СИНТЕЗ ЦИФРОВЫХ ФИЛЬТРОВ НА ОСНОВЕ ФАЗОВЫХ ЦЕПЕЙ С КОНЕЧНОЙ ДЛИНОЙ СЛОВА КОЭФФИЦИЕНТОВ

А.Т. Мингазин

РАДИС Лтд.

Россия, 107005, Москва, ул. Радио, 12/2, тел. 536-83-73, факс. 267-45-39, e-mail: alexmin@orc.ru

Реферат. Предложен алгоритм вариации исходных параметров для синтеза цифровых фильтров на основе параллельного соединения двух фазовых цепей с конечной длиной слова коэффициентов. На первом этапе алгоритма определяются начальные точки в области исходных параметров эллиптической аппроксимации, а на втором - осуществляется локальный поиск решений в окрестности этих точек. Рассмотрены обычный и два специальных варианта проектирования фильтров. Представлены примеры синтеза фильтров с минимальной длиной слова коэффициентов и/или с минимальным полным числом сумматоров, заменяющих умножители.

1. Введение

Оптимальное решение задачи синтеза цифровых фильтров с конечной длиной слова коэффициентов, реализуемых на заказных или полузаказных СБИС позволяет уменьшить площадь кристалла, потребляемую мощность, стоимость, снизить требования к быстродействию логических элементов. Для получения таких решений могут быть применены методы, использующие вариацию коэффициентов (ВК) или вариацию исходных параметров (ВИП) или их сочетание [1]. Под исходными параметрами понимаются неравномерность АЧХ в полосе пропускания Δ а, минимальное ослабление в полосе задерживания α_0 и граничные частоты этих полос α_0 . Одним из преимуществ метода ВИП является малая размерность задачи оптимизации, не зависящая от порядка фильтра α_0 . Суть метода заключается в поиске такой точки в области исходных параметров α_0 , для которой после расчета и квантования коэффициентов α_0 , фильтра будет удовлетворять заданному плану допусков.

Важным моментом является выбор хороших начальных точек в области S. В [2] предложен метод определения таких точек. Согласно этому методу параметры в S выбираются так, что коэффициенты каскадного БИХ-фильтра, соответствующие доминирующей полюсно-нулевой паре, оказываются квантованными без преднамеренного их квантования. Метод [2] использован в ВИП-алгоритме [3], эффективность которого подтверждена на примерах синтеза фильтров с минимальной длиной слова коэффициентов и с минимальным полным числом сумматоров, заменяющих умножители. Возможные модификации алгоритма представлены в [4,5]. Объединение алгоритмов ВИП и ВК может приводить к улучшению результатов [1].

Авторы [6-8] применили идею получения хороших начальных точек для синтеза цифровых фильтров на основе параллельного соединения двух фазовых цепей с минимальным числом операций сдвигсуммирование в представлении коэффициентов. Каждая цепь реализована как каскадное соединение фазовых звеньев не выше второго порядка с передаточными функциями определенного вида. Выбраны эллиптические цифровые фильтры, соответствующие аналоговым прототипам с минимальными добротностями полюсов передачи [9] (будем называть их цифровыми Оміпфильтрами). Все это позволило на первом этапе синтеза фильтра получить (N+1)/2 квантованных доминирующих коэффициентов без преднамеренного их квантования [8]. На втором этапе применен ВК-метод для поиска квантованных значений остальных (N+1)/2 коэффициентов. Диапазоны их коэффициентными возможных значений очередность квантования определяются чувствительностями.

В данной работе предлагается ВИП-алгоритм для синтеза цифровых фильтров на основе параллельного соединения двух фазовых цепей с минимальной длиной слова коэффициентов и/или с минимальным полным числом сумматоров, заменяющих умножители. Алгоритм сходен с описанным в [3] и включает два этапа. На первом этапе определяются начальные точки в области S, а на втором осуществляется локальный поиск решений в окрестности этих точек. Рассмотрены варианты определения начальных точек для трех типов эллиптических цифровых фильтров: обычных, Q_{min} -фильтров и полуполосных. На примерах показано, что предлагаемый алгоритм дает лучшие результаты в сравнении с полученными в [6, 8].

