
Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering (ESAT)

Physically Unclonable Functions:

Constructions, Properties and Applications

Roel MAES

Dissertation presented in partial

fulfillment of the requirements for

the degree of Doctor

in Engineering

August 2012

Physically Unclonable Functions:

Constructions, Properties and Applications

Roel MAES

Jury:
Prof. dr. ir. Ann Haegemans, chair
Prof. dr. ir. Ingrid Verbauwhede, promotor
Prof. dr. ir. Bart Preneel
Prof. dr. ir. Patrick Wambacq
Prof. dr. ing. Ahmad-Reza Sadeghi

(Technische Universität Darmstadt, Germany)
Dr. Pim Tuyls

(Intrinsic-ID B.V., the Netherlands)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

August 2012

© Katholieke Universiteit Leuven – Faculty of Engineering
Kasteelpark Arenberg 10 box 2446, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/95
ISBN 978-94-6018-561-8

Acknowledgements

procrastination, n. /pr@(U)�krast1"neISn/
1. The action or habit of postponing or putting

something off; delay, dilatoriness. Often with
the sense of deferring through indecision, when
early action would have been preferable.

2. The postponing or deferring of something.

The Oxford English Dictionary

I have put off writing this paragraph to the very last moment before printing
this book, presumably because it is the hardest and undoubtedly the most read
part of this lengthy thesis. My versioning system tells me that it has been four
months since I committed the first sentence of this manuscript, and in total
it has been almost five years since I started the research which led to it. And
what a five years it have been; filled with challenge and wonder, hard work
and fun, joy and frustration, collaboration and friendship. I want to spend a
few words to thank all the people who have played a role in this remarkable
adventure which is the pursuit of a Ph.D. degree.

Before all others, I am grateful to my promotor Prof. Ingrid Verbauwhede, for
the opportunities she has created for me, for her advise on matters great and
small, and for trusting me to find my own way. I am also much indebted to
Dr. Pim Tuyls for introducing me to the exciting topic of this thesis and guiding
me through my first couple of years as a young researcher. In addition, I want
to thank my other jury members for their combined effort in reviewing this
text, the KU Leuven for offering such an inspiring academic environment, and
the Agency for Innovation by Science and Technology (IWT) for funding the
major part of my research.

Being a researcher is far from a solitary occupation, and I have had the pleasure
and privilege of meeting and collaborating with many of my peers worldwide.

i

ii ACKNOWLEDGEMENTS

The very last section in this book would be considerably shorter without the
contribution and guidance of all my appreciated coauthors. A special thanks
goes out to the partners of the European UNIQUE project, and the people
behind them, with whom it was always a pleasure to meet and discuss things,
and from whom I have learned a lot. I also greatly enjoyed the opportunities
to get a taste of the life as a researcher in industry, through internships at
Philips and Intel; both were extremely challenging experiences which have had
a significant positive impact on me.

It is hard to overestimate my gratitude for being able to work in an atmosphere
as vibrant, yet warm and friendly as the COSIC research group. Over the years
I have seen people come and go, but the helpfulness, sociability and plain fun
were invariably present. One of the many special people responsible for this is
Péla Noé, COSIC’s secretary and so much more, but I am grateful to all my
colleagues who make COSIC such an enjoyable place to work.

Een dankjewel uit de grond van mijn hart is voor mijn familie die altijd in
mij is blijven geloven: voor mijn ouders die mij ongelooflijke kansen hebben
geboden, mij ook stimuleerden om deze te grijpen en me uiteindelijk de vrijheid
gaven om er ten volste voor te gaan; voor mijn broer en zus voor wie ik niet
altijd de makkelijkste broer was, maar op wie ik altijd kan rekenen als ik ze
nodig heb; voor mijn grootouders die mij onvoorwaardelijk graag zien; voor
mijn schoonouders en -broers, voor het warme welkom in hun familie en de
vele ijsjes tijdens het schrijven van deze tekst. Ook een dikke merci aan mijn
vrienden, om mij op tijd en stond met mijn voeten op de grond te zetten en me
te laten meegenieten van de echte belangrijke dingen in het leven. Mijn laatste
woord van dank is voor mijn lieve vrouw Sofie, omdat ze mij al jaren verdraagt
en steunt, helpt en aanvult, begrijpt en liefheeft. Zonder haar was ik maar half
de man die ik vandaag ben.

Roel Maes
August 2012

Abstract

Physically unclonable functions or PUFs are innovative physical security primi-
tives which produce unclonable and inherent instance-specific measurements of
physical objects; PUFs are in many ways the inanimate equivalent of biometrics
for human beings. Since they are able to securely generate and store secrets,
PUFs allow to bootstrap the physical implementation of an information security
system. In this thesis, we discuss PUFs in all their facets: the multitude of their
physical constructions, the algorithmic and physical properties which describe
them, and the techniques required to deploy them in security applications. We
present our contributions on each of these aspects.

We first give an unprecedented extensive overview and classification of PUF
constructions, with a focus on intrinsic PUFs. We identify significant
subclasses, implementation properties and general design techniques used to
amplify sub-microscopic physical distinctions into observable digital response
vectors. We list the useful properties attributed to PUFs and capture them in
descriptive yet clear definitions. Through an elaborate comparative analysis,
we distinguish truly PUF-defining properties from nice-to-have but not strictly
required qualities. Additionally, we describe a formal framework for deploying
PUFs and similar physical primitives in cryptographic reductions.

In order to objectively compare the quality of different PUF constructions, we
contributed to the development of a silicon test platform carrying six different
intrinsic PUF structures. Based on experimental data from 192 distinct test
devices, including measurements at temperature and supply voltage corner
cases, we assess the reliability, the uniqueness and the unpredictability of each
of these constructions and summarize them in concise yet meaningful statistics.

Their instance-specific and unclonable nature enables to use PUFs as entity
identifiers. In combination with appropriate processing algorithms, they
can even authenticate entities and securely generate and store secrets. We
present new techniques to achieve PUF-based entity identification, entity

iii

iv ABSTRACT

authentication, and secure key generation. We additionally propose practical
designs implementing these techniques, and derive and calculate meaningful
measures for assessing the performance of different PUF constructions in these
applications based on the quality of their response statistics. Finally, as a
proof of concept, we present a fully functional prototype implementation of
a PUF-based cryptographic key generator, demonstrating the full benefit of
using PUFs and the efficiency of the introduced processing techniques.

Beknopte samenvatting

Fysisch onkloonbare functies of PUF’s (Physically Unclonable Functions)
zijn innovatieve fysische beveiligingsprimitieven die onkloonbare en inherente
instantiespecifieke metingen van een fysisch object produceren; in veel
opzichten zijn PUF’s het materiële equivalent van biometrische eigenschappen
voor personen. Doordat ze op een veilige manier geheimen kunnen genereren
en onthouden, zijn PUF’s in staat om de grondslag te leggen voor de fysische
implementatie van informatiebeveiligingssystemen. In deze verhandeling
bespreken we PUF’s in al hun facetten: de verscheidenheid van hun
fysische constructies, de algoritmische en fysische eigenschappen waardoor
ze worden beschreven, en de benodigde technieken om ze te gebruiken in
beveiligingstoepassingen. We presenteren onze bijdragen aan elk van deze
aspecten.

Eerst geven we een uitvoerig overzicht zonder voorgaande en een classificatie
van PUF-constructies, met de focus op intrinsieke PUF’s. We identificeren
belangrijke subklassen, implementatie-eigenschappen en algemene ontwerptech-
nieken die gebruikt worden om submicroscopische fysische verschillen te
vergroten tot waarneembare digitale responsvectoren. We lijsten de nuttige
eigenschappen op die worden toegeschreven aan PUF’s en vatten ze in beschri-
jvende maar duidelijke definities. Op basis van een uitgebreide vergelijkende
analyse onderscheiden we de werkelijk PUF-definiërende eigenschappen van
andere nuttige maar niet noodzakelijke kwaliteiten. Daarnaast beschrijven
we een strikt formeel raamwerk voor het inzetten van PUF’s en vergelijkbare
fysische primitieven in cryptografische afleidingen.

Om de kwaliteit van verschillende PUF-constructies op een objectieve manier
te vergelijken hebben we bijgedragen aan de ontwikkeling van een silicium
testplatform dat zes verschillende intrinsieke PUF-structuren bevat. Gebaseerd
op experimentele data verkregen van 192 individuele testchips, inclusief
metingen onder de uiterste temperatuur- en voedingsspanningsconditities,
hebben we de betrouwbaarheid, de uniciteit en de onvoorspelbaarheid van elk

v

vi BEKNOPTE SAMENVATTING

van deze constructies afgetoetst en samengevat in bevattelijke maar zinvolle
statistieken.

Hun instantiespecifieke en onkloonbare aard laat toe om PUF’s te gebruiken
voor entiteitsidentificatie. In combinatie met gepaste verwerkingsalgoritmes
kunnen ze zelfs entiteiten authentiseren en op een veilige manier geheimen
genereren en opslaan. We presenteren nieuwe technieken om PUF-gebaseerde
entiteitsidentificatie en -authenticatie, en veilige sleutelgeneratie mogelijk te
maken. We stellen bovendien praktische ontwerpen voor om deze technieken
te implementeren. We bepalen en berekenen betekenisvolle maatstaven om de
performantie van de verschillende PUF-constructies in deze toepassingen af te
toetsen aan de hand van hun responsstatistieken. Uiteindelijk presenteren we
een volledige werkzaam prototype van een PUF-gebaseerde sleutelgenerator als
een proof-of-concept-implementatie, om de volledige voordelen van het gebruik
van PUF’s te demonstreren, alsook om de efficiëntie van de geïntroduceerde
verwerkingstechnieken aan te tonen.

