ПАРАМЕТРИЗАЦИЯ ОРТОГОНАЛЬНЫХ И БИОРТОГОНАЛЬНЫХ ВЕЙВЛЕТ-ФИЛЬТРОВ

Моисеев А.А., Волохов В.А., Корепанов И.В., Новоселов С.А.

Ярославский государственный университет им. П.Г. Демидова

150000, Россия, Ярославль, ул. Советская, 14. Тел. (4852) 79-77-75. dcslab@uniyar.ac.ru

На сегодняшний день обработка сигналов с использованием вейвлет-преобразования получила широкое распространение [1, 2]. Существует множество классов вейвлетов, обладающих различными свойствами (гладкость, симметричность и т.п.), такие как: Добеши, Мейера, Симлета, Коифлета и другие [3]. Выбор того или иного класса вейвлет-функций определяется решаемой задачей. Параметризация вейвлетов может быть полезна при выборе оптимальных вейвлетов в различных задачах [4, 5, 6]. Наиболее известные методы параметризации Полена [7] и Зу [8] обладают несколькими недостатками, в частности: нет возможности задавать порядок гладкости вейвлета, синтез вейвлет-фильтра с требуемой амплитудно-частотной характеристикой требует значительных вычислительных затрат. В работе предлагается метод расчета коэффициентов вейвлетов с заданным порядком гладкости, позволяющий получить ортогональные и биортогональные вейвлеты.

Рассмотрим метод параметризации вейвлет-фильтров. Пусть $\psi(t)$ – некоторая вейвлет-функция, связанная с масштабирующей функцией $\varphi(t)$ уравнением (1). В свою очередь $\varphi(t)$ определяется уравнением (2)

$$\Psi(t) = \sum_{k} g_k \varphi(2t - k), \qquad (1)$$

$$\varphi(t) = \sum_{k} h_k \varphi(2t - k), \qquad (2)$$

где h_k и g_k – импульсные характеристики соответствующих вейвлет-фильтров. В случае биортогональных вейвлет-базисов рассматривается два набора базисных функций $\varphi(t)$, $\psi(t)$ и $\tilde{\varphi}(t)$, $\tilde{\psi}(t)$. При этом уравнения, аналогичные (1, 2), справедливы и для $\tilde{\varphi}(t)$, $\tilde{\psi}(t)$.

Условие ортонормальности базисных функций $\varphi(t)$ записывается в следующем виде

$$H^{2}(\omega) + H^{2}(\omega + \pi) = 1$$
, (3)

где $H(\omega) = \sum_{k} h_k e^{-jk\omega}$, а h_k – коэффициенты уравнения (2). Аналогичное условие в случае

биортогональных вейвлет-фильтров имеет вид

$$H(\omega)\tilde{H}(\omega) + H(\omega + \pi)\tilde{H}(\omega + \pi) = 1.$$
(4)

Для того чтобы базисные функции обладали гладкостью порядка k, необходимо, чтобы частотная характеристика соответствующего фильтра $H(\omega)$ имела k нулей на частоте $\omega = \pi$. Это выполняется в случае, когда $H(j\omega)$ можно представить в виде [3]

$$H(j\omega) = \left(\frac{1+e^{j\omega}}{2}\right)^{k} L(j\omega),$$
(5)

или для модуля $H(j\omega)$

$$H(\omega) = \left[\cos\left(\frac{\omega}{2}\right)\right]^{k} L(\omega).$$
(6)

Функцию $L^2(\omega)$ можно представить в виде косинусного ряда, тогда квадрат выражения (6) примет вид

$$H^{2}(\omega) = \left[\cos\left(\frac{\omega}{2}\right)\right]^{2k} \sum_{i=0}^{M-1} b_{i} \cos(i\omega),$$
(7)

где *M* – число параметров, которое должно быть не меньше *k* + 1. Аналогично для случая биортогональных вейвлет-фильтров

$$H(\omega)\widetilde{H}(\omega) = \left[\cos\left(\frac{\omega}{2}\right)\right]^{k+k} \sum_{i=0}^{M-1} b_i \cos(i\omega), \qquad (8)$$

Для удобства положим, что $k + \tilde{k} = m$ и преобразуем выражение $\sum_{i=0}^{M-1} b_i \cos(i\omega)$ к виду $\sum_{i=0}^{M-1} d_i \cos^i \omega$, что может быть выполнено с помощью линейного преобразования $\mathbf{D} = \mathbf{A} \cdot \mathbf{B}$, где \mathbf{D} – вектор-столбец коэффициентов $d_0, d_1, ..., d_{M-1}$, \mathbf{B} – вектор-столбец коэффициентов $b_0, b_1, ..., b_{M-1}$, а \mathbf{A} – треугольная матрица преобразования. Для получения ограничений на параметры b_i , необходимо подставить выражение (7) в (3) и (8) в (4).

