matrix in @™
P +A) (10)
dlw'+21)

since the degree of P(w™”+A) and d(w™+A) with respect to @™ is equal to N and g,
respectively. Multiplying the numerator and denominator of (10) by " we obtain (9) with
degd (w) = N > deg P(w) since by assumption d(1)#0.

Note that the theorem allow us to reduce the problem of computation of a realization
(E,A,B,,B,C,D) of the improper matrix T7(s) to the problem of computation of a realization
(4,,B,,C.,D,) of the proper matrix T (w).

Using one of the well-known methods [4,5] we can find the realization (4, ,B_,C, ,D,) of the given

T(@"' +2)=

proper matrix T ().
Let us define
E=A,A=1 +]4,,B, =AB,,
B =-B,C=C,,D=D,
Substituting (11) and s =Q™"' + A into (3) we obtain
T(s)=C[Es—A]" (B, —sB)+D =
=C,[4, (0" + 1)~ (I, +24,)]"(AB, - B,s)+ D, = (12)
=C 4w -1 (A-s)B,+D, =
=C,[Lo—-A4]" B, +D,
since @' =s—-A1.
Therefore, the following theorem has been proved.

(11)

Theorem 2. If (4_,B_,C.,D,) is a realization of T(w) given by (9) then (E, 4,B,,B,,C,D) defined
by (11) is a realization of T'(s).
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From the above considerations the following procedure for computation of the realization
(E,A,B,,B,C,D) of T(s) follows.

Procedure
Step 1. Write the given transfer matrix T'(s) in the form (7) and choose a scalar A so that
d(A)#0.
Step 2. Substituting s=w"'+A into T(s) and multiplying the numerator and the
denumerator of (10) by »" find the matrix T'(w).

Step 3. Using one of the well-known methods [1,5] find a
realization (4_,B,,C.,D,) of the matrix T'(w).
Step 4. Using (11) find the desired realization

(E,A4,B,,B,C,D) of the matrix T(s).
Remark 1. For two different values of A we obtain in general case different realizations
(4,,B,,C,,D,) and (E,A,B,,B,C,D), respectively.
Remark 2. If 4(0)#0 the choice A =0 is recommended. In this case from (11) we

have
E=4,,4=1,B,=0,B =-B ,C=C_,D=D, (11

Using the procedures we shall find a realization (£, 4, B,,B,,C, D) of the transfer function

02

T(s)=—u8 FHaSTd, yith N>y (13)
s'+b s +--+bs+b,
Step 1. In this case we have
P(s)=a,s" +---+as+a,

(14)
d(s)y=s"+b_s"" +---+bs+b,
and we choose A sothat d(1)#0.
Step 2. Substitution of s =™ + A into (13) yields
T +A)=
a, (@' +0) ++a (0 +A)+a, (15)

(@' +A)' +b (0" +A)" +---+b (0" +A)+b,

and after multiplication of the numerator and the denominator of (15) by @w" we obtain
= a,®"+--+a,
@)= ™
0"+t (16)

a, a, 0" +--+amw+a,

p— 0

b, @ +bo""+-+0"’

0

Step 3. The well-known [4,5] realization of (16) has the form

o1 o - 0
0 0 1 0 -
Ay = leR
00 0 1
0 -+ 0-1 —-b,,—b,
0
0 . (17)
B =|:|eR",C, =[a, a..a,,l]D, —[b“]
0 0

Note that if N > g then det 4, =0 and the matrix E is singular.
Step 4. Using (11) and (17) we obtain the desired realization (E,A,B,,B,C,D) of the

transfer function (13).
Example. Find two realizations (E, 4, B,,B,,C,D) of the transfer function
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T(s)= S +25+3 (18)
s+1
Using the procedure for two different choice of the scalar A we

obtain
Step 1. In this case

P(s)=s"+25+3 and d(s)=s+1

We choose A =0 and A =1 since d(0)=1 and dil)=2.
Step 2. Substitution of s=w™ and s=w™ +1 into (18) yields
T(w")=wi+2lwi +3 (19a)
o' +1
and
T(@" +1) :m (19b)
o +2
respectively.
Multiplying the numerator and the denominator of (19) by @* we obtain
= 30’ +2m+1 —o+1
T (w)= z =3+—
o +0 o +ow
and (20)
i(w)= 6w° +,4w+1 _34 §7w+%
20°+w 0 +50

