БЫСТРАЯ ПОЛИФАЗНАЯ ФИЛЬТРАЦИЯ

Еремеев В.П., Матосов Э.В., Уваров А.В.

Transport and Telecommunication Institute Riga, Latvia

В цифровой обработке сигналов большое внимание уделяется фильтрации сигналов в режиме реального времени. К ним относятся - реализация систем селекции движущихся целей, систем шифрования речи, процедур быстрого спектрального анализа с высоким разрешением и ряд других. В подобных случаях диапазон рабочих частот в значительной мере ограничен числом необходимых математических операций, выполняемых за период дискретизации сигнала.

Проблема увеличения рабочего диапазона частот особенно остра при построении многоканальных фильтрующих систем. В статье предлагается эффективное построение полифазных многоканальных фильтров на эквидистантной сетке частот.

Показана принципиальная возможность синтеза уникального класса нерекурсивных фильтров с коэффициентами, реализуемыми без умножений. Кроме этого, при синтезе этих фильтров одновременно минимизировалось число сложений и операций сдвига, приходящихся на один цикл дискретизации сигнала.

Применение таких базовых фильтров при синтезе многоканальных систем фильтрации сигналов в совокупности с оптимальными реализациями алгоритмов быстрых ДПФ (дискретных преобразований Фурье) минимизирует количество вычислительных операций в целом и тем самым дает возможность существенно расширить границы используемого частотного диапазона.

Как известно, полифазные структуры могут быть получены разбиением передаточной функции базового (в нашем случае - нерекурсивного фильтра (КИХ)) на специальные компоненты [1,3].

Предлагаемая методика расчета базового фильтра заключается в оптимизации его коэффициентов с целью получения частотной характеристики, удовлетворяющей заданным требованиям. В качестве критерия оптимизации использован минимум затухания в полосе заграждения при допустимом уровне пульсаций в полосе пропускания и при ограничении назначения коэффициентов из такого набора, которое в двоичном знакоразрядном представлении имеют не более двух значащих цифр.

Пусть нам удалось получить фильтр с КИХ и передаточной характеристикой вида:

$$H(z) = H_0 \sum_{k} h_k z^{-k} , (1)$$

где H_0 - вещественный общий множитель. Оптимизация коэффициентов h_k , заключается в представлении коэффициентов в виде суммы степеней числа 2 с минимальным числом слагаемых. Операции умножения в модифицированном фильтре отсутствуют, а число сдвигов и операций сложения минимально. Для примера возьмем спроектированный фильтр. Все коэффициенты этого фильтра не превышают значения $h_k \leq 2^6$, т.е. их можно представить не более чем 8 (восемью) двоичными разрядами. Кроме этого, коэффициенты можно представить алгебраической суммой двух слагаемых, каждое из которых является степенью двойки $h_k = 2^m \pm 2^n$. Это гарантирует минимальное количество дополнительных операций сложения при исключении умножений [5].

ЗАО АВТЭКС Санкт-Петербург тел/факс: 567-72-02 info@autex.spb.ru

Рис. 1 Обобщенная схема синтезируемого фильтра

Рис. 2 Базовый блок фильтра

Такие фильтры-прототипы удобно использовать в многоканальной фильтрации на эквидистантной сетке частот, где дополнительно применяются быстрые алгоритмы вычисления ДПФ.

Если учесть, что часто полифазные компоненты с соседними индексами отличаются незначительно, то можно уменьшить общее число операций с помощью расчета каждой последующей полифазной компоненты через предыдущую:

$$E_k(z^{2M}) = E_{k-1}(z^{2M}) + A_k(z^{2M}), \qquad (2)$$

здесь $A_k(z^{2M})$ - разностная компонента, где k=1,2,...,2M-1 (таблица 1).

Общая схема многоканального фильтра представлена на рис. 1. Пример синтезированного 30-канального полифазного фильтра приведен на рис. 2 и 3.

Рис. 3 Полифазные компоненты НЧ фильтра

Замечательно то, что в полифазной структуре производится всего 75 операций суммирования и 19 операций сдвига (умножений на 2). Недостатком данной конфигурации является значительное увеличение элементов задержки. Вместе с тем, если сравнивать со структурой, у которой элементы задержки полифазных компонент передвинуты к РП – разделяющему преобразованию <РП соответствует Re[ДПФ]>, то здесь получается выигрыш вдвое.