Contents

Abstract iii

Beknopte samenvatting v

Contents vii

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Introduction and Preview 1

1.1 Introduction . 1

1.1.1 Trust and Security in a Modern World 1

1.1.2 Information Security and Cryptology 3

1.1.3 Physical Security and Roots of Trust 6

1.2 Preview . 8

1.2.1 Introducing Physically Unclonable Functions 8

1.2.2 Thesis Outline and Contributions 10

vii

viii CONTENTS

2 Physically Unclonable Functions: Concept and Constructions 13

2.1 Introduction . 13

2.1.1 The PUF Concept . 13

2.1.2 Chapter Goals . 15

2.1.3 Chapter Overview . 16

2.2 Preliminaries . 16

2.2.1 Conventions on Describing PUFs 16

2.2.2 Details of a PUF Experiment 19

2.2.3 PUF Response Intra-Distance 20

2.2.4 PUF Response Inter-Distance 22

2.3 Terminology and Classification 23

2.3.1 “PUFs: Physical(ly) Unclon(e)able Functions” 24

2.3.2 Non-electronic, Electronic and Silicon PUFs 26

2.3.3 Intrinsic and Non-intrinsic PUFs 27

2.3.4 Weak and Strong PUFs 29

2.4 Intrinsic PUF Constructions . 30

2.4.1 Arbiter PUF . 31

2.4.2 Ring Oscillator PUF . 35

2.4.3 Glitch PUF . 40

2.4.4 SRAM PUF . 41

2.4.5 Latch, Flip-flop, Butterfly, Buskeeper PUFs 45

2.4.6 Bistable Ring PUF . 47

2.4.7 Mixed-Signal PUF Constructions 50

2.4.8 Overview of Experimental Results 51

2.5 PUF Extensions . 52

2.5.1 POKs: Physically Obfuscated Keys 52

2.5.2 CPUFs: Controlled PUFs 53

CONTENTS ix

2.5.3 RPUFs: Reconfigurable PUFs 53

2.5.4 PPUFs: Public PUFs and SIMPL Systems 55

2.6 Conclusion . 55

3 Physically Unclonable Functions: Properties 57

3.1 Introduction . 57

3.1.1 Motivation . 57

3.1.2 Chapter Goals . 59

3.1.3 Chapter Overview . 59

3.2 A Discussion on the Properties of PUFs 59

3.2.1 Constructibility and Evaluability 60

3.2.2 Reproducibility . 61

3.2.3 Uniqueness and Identifiability 62

3.2.4 Physical Unclonability 63

3.2.5 Unpredictability . 64

3.2.6 Mathematical and True Unclonability 65

3.2.7 One-Wayness . 66

3.2.8 Tamper Evidence . 67

3.2.9 PUF Properties Analysis and Discussion 68

3.2.10 Discussion on PUF Properties 75

3.3 Formalizing PUFs . 77

3.3.1 Earlier Formalization Attempts 77

3.3.2 Setup of the Formal Framework 81

3.3.3 Definition and Expansion of a Physical Function 82

3.3.4 Robustness of a Physical Function System 85

3.3.5 Physical Unclonability of a Physical Function System . 86

3.3.6 Unpredictability of a Physical Function System 89

x CONTENTS

3.3.7 Discussion . 91

3.4 Conclusion . 93

4 Implementation and Experimental Analysis of Intrinsic PUFs 95

4.1 Introduction . 95

4.1.1 Motivation . 95

4.1.2 Chapter Goals . 97

4.1.3 Chapter Overview . 98

4.2 Test Chip Design . 98

4.2.1 Design Rationale . 98

4.2.2 Design Requirements . 99

4.2.3 Top-Level Architecture . 101

4.2.4 PUF Block: Arbiter PUF 102

4.2.5 PUF Block: Ring Oscillator PUF 103

4.2.6 PUF Block: SRAM PUF 103

4.2.7 PUF Blocks: D Flip-Flop PUF, Latch PUF and Bus-
keeper PUF . 103

4.2.8 Power Domains . 105

4.2.9 Implementation Details 106

4.3 Experimental Uniqueness and Reproducibility Results 108

4.3.1 Evaluation of Delay-based PUFs 108

4.3.2 PUF Experiment: Goals, Strategy and Setup 110

4.3.3 Experimental PUF Uniqueness Results 111

4.3.4 Experimental PUF Reproducibility Results 114

4.4 Assessing Entropy . 122

4.4.1 Adversary Models and Basic Entropy Bounds 123

4.4.2 Entropy Bound Estimations Based on Experimental
Results . 127

CONTENTS xi

4.4.3 Modeling Attacks on Arbiter PUFs 128

4.5 Conclusion . 132

5 PUF-based Entity Identification and Authentication 135

5.1 Introduction . 135

5.1.1 Motivation . 135

5.1.2 Chapter Goals . 137

5.1.3 Chapter Overview . 138

5.2 PUF-based Identification . 138

5.2.1 Background: Assigned versus Inherent Identities 138

5.2.2 Fuzzy Identification . 140

5.2.3 Identification Performance for Different Intrinsic PUFs . 145

5.3 PUF-based Entity Authentication 150

5.3.1 Background: PUF Challenge-Response Authentication . 150

5.3.2 A PUF-based Mutual Authentication Scheme 153

5.3.3 Authentication Performance of Different Intrinsic PUFs 159

5.4 Conclusion . 162

6 PUF-based Key Generation 165

6.1 Introduction . 165

6.1.1 Motivation . 165

6.1.2 Chapter Goals . 166

6.1.3 Chapter Overview . 167

6.2 Preliminaries . 167

6.2.1 Secure Sketching . 167

6.2.2 Randomness Extraction 169

6.2.3 Fuzzy Extractors . 172

6.3 A Soft-Decision Secure Sketch Construction 174

xii CONTENTS

6.3.1 Motivation . 174

6.3.2 Soft-Decision Error Correction 175

6.3.3 Soft-Decision Secure Sketch Design 177

6.3.4 Implementation Results on FPGA 178

6.4 Practical PUF-based Key Generation 180

6.4.1 Motivation . 180

6.4.2 Practical Key Generation from a Fuzzy Source 180

6.4.3 Comparison of Key Generation with Intrinsic PUFs . . 185

6.4.4 A Full-Fledged Practical Key Generator Implementation 186

6.5 Conclusion . 193

7 Conclusion and Future Work 195

7.1 Conclusions . 195

7.2 Future Work . 197

A Notation and Definitions from Probability Theory and Information
Theory 201

A.1 Probability Theory . 201

A.1.1 Notation and Definitions 201

A.1.2 The Binomial Distribution 203

A.2 Information Theory . 204

A.2.1 Basics of Information Theory 204

A.2.2 Min-entropy . 206

B Non-Intrinsic PUF(-like) Constructions 207

B.1 Optics-based PUFs . 207

B.1.1 Optical PUF . 207

B.1.2 Paper-based PUFs . 209

CONTENTS xiii

B.1.3 Phosphor PUF . 210

B.2 RF-based PUFs . 210

B.2.1 RF-DNA . 210

B.2.2 LC PUF . 210

B.3 Electronics-based PUFs . 211

B.3.1 Coating PUF . 211

B.3.2 Power Distribution Network PUF 211

B.4 More Non-Intrinsic PUFs . 212

B.4.1 CD-based PUF . 212

B.4.2 Acoustical PUF . 212

B.4.3 Magstripe-based PUF 212

Bibliography 213

Curriculum Vitae 229

List of Publications 231

List of Figures

1.1 Relations between information security, cryptography, physical
security and physical roots of trust. 8

1.2 Organization of the subjects in this thesis and its chapters. . . 10

2.1 Construction of a basic arbiter PUF as proposed by Lee et al. [80]. 32

2.2 Construction of a simple ring oscillator PUF as proposed by
Gassend et al. [47]. 37

2.3 Construction of a comparison-based ring oscillator PUF as
proposed by Suh and Devadas [138]. 38

2.4 Construction of a glitch PUF as proposed by Shimizu et al. [133]. 42

2.5 Construction and power-up behavior of an SRAM cell. 43

2.6 Different PUFs based on bistable memory elements. 45

3.1 Relations between different PUF properties. 75

3.2 Schematic overview of the formal framework for physical functions. 85

4.1 Top-level block diagram of the test chip. 101

4.2 Address structure of the internal memory map of the test chip. 102

4.3 Floorplan of the structures on the test chip. 106

4.4 Success rate of a modeling attack on arbiter PUFs. 131

4.5 Entropy bounds resulting from arbiter PUF modeling attacks. . 132

xv

xvi LIST OF FIGURES

5.1 Example: estimated inter- and intra-distance distributions for
16-bit responses from the D flip-flop PUF. 141

5.2 Example: identification metrics for a threshold identification
system. 144

5.3 ROC curves for 64-bit identification with intrinsic PUF imple-
mentations. 146

5.4 A PUF-based mutual authentication scheme. 157

5.5 Entity design for the PUF-based authentication scheme. 160

6.1 Construction of a fuzzy extractor. 174

6.2 Architecture design of the soft-decision decoder. 179

6.3 Construction of a practical fuzzy extractor. 183

6.4 Top-level architecture of a PUF-based key generator. 189

6.5 Ring oscillator PUF design with Lehmer-Gray encoding. 189

6.6 Architecture of an area-optimized BCH decoding coprocessor. . . 191

B.1 Operation of the optical PUF as proposed by Pappu et al. [110]. 208

B.2 Construction of a Coating PUF as proposed by Tuyls et al. [145]. 211

List of Tables

2.1 Overview of experimental results of intrinsic PUF constructions
in the literature. 48

3.1 Properties of a representative subset of PUF and non-PUF
constructions. 71

4.1 Silicon area breakdown of the different test chip building blocks. 107

4.2 Uniqueness results of intrinsic PUF implementations. 113

4.3 Reproducibility results of intrinsic PUF implementations (nom-
inal). 116

4.4 Reproducibility results of intrinsic PUF implementations (LL). 117

4.5 Reproducibility results of intrinsic PUF implementations (LH). 118

4.6 Reproducibility results of intrinsic PUF implementations (HL). 119

4.7 Reproducibility results of intrinsic PUF implementations (HH). 120

4.8 Reproducibility results of intrinsic PUF implementations (worst-
case). 121

4.9 Entropy estimation results of intrinsic PUF implementations. . 129

4.10 Summary of results on intrinsic PUF implementations. 134

5.1 EER ≤ 10−6 identification performance of intrinsic PUF
implementations. 148

xvii

xviii LIST OF TABLES

5.2 EER ≤ 10−9 identification performance of intrinsic PUF
implementations. 149

5.3 EER ≤ 10−12 identification performance of intrinsic PUF
implementations. 149

5.4 Authentication performance of intrinsic PUF implementations. 163

6.1 Implementation results of a soft-decision secure sketch. 179

6.2 Key generation performance of intrinsic PUF implementations. 187

6.3 Implementation results of PUFKY: a fully functional PUF-based
key generator. 193

List of Abbreviations

AES Advanced Encryption Standard
ALILE Aluminium-Induced Layer Exchange
ANN Artificial Neural Network
ASIC Application-Specific Integrated Circuit
BCH Bose, Chaudhuri and Hocquenghem (code)
CD Compact Disc
CETS Commission on Engineering and Technical Systems
CMOS Complementary Metal-Oxide-Semiconductor
COTS Commercial Off-the Shelve
CPUF Controlled PUF
DNA Deoxyribonucleic Acid
FF Feed-Forward
FIB Focused Ion Beam
FPGA Field-Programmable Gate Array
GMC Generalized Multiple Concatenated (decoding algorithm)
HH High Temperature/High Supply Voltage (condition)
HL High Temperature/Low Supply Voltage (condition)
IC Integrated Circuit
ICID IC Identification
IP Intellectual Property
L.G. Lehmer-Gray
LC Inductor(L)-Capacitor(C)
LDPC Low-Density Parity-Check
LFSR Linear Feedback Shift Register
LH Low Temperature/High Supply Voltage (condition)
LL Low Temperature/Low Supply Voltage (condition)
LQFP Low-Profile Quad Flat Package
LRPUF Logically Reconfigurable PUF
MAC Message Authentication Code
µC Microcontroller

xix

xx LIST OF ABBREVIATIONS

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MS Mixed-Signal
mux Multiplexer
NAND Not AND (logical)
n-MOS n-Channel MOSFET
NOR Not OR (logical)
P.C. Pairwise Comparison
PCA Principal Component Analysis
p-MOS p-Channel MOSFET
POK Physically Obfuscated Key
POWF Physical One-Way Function
PPUF Public PUF
PRF Pseudo-Random Function
PRNG Pseudo-Random Number Generator
PUF Physically Unclonable Function
R/W Read/Write (interface)
RAM Random-Access Memory
REF Reference (condition)
REP Repetition (code)
RF Radio Frequency
RFID Radio Frequency Identification
ROC Receiver-Operating Characteristic
ROM Read-Only Memory
ROPUF Ring Oscillator PUF
RPUF Reconfigurable PUF
RSA Rivest, Shamir and Adleman (algorithm)
RTL Register Transfer Level
SDML Soft-Decision Maximum-Likelihood (decoding algorithm)
SHA Secure Hash Algorithm
SHIC Super-High Information Content
SIMPL Simulation Possible but Laborius
SNM Static Noise Margin
SPI Serial Peripheral Interface
SR Set/Reset
SRAM Static Random-Access Memory
SVM Support Vector Machine
TRNG True Random Number Generator
TSMC Taiwan Semiconductor Manufacturing Company, Limited
VHDL VLSI Hardware Description Language
VLSI Very-Large-Scale Integration
WC Worst Case (condition)
XOR Exclusive OR (logical)

Chapter 1

Introduction and Preview

“The best books, he perceived, are those that tell you
what you know already.”

Nineteen Eighty-Four
George Orwell

1.1 Introduction

1.1.1 Trust and Security in a Modern World

Trust is a sociological concept expressing the positive belief that a person or
a system we interact with will behave as expected. In our day-to-day life, we
constantly and often implicitly put our trust in other parties, e.g. :

• When we drive a car, we trust that the car will function as expected, that
the brakes will work and that the car goes right when we turn the steering
wheel right. We also trust that the other people driving cars around us
are qualified to drive a car and are paying attention to traffic.

• When we deposit our money in a bank account, we trust that the bank
will keep the money safe.

1

2 INTRODUCTION AND PREVIEW

• When we send someone a letter, we trust the postal services to deliver
the letter in a timely manner to the right person, and to keep the letter
closed such that no one else can read its content.

• When we buy something in a shop, we trust the shop owner to deliver the
product, e.g. when we pay in advance, and that we receive the genuine
product we paid for. On the other hand, the shop owner trusts that we
will pay for all products we carry out.

In the majority of situations, such trust-based interactions work out in the right
way, because the parties we interact with are trustworthy. In fact, our entire
complex society is based on such trust relations between people and systems,
and it would not last very long when no one or no thing could be trusted.

However, we don’t live in an ideal world, and it would be very naive to think
that everyone is intrinsically trustworthy. Many parties have external motives
to behave in a trustworthy manner, e.g. the shop and the bank won’t get many
customers when they cannot be trusted, and the other car owners will primarily
drive carefully for their own safety. Some parties cannot be trusted at all; we
immediately think of criminals and terrorists, but this can also include e.g. ,
disgruntled employees, envious colleagues or nosy neighbours, or even normally
honest people who are tempted to abuse a situation when it presents itself. We
need systems that induce, guarantee or even enforce trustworthiness of parties
in our non-ideal world. This is what we call security, i.e. security is a means
to enable trust.

In the past, and to a large extent still today, security is either based on physical
protection and prevention measures, on observation and detection of untrusted
elements, or on legal and other reprimands of trust violations, and often on
a combination of these techniques. For example, in order to keep its (your)
money secure, a bank will store it in a vault (physical protection). The access
to this vault is moreover strictly limited to the bank’s employees and protocols
are in place to keep other people away (detection). Finally, by law, trying to
rob a bank is also a criminal act for which one will be prosecuted when caught
(legal reprimands). In our rapidly digitalizing modern world, these security
techniques are by themselves often no longer sufficient to adequately enable
trusted interactions, both due to i) the nature of these interactions, and ii) the
scale of the possible threats.

i. The remote and generic nature of many digital interactions lacks physical
protection and assurance measures, many of which are even implicitly present
in non-digital communications. For example, in the past, most interactions
with your bank would take place inside the bank’s building, face-to-face with
one of the bank’s employees. You (implicitly) trusted the authenticity of this

INTRODUCTION 3

interaction, e.g. because the building was always in the same place, and perhaps
because you physically recognized the clerk from previous transactions, and vice
versa. However, in the last couple of years, interactions with your bank have
shifted largely to online banking systems. In such an online system, e.g. a
website, this implied notion of authenticity does no longer exist, since everyone
could set up a website resembling that of your bank, and even fake its web
address. The same holds from the bank’s perspective: everyone could log-in
to the website and claim to be you. Other security measures are needed to
guarantee the authenticity of this interaction.

ii. The main success of digitalization is that it enables automation of
information processes to very large scales and speeds. However, this is also
one of the main risk factors when it comes to digital crime. For example, in
the real (non-digital) world, there is a risk of having your wallet stolen on
the street. However, a thief will have to focus on one victim at a time, and
for each attempt there exists a significant risk of failure which often ends in
getting caught. In a vastly interconnected computer network like the Internet,
with hundreds of millions of simultaneously active users, a digital thief can
deploy a computer program which targets thousands or millions at a time at
an incredibly fast pace. Moreover, failed attacks typically go by unnoticed or
are hard to trace back, and even with a very small success rate the thief will
get a significant return due to the vast number of targeted victims. Like the
threat, the security measures will also need to be digitized and automated in
order to offer adequate protection.

1.1.2 Information Security and Cryptology

Information Security

Information security deals with securing interactions involving the communi-
cation of information. The need for information security has existed for a
long time, historically in particular for matters of love and hate, i.e. secret
love letters and sensitive warfare communication. However, in the last
couple of decades this need has risen exponentially due to our vast and
ever increasing reliance on digital information processing and communication
systems. Unimaginable quantities of private and often sensitive information are
stored and communicated over the Internet and other digital networks every
second. Through the pervasiveness of smart mobile personal devices, digital
technology impacts our daily lives in ways we could not have foreseen, and
with the introduction and tremendous success of social networks, it has even
become an integral part of our lives. In many ways our society has become

4 INTRODUCTION AND PREVIEW

a flow of digital information, and reliable information security techniques are
indispensable to enable trust in this digital world.

