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I.  Introduction 

RSA algorithm is a typical representative and probably the most popular asymmetric cryptographic 
algorithm. The RSA algorithm is widely used in emerging e-commerce and e-business systems for creating 
“digital signature” and “digital envelope” according to PKCS#1 standard.  

In this work, influences of asymmetric key length to possible optimization of the RSA algorithm 
realization on assembler of Texas Instruments TMS320C54x family of signal processors are considered. 
Proposed optimization techniques include multiplication, modular reduction and private key operation 
procedures.  

At the end of the paper, some concluding remarks regarding the optimal combination of the 
considered optimization techniques related to different asymmetric key lengths are given. Obtained results 
show that the TMS320C54x family of signal processors is suitable for the RSA algorithm realization. 

 
II.  Experimental analysis 

This chapter is dedicated to the experimental analysis of the ‘C54x assembler’s RSA algorithm 
realization in order to experimentally show the efficiency of the proposed optimization procedures. Following 
parameters are adopted: message m, private key d and public key n are from 128 to 2048 bits long. 
Numbers of CPU time cycles for RSA private key operation regarding the use of three considered modular 
reduction procedures: standard dividing (stddiv), reciprocal value method (RVM) and Montgomery's 
procedure (Mont), with application of different combinations of ordinary multiplication, squaring and modified 
Karatsuba-Offman’s procedures, with or without application of the Chinese Remainder Theorem (CRT), are 
given in Table 1, 2 and 3.  

In this sense, we choose the RSA algorithm’s parameters (n and d) from real application conditions. 
Namely, we choose standard low-length e (e=216+1), while d and n are of the same length in bits. Also, the 
length of the processed messages is the same as the applied RSA modulus n. Chinese Remainder Theorem 
could be implemented only for the RSA private key operation (digital signature and asymmetrical decryption) 
since requires the knowledge of the p and q numbers. Regarding the modular reduction procedure, 
experimental results, presented in these tables, justify that the best results are obtained by using the 
Montgomery’s modular reduction approach. Also, the results presented in Tables 1, 2, and 3 show that we 
could achieved more that 2.5 times better results for RSA private key operation by applying the CRT. Based 
on the results, presented in Tables 1, 2, and 3, we can conclude that the best results could be achieved by 
using Montgomery’s procedure as the modular reduction method with application of the Chinese Remainder 
Theorem in the RSA algorithm implementation. Also, presented results justify the use of combination of 
squaring and modified Karatsuba-Offman’s algorithms for optimization of the RSA algorithm’s multiplication 
procedure.  

 
Table 1: Numbers of CPU cycles for RSA private key algorithm implementation using ordinary 

multiplication 
Standard implementation CRT application m   

(bit) 
d  

(bit) 
n    

(bit) Stddiv RVM Mont stdiv RVM Mont 
128 128 128 584 115 295 414 200 054 300 765 145 997 115 073 
256 256 256 2 634 626 1 627 506  1 108 378 1 166 915 592 344 487 163 
512 512 512 13 760 619 10 758 553 7 296 468 5 242 024 3 264 975 2 784 167 

1024 1024 1024 83 851 837 79 797 911 53 721 043 27 700 654 21 811 434 18 891 235 
2048 2048 2048 569 165 

635 
612 145 

906 
409 895 

160 
167 374 

150 
159 253 

661 
135 067 

307 
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Table 2: Numbers of CPU cycles for RSA private key algorithm implementation using ordinary multiplication 
and squaring procedure 

Standard implementation CRT application m   
(bit) 

d  
(bit) 

n    
(bit) Stddiv RVM Mont stdiv RVM Mont 

128 128 128 579 919 291 343 195 544 302 633 147 990 116 945 
256 256 256 2 539 576 1 532 708 1 013 340 1 158 355 584 033 478 217 
512 512 512 12 748 643 9 747 084 6 281 778 5 058 876 3 082 330 2 598 601 

1024 1024 1024 74 592 179 70 539 272 44 459 091 25 675 268 19 787 066 16 861 081 
2048 2048 2048 490 060 

269 
533 042 

586 
330 790 

736 
148 849 

515 
140 731 

066 
116 480 

526 
 
Table 3: Numbers of CPU cycles for RSA private key algorithm implementation using ordinary multiplication, 

squaring and modified Karatsuba-Offman's procedure 
Standard implementation CRT application m   

