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Abstract. The algorithm presented in this paper belongs to the class of Order Statistic LMS 
adaptive algorithms (OSLMS), that uses a smoothed gradient to update the filter coefficients. Usually, 
the gradient is smoothed using an order statistic filter with fixed coefficients chosen based on the 
gradient distribution. In practical applications, such as channel equalization, no prior information about 
the gradient exist and, therefore, an optimum filter for the gradient is usually unknown. In this paper, 
we implement an OSLMS adaptive algorithm that uses a modified adaptive L-filter to smooth the 
gradient in order to minimize the steady-state miss- adjustment for different noise distributions. The 
analysis of the new algorithm and the simulation results for the problem of channel equalization are 
presented. Comparison with other OSLMS algorithms shows the improvements of the new algorithm. 

 
1. Introduction 

Adaptive filters were applied with success in many areas of digital signal processing such as system 
identification, channel equalization, signal denoising, etc. The most familiar adaptive algorithm is the Least 
Mean Square (LMS) algorithm, due to its simplicity. However, the LMS adaptive filter is not suitable for 
applications in which the input and/or desired signals are corrupted by impulsive noise. In impulsive noise 
environments, the instantaneous gradient used to update the coefficients of the filter will have also an 
impulsive nature that can lead to an increase in the steady-state misadjustment. In order to deal with this 
problem, the class of Order Statistic LMS filters (OSLMS) was introduced [1], [2]. In the case of OSLMS filter 
the equation describing the updates of the filter coefficients is modified as follows: 
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where )(n
∧
h  is the Nx1 vector of adaptive filter coefficients, µ  is the step-size, [ ]TLaa ,...,1=a  is a 

column vector of weighting coefficients used to smooth the gradient. In (1) OS{g(n)} is the ordering operation 
applied to each row of the matrix g(n), and the g(n) contains on the thi  row the past L values of the 
corresponding instantaneous gradient: 
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where x(n) and e(n) are the input sequence and the output error. Depending on the selection of the 
weighting coefficients a, the class of OSLMS filters includes as members: average LMS (ALMS), median 
LMS (MLMS), Trimmed mean LMS (MxLMS) and Outer mean LMS (OxLMS). 

 
2. The new algorithm 

When the weighting coefficients are chosen properly, the OSLMS algorithms described in the last 
section can reduce the variance of the gradient estimate, and therefore, they have smaller steady-state 
excess mean square error. However, the selection of the weighting coefficients has to be based on some 

prior information about the gradient distribution. If 
the distribution of the gradient is not known a 
priori, an arbitrarily chosen smoothing filter will 
have poor performances. Therefore, in this paper 
we propose an algorithm that uses adaptive 
weighting coefficients a(n) instead of a in (1) to 
smooth the gradient. 

In the case of the proposed Adaptive 
Order Statistic LMS (AOSLMS) algorithm there is 
no necessity to have any prior information about 
the gradient distribution since the weighting 
coefficients are continuously changed to adapt to 
the gradient. There are also in the literature some 
approaches that uses the adaptation of the 

Fig 1 Channel equalization block diagram 
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weighting coefficients based on some statistic measurements of the gradient, but those approaches are 
limited to the modification of the trimming coefficient, such that the OS filter is modified between mean and 
median. The proposed algorithm is applied to the problem of channel equalization and the block diagram of 
the system used in this paper is depicted in Fig. 1, where a delayed version of the transmitted sequence 
through the channel )(nxin  is used also at the receiver as the desired signal )()( Dnxnd in −= . 

To introduce the proposed AOSLMS algorithm, the updating equation (1) is modified as: 
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    (3) 
where the notations are those from (1). We should note, that in the case of AOSLMS the values of 

the weighting coefficients a(n) are not constants during the adaptation, but are adapted to the gradient 
distribution. In (3), the variable weighting coefficients a(n) are applied to each row of the matrix OS{g(n)} and 
the result is used to update the corresponding filter tap. In order to adapt the values of the weighting 
coefficients to the gradient distribution we have implemented an L-LMS filter. There are many publications 
dealing with the adaptive L-LMS filters, and it was already proved that these filters possess the ability to 
adapt their coefficients to the distribution of the input sequence (see [3], [4] and the references therein). The 
adaptation of the weighting coefficients a(n) is done using samples of the gradient contained in the first row 
of g(n) as depicted in Fig. 2, and the new algorithm is described as follows: 

• compute the output y(n) and the error e(n) of the OSLMS filter: 
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• update the vector of the weighting coefficients a(n): 
),()()( )0( nenn ggaa α+=        (4) 

where )()0( ng  is the ordered version of the first row of g(n), and )(neg  is the error of the L-LMS 
filter applied to the gradient (see Fig. 2); 

• update the coefficients of the OSLMS filter using (3). 
In (4) we have used the error )(neg  to update the weighting coefficients. Since in this case there is 

no desired signal available for filtering the gradient we have chosen the constrained L-LMS described in [5], 
and (4) becomes: 

[ ] ,)()()( )0( FgaPa ++= nenn gα       (5) 

where )()()( nnnya ag(0)=  is the output from the L-LMS filter, and P and F are described in detail 
in [5] and [6]. In the case of AOSLMS algorithm there are basically two adaptive filters: one is used to adapt 

the weighting coefficients a(n) of the gradient and the second one is the filter )(
^
nh . The most sensible 

adaptive filter is a(n) since if this filter does not 
converge also the AOSLMS filter will be 
divergent. Therefore, the step-size α  has to be 
properly chosen in order to ensure its 
convergence for a wide range of gradient 
distributions. We have used a normalized L-LMS 
and the value of α  in (5) is replaced by: 
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The reason to use a step-size α  given 
by (6) will be explained in the next section of the 
paper. Finally, the new algorithm is described by 
(3), (5), (6). 