Information security techniques are most comprehensibly classified by means
of the goals they aim to achieve. The most important goals are:

• Data confidentiality relates to keeping information secret from unautho-
rized parties, e.g. when accessing your bank account statements online,
you don’t want anyone else to see this information.

• Entity authentication deals with obtaining proof of the identity and the
presence of the entity one is interacting with, e.g. in an online banking
system, you need proof that you’re dealing with the real website of your
bank, as well as your bank needs proof that you are who you claim to be
before granting access to your account.

• Data integrity and authentication is aimed at preventing and detecting
unauthorized alteration of data (integrity) and ensuring the origin of the
data (authentication), e.g. when you issue an online bank transfer, your
bank needs to be sure that it was you who issued the transfer, and that
the data of the transfer (amount, account number, . . .) has not been
changed by someone who could have intercepted the transfer message
before it reached the bank.

Cryptology

Cryptography, a subfield of cryptology, deals with the construction of
protocols and algorithms to achieve information security goals, typically on
a mathematical basis. The other subfield of cryptology is cryptanalysis, which
analyzes the security of cryptographic constructions by attempting to break
their anticipated security. Both subfields are intimately linked, often exercised
by the same persons, and a close interplay between both is invaluable. One of
the, if not the basic principle of modern cryptology is the understanding that a
cryptographic construction can only be considered secure if its internal workings
are general knowledge and have successfully withstood elaborate cryptanalysis
attempts from independent parties. This is also called Kerckhoffs’ principle
after Auguste Kerckhoffs who first stated it [71], and stands in contrast to so-
called security-through-obscurity which attempts to reach security goals with
undisclosed and hence unanalyzed constructions.

A basic design principle for many cryptographic constructions is to reduce the
security goal they attempt to achieve to the secrecy of a single parameter in
the construction, called the key. The obtained level of security is typically

INTRODUCTION 5

expressed by the required effort to break it without knowing the key, which
should be an exponential function of the key’s length in bits. An important
aspect in these security reductions is the assumptions one makes about the
power of the adversary, e.g. whether he can observe a number of inputs and/or
outputs of a primitive and whether he is only a passive observer or if he can
actively or even adaptively interfere with the execution of the primitive. Based
on the nature of a reduction, different security notions can be distinguished:

• Heuristic security means that even after elaborate cryptanalysis of a
construction, no attacks can be found which break its security with a
computational effort less than expressed by the key length.

• Provable security means that, through logical reasoning, the construc-
tion’s security can be shown to be equivalent to a mathematical problem
which is perceived to be hard, with the problem’s hardness expressed
by the key length. Examples of such hard mathematical problems for
which no efficient algorithms are known, and which are actually used in
cryptographic constructions, are factorization of large integers (e.g. as
used in the RSA algorithm [115]) and computation of discrete logarithms
(e.g. as used in the Diffie-Hellman key exchange protocol [37]).

• Information-theoretical security means that it can be shown through
information-theoretical reasoning that an adversary does not have
sufficient information to break the construction’s security. This basically
means the construction is unbreakable, even to an adversary with
unlimited computational capabilities.

For an extensive overview of the construction and properties of cryptographic
primitives, we refer to [102]. Cryptographic primitives can be classified based
on the nature of their key. We respectively distinguish i) unkeyed primitives,
ii) symmetric-key primitives, and iii) public-key primitives and list some of
their most important instantiations and achieved security goals.

i. Unkeyed primitives are constructions which do not require a key. Following
Kerckhoffs’ principle, their operation is hence completely public and can be
executed by everyone. Their security is basically grounded in the difficulty
of finding an input which matches a given output. The most used unkeyed
primitives are cryptographic hash functions, which provide data integrity and
also often serve as a building block in larger cryptographic constructions.

ii. Symmetric-key primitives are based on a single key which is only
known to authorized parties and secret to anyone else. Symmetric-key
encryption algorithms, such as block ciphers and stream ciphers, provide
data confidentiality between parties knowing the secret key. Symmetric-key

6 INTRODUCTION AND PREVIEW

message authentication codes provide data integrity and authentication and
entity authentication between parties knowing the key.

iii. Public-key primitives are based on a key pair, one of which is public and the
other is kept private. In a public-key encryption scheme, everyone can encrypt
a message with the public key, but only the party which knows the private key
can decrypt it. In a public-key signature scheme, only the party knowing the
private key can generate a signature on a message, and everyone can use the
public key to verify that party’s signature. Signature schemes provide entity
authentication, among other goals.

1.1.3 Physical Security and Roots of Trust

Physical Security

To use a cryptographic primitive in practice, it needs to be implemented on
a digital platform in an efficient manner. Unlike Kerckhoffs’ principle for
the general construction, for the implementation it is typically assumed that
the primitive behaves like a black box, i.e. one is only able to observe the
input-output behavior of the implementation, not its internal operations. In
particular, for nearly all (keyed) cryptographic primitives, it is assumed that:

• A secure (random, unique, unpredictable, . . .) key can be generated for
every instantiation of the primitive. This is called secure key generation.

• The key can be assigned to, stored and retrieved by the instantiation
without being revealed. This is called secure key storage.

• The instantiation can execute the cryptographic algorithm without
revealing any (partial) information about the key or about internal results,
and without an outsider being able to influence the internal execution in
any possible way. This is called secure execution.

While these are convenient assumptions for mathematical security reductions,
from a practical perspective they are very hard to attain. Moreover, it is
clear that none of these three black-box assumptions can be achieved through
information security techniques, but require physical security measures. In a
way, one could say that cryptographic primitives reduce information security
objectives into physical security requirements.

The fact that none of the three identified physical security objectives are trivial,
is made clear by the numerous cases where information security systems are
attacked by breaking the security at a physical level.

INTRODUCTION 7

• The fact that secure key generation is difficult was just recently made clear
again by Lenstra et al. [82], who show that there is a significant shortage
in randomness in a large collected set of actually used public keys from
a public key signature scheme, likely caused by badly implemented key
generators. For some of the keys in the analyzed collection, this leads to
an immediate loss of security.

• Storing secret keys in a highly secure manner partially contradicts with
the fact that they still need to be in some (permanent) digital format
to be usable in an algorithm. For typical digital implementations, this
means that the key bits reside somewhere in a non-volatile digital memory
on a silicon chip. Even with extensive countermeasures in place, it is
very difficult to stop a well-equipped and/or determined adversary from
gaining physical access to key memories, e.g. as demonstrated by Torrance
and James [143] and Tarnovsky [140].

• There are many ways an adversary can break the secure execution
assumption, both on the software and on the hardware level. Modern
cryptographic implementations can no longer ignore side-channel attacks,
which abuse the fact that all actions on a digital platform leak information
about their execution through so-called side channels, e.g. through their
execution time [73], their power consumption [74], their electro-magnetic
radiation [112], etc. Fault attacks [16] on the other hand seek to disrupt
the expected execution of a cryptographic algorithm through physical
means, and learn sensitive information from the faulty results.

Physical Roots of Trust

In order to provide these physical security objectives, we cannot rely on
mathematical reductions anymore. Instead, we need to develop physical
techniques and primitives which, based on physical reasoning, can be trusted
to withstand certain physical attacks and can hence provide certain physical
security objectives. We call such primitives physical roots of trust. Figure 1.1
shows how information security objectives can be achieved from physical
security and eventually from physical roots of trust, i.e. trusted primitives
which are rooted in the actual physical world. Possible candidates of physical
roots of trust are:

• True random number generators or TRNGs [42, 126] harvest random
numbers from truly physical sources of randomness and can therefore be
trusted to produce highly random keys for cryptographic purposes.

8 INTRODUCTION AND PREVIEW

Information Security Objectives

Physical Security Objectives

Data

Confidentiality
Data Integrity

Data

Authentication

Entity

Authentication
...

Secure Key

Generation

Secure Key

Storage

Secure

Execution
...

Block

Ciphers

Stream

Ciphers

MAC

Functions

Hash

Functions

Public-Key

Signatures

Public-Key

Encryption
Protocols ...

Cryptographic
Primitives

PUFs TRNGs
Secure

Logic Style
...

Physical Roots
 of Trust

Physical World

Figure 1.1: Relations between information security, cryptography, physical
security and physical roots of trust.

• Design styles for digital silicon circuits have been developed which
minimize and ideally eliminate certain physical side channels [141].

• Physically unclonable functions or PUFs produce unpredictable and
instance-specific values and can be used to provide physically secure key
generation and storage. They are the main subject of this thesis.

1.2 Preview

1.2.1 Introducing Physically Unclonable Functions

A physically unclonable function or PUF is best described as “an expression
of an inherent and unclonable instance-specific feature of a physical object”,
and as such has a strong resemblance to biometric features of human beings,
like fingerprints. To be specific, PUFs show qualities which cannot be obtained

PREVIEW 9

from cryptographic reductions, but require a physical basis to establish them,
the most noteworthy being physical unclonability. This means that through
physical reasoning it is shown that producing a physical clone of a PUF is
extremely hard or impossible.

PUF Constructions. The physical motivation for claiming unclonability of
an inherent instance-specific feature is found in the technical limitations of the
production of physical objects. Even with extreme control over a manufacturing
process, no two physically exactly identical objects can be created due to the
influence of random and uncontrollable effects. Typically, these influences
are very small and only take effect at (sub-)microscopic scales, but leave
there random marks nonetheless. A high-precision measurement of these
marks serves as an inherent and instance-specific feature. Moreover, creating
a second object which produces a similar measurement is infeasible from a
physical perspective, and often even technically impossible. Generating such
a measurement with an accuracy high enough to distinguish these instance-
specific features is the primary goal in the study of PUF constructions. The
basic technique which is typically used, is to design a construction, either
external or internal to the object, which amplifies these microscopic differences
to practically observable levels.

PUF Properties. A wide variety of PUF constructions based on this principle
are possible and have been proposed, considering objects from many different
materials and technologies, each with their own specific intricacies and useful
properties. In order to apply PUFs to reach physical security objectives,
a generic and objective description of these PUF properties is required.
Moreover, it is important to distinguish truly PUF-specific properties from
other useful qualities which are inherent to a specific constructions but cannot
be generalized to all PUFs.

PUF Applications. Based on their unclonability and other useful properties,
PUFs can fulfill a number of physical security objectives when applied in the
right way. Besides taking advantage of the physical security properties of PUFs,
such PUF-based applications also need to deal with the practical limitations
of the construction. This is accomplished by deploying a PUF in a scheme
together with other primitives that enhance its qualities. Deploying a PUF in
a larger system typically leads to trade-offs, and hence optimization problems,
between the aspired security level and the implementation restrictions of the
application. Based on an analysis of such a scheme, some PUF constructions
will offer better trade-offs than other ones.

10 INTRODUCTION AND PREVIEW

1.2.2 Thesis Outline and Contributions

In this thesis, we study PUF constructions, properties as well as applications,
both from a conceptual and from a very practical perspective. Figure 1.2 shows
how these subjects relate to each other and organized in this text.

Constructions

Properties

Applications

Concept and Existing

Constructions
PUF Implementations

PUF-Defining and

Nice-to-have Qualities

Physical Security

Objectives

PUF Characterizations

PUF Evaluations

Chapter

2

Chapter

3

Chapter

4

Chapters

5 & 6

A
n
a
ly

s
is

E
x
p
e
rim

e
n
t

D
e
s
ig

n

Conceptual Practical

S
y
n
th

e
s
is

Figure 1.2: Organization of the subjects in this thesis and its chapters.

In Chapter 2, we explain the details of the PUF concept and provide an
extensive overview of existing PUF constructions with a focus on so-called
intrinsic PUFs. This overview is of an unprecedented completeness and
serves as a great aid in understanding the true nature of what we rather
intuitively have called a PUF. It includes a description of our intrinsic PUF
proposals from [77, 89]. Based on this overview, we also manage to identify
significant subclasses, design techniques, implementation properties and even
open problems related to PUF constructions. As a whole, this chapter presents
an extended version of our work published in [93, Section 3].

PREVIEW 11

In Chapter 3, we identify and define different meaningful properties at-
tributed to PUFs and, based on Chapter 2, we analyse if and to what extent
actual PUF constructions attain them. From this analysis, a number of these
properties are found to be defining for the concept of a PUF, while others are
mere convenient qualities but are in no way guaranteed for all PUFs. This is
a more detailed version of our analysis published in [93, Section 4] In order to
increase their potential in theoretical constructions, a highly formal framework
for using PUFs and their most important properties is also introduced. We
published the initial description of this framework in [8].

In Chapter 4, we implement a significant subset of studied intrinsic PUF
constructions on a realistic silicon platform (65 nm CMOS ASIC) and
experimentally verify their behavior at nominal condition and at extreme
temperature and voltage corners. We capture the qualities of each studied
construction in a small number of meaningful statistics. Additionally, we
analyse the unpredictability of each PUF by introducing heuristic upper bounds
on their entropy density. A preliminary version of our analysis and a description
of the test chip design is published in [88].

In Chapter 5, we investigate how PUFs can be used to identify distinct
objects, and ultimately provide entity authentication. Quality metrics for
assessing identification performance are discussed and applied on the PUF
constructions studied in Chapter 4, yielding a classification of their identifying
capabilities. We introduce a PUF-based authentication protocol innovatively
combining a PUF and other primitives. This is an extended version of the
protocol we proposed in [150]. Authentication performance metrics similar to
those for identification are assessed for the constructions from Chapter 4.

In Chapter 6, it is explained how PUFs can be used to obtain secure key
generation and storage. Existing notions and techniques for key generation are
discussed, and a practical new variant is proposed which yields a significant gain
in efficiency. Based on the design constraints of a convenient construction of a
practical PUF-based key generator, the PUF implementations from Chapter 4
are assessed for their key generation capacities. To conclude, we present a front-
to-back PUF-based key generator design and a fully functional FPGA reference
implementation thereof. The results discussed in this chapter are based on our
published works in [90–92].