2. Определение начальных точек

Идея метода [2] заключается в следующем. Вектор коэффициентов **С** цифрового БИХ-фильтра является вектор-функцией вектора исходных параметров **р**, т.е.

$$C = F(p), p \in S(p),$$

где $S(\mathbf{p})$ - область всех допустимых исходных параметров, ее размеры определяются требованиями к фильтру и N.

Для любой точки в S параметры фильтра $\Delta a \leq \Delta a_{max}$ и $a_0 \geq a_{0min}$ при $f_1 = f_{1g}$ и $f_2 = f_{2g}$. Здесь правые части соответствуют заданным значениям. Размерность \mathbf{p} зависит от типа аппроксимации (эллиптическая, чебышевская и др.) и типа фильтра (фильтр нижних частот, полосовой и др.), а размерность \mathbf{C} - от \mathbf{N} . Для эллиптических фильтров нижних или верхних частот

$$\mathbf{p} = (p_1, p_2, p_3) = (\Delta a, f_1, f_2),$$

Начальные точки внутри $S(\Delta a, f_1, f_2)$ выбираются так, что вычисление вектора ${\bf C}$ приводит к трем квантованным коэффициентам без преднамеренного их квантования. Для каскадных фильтров предлагается эти коэффициенты связать с доминирующей полюсно-нулевой парой. Максимальный шаг квантования коэффициентов q_{max} выбирается так, чтобы после квантования при $q = q_{max}$ в области S имелась хотя бы одна из упомянутых точек, а при $q > q_{max}$ они отсутствовали. Поскольку S является исчерпывающей областью допустимых исходных параметров, то для фильтров 2-го порядка метод позволяет сразу получать решения с глобально минимальной длиной слова коэффициентов M_{min} — $\log_2(q_{max})$. Графическая интерпретация метода определения начальных точек дана в [3].

Рассмотрим теперь эллиптические цифровые фильтры на основе параллельного соединения двух каскадных фазовых цепей, содержащих звенья с передаточными функциями вида

$$\frac{\alpha_{i}+z^{-1}}{1+\alpha_{i}z^{-1}}, i=1 \quad \text{if} \quad \frac{\beta_{i}+\alpha_{i}(1+\beta_{i})z^{-1}+z^{-2}}{1+\alpha_{i}(1+\beta_{i})z^{-1}+\beta_{i}z^{-2}}, i=2,3,...,K.$$

Здесь K = (N+1)/2 и N нечетно. Звенья с нечетными і относятся к одной из двух фазовых цепей, а с четными - к другой. Нумерация коэффициентов отличается от используемой в [6-8]. Коэффициенты звеньев являются некоторыми функциями параметров

$$\alpha_1 = \Phi_1(\Delta a, f_1), \ \alpha_i = \Phi_i(\Delta a, f_1, f_2), \ \beta_i = \Psi_i(\Delta a, f_1, f_2), \ i = 2, 3, ..., K.$$

Рассмотрим варианты эллиптических фильтров: обычные и специальные - Q_{min} -фильтры и полуполосные фильтры. Для Q_{min} -фильтра значение N может быть выше, чем для обычного фильтра, а для полуполосного фильтра - выше, чем для Q_{min} -фильтра, и коэффициенты специальных фильтров не зависят от Δa [6-8].

В случае обычных фильтров начальные точки внутри $S(\Delta a, f_1, f_2)$ определим решением системы трех уравнений

$$\alpha_1 = \Phi_1(\Delta a, f_1), \ \alpha_K = \Phi_K(\Delta a, f_1, f_2), \ \beta_K = \Psi_K(\Delta a, f_1, f_2)$$

для ряда квантованных значений коэффициентов α_l , α_K , β_K . При i=K коэффициенты соответствуют доминирующему полюсу передаточной функции фильтра. Для фильтров третьего порядка решение системы при $q=q_{max}$ непосредственно приводит к результату с глобально минимальной длиной слова коэффициентов M_{min} .

