

©электронная версия подготовлена ЗАО АВТЭКС Санкт-Петербург, http://www.autex.spb.ru

ON OPTIMIZING RSA ALGORITHM IMPLEMENTATION ON SIGNAL PROCESSOR: INFLUENCE OF
ASYMMETRIC KEY LENGTH

Milan Marković1, Goran Đorđević2, Tomislav Unkašević3

1Mathematical Institute SANU, Knez Mihailova 35, 11001 Belgrade, NetSeT, Karađorđeva 65/4, 11000

Belgrade
Serbia, Yugoslavia, e-mail: milan@netset.co.yu, mmarkov@beotel.yu

2Military Technical Academy, Ratka Resanovića bb, 11000 Belgrade, Serbia, Yugoslavia,
e-mail: djordjevicg@mail.ru

3Institute of Applied Mathematics and Electronics, Kneza Miloša 37, 11000 Belgrade, Serbia, Yugoslavia,
 e-mail: utom@Eunet.yu

I. Introduction

RSA algorithm is a typical representative and probably the most popular asymmetric cryptographic
algorithm. The RSA algorithm is widely used in emerging e-commerce and e-business systems for creating
“digital signature” and “digital envelope” according to PKCS#1 standard.

In this work, influences of asymmetric key length to possible optimization of the RSA algorithm
realization on assembler of Texas Instruments TMS320C54x family of signal processors are considered.
Proposed optimization techniques include multiplication, modular reduction and private key operation
procedures.

At the end of the paper, some concluding remarks regarding the optimal combination of the
considered optimization techniques related to different asymmetric key lengths are given. Obtained results
show that the TMS320C54x family of signal processors is suitable for the RSA algorithm realization.

II. Experimental analysis

This chapter is dedicated to the experimental analysis of the ‘C54x assembler’s RSA algorithm
realization in order to experimentally show the efficiency of the proposed optimization procedures. Following
parameters are adopted: message m, private key d and public key n are from 128 to 2048 bits long.
Numbers of CPU time cycles for RSA private key operation regarding the use of three considered modular
reduction procedures: standard dividing (stddiv), reciprocal value method (RVM) and Montgomery's
procedure (Mont), with application of different combinations of ordinary multiplication, squaring and modified
Karatsuba-Offman’s procedures, with or without application of the Chinese Remainder Theorem (CRT), are
given in Table 1, 2 and 3.

In this sense, we choose the RSA algorithm’s parameters (n and d) from real application conditions.
Namely, we choose standard low-length e (e=216+1), while d and n are of the same length in bits. Also, the
length of the processed messages is the same as the applied RSA modulus n. Chinese Remainder Theorem
could be implemented only for the RSA private key operation (digital signature and asymmetrical decryption)
since requires the knowledge of the p and q numbers. Regarding the modular reduction procedure,
experimental results, presented in these tables, justify that the best results are obtained by using the
Montgomery’s modular reduction approach. Also, the results presented in Tables 1, 2, and 3 show that we
could achieved more that 2.5 times better results for RSA private key operation by applying the CRT. Based
on the results, presented in Tables 1, 2, and 3, we can conclude that the best results could be achieved by
using Montgomery’s procedure as the modular reduction method with application of the Chinese Remainder
Theorem in the RSA algorithm implementation. Also, presented results justify the use of combination of
squaring and modified Karatsuba-Offman’s algorithms for optimization of the RSA algorithm’s multiplication
procedure.

Table 1: Numbers of CPU cycles for RSA private key algorithm implementation using ordinary

multiplication
Standard implementation CRT application m

(bit)
d

(bit)
n

(bit) Stddiv RVM Mont stdiv RVM Mont
128 128 128 584 115 295 414 200 054 300 765 145 997 115 073
256 256 256 2 634 626 1 627 506 1 108 378 1 166 915 592 344 487 163
512 512 512 13 760 619 10 758 553 7 296 468 5 242 024 3 264 975 2 784 167

1024 1024 1024 83 851 837 79 797 911 53 721 043 27 700 654 21 811 434 18 891 235
2048 2048 2048 569 165

635
612 145

906
409 895

160
167 374

150
159 253

661
135 067

307

5-я Международная конференция «Цифровая обработка сигналов и ее применение» DSPA-2003

– 2 –

Table 2: Numbers of CPU cycles for RSA private key algorithm implementation using ordinary multiplication
and squaring procedure

Standard implementation CRT application m
(bit)

d
(bit)

n
(bit) Stddiv RVM Mont stdiv RVM Mont

128 128 128 579 919 291 343 195 544 302 633 147 990 116 945
256 256 256 2 539 576 1 532 708 1 013 340 1 158 355 584 033 478 217
512 512 512 12 748 643 9 747 084 6 281 778 5 058 876 3 082 330 2 598 601