In Chapter 7, we summarize the most important findings of this thesis and
propose a number of interesting future research directions.

Chapter 2

Physically Unclonable
Functions: Concept and
Constructions

He says there’s no doubt about it
It was the myth of fingerprints
I’ve seen them all and man
They’re all the same

All Around the World or the Myth of Fingerprints
Paul Simon

2.1 Introduction

2.1.1 The PUF Concept

Being the main subject of this thesis, it is important to clarify and define
the basic concept of a physically unclonable function or PUF. However, for a
variety of reasons, this task turns out to be less straightforward than expected.
The collection of proposed constructions labelled ‘PUF’ is growing at such a
pace, both in depth and breadth, that one can easily call it a zoo at this

13

14 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

moment.1 There is also an equally substantial group of constructions which
could, but are for the moment not, called a ‘PUF’, among other reasons because
they were proposed before the acronym ‘PUF’ had been coined, or because
they were proposed by authors unfamiliar with the acronym, e.g. in fields
outside hardware security engineering. All these differing constructions are
moreover proposed in a greatly varying patchwork of implementation materials,
technologies and platforms. Finding similar or even identifying properties
which accurately capture what is understood to be a PUF is hence far from
trivial. In this chapter and the next, we discuss the PUF concept in great
detail in order to do exactly that. First, by extensively studying existing
PUF constructions in Chapter 2, and next by describing, assessing and finally
formalizing the observed properties of PUFs in Chapter 3.

On PUFs and Fingerprints

In an attempt to express the concept of a PUF in a single phrase, one of the
best possible descriptions would be: “a PUF is an object’s fingerprint”. PUFs
are similar to fingerprints for more than one reason:

• A human fingerprint is a feature which strongly expresses individualism,
i.e. it answers the question “Which human is this?”. This as opposed
to other features like, e.g. having two eyes and ears and walking on two
legs, which express essentialism, i.e. answering the question “What is a
human?”. In a more inanimate sense, a PUF bears the same meaning for
a class of objects: a PUF is an identifying feature of a specific instance
of a class of objects, or for short an instance-specific feature.

• As an individualising feature, a fingerprint is also inherent, i.e. every
human being is born with fingerprints, unlike other identifying qualities
like a name or a written signature, which are bestowed upon or acquired
by an individual after birth. In the same way, PUFs are inherently present
in an object from its creation, as a result of unique variations during its
creation process.

• Finally, as an inherent individualising feature, fingerprints are also
unclonable, i.e. the physical and biological processes which determine
a human being’s fingerprint are beyond any level of meaningful control
which would allow to create a second individual with the same inherent
fingerprints.2 This even holds for human beings sharing the same genetic

1By analogy with the Complexity Zoo [4] and the SHA-3 Zoo [5].
2By unclonable we do not mean that it is impossible to create or obtain a facsimile of a

person’s fingerprint; in fact human beings create copies of their fingerprints every time they
touch a smooth surface.

INTRODUCTION 15

material, like identical twins. Hence even a (hypothetical) biological
clone of a person would not share that person’s fingerprints. Also in this
aspect are PUFs very similar to fingerprints. In fact, by being the central
specifier in the term ‘physically unclonable functions’, it is expressed that
(physical) unclonability is one of the core properties of a PUF.

Following this discussion, we propose the following colloquial dictionary
definition of the PUF concept: “a PUF is an expression of an inherent
and unclonable instance-specific feature of a physical object”. By indicating
that a PUF is always object-related, we explicitly distinguish PUFs from
fingerprints and other biometric parameters which naturally reflect on human
beings. However, as discussed above, in many aspects PUFs and biometrics are
equivalent.

2.1.2 Chapter Goals

Order in the PUF Zoo

The amount of published results on physically unclonable functions has
increased exponentially over the last years, and the need for a synthesizing
effort presents itself. This chapter, which is an updated and extended version
of our work in [93], is the first to make an objective, large-scale and in-depth
overview of the myriad of PUFs which have been proposed over the years. The
main goals of this overview are:

• Present an as-complete-as-possible reference list of PUF and PUF-like
proposals to date, with a focus on so-called intrinsic PUFs.

• Introduce and apply a classification of PUF constructions based on
practical considerations.

• Present a common descriptive framework for assessing the basic function-
ality and quality of a PUF, and use it to produce an as fair as possible
comparative quantitative analysis of different PUF implementations
based on published experimental results.

Besides these clear objectives, this overview will also be of great aid in
identifying interesting subclasses, properties, applications, and even open
problems in the field of PUFs.

16 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

2.1.3 Chapter Overview

Before we start describing different PUF constructions and their qualities, we
will in Section 2.2 introduce the basic nomenclature and notational conventions
related to PUFs which we will use throughout this thesis. These conventions
make it much easier to relate and compare identical concepts in often widely
differing implementations and data sets, and it is therefore highly recommended
to read this section first. In Section 2.3, we delve deeper into the semantics
of the acronym ‘PUF’ and also discuss a number of possible classifications
in the large variety of PUF constructions which have been proposed over
time. The main body of this chapter is a very extensive overview of known
PUF constructions,3 detailing the implementation details of each proposal
and reporting experimental results, if any. In this thesis, we mainly focus
on intrinsic PUF constructions which are discussed in Section 2.4. For
more information on existing non-intrinsic PUF constructions we refer to
Appendix B. In Section 2.5, a number of concepts are discussed which present
extensions or modes of operation of PUFs. Finally, we conclude this chapter in
Section 2.6.

2.2 Preliminaries

2.2.1 Conventions on Describing PUFs

Formally describing the operation of a PUF is a tedious yet important task.
Due to the multitude of different PUF constructions and different ways of
considering a PUF outcome, one quickly runs the risk of either introducing
confusion due to an ambiguous description or loosing important details due
to a too sparse description. Here, we introduce the verbal and notational
description of PUFs which we will use and build upon throughout the rest
of this thesis. Since this is only intended as a convenient but clear notation
format, we refrain at this point as much as possible from making assumptions
or putting restrictions on the underlying notions. Instead, we limit these
conventions to the most basic concepts required to formally talk about PUFs.
For completeness, the basic mathematical notations and definitions used in this
section and the rest of this thesis are shortly introduced in Appendix A.

3We aim at giving an exhaustive overview of PUF proposals up to date, but with the
plethora of new constructions appearing in the latest years, it is very likely that some are
missing.

PRELIMINARIES 17

PUF Class

We first introduce the notion of a PUF class, denoted as P, which is the
complete description of a particular PUF construction type. A PUF class
provides a creation procedure P.Create which is invoked to create instances of
P. In general P.Create is a probabilistic procedure, which we make explicit
when necessary by providing it with a randomized input P.Create(rC), with
rC $
← {0, 1}∗ representing an undetermined number of fair coin tosses.

From a practical point of view, P represents the detailed structural design or
blueprint of a PUF construction and P.Create the detailed (physical) production
process to build the design.

PUF Instance

A PUF instance puf is a discrete instantiation of a PUF class P, as generated by
its creation procedure P.Create. In all respects, a PUF class can be considered
to be the set of all its created instances:

P ≡ {pufi ← P.Create(rC

i) : ∀i, rC

i

$
← {0, 1}∗} .

A PUF instance puf is considered as a particular crystallized state of the
construction described by its PUF class P. The construction of many PUF
classes allows that part of a PUF instance’s state is configurable, i.e. it is not
fixed by the creation procedure but can be set and easily modified by means
of an external input. When required, we specify the configurable state x of a
PUF instance puf as puf(x).

From a practical point of view, the state represented by a PUF instance
puf is the exact (physical) structure of a produced PUF construction. The
configurable part of a PUF instance’s state is generally called the challenge
which is applied to the PUF instance, and we will use the same terminology
in this thesis. The set of all possible challenges x which can be applied to an
instance of a PUF class P is denoted as XP .

PUF Evaluation

Every PUF instance puf provides an evaluation procedure puf.Eval which
produces a quantitative outcome representing a measurement of the PUF
instance. The outcome produced by puf.Eval depends on the state represented
by the PUF instance. When the PUF instance is challengeable, we write:

18 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

puf(x).Eval. In general puf(x).Eval is also a probabilistic procedure which we
again make explicit when necessary as puf(x).Eval(rE $

← {0, 1}∗).

From a practical point of view, a PUF instance evaluation is the outcome
of a (physical) experiment, generating a particular measurement of the PUF
instance’s physical state at that moment. Such a measurement is generally
called the response of the PUF instance and we will use the same terminology.
The class of all possible response values which a PUF instance of a PUF class
P can produce, is denoted as YP .

For many PUF classes, the outcome of a PUF instance evaluation is also
affected by external physical parameters, e.g. environment temperature, supply
voltage level, etc. We call this the condition of the evaluation. When required,
we denote this as puf(x).Evalα, e.g. with α = (Tenv = 80 °C) meaning that
this evaluation took place at an environment temperature of 80 °C. When
the condition specifier α is omitted, one may assume an evaluation at nominal
operating conditions.

Short-hand Notation

To avoid the rather verbose use of the randomization variables rC and rE, we
introduce a more convenient and compact notation using random variables.

Creation of a random PUF instance:

pufi ← P.Create(rC

i

$
← {0, 1}∗) , becomes

PUF← P.Create , or even shorter PUF← P .

Random evaluation of PUF instance pufi on challenge x:

y
(j)
i (x)← pufi(x).Eval(rE

j

$
← {0, 1}∗) , becomes

Yi(x)← pufi(x).Eval , or even shorter Yi(x)← pufi(x) .

Random evaluation of a random PUF instance on challenge x:

Y (x)← PUF(x).Eval , or shorter Y (x)← PUF(x) .

PRELIMINARIES 19

2.2.2 Details of a PUF Experiment

A PUF response is generally considered a random variable. To assess the
usability of a PUF class, information about the distribution of its PUF
responses is needed. A possible way to obtain such knowledge is through
experiment,4 i.e. estimating distribution statistics from observed PUF response
values.

Definition and Parameters of a PUF Experiment

PUF response values observed in an experiment can be ordened in a number
of different ways. Three important ‘dimensions’ in an array of observed
PUF responses are discernable: i) responses from different PUF instances;
ii) responses from the same PUF instance but on different challenges; and
iii) responses from the same PUF instance on the same challenge but from
distinct evaluations.

Definition 1 (PUF Experiment). An (Npuf , Nchal, Nmeas)-experiment on a PUF
class P is an array of PUF response values obtained through observation. An
(Npuf , Nchal, Nmeas)-experiment contains Npuf × Nchal × Nmeas values, consisting of
response evaluations on Npuf (random) PUF instances from the considered PUF
class P, challenged on the same set of Nchal (random) challenges, with Nmeas

distinct response evaluations for each challenge on each PUF instance.

ExperimentP(Npuf , Nchal, Nmeas)→ YExp(P) =
[
y

(j)
i (xk)← pufi(xk).Eval(rE

j)
]

,

with

∀1 ≤ i ≤ Npuf : pufi
$
← P ,

∀1 ≤ k ≤ Nchal : xk
$
← XP ,

∀1 ≤ j ≤ Nmeas : rE

j

$
← {0, 1}∗ .

If the conditions of a PUF experiment are of importance, the condition specifier
is mentioned as Experimentα

P(Npuf , Nchal, Nmeas), which expresses that all PUF
responses of the experiment are evaluated under these conditions.

4An alternative method to learn information about PUF response distributions is through
physical modeling of the PUF class construction.

20 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

2.2.3 PUF Response Intra-Distance

Intra-Distance Definition

Definition 2. A PUF response intra-distance is a random variable describing
the distance between two PUF responses from the same PUF instance and using
the same challenge:

Dintra

puf
i

(x)
△

= dist [Yi(x); Y ′i (x)] ,

with Yi(x) and Y ′i (x) two distinct and random evaluations of PUF instance
pufi on the same challenge x. Additionally, the PUF response intra-distance
for a random PUF instance and a random challenge is defined as the random
variable:

Dintra

P
△

= Dintra

PUF←P(X ← XP) .

dist [.; .] can be any well-defined and appropriate distance metric over the
response set Y. In this thesis, responses are nearly always considered as
bit vectors and the used distance metric is Hamming distance or fractional
Hamming distance (cf. Section A.1.1).

Intra-Distance Statistics

For the design of nearly all PUF based applications, knowledge about the
distribution of Dintra

P is of great importance to characterize the reproducibility of
a PUF class (cf. Section 3.2.2). Therefore, estimated descriptive statistics of
this distribution are commonly presented as one of the most important basic
quality metrics for a PUF class. Based on the observed responses YExp(P) of a
PUF experiment ExperimentP(Npuf , Nchal, Nmeas), a new array Dintra

Exp(P) of observed
response intra-distances can be calculated:

Dintra

Exp(P) =
[
dist

[
y

(j1)
i (xk); y

(j2)
i (xk)

]]

∀1≤i≤Npuf ;∀1≤k≤Nchal;∀1≤j1 6=j2≤Nmeas

.

From this array of observed response intra-distances, the following descriptive
statistics are often calculated to provide an estimation of the underlying
distribution parameters of Dintra

P :

• An estimate of the distribution mean of Dintra

P or E [Dintra

P] is obtained from
the sample mean of Dintra

Exp(P):

µintra

P = Dintra

Exp(P) =
2

Npuf ·Nchal ·Nmeas · (Nmeas − 1)
·
∑

Dintra

Exp(P) .

PRELIMINARIES 21

• Equivalently, an estimate of the standard deviation of the distribution of
Dintra

P or Σ [Dintra

P] is obtained as:

σintra

P =

√
2

Npuf ·Nchal ·Nmeas · (Nmeas − 1)− 2
·
∑(

Dintra

Exp(P) − µintra

P

)2

.

• A estimate of the shape of the underlying distribution of Dintra

P is given by
the histogram of Dintra

Exp(P).

