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Abstract. In this paper we report further significant progress on the development of a mature 

systems theory for discrete linear repetitive processes which are a distinct class of 2D discrete linear 
systems of both systems theoretic and applications interest. Here we first propose an extension to the 
basic state space model of these processes to include coupling terms previously neglected but which 
could arise in applications. Then we develop some significant first results on the analysis and control 
of examples represented by this new model structure. 
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1 Introduction 
The essential unique characteristic of a repetitive, or multipass, process is a series of sweeps, 

termed passes, through a set of dynamics defined over a fixed finite duration known as the pass length. On 
each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence 
contributes to, the next pass profile. This, in turn, leads to the unique control problem for these processes in 
that the output sequence of pass profiles generated can contain oscillations that increase in amplitude in the 
pass to pass direction.  Physical examples of repetitive processes include long-wall coal cutting and metal 
rolling operations [4].  Also in recent years applications have arisen where adopting a repetitive process 
setting for analysis has distinct advantages over alternatives. Examples of these so-called algorithmic 
applications of repetitive processes include classes of iterative learning control schemes [1] and iterative 
algorithms for solving nonlinear dynamic optimal control problems based on the maximum principle [2]. 

Attempts to control these processes using standard (or 1D) systems theory/algorithms fail (except in 
a few very restrictive special cases) precisely because such an approach ignores their inherent 2D systems 
structure, i.e. information propagation occurs from pass to pass and along a given pass together with 
resetting of the initial conditions before the start of each new pass. 

In common with a large range of other areas in systems theory, recent years has seen the 
emergence of Linear Matrix Inequality (LMI) based techniques in the the analysis of very important sub-
classes of both differential and discrete linear repetitive processes. This has led to considerable success, 
especially in areas such as the structure and design of control laws and stability in the presence physically 
relevant types of uncertainty in the matrices of the defining state space model which have proved difficult to 
advance using other analysis tools. 

It is important to note, however, that this progress has often required the preliminary step of building 
a standard (termed 1D) linear system equivalent model of the underlying process dynamics resulting in very 
large dimensioned LMIs to be solved. Also the model structure studied neglects a term which could be very 
important in some applications areas. In this paper, we first propose a model structure to capture this missing 
term and then develop significant new results on the control related analysis of processes described by this 
new model.  These results consist of those which are the (non-trivial) extension of those already in existence 
for other models of discrete linear repetitive processes (e.g. pass controllability) and others on so-called 
successive stabilization which are completely new. We begin in the next section by defining the new model 
structure. 

 
2 Background 
The state space model of a so-called extended discrete linear repetitive process is described by the 

following state space model over 1,...,1,0 −= αp . 
 ),()()()1( 1011 pBupyBpAxpx kkkk +++ ++=+       (1) 
 ),()()()( 1011 pDupyDpCxpy kkkk +++ ++=       (2) 

Here on pass k, n
k px ℜ∈)( is the state vector, m

k py ℜ∈)(  is the pass profile vector, and t
k pu ℜ∈)(  

is the vector of control inputs. 
In order to complete the process description, it is necessary to specify the boundary conditions, i.e. 

the pass state initial vector sequence and the initial pass profile. This is a critical task since it is known that 
the structure of these initial, or boundary, conditions alone can cause instability for the discrete linear 
repetitive process state space models considered todate. Here these are assumed to be of the form 
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xk(0)=dk(0) nℜ∈ , k = 1,2, …, y0(p)=f0(p) mℜ∈   p = 1,2,...,α-1, where dk is a vector with known constant 
entries and y(p) is a vector whose entries are known functions of 1,...,1,0 −= αp .  

Motivation for considering processes of the form (1)-(2) arises from applications where the current 
pass profile at any point along the pass is a function of more than one point on the previous pass.  

In the discrete linear repetitive process state space model, first proposed in [3], it was assumed that 
the current pass and state profile vector was only directly influenced by the pass profile vector at the same 
point on the previous pass. Here we study the case when in fact all points along the previous pass directly 
influence the state and pass profile vectors at any point on the current pass. 