Для Q_{min} -фильтров начальные точки в $S() = S(f_1, f_2)$ определим из системы двух уравнений

$$\alpha_{K} = \Phi_{K}(f_{1}, f_{2}), \beta_{K} = \Psi_{K}(f_{1}, f_{2})$$

для ряда значений квантованных коэффициентов α_K , β_K . В первом уравнении параметры зависимы и $\alpha_2() = \alpha_3() = \dots = \alpha_K()$ [6-8]. В [6,7] решалось только первое уравнение, а в [8] - вся система.

Для полуполосных фильтров $f_1+f_2=0.5$, $S()=S(f_1)$ или $S(f_2)$ и $\alpha_i=0,\ i=1,\ 2,...,\ K.$ Здесь и далее частоты f_1 и f_2 нормированы относительно частоты дискретизации. Начальные точки в $S(f_2)$ определим из уравнения

$$\beta_K = \Psi_K(f_2)$$

для ряда квантованных значений β_K .

Вышеизложенное верно и для фазовых звеньев прямой формы, коэффициенты которых $A_{11} = \alpha_1$, $A_{1i} = \alpha_i (1+\beta_i)$ и $A_{2i} = \beta_i$, i = 2,3,...,K. Можно показать, что приведенные системы уравнений сводятся к решению одного уравнения. Для поиска начальных точек допустим некоторое расширение S и используем технику ветвей и границ. Исследования ВИП-алгоритма [3] показывают, что допустимые решения с квантованными коэффициентами можно получить и для точек вне области S, но вблизи ее границ. Учтем это и для обсуждаемых фильтров с N>3.

3. Локальный поиск и полный алгоритм

Этап локального поиска решений с конечной длиной слова коэффициентов выполняется в окрестности начальных точек. Для первого, второго и третьего вариантов синтеза используется трех-, двух- и однопараметрический поиск, соответственно. В процессе вариации выбранного параметра осуществляется квантование коэффициентов и оценивается целевая функция. Используется минимаксный критерий. Стратегия локального поиска описана в [3]. Два этапа полного алгоритма повторяются для q равного q_{max} , $q_{max}/2$,..., пока не будет найдено допустимое решение. В результате получаем фильтр с минимальной длиной слова коэффициентов. Для синтеза фильтров без умножителей желательно минимизировать полное число сумматоров, заменяющих умножители. В этом случае определяются все допустимые решения, полученные при q_0 и $q_0/2$, для выбора из них варианта с минимальным полным числом сумматоров. Здесь q_0 - значение q_0 , для которого найдено первое допустимое решение.

4. Примеры синтеза

Предложенный ВИП-алгоритм был применен для синтеза многих фильтров, включая все рассмотренные в [6-8]. Алгоритм дает лучшие результаты в сравнении с полученными в [6, 8] и позволяет повторить результаты [7] без использования локального поиска (для фильтра с N=3 из [7] коэффициент β_2 должен быть равен 1-1/4, а не -1/4). Ниже представлены некоторые примеры синтеза.

4.1. Пример 1

Требования к ФНЧ: Δa_{max} =0,5 дБ, a_{0min} =25 дБ, f_{1g} = 0,15, f_{2g} =0,3 и N=3.

Применение метода получения начальных точек приводит к трем решениям с M_{min} = 3. Лучшее из них по суммарному числу ненулевых бит в канонических знако-разрядных кодах коэффициентов имеет вид

$$S(\Delta a, f_1, f_2)$$
: $S(0,039560, 0,138151, 0,296290)$, $\alpha_1 = -2^{-2}$, $\alpha_2 = -2^{-2} - 2^{-3}$, $\beta_2 = 2^{-1}$.

Умножение на α_2 сводится к одному суммированию, а умножение на другие два коэффициента - к операциям сдвига. Интересно, что для фильтра реализуемого на фазовых звеньях прямой формы существует лишь одно решение при $M_{min} = 2$ и с коэффициентами равными степеням числа два

$$S(\Delta a, f_1, f_2)$$
: $S(0,059454, 0,150762, 0,313932)$, $A_{11} = -2^{-2}$, $A_{12} = -2^{-1}$, $A_{22} = 2^{-1}$.