• Order statistics of Dintra

Exp(P) give more robust information about the
distribution of Dintra

P when it is skewed. Regularly used order statistics
are the minimum, the maximum and the median, and for more detail
the 1/4- and 3/4-quantiles and the 1%- and 99%-percentiles. In particular
the maximum and the 99%-percentile of Dintra

Exp(P) are of interest since
they provide a good estimate of the largest PUF response intra-distances,
i.e. the ‘least reliable’ PUF response, one can expect.

Intra-Distance Statistics under Variable Evaluation Conditions

Variations in evaluation conditions such as environment temperature and
supply voltage generally influence the intra-distance between PUF responses.
The distance between two PUF responses evaluated on the same PUF instance
and for the same challenge, but under different conditions α1 and α2 is typically
larger than the intra-distance between the same responses evaluated under
one fixed condition. For PUF-based applications, it is important to learn the
worst-case, i.e. the largest, intra-distance which can arise for a given range of
evaluation conditions with respect to a particular reference condition αref .

Definition 3. The PUF response intra-distance under condition α with respect
to a reference condition αref is a random variable defined as:

Dintra

puf
i
;α(x)

△

= dist [Y αref
i (x); Y α

i (x)] ,

with Y αref
i (x) ← pufi(x).Evalαref and Y α

i (x) ← pufi(x).Evalα two distinct
evaluations of PUF instance pufi on the same challenge x but under different
conditions αref and α. The PUF response intra-distance for a random PUF
instance and a random challenge is defined as the random variable:

Dintra

P;α
△

= Dintra

PUF←P;α(X ← XP) .

All earlier introduced intra-distance statistics can be extended in the same
manner to obtain estimates of the distribution of Dintra

P;α. In practice, the

22 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

nominal operating condition is selected as the reference condition. To find the
worst-case intra-distance in a given range of conditions, one typically evaluates
the intra-distance under the extrema of this range. This makes sense under
the reasonable assumption that intra-distance with respect to the reference
condition increases if one moves further away from the reference. The extrema
of a range of conditions are called the corner cases. As an example, assume one
needs to find the the worst-case intra-distance behavior over the environment
temperature range Tenv = −40 °C . . . 85 °C. The reference condition is set at
room temperature: αref = (Tenv = 25 °C) and the intra-distances at the corner
cases α1 = (Tenv = −40°C) and α2 = (Tenv = 85°C) are studied.

2.2.4 PUF Response Inter-Distance

Inter-Distance Definition

Definition 4. A PUF response inter-distance is a random variable describing
the distance between two PUF responses from different PUF instances using
the same challenge:

Dinter

P (x)
△

= dist [Y (x); Y ′(x)] ,

with Y (x) and Y ′(x) evaluations of the same challenge x on two random but
distinct PUF instances PUF ← P and PUF′(6= PUF) ← P. Additionally, the
PUF response inter-distance for a random challenge is defined as the random
variable:

Dinter

P
△

= Dinter

P (X ← XP) .

Inter-Distance Statistics

Again, the distribution of the random variable Dinter

P is an important met-
ric for a PUF class, in this case to characterize the uniqueness of its
instances. Based on the observed responses YExp(P) of a PUF experiment
ExperimentP(Npuf , Nchal, Nmeas), a new array Dinter

Exp(P) of observed response inter-
distances can be calculated:

Dinter

Exp(P) =
[
dist

[
y

(j)
i1

(xk); y
(j)
i2

(xk)
]]

∀1≤i1 6=i2≤Npuf ;∀1≤k≤Nchal;∀1≤j≤Nmeas

.

From this sample array of response inter-distances, the following descriptive
statistics can be calculated to provide an estimation of the underlying
distribution parameters of Dinter

P :

TERMINOLOGY AND CLASSIFICATION 23

• The sample mean of Dinter

Exp(P) as an estimate of E [Dinter

P]:

µinter

P = Dinter

Exp(P) =
2

Npuf · (Npuf − 1) ·Nchal ·Nmeas

·
∑

Dinter

Exp(P) .

• Equivalently, an estimate of Σ [Dinter

P] is obtained as:

σinter

P =

√
2

Npuf · (Npuf − 1) ·Nchal ·Nmeas − 2
·
∑(

Dinter

Exp(P) − µinter

P

)2

.

• A estimate of the shape of the underlying distribution of Dinter

P is given by
the histogram of Dinter

Exp(P).

• The order statistics of Dinter

Exp(P) again give more robust information about
the distribution of Dinter

P when it is skewed. For PUF response inter-
distances, in particular the minimum and the 1%-percentile of Dinter

Exp(P) are
of interest since they are a good estimate of the smallest inter-distance,
i.e. the ‘least unique’ PUF instance pair, one can expect.

Inter-Distance Statistics under Variable Evaluation Conditions

The inter-distance between PUF responses is also susceptible to variations on
evaluation conditions. However, for typical PUF based applications, the initial
generation or enrollment is done in a secure environment under controlled
conditions, and only the inter-distance of evaluations under the reference
condition αref is of importance. Therefore, no extension of the definition of
inter-distance to varying conditions is required in that case. In applications
where the initial enrollment is done in the field, the susceptibility of the inter-
distance to the evalution conditions does need to be taken into account. In this
thesis, we only consider enrollment at reference conditions.

2.3 Terminology and Classification

In Section 2.3.1, we elaborate on the origin and the meaning of the acronym
‘PUF’. As will become clear from this chapter, the growing popularity of PUFs
has caused a proliferation of different constructions and concepts all labelled
as PUFs. In an attempt to bring some order into this zoo, a number of
classification attempts were made:

24 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

• Based on the implementation technology of the proposed construction:
non-electronic PUF versus electronic PUFs versus silicon PUFs, as
discussed in Section 2.3.2

• Based on a more general set of physical construction properties: non-
intrinsic versus intrinsic PUFs, as discussed in Section 2.3.3

• Based on the algorithmic properties of their challenge-response behavior:
weak versus strong PUFs, as discussed in Section 2.3.4

2.3.1 “PUFs: Physical(ly) Unclon(e)able Functions”

To PUF or not to PUF?

In addition to proposing a new optics-based PUF construction, Pappu [109] in
2001 was the first to also describe and define the more general concept of a PUF,
which he introduced at the time as a physical one-way function. Shortly after,
Gassend et al. [47] proposed a new silicon-based PUF construction and defined
it similarly as a physical random function, but they opted for the acronym PUF,
standing for physical unclonable function, to avoid confusion with the concept
of a pseudo-random function which in cryptography is already abbreviated as
PRF.

In the mean time, the acronym ‘PUF’ has become a catch-all for a variety
of often very different constructions and concepts, but which share a number
of interesting properties. Some of these constructions were proposed before
the term PUF was coined, and were hence not called PUFs from the beginning.
Other constructions were proposed in fields other than cryptographic hardware,
where the term PUF is yet unknown. Depending on which properties are
assumed to be defining for PUFs (and depending on whom you ask), such
constructions are still called PUFs.

Having been used as a label for many different constructions, the literal
semantic meaning of the acronym PUF as “physical unclonable function”
has been partially lost, up to the point where some consider it a misnomer.
Moreover, slight variations on the actual wording were introduced over time,
as expressed in the title of this section. In this thesis, the acronym PUF does
generally not refer to its literal meaning. Instead, it is used as the collective
noun for the variety of proposed constructions sharing a number of interesting
properties. One of the main goals of the next chapter is to list known PUF
constructions and identify such a least common subset of defining properties.

TERMINOLOGY AND CLASSIFICATION 25

Physical versus Physically?

Originally, the acronym PUF stands for physical unclonable function, but later
the variant physically unclonable function also got into use. Both terms are
still used today and refer to the same concept. The choice for one or the
other depends mainly on the preference of the author. However, from a strict
semantic point of view, there is a small difference in meaning. A physical
unclonable function is ‘a physical function which is unclonable’ whereas a
physically unclonable function is ‘a function which is physically unclonable’.
In Section 3.2.10, we argue why we consider the second interpretation to be a
more fitting description of the actual concept of a PUF.

Unclon(e)able?

The adjective unclonable is the central specifier in the acronym, reflecting the
distinguishing property of a PUF. However, the actual meaning of unclonable
is not clearly defined. In a broader sense, one first needs to define what one
considers a clone. Especially in the context of PUFs, this has lead to some
debate. In many scenarios, one solely observes the input-output (or challenge-
response) behavior of a PUF and only rarely the actual physical entity. In
that respect, any construction which accurately mimics the behavior of a
particular PUF could be considered a clone thereof. On the other hand, if
one takes the physical aspect into account, cloning gets a different meaning,
e.g. one could require a clone to have the same behavior and the same physical
appearance as the original, or even more strictly, one could require a clone to be
manufactured in the same production process as the original. The distinction
between the former and latter interpretation of a clone is often made specific
as a mathematical versus a physical clone.

Whether or not to write the silent ‘e’ in unclon(e)able is somewhat arbitrary.
Generally, the terminal silent -e is dropped when appending the suffix -able
to a verb [1], e.g. movable, blamable, unless the verb ends in -ce or -ge which
is not the case here. However, in scientific literature on computing the form
(un)cloneable is more common, likely due to the existence of an homonymous
but unrelated interface in the popular Java™ programming language [2].
An internet search gives roughly a five-to-one preference of unclonable over
uncloneable, although peculiarly for clonable versus cloneable these odds are
reversed. In this thesis, the form unclonable is preferred.

26 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

Function?

In the pure mathematical sense, a PUF is not even strictly a function, since a
single input (challenge) can be related to more than a single output (response)
due to the uncontrollable effects of physical environment and random noise on
the response generation. Therefore, a more fitting mathematical description
of a PUF is as a probabilistic function, i.e. a function for which part of the
input is an uncontrollable random variable. This is sometimes made explicit by
providing an additional input r to a function, representing an (undetermined)
number of fair coin tosses: r

$
← {0, 1}∗. Alternatively, one can consider the

outcome of a probabilistic function to be a random variable with a particular
probability distribution, instead of a deterministic value.

2.3.2 Non-electronic, Electronic and Silicon PUFs

PUFs and PUF-like constructions have been proposed based on a wide
variety of technologies and materials such as glass, plastic, paper, electronic
components and silicon integrated circuits (ICs). A possible classification of
PUF constructions is based on the electronic nature of their identifying features.

Non-electronic PUFs

A first relatively large class contains PUF proposals with an inherently
non-electronic nature. Their PUF-like behavior is based on non-electronic
technologies or materials, e.g. the random fiberstructure of a sheet of paper
or the random reflection of scattering characteristics of an optical medium
(cf. Section B.1). Note that the denominator non-electronic reflects the origin
of the PUF behavior, and not the way PUF responses are processed or stored,
which often does use electronics and digital circuitry.

Electronic PUFs

On the other side of the spectrum are electronic PUFs, i.e. constructions
containing random variations in their electronic characteristics, e.g. resistance,
capacitance, etc. These variations are generally also measured in an electronic
way. Note that there is not always a sharp distinction between electronic
and non-electronic PUFs, e.g. a construction called RF-DNA [35] consists of
randomly arranged copper wires fixated in a flexible silicone medium which
could be considered non-electronic, whereas LC-PUFs [51] are in fact passive

TERMINOLOGY AND CLASSIFICATION 27

LC resonance circuits which could be considered electronic in nature. However,
the manner in which they generate responses is practically the same, i.e. the
random influence they have on an imposed wireless radio-frequency field
(cf. Section B.2). Another side note is that variation in electronic behavior
is practically always a consequence of variations in non-electronic parameters
at a lower level of physical abstraction, e.g. the length and section of a metal
wire determine its resistance, the area and distances between two conductors
determine their capacitance, etc.

Silicon PUFs

A major subclass of electronic PUFs are so-called silicon PUFs, i.e. integrated
electronic circuits exhibiting PUF behavior which are embedded on a silicon
chip. The term silicon PUF and the first practical realization of a PUF
structure in silicon were introduced by Gassend et al. [47]. Since silicon
PUFs can be directly connected to standard digital circuitry embedded on the
same chip, they can be immediately deployed as a hardware building block in
cryptographic implementations. For this reason, it is evident that silicon PUFs
are of particular interest for security solutions and they are the main type of
PUF construction we focus on in this thesis.

2.3.3 Intrinsic and Non-intrinsic PUFs

An important classification of PUFs based on their construction properties is
that of intrinsic PUFs as initially proposed by Guajardo et al. [50]. In a slightly
adapted form, we consider that a PUF construction needs to meet at least
two conditions to be called an intrinsic PUF: i) its evaluations are performed
internally by embedded measurement equipment, and ii) its random instance-
specific features are implicitly introduced during its production process. Next,
we discuss both properties in more detail and highlight the specific practical
and security advantages of intrinsic PUFs.

External versus Internal Evaluations

A PUF evaluation is a physical measurement which can take many forms. We
distinguish between external and internal evaluations. An external evaluation
is a measurement of features which are externally observable and/or which is
carried out using equipment which is external to the physical entity containing
the features. On the other side are internal evaluations, i.e. measurements of
internal features which are carried out by equipment completely embedded on

28 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

the instance itself. This might seem a rather arbitrary distinction, but there
are some important advantages to internal evaluations:

• The first is a purely practical advantage. Having the measurement
equipment embedded on every PUF instance means that every PUF in-
stance can evaluate itself without any external limitations or restrictions.
Internal evaluations are typically also more accurate since there is less
opportunity for outside influences and measurement errors.

• Secondly, there is a rather important security advantage to internal
evaluations, since the PUF responses originate inside the embedding
object. This means that, as long as an instance does not disclose a
response to the outside world, it can be considered an internal secret.
This is of particular interest when the embedding object is a digital IC,
since in that case the PUF response can be used immediately as a secret
input for an embedded implementation of a cryptographic algorithm.

A possible disadvantage of an internal evaluation is that one needs to trust
the embedded measurement equipment, since it is impossible to externally
verify whether the measurement takes place as expected. This as opposed
to an external evaluation for which it is often possible to actually observe the
measurement in progress.

