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Abstract.  Two schemes for image denoising are presented. First one is transform-domain Wiener filtering in a 

moving window with averaging of the results for each pixel. Second one also relies on moving window averaging, 
however the Wiener filtering is substituted by anisotropic best basis search, subject to an MDL criterion. 

 
1.  Introduction 
Denoising of images corrupted by additive white noise has always been a classical task in signal 

processing. The optimal linear filter in mean square error sense for image restoration is the Wiener filter [1]. 
However, it requires at least second order stationarity of the involved stochastic processes and correspondingly, 
knowledge of their second-order statistics. For most of the images the stationarity requirement is not satisfied, but 
usually the assumption of local stationarity is accurate. Thus, the moving window Wiener filter scheme with 
subsequent averaging as proposed in [2] is a good solution. Moreover, if the Wiener filtering operation is performed 
in transform domain computational complexity is decreased. Still, getting adequate estimates of the clean signal and 
noise variance is an open problem.  

In [3] Saito suggests a scheme for simultaneous compression and denoising of a signal in transform domain 
utilizing the Rissanen’s minimum description length (MDL) principle [4]. This principle states that from a collection 
of models representing the data the best model is the one giving the shortest description of the data. Saito’s scheme 
could serve as an alternative of the local Wiener-like thresholding and allows dropping out the requirement for 
preliminary knowledge of signal and noise statistics. 

In this paper, a denoising scheme combining the moving window averaging in DCT domain with local, 
MDL-based coefficient thresholding is proposed. At each position of the moving window a modification of Saito’s 
method is implemented and then each pixel value is estimated by averaging the results for that pixel from all 
windows that enclose it [2]. For each window position the collection of models include anisotropic local cosine 
packets [5] and a search for best anisotropic local cosine basis subject to MDL cost measure is performed. The 
motivation behind the proposed scheme is the promising results of MDL denoising and the advantage of anisotropic 
transforms that allow better adaptation to the local image features.  

 
2.  Averaging Local Transform-domain Wiener Filter 
The local Wiener filtering scheme is the following [2]. First, a moving window Wk,l of size N×N is placed 

as to enclose pixels (k, l), … ,(k+N-1, l+N-1). For each window position (k, l), the value of each pixel inside the 
window (r1, r2)∈Wk,l is estimated according to the formula:  
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where T{.} and T-1{.} are the forward and inverse transform respectively, η is the Wiener filter in transform 
domain and Gk,l = T{ gk,l } is the transform of the corrupted image fragment gk,l, enclosed by the moving window 
Wk,l. Explicit formulas for η can be found in [2] but all of them require knowledge of the non-corrupted signal and 
noise statistics. They can be obtained by carefully tuned pre-filtering procedure Ошибка! Источник ссылки не 
найден.. The final estimate 
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obtained from window positions Wk,l such that (r1, r2)∈Wk,l : 
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3. Averaging Anisotropic Local Transform Domain MDL Filtering  
In the previously described scheme if we choose smaller moving window we will have better spatial 

resolution and the assumption of local stationarity will be better satisfied, however the overall computational 
complexity will increase as more moving windows will be computed. For homogenous image regions this is not 
necessary and better frequency resolution would be preferable. That’s why we try to increase the moving window 
size and use inside it an anisotropic transform that better adapts to the local image features. MDL criterion is used 
for best basis search and also for determination of the noise suppression threshold. Again, averaging multiple pixel 
estimates corresponding to different window positions helps us to achieve translation invariance and to reduce 
Gibbs-like artifacts caused by the transform coefficient thresholding.  

The anisotropic local cosine transform we use inside the moving window has the dyadic-tree structure 
illustrated in Figure 1 [5]. Here, each node at a level represents the projection of the image on different subspaces. 
Each (parent) subspace has as descendent (children) subspaces all subspaces whose box support fall into the box 
support of the parent subspace. More details on that structure can be found in [5]. One example of parent with left 
and right children subspaces is shown in Figure 2.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Tree structure used for anisotropic local cosine decomposition 
 
 
 
 
 
 
 
 

Figure 2. Parent subspace (A), left children subspaces (B and C) and right children subspaces (D and E) 
 

The proposed algorithm is as follows:  
• For each window Wk,l ((k, l) = (0, 0), … , (M, M), M is the size of the noisy image) decompose the 

corrupted image fragment gk,l in the tree structure shown in Figure 1. 
• Starting one level up to the lowest, for each subspace (box) in each node at a level compare the 

MDL cost for it and its left and right children subspaces and choose the one having the smallest cost, i.e.  
A = B ∪ C, if min{ MDL(B∪ C), MDL(D ∪ E), MDL(A) } = MDL(B ∪ C) 
A = D ∪ E, if min{ MDL(B∪ C), MDL(D ∪ E), MDL(A) } = MDL(D ∪ E) 
A = A, otherwise 
The MDL cost for a subspace X is calculated as [3]:  
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where n are the total number of pixels in the subspace X, V(X) is the transform operator that projects gk,l on the 
subspace X and Θ(m) is a threshold operator that keeps the m largest elements in the subspace X (m ≤ n) and sets all 
other to zero. 

• Keep track on the separation for each subspace (box). 
• Proceed across each level in the tree finishing at the topmost level. There a best anisotropic basis is 

found with transform projector V* and threshold operator )( *mΘ  that selects m* largest coefficients in the root node 
from all N2. 

• Find estimate ĝk,l of the “clean” signal inside the moving window Wk,l according to the equation  

( )lkmlk gVVg ,*)(1*, *
€ Θ=

−
       (4) 

• Use equation (2) to find the final estimates for all pixels by averaging. 
 
It has to be noted that the proposed denoising algorithm can be applied with all separable wavelet 

transforms, not only local cosine. Furthermore if we apply it with local cosine transform the support of folding 
operators can be at most one pixel wide and thus the transform becomes nothing but block cosine transform. This 
restriction comes from the tree structure used for decomposition and the requirement that all basis functions must be 
orthogonal between each other. 
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