Выполняя ряд тригонометрических и алгебраических преобразований, получим условие на параметры d_i

$$\frac{m+M-1}{\sum_{n=0}^{2}} \left[\sum_{i=0}^{M-1} d_i \binom{m}{2n-i} \right] \cos^{2n} \omega = 2^{m-1},$$
(9)

где $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ – число сочетаний из n по k, причем если k > n или k < 0, то $\binom{n}{k} = 0$. Пусть $\left[\sum_{i=0}^{M-1} d_i \binom{m}{2n-i}\right] = c_n$. Тогда условие (9) выполняется, когда $c_0 = 2^{m-1}$, $c_1 = c_2 = \ldots = c_{\frac{m+M-1}{2}} = 0$.

Отсюда получаем систему линейных уравнений $\mathbf{C} \cdot \mathbf{D} = \mathbf{c}$, где \mathbf{C} – матрица коэффициентов $c_{n,i} = \begin{pmatrix} m \\ 2n-i \end{pmatrix}$,

D – вектор-столбец коэффициентов $d_0, d_1, ..., d_{M-1}$, **c** – вектор-столбец коэффициентов $c_0, c_1, ..., c_{M-1}$ Обозначая $\frac{m+M-1}{2} = L$, получим

$$\begin{pmatrix} m \\ 0 \end{pmatrix} & 0 & 0 & 0 \\ \begin{pmatrix} m \\ 2 \end{pmatrix} & \begin{pmatrix} m \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} m \\ 2 - (M-1) \end{pmatrix} \\ \vdots & \vdots & \vdots & \vdots \\ \begin{pmatrix} m \\ 2L \end{pmatrix} & \begin{pmatrix} m \\ 2L-1 \end{pmatrix} & \cdots & \begin{pmatrix} m \\ 2L - (M-1) \end{pmatrix} \end{pmatrix} \begin{pmatrix} d_0 \\ d_1 \\ \vdots \\ \vdots \\ d_{M-1} \end{pmatrix} = \begin{pmatrix} 2^{m-1} \\ 0 \\ \vdots \\ \vdots \\ d_{M-1} \end{pmatrix} .$$
(10)

При M = m + 1, матрица С – квадратная, размера $(m + 1) \times (m + 1)$, следовательно, система линейных уравнений (10) имеет единственное решение. Если M > m + 1, матрица С имеет размер $(L + 1) \times M$, причем L + 1 < M, следовательно, имеется бесконечное множество решений. В этом случае число степеней свободы в определении вейвлета равно M - L - 1. Варьируя свободными параметрами, можно получить набор различных вейвлет-функций.

Для определения импульсной характеристики фильтра из разложения $H^2(\omega)$ и $H(\omega)\tilde{H}(\omega)$, необходимо воспользоваться методом спектральной факторизации [1], который выполняется следующим образом:

1. Решение уравнения $H^2(\omega) = 0$ или $H(\omega)\widetilde{H}(\omega) = 0$.

2. Переход от корней на частотной оси к нулям на *z*-плоскости. Дополнение полученных нулей комплексно-сопряженными нулями.

3. Выбор нулей в соответствии с требованиями к частотной характеристике вейвлет-фильтра и типом вейвлет-базиса:

• для синтеза фильтра с минимальной фазовой характеристикой выбираются нули, модуль которых меньше 1;

• в случае синтеза фильтров с линейной фазой необходимо разделить полученный набор нулей между фильтрами анализа и синтеза.

4. Получение импульсной характеристики из нулей и полюсов фильтра.

На рис. 1, рис. 2 и рис. 3 представлено распределение нулей вейвлет-фильтров (нули в точке z = -1 не показаны).

Рис. 1. Распределение нулей семейства вейвлетфильтров с двумя нулевыми моментами и одной степенью свободы

Рис. 3. Распределение нулей семейства вейвлетфильтров с двумя нулевыми моментами и двумя степенями свободы

Рис. 2. Распределение нулей семейства вейвлетфильтров с четырьмя нулевыми моментами и одной степенью свободы

Для получения ортогональных вейвлет-фильтров выбираются нули, модуль которых меньше 1. Если M = m + 1, получим фильтр Добеши с *m* нулевыми моментами.

Фильтры, соответствующие биортогональным вейвлет-базисам, получаются в результате разделения набора нулей, соответствующих произведению $H(\omega)\widetilde{H}(\omega)$ между фильтрами анализа и синтеза – $H(\omega)$ и

 $\tilde{H}(\omega)$. Данное разделение может производиться различными способами, в результате из одного набора нулей можно получить несколько различных наборов вейвлет-базисов. Также необходимо отметить, что каждый дополнительный параметр b_i увеличивает число нулей произведения амплитудно-частотных характеристик вейвлет-фильтров на четыре. Увеличение числа параметров на два дает одну дополнительную степень свободы.