Explicit versus Implicit Random Variations

A second construction-based distinction considers the source of the randomness
of the evaluated features in a PUF. The manufacturing process of the PUF
instances can contain an explicit randomization procedure with the sole purpose
of introducing random features which will later be measured when the PUF is
evaluated. Alternatively, the measured random features can also be an implicit
side effect of the standard production flow of the embedding object, i.e. they
arise naturally as an artifact of uncontrollable effects during the manufacturing
process. Again, there are some subtle but interesting advantages to PUF
constructions based on implicit random variations:

• From a practical viewpoint, implicit random variations generally come
at no extra cost since they are already (unavoidably) present in the
production process. Introducing an explicit randomization procedure on
the other hand can be costly, particularly due to timing constraints in
the manufacturing flow of high-volume products.

• Implicit random variability in manufacturing or so-called process varia-
tions which occur during a production process are generally undesirable

TERMINOLOGY AND CLASSIFICATION 29

since they have a negative impact on yield. This means that manufac-
turers already take elaborate measures to reduce process variations as
much as possible. However, as it turns out, completely avoiding any
random effect during manufacturing is technically impossible and process
variations are always present. As a consequence, PUF constructions based
on implicit process variations have the interesting security advantage
that even the manufacturer, having full details and control over their
production process, cannot remove or control the random features at the
core of the PUF’s functionality.

Non-Intrinsic PUF Constructions

A variety of PUF constructions have been proposed which we label non-
intrinsic according to this classification, e.g. :

• The optical PUF as proposed by Pappu et al. [110] [109], which is based
on the unique speckle pattern which arises when shining a laser on a
transparent material with randomly solved scattering particles.

• The coating PUF as proposed by Tuyls et al. [145], which is based on the
unique capacitance between two metal lines in a silicon chip whose top
layer consists of a coating with randomly distributed dielectric particles.

The optical PUF is non-intrinsic since it is externally evaluated (by observing
the speckle pattern) and its random features are explicitly introduced (by
solving the scattering particles). The coating PUF is also non-intrinsic:
although it can be internally evaluated on a silicon chip, its randomness is
still explicitly generated during production (by solving the dielectric particles).
Since our main focus is on intrinsic PUFs, we will not go into more detail
on the construction of non-intrinsic PUFs in the main text of this thesis.
For completeness, we have added a detailed description of many known non-
intrinsic PUF constructions in Appendix B.

2.3.4 Weak and Strong PUFs

A last classification of PUFs we discuss here is explicitly based on the security
properties of their challenge-response behavior. The distinction between strong
and weak PUFs was first introduced by Guajardo et al. [50], and further refined
by Rührmair et al. [118]. Basically, a PUF is called a strong PUF if, even after
giving an adversary access to a PUF instance for a prolonged period of time,
it is still possible to come up with a challenge to which with high probability

30 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

the adversary does not know the response. Note that this implies at least
that: i) the considered PUF has a very large challenge set, since otherwise
the adversary can simply query all challenges and no unknown challenges are
left, and ii) it is infeasible to built an accurate model of the PUF based on
observed challenge-response pairs, or in other words the PUF is unpredictable.
PUFs which do not meet the requirements for a strong PUF, and in particular
PUFs with a small challenge set, are consequentially called weak PUFs. An
extreme case is a PUF construction which has only a single challenge. Such a
construction is also called a physically obfuscated key or POK (cf. Section 2.5.1).
It is evident that the security notion of a strong PUF is higher than that of
a weak PUF, hence enabling more applications. However, as it will turn out,
constructing a practical (intrinsic) strong PUF with strong security guarantees
turns out to be very difficult, up to the point where one can consider it an open
problem whether this is actually possible.

2.4 Intrinsic PUF Constructions

All known intrinsic PUF constructions are silicon PUFs based on random
process variations occurring during the manufacturing process of silicon chips.
The known intrinsic silicon PUF constructions can be further classified based
on their operating principles:

• A first class of constructions measure random variations on the delay of
a digital circuit and are therefore called delay-based silicon PUFs.

• A second class of silicon PUF constructions use random parameter
variations between matched silicon devices, also called device mismatch,
in bistable memory elements. These constructions are labelled memory-
based silicon PUFs.

• Finally, we classify a collection of intrinsic silicon PUF proposals
consisting of mixed-signal circuits. Their basic operation is of an analog
nature, which means an embedded analog measurement is quantized
with an analog-to-digital conversion to produce a digital response
representation.

INTRINSIC PUF CONSTRUCTIONS 31

2.4.1 Arbiter PUF

Basic Operation and Construction

The arbiter PUF, as proposed by Lee et al. [48, 80, 83], is a type of delay-based
silicon PUF. The idea behind an arbiter PUF is to explicitly introduce a race
condition between two digital paths on a silicon chip. Both paths end in an
arbiter circuit which is able to resolve the race, i.e. it determines which of both
path was fastest and outputs a binary value accordingly. If both paths are
designed or configured to have a (nearly) identical nominal delay, the outcome
of the race, and hence the output of the arbiter, cannot be unambiguously
determined based on the design. Two scenarios are possible:

1. Even when designed or configured with identical nominal delay, the actual
delay experienced by an edge which travels both paths will not be exactly
equal. Instead, there will be a random delay difference between both
paths, due to the effect of random silicon process variations on the delay
parameters. This random difference will determine the race outcome
and the arbiter output. Since the effect of silicon process variations is
random per device, but static for a given device, the delay difference and
by consequence the arbiter output will be device-specific. This is the
basis for the PUF behavior of an Arbiter PUF.

2. Due to their stochastic nature, there is a non-negligible possibility that
by chance both delays are nearly identical. In that case, when two edges
are applied simultaneously on both paths they will reach the arbiter
virtually at the same moment. This causes the arbiter circuit to go into a
metastable state, i.e. the logic output of the arbiter circuit is temporarily
undetermined (from an electronic point of view, the voltage of the arbiter
output is somewhere in between the levels for a logic high and low). After
a short but random time, the arbiter leaves its metastable state and
outputs a random binary value which is independent of the outcome of
the race. Although random, in this case the arbiter’s output is not device-
specific and not static. This phenomenon is the cause of unreliability
(noise) of the responses of an arbiter PUF.

Lee et al. [48, 80, 83] propose to implement the two delay paths as a chain of
switch blocks. A switch block connects two input signals to its two outputs in
one of two possible configurations, straight or crossed, based on a configurable
selection bit. The logic functionality of a switch block can be implemented
in a number of ways, the most straightforward being with a pair of 2-to-
1 multiplexers (muxes). By concatenating n switch blocks, a total of n

32 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

0 1 0 0 1 1

Arbiter

Challenge:

Response:

Switch Block

0/1

0

1

0

1

Figure 2.1: Construction of a basic arbiter PUF as proposed by Lee et al. [48,
80, 83].

configuration bits are needed to configure any of 2n possible pairs of delay paths.
This n-bit setting is considered the challenge of the arbiter PUF. Since the
input-output delay of both configurations of a switch block is slightly different
and randomly affected by process variations, each of these 2n challenges leads
to a new race condition which can be resolved by the arbiter. The resulting
output bit of the arbiter is considered the response of the arbiter PUF to
the given challenge. However, it is immediately clear that these 2n different
configurations are not independent, since they are only based on a number of
underlying delay parameters which is linear in n. This will lead to challenge-
response modeling attacks on arbiter PUFs as we will discuss later. The arbiter
circuit can also be implemented in a number of ways, the most straightforward
being as an SR NAND latch. Most types of digital latches and flip-flops exhibit
arbiter behavior. The construction of the basic arbiter PUF is depicted in
Figure 2.1

Ideally, an arbiter PUF response is solely determined by the random effect of
process variations on the delay parameters of the circuit. This can only happen
when two conditions are met:

1. The delay lines are designed to be nominally perfectly symmetrical,
i.e. any difference in delay is solely caused by process variations.

2. The arbiter circuit is completely fair, i.e. it does not favor one of its inputs
over the other. Lin et al. [85] conclude that a basic SR latch is the best
option since it is unbiased due to its symmetric construction.

INTRINSIC PUF CONSTRUCTIONS 33

If either of both conditions is not met, the arbiter PUF is biased, which
results in a lower uniqueness of its responses. Designing a perfectly unbiased
arbiter PUF is highly non-trivial since it requires very low-level control over
implementation choices. In some technologies, e.g. on FPGAs [105], this is not
possible, which greatly impedes the successful deployment of arbiter PUFs on
them. If bias is unavoidable, some unbiasing techniques are possible. A tunable
delay circuit in front of the arbiter PUF can counteract the deterministic bias
of the delay paths or the arbiter, e.g. if the arbiter favors the upper delay path
then the tunable delay can give the lower path a head start. A relatively simple
way of doing this is by fixing a number of challenge bits in the beginning of the
switch block chain in such a way as to counteract the bias.

Discussion on Modeling Attacks

The basic arbiter PUF construction with n chained switch blocks allows for 2n

different challenges. However, the number of delay parameters which determine
the arbiter PUF response is only linear in n, which means that these 2n

challenges cannot produce independent responses. In practice, when one learns
the underlying delay parameters and one can model the interaction with the
challenge bits, one would be able to accurately predict response bits to random
challenges, even without access to the PUF. In many ways, such a model can be
considered a clone of the arbiter PUF, be it a mathematical clone. Arbiter PUF
responses are only considered unpredictable as long as such a model cannot be
accurately built.

It was immediately realized by Lee et al. [80] that their basic arbiter PUF can
indeed be easily modeled and they even present modeling attack results for
their own implementation. This and later modeling attacks assume a simple
but accurate additive delay model for the arbiter PUF, i.e. the delay of a digital
circuit is modeled as the sum of the delays of its serialized components. This
turns out to be a very accurate first-order approximation for the relatively
simple switch block chains. The unknown underlying delay parameters are
learned from observing challenge-response pairs of the PUF. Every challenge-
response pair constitutes a linear inequality over these parameters and is
used to obtain a more accurate approximation. Moreover, the unknown
parameters do not need to be calculated explicitly, but they are learned
implicitly and automatically by an appropriate machine-learning technique.
Machine-learning techniques such as artificial neural networks (ANN) and
support-vector machines (SVM) are able to generalize behavior based on
applied examples. Numerous results have been presented which successfully
apply different machine-learning techniques in order to model the behavior
of an arbiter PUF. The ultimate goal of such modeling attacks is to predict

34 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

unknown responses as accurately as possible after having been trained with
as few examples as possible. We say that a PUF is (pmodel, qtrain)-modelable, if
a known modeling attack exists which is able to predict unseen responses of
the PUF with a success rate pmodel, after training the model with qtrain known
challenge-response pairs.

Experimental Results and Extended Constructions

Arbiter PUFs were initially implemented by Gassend et al. [48] on a set of
23 FPGA devices. From experimental results, the average intra- and inter-
distance of the responses were estimated as µintra

P = 0.1% and µinter

P = 1.05%. The
inter-distance is particularly low, with on average only one in 100 challenges
producing a response bit which actually differs between different PUF instances.
This arbiter PUF implementation is hence very biased which is a result of the
lack of low-level control over the placement and routing of the delay lines on
the FPGA platform. A following implementation by the same team on a set
of 37 ASICs proofs to be less biased with µinter

P = 23%, but is still far from
the ideal of 50%. The reliability of this implementation is very high, with
µintra

P = 0.7% under reference conditions. This worsens to µintra

P = 4.82% when
temperature rises to Tenv = 67 °C. Lim [83] demonstrates that this arbiter
PUF implementation is (pmodel = 96.45%, qtrain = 5000)-modelable by applying
an SVM-based machine-learning modeling attack. This result is problematic
for this implementation, since the expected prediction error of 100%−96.45% =
3.55% is smaller than the average unreliability of the PUF under temperature
variation. In practice, this means this implementation is not secure (after
observing qtrain = 5000 challenge-response pairs).

All subsequent work on arbiter PUFs is an attempt to make model-building
attacks more difficult, by introducing non-linearities in the delays and by
controlling and/or restricting the inputs and outputs to the PUF. Lee et al.
[80] propose feed-forward arbiter PUFs as a first attempt to introduce non-
linearities in the delay lines. It is an extension of their basic arbiter PUF, where
the configuration of some switch blocks in the delay chains is not externally
set by challenge bits, but is determined by the outcome of intermediate
arbiters evaluating the race at intermediate points in the delay lines. This
was equivalently tested on 37 ASICs leading to µinter

P = 38% and µintra

P = 9.84%
(at Tenv = 67 °C). Note that the responses are much noisier, which is caused
by the increased metastability since there are multiple arbiters involved. It was
shown that the simple model-building attacks which succeeded in predicting the
simple arbiter don’t work any longer for this non-linear arbiter PUF. However,
later results by Majzoobi et al. [99] and Rührmair et al. [123] show that with
more advanced modeling techniques it is still possible to build an accurate

INTRINSIC PUF CONSTRUCTIONS 35

model for the feed-forward arbiter PUF. Based on simulated implementations
of feed-forward arbiter PUFs, Rührmair et al. [123] demonstrate them to be
(pmodel > 97.5%, qtrain = 50000)-modelable, with the actual success rate depending
on the delay path length and the number of feed-forward arbiters. More
advanced feed-forward architectures are proposed by Lao and Parhi [79].

Majzoobi et al. [100] present an elaborate discussion on techniques to make
arbiter-based PUFs on FPGA more resistant to modeling. They use an
initial device characterization step to choose the optimal parameters for a
particular instantiation and use the reconfiguration possibilities of FPGAs
to implement this. To increase randomness and to thwart model-building
attacks, they use “hard-to-invert” input and output networks controlling the
inputs and outputs to the PUF, although these are not shown cryptographically
secure. In particular, they consider multiple arbiter PUFs in parallel and take
the exclusive-or (XOR) of the arbiter evaluations as the new response. By
simulation, they show that this construction gives desirable PUF properties
and makes model-building much harder. However, Rührmair et al. [123] again
show that model-building of these elaborate structures might be feasible by
presenting a (pmodel = 99%, qtrain = 6000)-model building attack based on a
simulated implementation consisting of n = 64 switch blocks and 3 parallel
arbiters which are XOR-ed together. For longer delay paths and more parallel
arbiters, this modeling attack keeps on working but requires a considerable
larger qtrain.