Увеличение М не дает решений с меньшим числом ненулевых бит. Таким образом, для рассмотренных структур получены эллиптические цифровые фильтры с глобально минимальной длиной слова коэффициентов и минимальным полным числом ненулевых бит (или сумматоров). Здесь специально выделено определение эллиптический, т.к. N=3. Для N>3, строго говоря, не существует эллиптических цифровых фильтров обсуждаемых структур со всеми квантованными коэффициентами.

4.2. Пример 2

Требования к полуполосному ФНЧ [6]: $\Delta a_{\text{max}} = 0.2 \text{ дБ}$, $a_{0\text{min}} = 65 \text{ дБ}$, $f_{2\text{g}} = 0.2875$.

Для трех вышеописанных вариантов синтеза предложенный ВИП-алгоритм приводит к следующим решениям

Bap.1:
$$\begin{aligned} N = 7, & \ M = 6, \ \Sigma_m = 10, \ \Sigma = 28, \ S(\Delta a, f_1, f_2) = S(0,080198, \ 0,219004, \ 0,279019), \\ \alpha_1 = -2^{-1} + 2^{-4}, & \ \alpha_2 = -2^{-1} - 2^{-5}, \ \alpha_3 = -2^{-2} - 2^{-6}, \ \alpha_4 = -2^{-3} - 2^{-5}, \\ \beta_2 = 2^{-2} + 2^{-3} - 2^{-6}, \ \beta_3 = 2^{-1} + 2^{-3} + 2^{-5}, \ \beta_4 = 1 - 2^{-3} + 2^{-6}; \end{aligned}$$

Bap.2:
$$\begin{aligned} N &= 9, \ M = 9, \ \Sigma_m = 8, \ \Sigma = 31, \ S(f_1,f_2) = S(0,177349,0,285030), \\ \alpha_1 &= -2^{-4} + 2^{-9}, \ \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = -2^{-3}, \\ \beta_2 &= 2^{-4} + 2^{-6}, \ \beta_3 = 2^{-2} + 2^{-6} + 2^{-7}, \ \beta_4 = 2^{-1} + 2^{-5}, \ \beta_5 = 2^{-1} + 2^{-2} + 2^{-4} + 2^{-6}; \end{aligned}$$

вар.3:
$$N = 11, \ M = 8, \ \Sigma_m = 7, \ \Sigma = 23, \ S(f_2) = S(0,290396), \\ \beta_2 = 2^{-4}, \ \beta_3 = 2^{-2} \cdot 2^{-5} + 2^{-7}, \ \beta_4 = 2^{-1} \cdot 2^{-4}, \ \beta_5 = 2^{-1} + 2^{-3} + 2^{-5}, \ \beta_6 = 1 \cdot 2^{-3} + 2^{-8}, \\ \end{cases}$$

где Σ_{m} - полное число сумматоров, заменяющих умножители, а Σ - полное число сумматоров, включая структурные сумматоры в звеньях и один для объединения выходов двух фазовых цепей.

Здесь и далее для звена первого порядка использована конфигурация с двумя структурными сумматорами (рис.1 в [6]), а для звеньев второго порядка - с пятью сумматорами (рис.2 в [6]). Вар.3 (случай полуполосного фильтра) имеет наименьшие значения $\Sigma_{\rm m}$ и Σ . Это решение получено на первом этапе алгоритма и позволяет уменьшить значение $\Sigma_{\rm m}$ на 56% и Σ на 28% в сравнении с простым округлением коэффициентов при f_2 = f_{2g} (M=11). Для вар.2 ($Q_{\rm min}$ -фильтр) было найдено решение при M=8, но с Σ =34. В $Q_{\rm min}$ -фильтре из [6] кватована только часть коэффициентов, а квантование в обычном и полуполосном фильтре не рассмотрено.