Для реализации многоканального фильтра необходимо вычислить вещественную часть 60-титочечного ОДПФ. С помощью оригинальных быстрых алгоритмов вычисления ДПФ количество операций умножения в этом блоке можно свести к минимуму. Задача минимизации количества вычислений в разделяющем преобразовании в данной статье не рассматривается.

Другой способ представления передаточной функции полифазного многоканального фильтра – каскадная форма представления полифазных компонентов. В этом случае из множества корней передаточных функций полифазных компонент значительная часть – вещественные корни. Так в случае рассматриваемого выше примера 30-канального полифазного фильтра: каждая полифазная компонента имеет по 7 корней. Из них 22 полифазные компоненты имеют по две пары комплексно-сопряженных корней, 30 полифазных компонент по одной паре комплексно-сопряженных корней, а 8 полифазных компонент имеют только вещественные корни. Среди полифазных компонент имеется много идентичных. В частности, необходимо вычислять не 60 полифазных компонент, а только 36. Для реализации остальных использованы только дополняющие элементы задержки.

Таблица 1

Выводы

• Показана возможность синтеза нерекурсивных фильтров высокого порядка с линейной ФЧХ и коэффициентами, реализуемыми без умножений

	Отличие коэффициентов полифазной компоненты от предшествующей - $A_k(z^{-2M})$							
	z^{-0}	z ^{-(2M)}	z ^{-2(2M)}	z ^{-3(2M)}	z ^{-4(2M)}	z ^{-5(2M)}	z ^{-6(2M)}	z ^{-7(2M)}
$A_0(z^{-2M}) = E_0(z^{-2M})$	-1	-(2+1)	1	(32+4)	64	(32+4)	0	-(2+1)
$A_1(z^{-2M})$	1				-2			
$A_{2-3}(z^{-2M})$		-1				-1		
$A_4(z^{-2M})$			1			-1		
$A_5(z^{-2M})$						-1	-1	
$A_{6-8}(z^{-2M})$				4				
$A_9(z^{-2M})$			1		-1		-1	
$A_{10}(z^{-2M})$			1			-7		
$A_{11}(z^{-2M})$								1
$A_{12-13}(z^{-2M})$			1	8				
$A_{14-17}(z^{-2M})$			2				-1	
$A_{18-19}(z^{-2M})$			1		-2	-4		
$A_{20-21}(z^{-2M})$	-1		1					
$A_{22-23}(z^{-2M})$		-1	1				-1	1
$A_{24}(z^{-2M})$		1	2	8		-2		
$A_{25-26}(z^{-2M})$						-1		
$A_{27}(z^{-2M})$						-1		
$A_{28-29}(z^{-2M})$			2			-1		
$A_{30-31}(z^{-2M})$			1			-1		
$A_{32}(z^{-2M})$			1			-1		
$A_{33-34}(z^{-2M})$			1					
$A_{35}(z^{-2M})$			1					
$A_{36-37}(z^{-2M})$			2		-8		-1	
$A_{38-39}(z^{-2M})$	-1	1				-1	1	
$A_{40-41}(z^{-2M})$						-1		1
$A_{42-45}(z^{-2M})$			4	2		-1		
$A_{46-47}(z^{-2M})$		1				-2		
$A_{48}(z^{-2M})$					-8	-1		
$A_{49}(z^{-2M})$	-1							
$A_{50}(z^{-2M})$			7			-1		
$A_{51-53}(z^{-2M})$		1		1		-1		
$A_{54}(z^{-2M})$					-4			
$A_{55}(z^{-2M})$		1	1					
$A_{56-57}(z^{-2M})$			1			-1		
$A_{58}(z^{-2M})$			1				1	
$A_{59}(z^{-2M})$			2	1				-1

• Показана целесообразность каскадной реализации полифазных компонент

• Показана возможность существенного снижения числа сложений при комбинированной реализации полифазной структуры многоканальной системы фильтрации.

Литература

1. Вайдьянатхан П.П.,1990, Цифровые фильтры, блоки фильтров и полифазные цепи с многочастотной дискретизацией: Методический обзор. ТИИЭР. т.78, № 3, март, с.77-120.

2. Vaidyanathan P.P., 1993, *Multirate systems and filter banks*. Prentice Hall, Englewood Cliffs.

3. Витязев В.В., 1993, Цифровая частотная селекция сигналов. Радио и связь. Москва. с.239.

4. Крот А.М., Кудрявцев В.О., 1999, Теория анализа и синтеза бэнк-фильтров и их применение. Успехи современной радиоэлектроники, №2.

Гашков С.Б., 2004, Системы счисления и их применение. М.: МЦНМО. ISBN 5-94057-146-8.