Finally, a different approach towards model-building attacks for arbiter PUFs
is taken by Öztürk et al. [54, 107, 108]. Instead of preventing the attack,
they use the fact that a model of the PUF can be constructed as part of an
authentication protocol. The proposed protocol is a variant of the protocol by
Hopper and Blum [59], with security based on the difficulty of learning parity
with noise. This is a highly unconventional use of a PUF as it explicitly assumes
the PUF can be cloned mathematically, with the cloned PUF model acting as
a noisy shared secret.

2.4.2 Ring Oscillator PUF

Basic Operation and Construction

A second type of delay-based intrinsic PUFs are ring oscillator PUFs. A number
of different constructions can be placed under this type, all based on measuring
random variations on the frequencies of digital oscillating circuits. The source
of this randomness is again the uncontrollable effect of silicon process variations
on the delay of digital components. When these components constitute a ring

36 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

oscillator, the frequency of this oscillation is equivalently affected. A typical
ring oscillator PUF construction has two basic components, ring oscillators
and frequency counters, which are arranged in a particular architecture and
are often combined with a response-generating algorithm.

The first type of ring oscillator PUF was proposed by Gassend et al. [45, 47].
The ring oscillator they use is a variant of the switch block-based delay line
as proposed for the arbiter PUF (cf. Section 2.4.1). This delay circuit is
transformed into an oscillator by applying negative feedback. An additional
AND-gate in the loop allows to enable/disable the oscillation. The oscillating
signal is fed to a frequency counter which counts the number of oscillating cycles
in a fixed time interval. The resulting counter value is a direct measure of the
loop’s frequency. The construction of such a very basic ring oscillator PUF is
shown in Figure 2.2. Gassend et al. [45, 47] propose to use a synchronously
clocked counter. The oscillating signal is first processed by a simple edge
detector which enables the counter every time a rising edge is detected. This
architecture is robust, but the use of an edge detector limits the frequency of
the ring oscillator to half the clock frequency.

The measured frequency of equally implemented ring oscillators on distinct
devices shows sufficient variation due to process variations to act as a
PUF response. However, it was immediately observed that the influence of
environmental conditions on the evaluation of this construction is significant,
i.e. changes in temperature and voltage cause frequency changes which are
orders of magnitude larger than those caused by process variations. To counter
this influence, Gassend et al. [45, 47] propose an important post-processing
technique called compensated measuring. The principle behind compensated
measuring is to evaluate the frequency of two ring oscillators on the same
device simultaneously and consider a differential function, i.c. the ratio, of
both measurements as the eventual response. The reasoning behind this is
that environmental changes will affect both frequencies in roughly the same
way, and their ratio will be much more stable. Note that this type of differential
measurement was already implied in the arbiter PUF construction considering
two delay paths in parallel, which explains its relatively high reliability. For
the proposed ring oscillator PUF construction, the compensated measurements
based on the ratio of two frequency also proves to be particularly effective. The
average observed intra-distance (Euclidean) between evaluations is roughly two
orders of magnitude smaller than the average inter-distance, even under varying
temperature and voltage conditions.

INTRINSIC PUF CONSTRUCTIONS 37

Configurable

Delay

Challenge

Counter

Timer
enable

f

Q ~ f

Response

0 1 0 0 1 1

Figure 2.2: Construction of a simple ring oscillator PUF as proposed by
Gassend et al. [47].

Variants and Experimental Results

The results from Gassend et al. [47] clearly show the potential of ring oscillator
PUFs. However, their proposed construction has some minor drawbacks.
Firstly, since the ring oscillator is based on the same delay circuit as the simple
arbiter PUF, this construction will also be susceptible to modeling attacks
and similar countermeasures need to be included. Moreover, the produced
response is an integer counter value, or a real value in the case of compensated
measurement, and cannot be used directly as a bit string in subsequent building
blocks. It first needs to be quantized in an appropriate way to obtain a bit
string response with desirable distribution properties. Both these additions
are indispensable in order to use this construction in an efficient and secure
manner, but require additional resources.

Suh and Devadas [138] propose an alternative ring oscillator PUF architecture
that is not susceptible to these modeling attacks and that naturally produces
bitwise responses. Instead of a challengeable ring oscillator based on the delay
circuit of an arbiter PUF, their architecture contains an array of n fixed but
identically implemented inverter chains. The architecture also contains two
frequency counters, which can be fed by each of the n inverter chains. Two n-
to-1 muxes control which oscillators are currently applied to both counters. The
selection signals of these muxes constitute the PUF’s challenge. The schematic
construction of this PUF is depicted in Figure 2.3. As in the earlier proposal,
both frequency counters are enabled for a fixed time interval and their resulting
counter values are a measure for the frequencies of both applied oscillators. The

38 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

...

Counter

++ f1

Counter

++ f2

...

...

f1 < f2 ?

Challenge

Response

0/1 n

Figure 2.3: Construction of a comparison-based ring oscillator PUF as proposed
by Suh and Devadas [138].

PUF’s response bit is generated by comparing both counter values. Since the
exact frequencies of the inverter chains are influenced by process variations,
the resulting comparison bit will be random and device-specific. Note that
the comparison operation is a very basic form of a compensated measurement,
i.e. an inverter chain which is faster than another one under certain conditions
is likely to be faster under all conditions.

By considering many pairwise combinations of inverter chains, this ring
oscillator PUF construction can produce many response bits. If the PUF
implements n ring oscillators, a total of

(
n
2

)
= n·(n−1)

2 pairs can be formed.
However, it is clear that all these pairs do not produce independent evaluations,
e.g. if oscillator A is faster than B and B is faster than C, then it is apparent
that A will also be faster than C and the resulting response bit is dependent
on the previous two. Suh and Devadas [138] correctly state that the number
of independent comparisons one can make is limited by the number of possible
ways the frequencies of the oscillators can be ordered. If the frequencies are
independent and identically distributed, each of n! possible orderings is equally
likely and the maximal number of independent comparisons one can make is
log2 n!. However, the list of independent comparisons is difficult to obtain and
is moreover device-specific, i.e. different oscillator pairs need to be compared on
each instance of the PUF. A simpler and device-generic approach is to compare
fixed pairs and use every oscillator only once. In this way, a ring oscillator PUF
consisting of n oscillators will only produce n

2 response bits which are however
guaranteed to be independent. Suh and Devadas [138] reduce the number of
response bits even further by applying a post-processing technique called 1-out-

INTRINSIC PUF CONSTRUCTIONS 39

of-k masking, i.e. they evaluate k oscillators and only consider the pair with
the largest difference in frequency and output the result of this comparison.
This technique greatly enhances the reliability of the responses, but it comes at
a relatively large resource overhead, i.e. out of n oscillators only ⌊n

k
⌋ response

bits are generated. Experiments on a set of 15 FPGAs with k = 8 produce
responses with an average inter-distance of 46.15% and a very low average
intra-distance of merely 0.48% even under large temperature (Tenv = 120 °C)
and voltage (Vdd + 10%) variations.

Maiti et al. [95] present results from a large scale characterization of the ring
oscillator PUF construction from Suh and Devadas [138] on FPGA. They do not
apply the masking technique, but instead compare all neighbouring oscillators
on the FPGA, yielding n − 1 response bits from n oscillators. Their results
are particularly valuable as they are based on a large population of devices
(125 FPGAs), which is rare in other works on PUFs. They present an average
inter-distance of 47.31% and an average intra-distance of 0.86% at nominal
conditions. However, changing temperature and especially voltage conditions
have a significant impact on the intra-distance. At a 20% reduced supply
voltage, the average intra-distance goes up to 15%. The measurement data
resulting from this experiment is made publicly available [3].

Yin and Qu [158] build upon the construction from Suh and Devadas [138]
and propose a number of adaptations which significantly improve the resource
usage of the ring oscillator PUF. Firstly, they propose a generalization of the
1-out-of-k masking scheme which is much less aggressive in ignoring oscillators
but achieves similar reliability results. The group of oscillators is partitioned in
mutually exclusive subsets such that the minimal frequency difference between
two members of a subset is above a certain threshold. An evaluation between a
pair of oscillators from the same subset is therefore guaranteed to be very stable.
Yet by using a clever grouping algorithm, practically all oscillators constitute
to a response bit and only a few are ignored. Secondly, they propose a hybrid
architecture for arranging ring oscillators and frequency counters. This allows
to find an optimal trade-off between the speed of generating responses and the
resource usage of oscillators, counters and multiplexers.

Maiti and Schaumont [97, 98] also expand upon the construction from Suh
and Devadas [138] and present some significant improvements. Firstly, they
propose a number of guidelines for reducing systematic bias when implementing
arrays of ring oscillators on an FPGA, and study the effect of each guideline
on the uniqueness of the responses. Secondly, they propose a very efficient but
highly effective variant of the 1-out-of-k masking scheme based on configurable
ring oscillators. Instead of considering the most reliable pair out of k distinct
oscillators, they make use of the oscillators’ configurability and consider the
most reliable out of k configurations of a single pair of oscillators. This

40 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

achieves similar or even better reliability results than the original masking
scheme, however without any sacrifice in resources.

A further improvement in the post-processing of ring oscillator PUFs is
proposed by Maiti et al. [72, 96]. They go beyond ranking-based methods of
oscillator frequencies by extracting a response based on the magnitude of the
observed frequency differences. An elaborate post-processing algorithm based
on test statistics of the observed frequency values and an identity mapping
function is proposed. This substantially increases the amount of challenge-
response pairs which can be considered for a limited set of ring oscillators.
Maiti et al. [96] acknowledge that responses to different challenges are no
longer information-theoretically independent, but they still show strong PUF
behavior in terms of their inter- and intra-distance distributions. Experimental
data obtained from an implementation on 125 FPGAs with 65519 challenge
evaluations demonstrates an average inter-distance of 49.99% and an average
intra-distance of 10% at Tenv = 70 °C. The proposed post-processing technique
is computationally intensive, requiring a sophisticated datapath architecture.

2.4.3 Glitch PUF

A third type of delay-based PUF constructions are based on glitch behavior
of combinatorial logic circuits. A purely combinatorial circuit has no internal
state, which means that its steady-state output is entirely determined by its
input signals. However, when the logical value of the input changes, transitional
effects can occur, i.e. it can take some time before the output assumes its steady-
state value. These effects are called glitches and the occurrence of glitches
is determined by the differences in delay of the different logical paths from
the inputs to an output signal. Since the exact circuit delays of a particular
instance of a combinatorial circuit are influenced by random process variations,
the occurrence, the number and the shape of the glitches on its output signals
will equivalently be partially random and instance-specific. When accurately
measured, the glitch behavior of such a circuit can be used as a PUF response.

Anderson [7] proposes a glitch based PUF construction specifically for FPGA
platforms. A custom logical circuit is implemented which, depending on the
delay variations in the circuit, does or does not produce a single glitch on
its output. The output is connected to the preset signal of a flip-flop which
captures the glitch, should it occur. This is the circuit’s single response bit.
Placing many of these (small) circuits on an FPGA allows to produce many
PUF response bits. A challenge selects a particular circuit. Experimental
results of 36 PUF implementations each producing 128 response bits show an

INTRINSIC PUF CONSTRUCTIONS 41

average inter-distance of 48.3% and an average intra-distance of 3.6% under
high temperature conditions (Tenv = 70 °C).

Shimizu et al. [133, 139] present a more elaborate glitch PUF construction
and also introduce the term glitch PUF. They propose a methodology to
use the glitch behavior of any combinatorial circuit as a PUF response and
apply it specifically to a combinatorial FPGA implementation of the SubBytes
operation of AES [34]. Their initial proposal [139] consists of an elaborate
architecture which performs an on-chip high-frequency sampling of the glitch
wave form and a quantization circuit which generates a response bit based
on the sampled data. They propose to use the parity of the number of
detected glitches as a random yet robust feature of a glitch wave form. In
a later version of their PUF construction [133], they propose a much simpler
implementation which achieves basically the same functionality and results. By
simply connecting a combinatorial output to a toggle flip-flop, the value of the
toggle flip-flop after the transitional phase will equal the parity of the number
of glitches that occurred. This construction is shown in Figure 2.4. To improve
the reliability of the PUF responses, a bit-masking technique is used. During
an initial measurement on every instance, unstable response bits are identified
as responses that do not produce a stable value on m consecutive evaluations.
In later measurements, these response bits are ignored, i.e. they are masked.
The mask information needs to be stored alongside each PUF instance or in
an external storage. This type of masking also causes a resource overhead,
as the identified unstable bits are not used in the PUF responses. However,
the resulting unmasked bits show a greatly improved reliability. Experimental
results from 16 FPGA implementations of this glitch PUF construction on 2048
challenges show an average inter-distance of 35% and an average intra-distance
of 1.3% at nominal conditions, when bit-masking is applied. The bit-masking
results in about 38% of the response bits being ignored. Under variations of the
environmental conditions, the average intra-distance increases substantially, to
about 15% in the worst-case corner condition of Tenv = 85 °C and Vdd + 5%.

2.4.4 SRAM PUF

SRAM Background

Static Random-Access Memory or SRAM is a digital memory technology based
on bistable circuits. In a typical CMOS implementation, an individual SRAM
cell is built with six transistors (MOSFETs), as shown in Figure 2.5a. The
logic memory functionality of a cell comes from two cross-coupled inverters at
its core, shown in Figure 2.5b, each built from two MOSFETs, one p-MOS
and one n-MOS. From an electronic viewpoint, this circuit contains a positive

42 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

Combinatorial
Logic

e.g. AES S-box

Input
Register

Toggle
Flip-flop

Glitch waveform

#glitches = odd

² Response = 1

#glitches = even

² Response = 0

Challenge =

input (transition)

Figure 2.4: Construction of a glitch PUF as proposed by Shimizu et al. [133].

feedback loop which reinforces its current state. In a logic sense, this circuit
has two stable values (bistable), and by residing in one of both states the cell
stores one binary digit. Two additional access MOSFETs are used to read and
write its contents. Typically, many SRAM cells are arranged in large memory
array structures, capable of storing many kilobits or megabits. An SRAM cell
is volatile meaning that its state is lost shortly after power down.