1024 1024 1024 74 592 179 70 539 272 44 459 091 25 675 268 19 787 066 16 861 081
2048 2048 2048 490 060

269
533 042

586
330 790

736
148 849

515
140 731

066
116 480

526

Table 3: Numbers of CPU cycles for RSA private key algorithm implementation using ordinary multiplication,

squaring and modified Karatsuba-Offman's procedure
Standard implementation CRT application m

(bit)
d

(bit)
n

(bit) Stddiv RVM Mont stdiv RVM Mont
128 128 128 579 919 291 343 195 544 302 633 147 990 116 945
256 256 256 2 539 576 1 532 708 1 013 340 1 158 355 584 033 478 217
512 512 512 12 734 330 9 679 147 6 264 578 5 058 810 3 082 264 2 598 535

1024 1024 1024 73 470 518 65 180 458 43 321 105 25 649 088 19 596 840 16 791 452
2048 2048 2048 465 103

873
441 442

154
305 680

740
146 661

495
130 329

671
112 005

224
As for the possibilities of the RSA algorithm’s realization on the ‘C54x family signal processors, in

Table 4, we give the CPU time for the realization of the RSA private key operation with the same values of d
and n, depending of the cycle time of the particular ‘C54x signal processors. The results obtained by the
standard RSA algorithm implementation (ordinary multiplication and ordinary application of modular
reduction process (by standard dividing algorithm)) and the results obtained by applying the all of the
proposed RSA optimization techniques, including: squaring procedure and modified Karatsuba-Offman’s
algorithm for multiplication, Montgomery’s method for modular reduction, as well as Chinese Remainder
Theorem, are presented In Table 4.

Based on the presented experimental results in Table 4, we could conclude that assembler’s
realization of the RSA private key operation could be accelerated by about five times by using the set of
optimization techniques, proposed in this paper. Also, we can conclude that about thirty-three 1024-bit or five
2048-bit RSA private key transactions could be realized per second by using the fastest DSP from ‘C54x
family. Namely, we could see that RSA private key operation based on 2048 asymmetric key length is about
seven times slower then the same operation based on 1024-bit key. Additional accelerating could be
achieved by application of the specialized hardware elements for multiplication of two large numbers. Based
on the entire experimental analysis, we could conclude that ‘C54x signal processors represent a good basis
for realization of the cryptographic coprocessor module for secure computer networks based on the client-
server or Internet (WEB) architecture.

Table 4: RSA private key realization in milliseconds depending of particular DSP from 'C54x family

m, d, n
(bit) Cycle (ns) Standard implementation (ms) Optimized algorithm with CRT application

(ms)
25 2096.30 419.79
20 1677.04 335.83
15 1257.78 251.87

12.5 1048.15 209.89
10 838.52 167.91

8.33 698.49 139.87
6.25 524.07 104.95

5 419.26 83.96

1024

1.875 157.22 31.48
25 14229.14 2800.13
20 11383.31 2240.10
15 8537.48 1680.08

12.5 7114.57 1400.07

2048

10 5691.66 1120.05

5-я Международная конференция «Цифровая обработка сигналов и ее применение» DSPA-2003

– 3 –

8.33 4741.15 933
6.25 3557.28 700.03

5 2845.83 560.03

1.875 1067.17 210.01

REFERENCES

[1] R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems,” Commun. of the ACM, Vol. 21, No. 2, pp. 120-126, Feb. 1978.
[2] RSA Laboratories, PKCS#1: RSA Encryption Standard, Version 2, 1999.
[3] T. Unkašević, M. Marković, G. Đorđević, “Optimization of RSA algorithm implementation on TI

TMS320C54x Signal Processors Based on a Modified Karatsuba-Offman’s algorithm,” in Proc.
ECMCS’2001, 11-13 September, 2001, Budapest.

[4] M. Marković, T. Unkašević, G. Đorđević, “RSA Algorithm Pptimization on Assembler of TI TMS320C54x
Signal Processors,” in Proc. of EUSIPCO 2002, Sept. 4-7, Toulouse, France.

[5] D. E. Knuth, The Art of Computer Programming, Vol. II, Seminumerical algorithms, Addison-Wesley,
1997.

[6] J.-F. Dhem, Design of an Efficient Public-Key Cryptographic Library for RISC-based Smart Cards, Ph.
Dissertation, University Catholique de Louvain, May 1998.

[7] P. L. Montgomery, “Modular Multiplication Without Trial Division,” Mathematics of computation, 44(170):
519-521, April 1985.

[8] J. J. Quisquater, C. Couvreur, “Fast dechiperment algorithm for RSA public-key cryptosystem,”
Electronic letters, 18(21), pp. 905-907, Oct. 1982.

[9] C. K. Koc, “Analysis Of Sliding Window Techniques For Exponentiation,” Computers and Mathematics
with Applications, 30(10):17-24,1995.