4.3 Пример3

Требования к ФНЧ [6]: $\Delta a_{max} = 0.01$ дБ, $a_{0min} = 40$ дБ, $f_{1g} = 0.25$, $f_{2g} = 0.31$ и N=7. Для двух вариантов синтеза предложенный алгоритм дает

Bap.1:
$$M = 5$$
, $\Sigma_m = 4$, $\Sigma = 20$, $S(\Delta a, f_1, f_2) = S(0,000749, 0,250199, 0,314137), $\alpha_1 = 0$, $\alpha_2 = 2^{-4}$, $\alpha_3 = 2^{-3}$, $\alpha_4 = 2^{-3} + 2^{-5}$, $\beta_2 = 2^{-3} + 2^{-5}$, $\beta_3 = 2^{-1}$, $\beta_4 = 1 - 2^{-3} - 2^{-5}$;$

Bap.2:
$$M = 7$$
, $\Sigma_m = 6$, $\Sigma = 24$, $S(f_1, f_2) = S(0,24408, 0,294980)$, $\alpha_1 = 2^{-4}$, $\alpha_2 = \alpha_3 = \alpha_4 = 2^{-3}$, $\beta_2 = 2^{-3} + 2^{-4} + 2^{-7}$, $\beta_3 = 2^{-1} + 2^{-5} + 2^{-6}$, $\beta_4 = 1 - 2^{-3} - 2^{-6}$.

Как видно, вар.2 (Q_{min} -фильтр) уступает вар.1 (обычный фильтр) по значениям Σ_m и Σ . Для Вар.1 α_1 = 0 и звено первого порядка сводится к элементу задержки. Интересно, что простому округлению коэффициентов минимаксного фильтра при f_1 = f_{1g} , f_2 = f_{2g} соответствует решение, для которого Σ_m на 67%, а Σ на 33% больше, чем для вар.1. В Q_{min} -фильтре из [6] квантована только часть коэффициентов, а проектирование обычного фильтра не рассмотрено. Для данного примера встречено много решений приемлемых по α_0 и не приемлемых по α_0 и наоборот. Это оправдывает применение минимаксного критерия в предлагаемом алгоритме, а не контроля только α_0 , как в [8].

4.4. Пример 4

Требования к ФНЧ [8]: $\Delta a_{max} = 0.2$ дБ, $a_{0min} = 30$ дБ, $f_{1g} = 0.135$, $f_{2g} = 0.2$ и N=5. Для двух вариантов синтеза предложенный алгоритм дает

Bap.1:
$$M = 4$$
, $\Sigma_m = 3$, $S(\Delta a, f_1, f_2) = S(0,000202, 0,105778, 0,217013),
 $\alpha_1 = -2^{-2}$, $\alpha_2 = \alpha_3 = -2^{-1} - 2^{-4}$, $\beta_2 = 2^{-2}$, $\beta_3 = 2^{-1} + 2^{-2}$,$

Bap.2:
$$M = 4$$
, $\Sigma_m = 5$, $S(f_1, f_2) = S(0,114473, 0,203756)$, $\alpha_1 = -2^{-2} - 2^{-4}$, $\alpha_2 = \alpha_3 = -2^{-1} - 2^{-4}$, $\beta_2 = 2^{-2} + 2^{-4}$, $\beta_3 = 2^{-1} + 2^{-2}$.

Решение из [8]

$$M = 7$$
, $\Sigma_m = 6$, $\alpha_1 = -2^{-2} - 2^{-6}$, $\alpha_2 = \alpha_3 = -2^{-1}$, $\beta_2 = 2^{-1} - 2^{-3} - 2^{-5}$, $\beta_3 = 1 - 2^{-2} + 2^{-5} + 2^{-7}$.

Как видно, предложенный алгоритм приводит к улучшению решения [8] в отношении $\Sigma_{\rm m}$. Решение для вар.1 соответствует обычному проектированию, но представляет $Q_{\rm min}$ -фильтр. Для данного примера невозможно получить это решение, преднамеренно используя синтез $Q_{\rm min}$ -фильтра. Начальная точка для вар.1 находилась вне S, но в близи ее границы. Заметим, что найденное значение $\beta_3=0,75$ находится вне диапазона, определенного в [8] для этого коэффициента.

