ИСПОЛЬЗОВАНИЕ КЛАССИФИКАЦИИ СИГНАЛОВ В ЧАСТОТНОЙ ОБЛАСТИ ДЛЯ УСТРАНЕНИЯ НЕОДНОЗНАЧНОСТИ ОТСЧЕТА ДАЛЬНОСТИ В ИМПУЛЬСНЫХ РЛС

Кострова Т.Г.¹, Бернюков А.К.²

¹Муромский техникум радиоэлектронного приборостроения ²Владимирский государственный университет

В импульсных РЛС обзорного типа для устранения ложных отметок от целей, находящихся за пределами однозначного измерения дальности, применяется вобуляция периода повторения зондирующих сигналов с последующей критерийной обработкой сигналов [1]. Вобуляция межимпульсного интервала позволяет при каждом зондировании изменять значение максимальной однозначно измеряемой дальности, при этом структура пачек импульсов от целей, расположенных в пределах однозначного измерения, и целей, находящихся за пределами максимальной однозначно измеряемой дальности, оказывается различной. Заметим, что без соответствующей обработки сигналов при использовании двух периодов T_1 и T_2 повторения зондирующих импульсов одна цель с 1-ой зоны неоднозначности на экране индикатора кругового обзора создает 2 ложные отметки, разнесенные на расстояние $\Delta R = 0,5 \cdot c \cdot |T_1 - T_2|$, где c – скорость распространения радиоволн. Ниже рассматривается обнаружение сигналов в обзорной РЛС с механическим вращением луча и некогерентной весовой обработкой пачки импульсов.

Рис. 1. Структурная схема блока обработки пачки эхо-сигналов

Для устранения эффекта двоения отметок, т.е. для устранения неоднозначности измерения, в структуру обнаружителя РЛС вводится специальное устройство – канал критерийной обработки (ККО) [1,2]. Структурная схема подключения ККО представлена на рис. 1, где y_i – последовательность входного сигнала в окне анализа блока цифровой обработки, i = 0, 1, ..., N - 1; d_{0k}, d_{kp}, d_c – решения,

принимаемые в основном канале, канале критерийной обработки и после объединения в схеме И $(d_c = d_{ok} \& d_{kp})$. В основном канале выносится решение $d_{0k} = 1$ при обнаружении или $d_{0k} = 0$ при необнаружении цели соответственно. Канал критерийной обработки, используя различия в структуре пачки эхо- сигналов, выносит решение о принадлежности принятого сигнала либо к зоне однозначного измерения $(d_{kp} = 1)$, либо к зоне неоднозначного измерения дальности $(d_{kp} = 0)$.

Как показали ранее проведенные исследования, высокую эффективность обработки сигналов дает алгоритм ККО на базе распознавания образов. В [1,2] подобные алгоритмы были построены для обработки во временной области. Одним из недостатков таких алгоритмов является необходимость вычисления статистики бинарной классификации для всех возможных образов пачек эхо-сигналов [2]. Ниже рассматривается алгоритм работы ККО в частотной области, который является инвариантным к временным образам эхо-сигналов.

Основной канал обработки состоит из некогерентно- весового накопителя, реализующего процесс вычисления статистики обнаружения $Z_N = \sum_{i=0}^{N-1} a_{1i} y_i$ в пределах окна анализа, и порогового устройства. Здесь a_{1i} – весовые коэффициенты, определяемые диаграммой направленности антенны по мощности и соответствующие целям, расположенным в пределах однозначного измерения дальности.

Для синтеза алгоритма различения наблюдаемых пачек импульсных сигналов можно воспользоваться правилом максимума правдоподобия, согласно которому вычисляются отношения правдоподобия $\Lambda_m = w (y_0^{N-1}/H_1) / w (y_0^{N-1}/H_m)$, где $w (y_0^{N-1}/H_i)$ – условная плотность распределения; $y_0^{N-1} = \{y_0, y_1, y_2, ..., y_{N-1}\}$ – реализация наблюдаемого процесса; H_1 – гипотеза о принадлежности сигналов цели, расположенной в пределах однозначного измерения дальности; $H_m, m = 2, 3, ..., M$ – гипотезы о принадлежности наблюдаемых сигналов цели, находящейся за пределами однозначного измерения; M - 1 – число возможных структур пачек сигналов с неоднозначным измерением дальности и различными весовыми коэффициентами a_{mi} . Отношение правдоподобия $\Lambda = \max_m \Lambda_m$ сравнивается с порогом классификации, которое, как правило, при оптимальной классификации сигналов принимается равным 1.

Для расчета свертки двух последовательностей воспользуемся дискретным преобразованием Фурье (ДПФ). В условиях поставленной задачи обнаружения пачки импульсов алгоритм вычисления статистики классификации можно привести к виду

$$z = \max_{m} \left(\sum_{k=0}^{N-1} Y(k) [H_1(k) - H_m(k)] - C_m \right), \tag{1}$$

где $C_m = (E_1 - E_m)/2$ -константа, обусловленная различием энергии пачки импульсов для целей, находящихся в пределах однозначного измерения дальности, и пачки эхо-сигналов от целей, расположенных в первой зоне неоднозначности измерений; $Y(k) = \sum_{n=0}^{N-1} y_n W_N^{nk}$ – ДПФ входного сигнала

$$y_0^{N-1}$$
, $k = 0,1,...N-1,$; $H_j(k) = \sum_{n=0}^{N-1} h_{j,n} W_N^{nk}$ – ДПФ последовательности весовых коэффициентов $h_{j,i} = a_{j,N-i-1}, j = 1, 2,..., M$; $W_N = \exp\{-j 2\pi/N\}$ – поворачивающий множитель.