2.1 1D equivalent model 
For considered class of processes (1)-(2) direct 2D approach is very hard to apply. Hence, it is 

comfortably to build a 1D equivalent model. In such a model dynamics along the pass is hidden. This is 
possible to do because of the finite duration of the pass (α points). In result, the model with dynamics from 
pass to pass only is obtained and due to some restrictions it can be considered as an ordinal 1D model. To 
obtain 1D model the following two steps are required to be done. The first step is to introduce the following 
substitutions into (1)-(2) l = k+1, yl-1= vl to obtain the 2D linear systems ‘Roesser–like’ model. Next, introduce 
so-called global state, input and pass profile vectors. Combining the results (state and output) for every point 
on the pass provides mentioned 1D equivalent model 

 )0()()()( 0 lxlUlVlX Ψ+Σ+Γ=       (3) 
 )0()()()( 0 lxlUlVlV Θ+∆+Φ=       (4) 
where ΣΓΘ∆Φ ,,,, 0  and 0Ψ  are appropriately dimensioned 1D model matrices. The structures of 1D 

matrices are proper and regard to 2D model. Note that, (3) becomes a state observer and (4) plays a role of 
state equation here now. 

2.2 Analysis and synthesis of 1D equivalent model 
The stability investigation and controller design 2D approach is a very difficult to obtain for LRP 

described by (1)-(2). However, using the 1D equivalent model it has been proven (see [9]) that the process 
described by 2D equations (1)-(2) is asymptotic stable iff 1)( <Φρ , where )(⋅ρ  denotes the spectral radius 
of )(⋅ value. Moreover, using the Lyapunov approach, note that equation (4) is asymptotic stable iff the 
following inequality is satisfied for some P > 0 

 0<−ΦΦ PPT         (5) 
where <0 (>0) denotes the positive (negative) definiteness of the matrix. If the model has been found 

to be unstable, it is possible to design the stabilising controller of the form  
 U(l) = KV (l),         (6) 
where K is an appropriately dimensioned matrix to be designed. Also under this law the resulting 

closed loop process is asymptotically stable if, and only if, 1)(
~

<Φρ , where 

 K∆+Φ=Φ
~

,         (7) 
To select K, here we can use a standard LMI setting and, in particular, the following result,  
Theorem 1. Suppose that a discrete linear repetitive process of the form (5)-(6) is subject to a control 

law of the form (6). Then the resulting closed loop process is asymptotically stable if, and only if, ∃   matrices 
P = PT > 0 and G, L of appropriate dimensions, such that the following LMI holds 

 0<







−−∆+Φ
∆+Φ−

TTTTT GGPLG
LGP

     (8) 

and if this is the case then a stabilizing control law matrix is given by K = LG-1. 
 
3 Successive stabilization of the 1D equivalent model 
The analysis in the previous section has produced a systematic method of ensuring asymptotic 

stability of a discrete linear repetitive process of the form considered here using the 1D equivalent model. A 
consequence of this, however, is that the inherent 2D linear systems structure of these processes has been 
subsumed into the 1D model. In some cases of interest, it will be important to retain the 2D systems structure 
for other purposes.  To proceed, suppose that the feedback control law matrix K is assumed to be of the 
form appropriate to retain the repetitive process structure after stabilization. It is achieved by assuming that K 
consists of the set of the same rows in the form Ki = [K1 K2 . . . ,Kα-1], where i=1,2,…, α denotes matrix row 
number.  A basic problem in the design of control schemes for discrete linear repetitive processes is that 
exploiting the 1D equivalent model enables much theoretical progress the resulting matrices to be 
manipulated may well be of unacceptably high dimensions. In the remainder of this section we develop the 
concept of so-called successive stabilization as a possible answer to this difficulty. The basic idea is that we 
first make the process asymptotically stable over a short pass length and then subsequently augment this 
design. To use this approach, it is essential to only use control action which preserves the original repetitive 
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process state space model structure. The main idea here is to implement the iterative algorithm that provides 
the sequence of Kj, ( j denotes the iteration number) which starts from Φ of little dimensions and then 
successively increases them to the full size of Φ if it is required.  The numerical tests prove, that in some 
cases proposed method makes it possible to stabilize the system which cannot be stabilized using ”the 
whole Φ at once” stabilization approach. 
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