4.5. Пример 5

Требования к полуполосному ФНЧ [8]: a_{0min} =46 дБ, f_{2g} =0,28 и N=9. Параметр Δa_{max} не задан. Все три варианта синтеза приводят к идентичному результату

Bap.1: $S(\Delta a, f_1, f_2) = S(0,000007, 0,219030, 0,280971),$

Bap.2: $S(f_1, f_2) = S(0,219030, 0,280971),$

Bap.3: $S(f_2) = S(0,280971),$

M = 5, $\Sigma_m = 5$, $\beta_2 = 2^{-4} + 2^{-5}$, $\beta_3 = 2^{-2} + 2^{-4} + 2^{-5}$, $\beta_4 = 2^{-1} + 2^{-3}$, $\beta_5 = 1 - 2^{-3}$.

Для всех трех вариантов это решение получено на первом этапе предложенного алгоритма. Решение из [8]

$$M = 8$$
, $\Sigma_m = 7$, $\beta_2 = 2^{-3} - 2^{-8}$, $\beta_3 = 2^{-2} + 2^{-3} + 2^{-6}$, $\beta_4 = (1 + 2^{-2})(2^{-1} + 2^{-5})$, $\beta_5 = 1 - 2^{-3} + 2^{-6}$.

Как видно предложенный алгоритм приводит к уменьшению Σ_m на два сумматора.

5. Заключение

В данной работе метод вариации исходных параметров эллиптической аппроксимации распространен на синтез цифровых фильтров на основе параллельного соединения двух фазовых цепей с конечной длиной слова коэффициентов. Предложенный алгоритм направлен на получение фильтров с минимальной длиной слова коэффициентов и/или фильтров без умножителей с минимальным полным числом сумматоров. На первом этапе алгоритма определяются хорошие начальные точки в области исходных параметров, а на втором - осуществляется локальный поиск решений с квантованными коэффициентами в окрестности этих точек. Рассмотрены особенности синтеза обычных и специальных фильтров (Q_{min}-фильтры и полуполосные). Решениям с минимальным полным числом сумматоров не обязательно всегда соответствуют Отпритеры. Кроме того, обычное проектирование может приводить к лучшему Q_{min}-фильтру, чем проектирование именно такого фильтра. При полуполосных требованиях, по-видимому, следует проектировать именно полуполосные фильтры. Установлено, что для рассмотренных структур существуют обычные эллиптические цифровые фильтры третьего порядка со всеми квантованными коэффициентами. В этом случае предложенный метод начальных точек сразу приводит к глобально оптимальным результатам. Предлагаемый алгоритм позволяет улучшить существующие решения в отношении полного числа сумматоров и может быть использован при разработке СБИС и САПР цифровых фильтров без умножителей.

Библиография

- 1. Мингазин А.Т. Синтез передаточных функций цифровых фильтров в области дискретных значений коэффициентов (обзор). // Электронная техника, Сер. 10, 1993, N1,2, с. 3-35.
- 2. Мингазин А.Т. Начальные приближения для синтеза цифровых фильтров с минимальной длиной слова коэффициентов. // Электронная техника, Сер. 10, 1983, N6, с. 3-8.
- 3. Мингазин А.Т. Синтез рекурсивных цифровых фильтров при ограниченной разрядности коэффициентов.// Электросвязь, 1987, N9, c. 58-62.
- 4. Мингазин А.Т. Вариация исходных параметров при синтезе рекурсивных цифровых фильтров.//Электросвязь, 1989, N11, с. 53-54.
- 5. Мингазин А.Т. Синтез цифровых фильтров с малоразрядными коэффициентами при дополнительных требованиях к виду передаточной функции.//Известия вузов. Радиоэлектроника, 1998, N2, с. 48-52.
- 6. Lutovac M.D., Milic L.D. Design of computationally efficient elliptic IIR filters with a reduced number of shift-and-add operations in multipliers. //IEEE Trans., 1997, SP-45, N 10, pp. 2422-2430.
- 7. Milic L.D., Lutovac M.D. Design of multiplierless elliptic IIR filters. //Proc. of IEEE ICASSP, 1997, pp. 2201-2204.
- 8. Milic L.D., Lutovac M.D. Design of multiplierless elliptic IIR filters with a small quantization error.// IEEE Trans., 1999, SP-47, N 2, pp. 469-479.
- 9. Rabrenovic D.M., Lutovac M.D. Elliptic filters with minimal Q-factors. //Electron. Lett., 1994, 30, N 3, pp. 206-207.