Заметим, что в рамках рассматриваемой задачи классификации двух пачек эхо-сигналов с различной структурой вычислять обратное ДПФ не обязательно, поскольку нас интересует только факт принадлежности наблюдаемой последовательности к тому или иному виду эхо-сигналов. Если $z \ge 0$, то принимается решение о принадлежности наблюдаемой пачки импульсов к первому образу пачки (цель находится в пределах однозначного измерения дальности). В противном случае принимается решение о том, что цель находится за пределами однозначно измеряемой дальности.

Задача моделирования алгоритма классификации (1) упрощается тем, что коэффициенты a_{1i} , a_{mi} образуют симметричную действительную последовательность, для которой ДПФ является действительным. Кроме того, весовые коэффициенты a_{mi} при $m \ge 2$ имеют одинаковые ДПФ. Для примера на рис. 2 представлены нормированные ДПФ последовательностей коэффициентов a_{1i} и a_{2i} (рис. 2 *A* и рис. 2 *Б* соответственно) при N = 16.

Сравнение этих графиков показывает, что в спектре коэффициентов a_{2i} имеется значительная высокочастотная составляющая. Эти различия как раз и используются в алгоритме работы канала ККО для классификации сигналов. Можно также заметить, что ДПФ весовых коэффициентов отличаются только в небольшой области с центром N/2. Поэтому при реализации алгоритма классификации (1) вычисления можно производить только в области k = l, l + 1, ..., p, где разность $H_1(k) - H_2(k)$ отлична от нуля. Эти свойства можно использовать при моделировании ККО в обнаружителе сигналов РЛС. Они позволяют упростить процесс вычислений, снизить требования к объему памяти вычислительных средств без потери в качестве обработки сигналов. После упрощений алгоритм вычисления статистики классификации принимает вид

$$z^* = -Y^{-1}(0) \sum_{k=l}^{p} Y(k) H_2(k), \qquad (2)$$

где для устранения зависимости статистики от энергии сигнала проведена нормировка на Y(0).

С целью анализа качества обнаружения эхо-сигналов в блоке обработки, структурная схема которого представлена на рис. 1, был проведен статистический эксперимент. Моделирование осуществлялось при следующих параметрах: вероятность ложной тревоги $F = 10^{-5}$; число импульсов в пачке N = 16; форма диаграммы направленности по мощности аппроксимирована функцией $\cos^2 \theta$, разрядность данных на входе блока ЦОС – 11 + знак; число используемых при вобуляции периодов зондирования сигналов – 2 (M = 3). На рис. 3 представлены характеристики обнаружения данного устройства – зависимости вероятности обнаружения сигналов P_D от отношения сигнал-шум q для центрального импульса в пачке, выраженного в децибелах. Характеристика обнаружения под цифрой 1 получена при отключенном ККО и характеризует потенциальные возможности обнаружения целей, находящихся в пределах однозначного измерения дальности. Остальные кривые получены при включенном

ККО, в основу работы которого был положен алгоритм (2) вычисления статистики z^* . Величина z^* сравнивалась с порогом классификации K: если $z^* < K$, то выносилось решение $d_{kp} = 0$; если $z^* \ge K$, то принималось решение $d_{kp} = 1$.

Кривые 2 и 3 сняты при оптимальном пороге классификации. Как видно из графиков, применение в ККО алгоритма (2) позволяет получить малую вероятность обнаружения ложной цели P_D < 0,01 (кривая 2). Кривая 3 соответствует обнаружению цели, находящейся в пределах однозначного измерения дальности. Сравнение кривых 1 и 3 показывает, что при оптимальном пороге классификации наблюдаются значительные потери в пороговой мощности сигнала от целей, находящихся в пределах рабочей дистанции. Увеличение порога до величины K = 0,2 приводит к некоторому росту вероятности обнаружения ложной цели ($P_D < 0.03$, кривая 4), но характеристики обнаружения целей в пределах рабочей зоны РЛС значительно улучшаются (кривая 5). Потери в пороговой мощности в области $P_D \cong 0,5$ невелики и

составляют примерно 0,3...0,5 дБ. При более высоких значениях вероятностей, когда $P_D > 0,8$, потери возрастают. Увеличив порог до величины K = 0,3, подобных потерь можно избежать (характеристика обнаружения сливается с кривой 1). При этом вероятность обнаружения ложной цели остается приемлемой для практики, достигая в максимальной точке $P_D \cong 0,07$ (кривая 6). Дальнейшее увеличение порога до K = 0,5 приводит к резкому росту вероятности обнаружения ложных сигналов (кривая 7, в точке максимума $P_D \cong 0,26$).

Упрощение алгоритма вычисления статистики классификации в канале критерийной обработки может быть произведено за счет замены вычисления ДПФ, которое в общем случае является комплексным, на вычисление дискретного косинусного преобразования, являющегося действительным для реального сигнала. Качество работы устройства обнаружения при этом ухудшается.

Литература

1. Кострова Т.Г., Бернюков А.К. Эффективность цифровых устройств обнаружения и устранения неоднозначности отсчета дальности в импульсных РЛС // Цифровая обработка сигналов и ее применение. Труды 6 Междунар. конф. DSPA-2004. – М.: РНТО РЭС, 2004. Т.2. – С.64-67.

2. Патент РФ № 2237259. Способ последетекторной обработки вобулированной пачки радиоимпульсов и устройство для его осуществления // Дыранов Ю.В., Костров В.В., Антуфьев Р.В., Кострова Т.Г. // Бюл. № 27 от 27.09.2004.