(bit) 
d  

(bit) 
n    

(bit) Stddiv RVM Mont stdiv RVM Mont 
128 128 128 579 919 291 343 195 544 302 633 147 990 116 945 
256 256 256 2 539 576 1 532 708 1 013 340 1 158 355 584 033 478 217 
512 512 512 12 734 330 9 679 147 6 264 578 5 058 810 3 082 264 2 598 535 

1024 1024 1024 73 470 518 65 180 458 43 321 105 25 649 088 19 596 840 16 791 452 
2048 2048 2048 465 103 

873 
441 442 

154 
305 680 

740 
146 661 

495 
130 329 

671 
112 005 

224 
As for the possibilities of the RSA algorithm’s realization on the ‘C54x family signal processors, in 

Table 4, we give the CPU time for the realization of the RSA private key operation with the same values of d 
and n, depending of the cycle time of the particular ‘C54x signal processors. The results obtained by the 
standard RSA algorithm implementation (ordinary multiplication and ordinary application of modular 
reduction process (by standard dividing algorithm)) and the results obtained by applying the all of the 
proposed RSA optimization techniques, including: squaring procedure and modified Karatsuba-Offman’s 
algorithm for multiplication, Montgomery’s method for modular reduction, as well as Chinese Remainder 
Theorem, are presented In Table 4. 

Based on the presented experimental results in Table 4, we could conclude that assembler’s 
realization of the RSA private key operation could be accelerated by about five times by using the set of 
optimization techniques, proposed in this paper. Also, we can conclude that about thirty-three 1024-bit or five 
2048-bit RSA private key transactions could be realized per second by using the fastest DSP from ‘C54x 
family. Namely, we could see that RSA private key operation based on 2048 asymmetric key length is about 
seven times slower then the same operation based on 1024-bit key. Additional accelerating could be 
achieved by application of the specialized hardware elements for multiplication of two large numbers. Based 
on the entire experimental analysis, we could conclude that ‘C54x signal processors represent a good basis 
for realization of the cryptographic coprocessor module for secure computer networks based on the client-
server or Internet (WEB) architecture. 

 
Table 4: RSA private key realization in milliseconds depending of particular DSP from 'C54x family  

m, d, n 
(bit) Cycle (ns) Standard implementation (ms) Optimized algorithm with CRT application 

(ms) 
25 2096.30 419.79 
20 1677.04 335.83 
15 1257.78 251.87 

12.5 1048.15 209.89 
10 838.52 167.91 

8.33 698.49 139.87 
6.25 524.07 104.95 

5 419.26 83.96 

1024 

1.875 157.22 31.48 
25 14229.14 2800.13 
20 11383.31 2240.10 
15 8537.48 1680.08 

12.5 7114.57 1400.07 

2048 

10 5691.66 1120.05 
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8.33 4741.15 933 
6.25 3557.28 700.03 

5 2845.83 560.03 

 

1.875 1067.17 210.01 
 

REFERENCES 
 
[1] R. Rivest, A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key 

Cryptosystems,” Commun. of the ACM, Vol. 21, No. 2, pp. 120-126, Feb. 1978.   
[2] RSA Laboratories, PKCS#1: RSA Encryption Standard, Version 2, 1999. 
[3] T. Unkašević, M. Marković, G. Đorđević, “Optimization of RSA algorithm implementation on TI 

TMS320C54x Signal Processors Based on a Modified Karatsuba-Offman’s algorithm,” in Proc. 
ECMCS’2001, 11-13 September, 2001, Budapest. 

[4] M. Marković, T. Unkašević, G. Đorđević, “RSA Algorithm Pptimization on Assembler of TI TMS320C54x 
Signal Processors,” in Proc. of EUSIPCO 2002, Sept. 4-7, Toulouse, France.  

[5] D. E. Knuth, The Art of Computer Programming, Vol. II, Seminumerical algorithms, Addison-Wesley, 
1997. 

[6] J.-F. Dhem, Design of an Efficient Public-Key Cryptographic Library for RISC-based Smart Cards, Ph. 
Dissertation, University Catholique de Louvain, May 1998.   

[7] P. L. Montgomery, “Modular Multiplication Without Trial Division,” Mathematics of computation, 44(170): 
519-521, April 1985. 

[8] J. J. Quisquater, C. Couvreur, “Fast dechiperment algorithm for RSA public-key cryptosystem,” 
Electronic letters, 18(21), pp. 905-907, Oct. 1982. 

[9] C. K. Koc, “Analysis Of Sliding Window Techniques For Exponentiation,” Computers and Mathematics 
with Applications, 30(10):17-24,1995. 

 


