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M3BecTHO, UTO HepasgenuMMble MHOTOCKOPOCTHblE CUCTEMbI, ABMASACL OOLMM cnydaem, obnagatoT
BO3MOXHOCTbIO Gornee apdeKkTMBHOro pelleHus 3agad uudposont obpaboTkM CUrHanoB, HO CIIOXHOCTb
peanusauMM Takux HepasgenumbiX onepauuin kak geuumauus, dunbTpauus M NpoaoSPKeHUEe CUrHanos
HaknaablBalT OrpaHNYeHnst Ha UX UCNONb30BaHE.

B paHHoOM cTaTbe npeanoraetca anroputM addeKTUBHOM peanusaumm onepauun geuumMaumm ans
npoussonbHoW peweTkn. OCHOBHas waes npeanoraeMoro nogxoda 3aknio4vaeTcd B MpeacTaBrieHum
Hepas3genMMon peLleTkn Kak CyMMbl pa3genMMbIX peLleTok. ITO MOXHO onucaThb criegytoLlen opmyron

LATM)= Y z"-LAT(S),
ke N(S)ILarm)

roe N(S)|.arm knaccel cmexHoctn LAT(S), onpenenenHon Ha LAT(M), a S=diag(J(M),J(M)) (J(M)=|det(M)|) .
Ha puc.1 nokasaH npumep Takoro npeacTaBfieHns AN WaxmMaTHON peLueTKu.
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Puc. 1 WaxmaTHas pelueTka (a); u ee pasgenmmoe npegcraeneHue (6)
Tako noaxof NO3BOMSIET:  YNPOCTUTb  BLIYUCIIEHUSI  KOOpPAMHAT  peLeTKn  AeuumMauuu,
ONTUMM3NPOBaTb NpeobpasoBaHMe KOOPAMHAT W YCTPaHUTb COBMUM Ha 3Tane npeobpas3oBaHUsi KoopauHar.
JaHHbIi MeToa MOXET ObITb paclUMpeH AN CUTHANOB C MPOM3BOSIbHLIM YMCIIOM U3MEPEHUIA.
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It's known that nonseparable multirate systems (being general case of such systems) are
more flexible and can produce more efficient solutions of signal processing tasks, but the complexity
of such nonseparable operations as decimation, filtering and signal extension place limitations on its
application. This paper considers efficient decimation algorithm for an arbitrary matrix.

Decimation operator and its lattice LAT(M) are definded by nonsingular matrix [1]:

M=|:m00 m01i|‘ (1)

my my
Whilq decimated coordinates of LAT(M) samples are transformed by
b=Ma, (2)

where a, b — vectors-columns of initial and decimated signals coordinates.
Fundamental parallelepiped is defined as [1]:

FPD(M)=Mx, x<[0,1) (3)
Samples belonging FPD(M) are called as cosets and noted N(M). Number of cosets equals
J(M)=|det(M)|. (4)

The signals used in practice have positive coordinates but after decimation can be shifted to
negative area and are to be corrected.

Simple decimation algorithm for arbitrary matrix has following steps:

1) Defining LAT(M) samples;

2) Coordinates transformation;
3) Negative shift correction;
4) Moving sample from coordinates a ((2)) to coordinates b.

The biggest part of algorithm performance time is due to first three steps. Decimation of NoN4 sized
signal takes us arithmetic operations (nanee operations) equals to

NN, (5)

O>3N,N, + :
J(M)

where first term is due to first and second steps and second one is due to third step.
Main idea of proposed algorithm is separable presentation of nonseparable lattice. Fig. 1 shows such
a presentation of a quincunx lattice.
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Fig. 1 Quincunx lattice (a); and its separable presentation (b)

For general case this presentation can be written as
LAT(M)= Y z"-LAT(S), (6)

ke N(S)|ar(m)
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where N(S)|.arm are cosets of LAT(S), defined at LAT(M) (Fig. 1), and S=diag(J(M),J(M)). Formula
(6) produces

J(S)
J(S)|larm= =J(M)
v (7)
As will be shown bellow this presentation allows us to
1) Calculate LAT(M) coordinates using one operation per sample;
2) optimize coordinate transformation;
3) eliminate shift before coordinates transformation.

A decimation algorithm based on such a presentation consists of next steps:
1) Calculation of N(S)| arm;

2) Shift eliminating and defining of memory to be allocated;

3) Defining of LAT(M) samples and samples coordinates transformation.

Let's write each step.

From (3) follows, to determine the set N(S)|.arm one should test samples of such square 0<n<J(S),
0<n,<J(S) using (2), so (2) produces integer b for LAT(M) samples. This step takes us 3J(M) operations.

If the shift of decimated signal is known one can shift initial signal in order to eliminate that shift, i.e.

b+s=Ma [b=M(a-M"s),

(8)

where s — decimated signal shift and M's eliminating shift of initial signal. The shift s and volume of
memory DyD; to be allocated are defined by rectangular fitting decimated signal. This rectangular can be
found by decimating samples, defining initial signal shape defined at LAT(M), and finding edge points. Initial
signal shape is defined by J(M) rectangulars which first points belong to N(S)|.arm and others are defined by
initial signal shape. After rectangular tops transformation using (2), the coordinates of fitting rectangular are
defined which produce shift s and memory volume to be allocated DyD,. Then cosets and signal sizes
eliminating shift are calculated as follows

N (M)=N(M)+s, (9)

[N; Ni]T :[Nz N, ]T+s-

This step of algorithm takes us 26J(M) operations.

Coordinates calculation and transformation is performed for each sublattice LAT(S) separately. In
physical memory 2D signal is stored as 1D signal it is efficient to be taken into account. Let decimated signal
is stored in memory column by column which size is defined previously as D;. Let one expand (2)

|:b0:| _ |:m00 my, :||:a0:| _ |:m00a0 + m01a1:|

b, my My L4 my,a, +ma,

and write it in terms of 1D signal

t=b0D1+b1=Coao+C1a1, (10)

where t — 1D coordinate, cy=(mgyD1+m1g), ¢1=(mgsD1+m44). While (10) is used, one takes first coset,
calculates coordinates of lattice z"oDLAT(S)|LAT(M) and substitutes it in (10), then one takes second coset and
calculates coordinates of lattice z'ILAT(S)|.arm and substitutes it in (10), etc. So any coset has NoN;J*(M)
values of set {(ag, a1)}, while variable ag and a; have NOJ'1(M) and N1J'1(M) different values. It is enough
to calculate sets {coao}, {c1a1} and substitute its combinations in (10). Calculation of such sets can be
described by next formula

{ca)=[cki:cd(M):c, N, ], (11)

where [a:b:c] notes the vector, changing from a with step bto ¢, and ki i-th component (scalar) of j-th
coset belonging to N1S)|.arm. This step of algorithm takes us N1+N, operations.
The whole amount of operations to be done using this algorithm is

0’=3J%(M)+26J(M)+N;+N,. (12)
The gain of this method (O/O’) while Ny=N4=N is
G>1,5N (13)
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This paper shows that the nonseparable decimation has complexity comparable with separable one.

However this technique was proposed for 2D signals and it can be also extended to an arbitrary number of
dimensions.
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