 
 

3. Algorithm complexity and coefficients setup 
The coefficients error vector is defined by (see [5]): 

{ } [ ] )()1()1( 0 nnEn aPRP-Iaaa ∆=−+=+∆ α .     (7) 

where 0a  is the vector of the optimum coefficients, the matrix P is given in [5] and R is the 
covariance matrix of the input vector into the L-LMS filter, that is the ordered first row of the matrix g(n). From 
(7) we can see that the eigenvalues of the matrix PRP determine both the speed of convergence and the 

Fig 2 Block diagram of the L-LMS filter for gradient 
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steady-state variance of the weighting coefficients a(n). In [5] it was proven that the condition to ensure the 
convergence of the weighting coefficients in the mean square error is: 

[ ]PRPtr
2
1
10

max +
<<

σ
α ,        (8) 

where maxσ  is the maximum eigenvalue of the matrix PRP and [ ]•tr  represents the trace of the 
matrix inside the brackets. If the step-size α  is chosen to satisfy: 

[ ]Rtr3
20 << α ,          (9) 

then the condition (8) will be also satisfied and the convergence of the L-LMS is ensured (see [5] for 
more details). Therefore, if the step-size α  in (5) satisfies the condition (9), for all input distributions, the 
weighting coefficients will converge to the optimum values. Since the input (the first row of the matrix g(n) is 
unknown, and therefore the trace of R is also unknown, a value for the parameter α  that works well for any 
gradient distributions is difficult to find. In order to eliminate this problem, we have implemented a 
normalization of the step-size and the condition (9) becomes: 3/2~0 << µ . 

 
4. Simulations and Results 

We have tested our algorithm in the channel equalization framework. The block diagram used in the 
experiments is depicted in Fig. 1. The new algorithm was compared with the median, trimmed mean and 
outer mean LMS algorithms. The length of the channel was 11=chN , the lengths of all the compared 
adaptive filters were N=11 and the lengths of the weighting vectors a and a(n) for the gradient were L=7. The 
distribution of the channel noise v(n) has a generalized exponential density given by: 
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Γ  being the ordinary gamma function and vσ  the standard deviation. We have chosen the same 
step-sizes 01.0=µ  for all the compared algorithms and the step-size for the L-LMS algorithm was 

1.0~ =µ . As β  in (10) increases from a value close to zero, the resulting density varies from highly 
impulsive to Gaussian and to uniform. However, the gradient has a certain degree of impulsivity also in the 
case of Gaussian and uniform channel noise due to the desired signal d(n). Therefore, we expect that the 
Outer Mean LMS do not give satisfactory results for any considered noise distribution. More than that, the 
gradient distribution is also influenced by the distribution of the channel noise and input sequence x(n) and 
the performance of the Median LMS is expected to be also poor. With these observations we can expect that 
among OSLMS algorithms with fixed weighting coefficients the Trimmed Mean LMS would have the best 
performance. Note that an algorithm similar to the proposed AOSLMS in which not only the trimming 
coefficient is adapted but also the envelope of the weighting coefficients would give even better results. 

 
 

 
 

 
The simulations showing the performance of the AOSLMS filter compared with other OSLMS 

algorithms are given in Fig. 3 and Fig. 4 for different noise distributions. In these figures, the steady-state 
Mean Square Errors for each compared algorithms are plotted. In Fig. 3 the signal to noise ratio at the output 
of the channel was SNR=0dB, whereas in Fig. 4 the signal to noise ratio was SNR=10dB. From these 

Fig. 3 Steady-state MSE for MLMS, MxLMS, OxLMS  
and AOSLMS for SNR=0dB. 

Fig. 4 Steady-state MSE for MLMS, MxLMS,  
OxLMS and AOSLMS for SNR=10dB 
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figures, we can, see that the proposed algorithm gives better results for almost all considered noise 
distributions and this is in agreement with the theoretical considerations. 
 

5. Conclusions 
In this paper, we have applied a new AOSLMS adaptive filter to the problem of channel equalization 

for non-Gaussian noise environments. The approach of channel equalization differs from that of the system 
identification, in which the impulsive nature of the gradient is mainly given by the noise present in the 
system. Usually, in the case of channel equalization it is difficult to predict the distribution of the gradient and 
hence the optimal weighting vector to smooth the gradient. In such cases, the proposed AOSLMS algorithm 
would give better results due to its ability to adapt the weighting coefficients to the unknown gradient 
distribution. 
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