Предлагаемый метод позволяет синтезировать как ортогональные, так и биортогональные вейвлетфильтры с требуемой формой амплитудно-частотной характеристики и заданным порядком гладкости соответствующей вейвлет-функции. К тому же предлагаемый метод достаточно прост в реализации и не требует каких-либо символьных вычислений.

Литература

1. Воробьев В.И., Грибунин В.Г. Теория и практика вейвлет-преобразования. – СПб.: ВУС, 1999.

2. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1998. Т. 166. № 11. С. 1145–1170.

3. Добеши И. Десять лекций по вейвлетам: Пер. с англ. – М.: НИЦ «Регулярная и хаотическая динамика», 2004.

4. Кобелев В.Ю., Ласточкин А.В. Выбор оптимальных вейвлетов для обработки сигналов и изображений // Докл. 2-ой межд. конф. и выст. «Цифровая обработка сигналов и ее применение» (DSPA'99). М., 1999. С. 514-518.

5. Meerwald P. Digital image watermarking in the wavelet transform domain / Master's thesis, Department of Scientific Computing, University of Salzburg, Austria, Jan 2001.

6. Uhl A., Pommer A. Are parameterized biorthogonal wavelet filters suited (better) for selective encryption? // Multimedia and Security Workshop 2004, Magdeburg, Germany, September 2004. P. 100-106.

7. David Pollen. Parameterization of compactly supported wavelets. Technical report, Aware Inc., USA, 1989.

8. Zou H., Tewfik A.H. Parameterization of compactly supported orthonormal wavelets // IEEE Transactions on Signal Processing. Mar. 1993. V. 41. P. 1423-1431.

PARAMETERIZATION OF ORTHOGONAL AND BIIORTHOGONAL WAVELET FILTERS

Moiseev A., Volohov V., Korepanov I., Novoselov S.

Yaroslavl State University

14 Sovetskaya st., Yaroslavl, Russia 150000. Phone. +7(4852) 79-77-75. dcslab@uniyar.ac.ru

At present time digital wavelet transform has a wide distribution in signal processing application. There are many wavelets families having different properties (smoothness, symmetry etc.), such as: Daubechies, Meyer, Symlets, Coiflets and others [1]. Choice of wavelet function family is determined according to the current task. For example there is an adaptive image compression method constructed on the basis of parameterization method [2]. In this paper the orthogonal and biorthogonal wavelet filters construction method with defined smoothness order is proposed.

Let two sets of scaling functions $\varphi(t) \bowtie \widetilde{\varphi}(t)$ with smoothness order $k \bowtie \widetilde{k}$ are form biorthogonal wavelet bases, while $\varphi(t)$ with smoothness order p – orthogonal. Then the following conditions for orthogonal and biorthogonal filter is valid

$$H^{2}(\omega) + H^{2}(\omega + \pi) = 1$$
 (1a)

$$H(\omega)\widetilde{H}(\omega) + H(\omega + \pi)\widetilde{H}(\omega + \pi) = 1, \qquad (1b)$$

where $H(\omega) = \sum_{l} h_{l} e^{-jl\omega}$, $\widetilde{H}(\omega) = \sum_{l} \widetilde{h}_{l} e^{-jl\omega}$, and h_{l} , \widetilde{h}_{l} - scaling equation coefficients.

 $H(\omega)^2$ and $H(\omega)\widetilde{H}(\omega)$ given by

$$H^{2}(\omega) = \left[\cos\left(\frac{\omega}{2}\right)\right]^{2p} \sum_{i=0}^{M-1} b_{i} \cos(i\omega)$$
(2a)

$$H(\omega)\widetilde{H}(\omega) = \left[\cos\left(\frac{\omega}{2}\right)\right]^{k+k} \sum_{i=0}^{M-1} b_i \cos(i\omega), \qquad (2b)$$

where b_i – parameters, which specify $\varphi(t) \bowtie \widetilde{\varphi}(t)$. By substitution (2) in (1) and performing all necessary calculation, we will get constraint on b_i parameters in the form of linear equations system. In case of M = 2p + 1, we have series (2) which leads to Daubechies wavelets (at that $2p = k + \widetilde{k}$). If M > 2p + 1, then we have certain number of degree of freedom in wavelet definition. Hence, by varying free parameters different wavelets can be obtained. Then, using spectral factorization method [1] we will find filter coefficients $h_i \bowtie \widetilde{h_i}$.

The method proposed permit to construct orthogonal and biorthogonal wavelet filters, with desirable magnitude and defined quantity of vanishing moments. Also suggested method has a simple realization and there is no need to do any symbolic calculations.

References

1 I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.

2 Kobelev V., Lastochkin A., Choice of optimal wavelets for signal and image compression // Proc. of 2th Int.Conf. "Digital Signal Processing and its Application" (DSPA'99). V. 2 P. 519.