Step 3. The realizations of 7 (w) and 7,(w) are given
respectively by

1
2= s =’ =n-n0=p (21)
0 -1 1
and
1 -
A;{O }B;{O},c;: L D= (22)
0 —: ! 272 ]

Step 4. Using (11) and (21), (22) we obtain the desired
realizations of (18) in the forms

0 1 [1 0]
E‘:A{;: ,A‘:
0 -1 0 1]

opr ==L "
B] - ’Bl =_Bl — A
0 0 1 @ —1

and

(24)

It is easy to check that (23) and (24) are realizations of (18).

Theorem 3. The singular system (5) is completely controllable and completely observable if the pair
(A, B, ) is controllable and the pair ( 4_,C_) is observable.
Proof. To prove the complete controllability of the system (5) we have to show that
rank|E, B =7 (25a)
and
rank|Es—4,B|=7 forallfinite se C (25b)
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The details of the proof will be given for single-input (m=1) and single-output (p=1) systems.
Without loss of generality it can be assumed that the matrices 4_,B_i C, have the forms (17).

Using (5¢) and (11) it is easy to show that the condition (25a) is satisfied since

_ E -B B
k|E,B |=rank ! ' =
ran [ ] ran [0 0 ‘—[,,,:| (26a)
A -B :AB
=rank| ° 7=
0 0 -1,
0 1 0 0O 0 0
00 1 0 0 0
rank|0 0 0 1 0 O0(|=N=n
0« 0-1 -« —=b 1 A
0 0 o - 0 0 -1

The condition (25b) is also satisfied since

_ Es—A4 -Bs' B,
rank[Es—A,B]zrank =
0 -1, -1,
|:Ams—(1”+Mm) B,s ABU]
=rank : =
0 -1, -1,
-1 s=1 0 0 00
0 . zbloszA oo 0 ...0.:0
rank| 0 0 0 -1,s—4 =N=n
0 s—A b(s=A)-1 —-s: 4
0 0 e e 0 —1i-1
for all finite se C (26b)
Likewise, to prove the complete observability of the system (5) we have to show that
E
rank| _ |=n (27a)
C
and
mnk[ES__A] — 7 for all finite s C (27b)
C
Using (5¢) and (11) it is easy to show that the condition (27a) is satisfied since
' E -B, A B,
rank ]=rank 0 O |(=rankl 0 O |=
L c 0 c, 0
[0 1 0 0 0]
:0
0 0 1 0 :
rank] © 00 L 0lan=n
0 0 -1 ~b, i1
0 0 0 0 :0
_ai) ‘71 672 67.\/71 O_.

The condition (27b) is also satisfied since
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- _ Es—A4 —-Bgs
mnk|:ES_A:|=mnk 0 -1, |=
¢ c 0
As—(, +24,) —B,s
= rank 0 -1 |=
C, 0
(-1 s-4 0 - 0 0]
0 0 0 - ~—Ls=2 0 _
rank| s—A bs—A-1 s | N"
0 0 o 000 -1
a, a a,.a,, 0

Rem_ark 3. In a similar way it can bé proved that the system (6) is completely controllable and
completely observable if the pair ( 4, B, ) is controllable and the pair (4, ,C, ) is observable.

Remarks 4. The realization (£, 4,B
and completely observable.

B ,C,D) with (11) is minimal since it is completely controllable

02

4. Concluding remarks

A new method for computation of realizations in singular continuous-time linear systems has been
proposed. The method is based on the transformation of improper transfer matrices to equivalent proper
transfer matrices for which realizations can be computed by the use of the well-known methods. A procedure
for computation of realizations of a given improper transfer matrix has been derived and illustrated by a
numerical example.

given improper transfer matrix 7'(s). It has been shown that the singular system (5) is completely
controllable and completely observable if the pair ( 4, B, ) is controllable and the pair (4, ,C, ) is observable.

With minor modifications (the variable s should be replaced by the variable z) the method can be also
applied for computation of realization in singular discrete-time linear systems.The considerations can be also
extended for singular 2D linear systems [7,2,4].
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