The detailed operation of an SRAM cell is best explained by drawing the voltage
transfer curves of the two cross-coupled inverters, shown in Figure 2.5c. From
this graph, it is clear that the cross-coupled CMOS inverter structure has three
possible operating points of which only two are stable and one is metastable.
The stable points are characterized by the property that deviations from these
points are reduced and the stable point condition is restored. This does not
hold for the metastable point, i.e. any small deviation from the metastable point
is immediately amplified by the positive feedback and the circuit moves away
from the metastable point towards one of both stable points. Since electronic
circuits are constantly affected by small deviations due to random noise, an
SRAM cell will never stay in its metastable state very long but will quickly end
up in one of both stable states (randomly).

Basic Operation

The operation principle of an SRAM PUF is based on the transient behavior of
an SRAM cell when it is powered up, i.e. when its supply voltage Vdd comes up.
The circuit will evolve to one of its operating points, but it is not immediately
clear to which one. The preferred initial operating point of an SRAM cell is
determined by the difference in ‘strength’ of the MOSFETs in the cross-coupled
inverter circuit. The transient behavior of an SRAM cell at power-up is shown
in Figure 2.5d. For efficiency and performance reasons, typical SRAM cells are

INTRINSIC PUF CONSTRUCTIONS 43

DDV

A

B

wordline

b
it
lin

e

~
b

it
lin

e

I1 I2

(a) SRAM cell CMOS circuit.

AV

BV

DDVStable(A=1)

Stable(A=0)

Metastable

Power up

I1

I2

(b) SRAM cell voltage transfer curves.

DDV

A B I1

I2

(c) SRAM cell logic circuit.

Power up Stable Settling time

I1 < I2

I1 > I2

AV

t

/RJLF�µ�¶

/RJLF�µ�¶

DDVA=1

A=0

(d) SRAM cell power-up transient analysis

Figure 2.5: Construction and power-up behavior of an SRAM cell.

designed to have perfectly matched inverters. The actual difference in strength
between the two inverters, so-called device mismatch, is caused by random
process variations in the silicon production process and is hence cell-specific.
Each cell will have a random preferred initial operating point.

When one of the inverters is significantly stronger than the other one, the
preferred initial operating point will be a stable state and the preference will
be very distinct, i.e. such a cell will always power-up in the same stable state,
but which state this is (‘0’ or ‘1’), is randomly determined for every cell. When
the mismatch in a cell is small, the effect of random circuit noise comes into
play. Cells with a small mismatch still have a preferred initial stable state
which is determined by the sign of the mismatch, but due to voltage noise
there is a non-negligible probability that they power-up in their non-preferred

44 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

state. Finally, cells which, by chance, have a negligible mismatch between their
inverters, will power up in, or very close to, the metastable operating point.
Their final stable state will be largely random for every power-up.

The magnitude of the impact of process variations on random device mismatch
in SRAM cells causes most cells to have a strongly preferred but cell-specific
initial state, and only few cells have a weak preference or no preference at all.
This means that the power-up state of a typical SRAM cell shows strong PUF
behavior. Large arrays of SRAM cells are able to provide thousands up to
millions of response bits for this SRAM PUF. The address of a specific cell in
such an array can be considered the challenge of the SRAM PUF.

Results

SRAM PUFs were proposed by Guajardo et al. [50] and a very similar concept
was simultaneously presented by Holcomb et al. [57]. Guajardo et al. [50]
collect the power-up state of 8190 bytes of SRAM from different memory
blocks on different FPGAs. The results show an average inter-distance between
two different blocks of 49.97% and the average intra-distance within multiple
measurements of a single block is 3.57% at nominal conditions and at most
12% for large temperature deviations. Holcomb et al. [57, 58] study the SRAM
power-up behavior on two different platforms: a commercial of-the shelf SRAM
chip and embedded SRAM in a microcontroller chip. For 5120 blocks of 64
SRAM cells measured on 8 commercial SRAM chips at nominal conditions,
they obtained an average inter-distance of 43.16% and an average intra-distance
of 3.8%. For 15 blocks of 64 SRAM cells from the embedded memory in 3
microcontroller chips, they obtained µinter

P = 49.34% and µintra

P = 6.5%.

SRAM PUFs were tested more extensively by Selimis et al. [130] on 68 SRAM
devices implemented in 90 nm CMOS technology, including advanced reliability
tests considering the ramp time of the supply voltage (tramp) and accelerated
ageing of the circuit for an equivalent ageing time (tage) of multiple years. Their
test results show an average inter-distance µinter

P ≈ 50% and intra-distances of
µintra

P < 4% (nominal), µintra

P < 19% (Tenv = −40 °C), µintra

P ≈ 6% (Vdd ± 10%),
µintra

P < 10% (tramp = 1 ms) and µintra

P < 14% (tage = 4.7 years) respectively.
Schrijen and van der Leest [128] also perform a large investigation into the
reliability and uniqueness of SRAM PUFs across implementations in five
different CMOS technologies (from 180 nm to 65 nm) coming from different
SRAM vendors. For results we refer to their paper. Both these extensive
studies prove the generally strong PUF behavior of SRAM power-up values
over widely varying conditions and technologies.

INTRINSIC PUF CONSTRUCTIONS 45

Reset

Response

(a) Latch PUF cell

Latch Latch

Response

(b) D Flip-flop PUF cell

(Bus)

Response

(c) Buskeeper PUF cell

Latch

Latch

preset

clear

Response

(d) Butterfly PUF cell

Figure 2.6: Different PUFs based on bistable memory elements.

2.4.5 Latch, Flip-flop, Butterfly, Buskeeper PUFs

Besides SRAM cells, there are a number of alternative, more advanced digital
storage elements which are based on the bistability principle. They all have
the potential to display PUF behavior based on random mismatch between
nominally matched cross-coupled devices.

Latch PUFs

Su et al. [137] present an IC identification technique based on the settling
state of two cross-coupled NOR-gates which constitute a simple SR latch. By
asserting a reset signal, this latch is forced into an unstable state and when
released it will converge to a stable state depending on the internal mismatch
between the NOR gates. Experiments on 128 NOR-latches implemented on
19 ASICs manufactured in 130 nm CMOS technology yield µinter

P = 50.55% and
µintra

P = 3.04%. An equivalent latch PUF cell structure based on cross-coupled
NAND gates is possible, as shown in Figure 2.6a.

A practical advantage of this latch PUF construction over SRAM PUFs is that
the PUF behavior does not rely on a power-up condition, but can be (re)invoked
at any time when the device is powered. This implies that secrets generated
by the PUF need not be stored permanently over the active time of the device
but can be recreated at any time. Moreover, it allows to measure multiple

46 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

evaluations of each response, which makes it possible to improve reliability
through post-processing techniques such as majority voting. An interesting
approach is taken by Yamamoto et al. [157], who use multiple evaluations of
a latch PUF on FPGA to detect unreliable cells. Instead of discarding these
cells, they consider them as a third possible power-up state, besides stable at
’0’ and stable at ’1’, which effectively increases the response length of the PUF
by a factor of at most log2(3).

Flip-flop PUFs

In [89], we propose a PUF based on the power-up behavior of clocked D flip-
flops on an FPGA platform. Most D flip-flop implementations are composed of
a number of latch structures which are used to store a binary state, as shown in
Figure 2.6b. These internal latch structures cause the PUF behavior of a D flip-
flop just like for the basic latch PUF. We measure the power-up values of 4096
D flip-flops from 3 FPGAs and apply simple majority voting post-processing
techniques, generating one response bit from 5 measurements on 9 flip-flops, to
improve the uniqueness of the responses. This yields µinter

P ≈ 50% and µintra
< 5%.

van der Leest et al. [149] perform a more elaborate experimental study,
measuring the power-up values of 1024 flip-flops on each of 40 ASIC devices and
under varying conditions. Their experiments yield an average inter-distance of
36% on the raw flip-flop values, and an average intra-distance strictly smaller
than 13% even under large temperature variations. They also propose a number
of basic post-processing techniques to increase the uniqueness of the responses,
including von Neumann extraction [152] and XOR-ing response bits.

Butterfly PUFs

For FPGA platforms, SRAM PUFs are often impossible because the SRAM
arrays on most commercial FPGAs (when present) are forcibly cleared
immediately after power-up. This results in the loss of any PUF behavior.
In an attempt to provide an SRAM PUF-like construction which works on
standard FPGAs, we propose the butterfly PUF [77]. The behavior of an
SRAM cell is mimicked in the FPGA reconfigurable logic by cross-coupling
two transparent data latches, forming a bistable circuit depicted in Figure 2.6d.
Using the preset/clear functionality of the latches, this circuit can be forced
into an unstable state and will again converge when released. Measurement
results on 64 butterfly PUF cells on 36 FPGAs yield µinter

P ≈ 50% and µintra

P < 5%
under high temperature conditions. It must be noted that, due to the discrete
routing options on FPGAs, it is not trivial to implement the cell in such a way

INTRINSIC PUF CONSTRUCTIONS 47

that the mismatch by design is small. This is a necessary condition if one wants
the random mismatch caused by manufacturing variability to have any effect.

Buskeeper PUFs

Simons et al. [136] propose yet another variant of a bistable memory element
PUF based on buskeeper cells. A buskeeper cell is a component that is
connected to a bus line on an embedded system. It is used to maintain the
last value which was driven on the line and prevents the bus line from floating.
Internally, a buskeeper cell is a simple latch with a weak drive-strength. A cross-
coupled inverter structure at their core, as shown in Figure 2.6c, is again the
cause of the PUF behavior of the power-up state of these cells. An advantage
of this PUF over other bistable memory cell PUFs is that a basic buskeeper
cell is very small, e.g. in comparison to typical latches and D-flip-flops.

2.4.6 Bistable Ring PUF

The bistable ring PUF as proposed Chen et al. [28] presents a combination
of elements from both ring oscillator PUFs and SRAM PUFs. Its structure
is very similar to a ring oscillator PUF, consisting of a challengeable loop of
inverting elements. However, in contrast to the ring oscillator PUF, the number
of inverting elements is even which implies that the loop does not oscillate but
exhibits bistability, like the SRAM PUF. Using reset logic, the bistable ring can
be destabilized and after a settling time it stabilizes to one of both stable states.
The preferred stable state is again a result of process variations and hence
instance-specific and usable as a PUF response. A single loop structure can be
configured in many different ways, each exhibiting its own preferred stable state,
and the exact configuration is controlled by the PUF’s challenge. Chen et al.
[28] observe that the settling time to reach a stable state is very challenge-
dependent. Evaluating a response too quickly, before the ring is completely
settled, results in severely reduced uniqueness. An implementation of a 64-
element bistable ring PUF was configured on eight FPGAs and evaluated 12
times for each of 50000 different challenges. With a settling time of 47 µs, this
results in an average observed intra-distance of 2.19% at nominal conditions
and 5.81% at Tenv = 85 °C, and an average inter-distance of 41.91%. Due to
the structural similarities between the bistable ring and a challengeable delay
chain as for the arbiter PUF, modeling attacks could be possible. Currently,
no modeling results are known, but further analysis is required before strong
claims regarding the unpredictability of the bistable ring PUF can be made.

48 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

T
ab

le
2.

1:
O

ve
rv

ie
w

of
ex

p
er

im
en

ta
l

re
su

lt
s

of
in

tr
in

si
c

P
U

F
co

ns
tr

uc
ti

on
s

in
th

e
lit

er
at

ur
e.

I
n

t
r
in

s
ic

P
U

F
P

r
o

p
o

s
a

l
P

E
x

p
e
r
im

e
n

t
D

e
t
a

il
s

E
x

p
e
r
im

e
n

t
R

e
s
u

lt
s

C
o

n
d

it
io

n
α

N
p
u
f

N
ch

a
l

N
m

ea
s

µ
in

te
r

P
µ

in
tr

a
P

;α

S
im

p
le

A
rb

it
er

P
U

F
[4

8
]

n
o
m

in
a
l

2
3

(F
P

G
A

)
1
0
0
0
0
0

2
0
0

0
.1

0
%

1
.0

5
%

S
im

p
le

A
rb

it
er

P
U

F
[4

8
]

T
e
n

v
=

6
0

°C
2
3

(F
P

G
A

)
1
0
0
0
0
0

2
3

0
.3

0
%

1
.0

5
%

S
im

p
le

A
rb

it
er

P
U

F
[8

0
]

n
o
m

in
a
l

3
7

(A
S

IC
)

1
0
0
0
0

?
0
.7

0
%

2
3
.0

0
%

S
im

p
le

A
rb

it
er

P
U

F
[8

0
]

T
e
n

v
=

6
7

°C
3
7

(A
S

IC
)

1
0
0
0
0

?
4
.8

2
%

2
3
.0

0
%

S
im

p
le

A
rb

it
er

P
U

F
[8

0
]

V
d

d
−

2
%

3
7

(A
S

IC
)

1
0
0
0
0

?
3
.7

4
%

2
3
.0

0
%

F
F

A
rb

it
er

P
U

F
[8

4
]

n
o
m

in
a
l

2
0

(A
S

IC
)

1
0
0
0
0
0

?
4
.5

0
%

3
8
.0

0
%

F
F

A
rb

it
er

P
U

F
[8

4
]

T
e
n

v
=

6
7

°C
2
0

(A
S

IC
)

1
0
0
0
0
0

?
9
.8

4
%

3
8
.0

0
%

B
a
si

c
R

O
P

U
F

[4
7
]

T
e
n

v
=

5
0

°C
4

(F
P

G
A

)
?

?
0
.0

1
%

1
.0

0
%

R
O

P
U

F
[1

3
8
]

T
e
n

v
=

1
2
0

°C
&

V
d

d
+

1
0
%

1
5

(F
P

G
A

)
1
2
8

?
0
.4

8
%

4
6
.1

5
%

R
O

P
U

F
[9

5
]

n
o
m

in
a
l

1
2
5

(F
P

G
A

)
5
1
1

1
0
0

0
.8

6
%

4
7
.1

3
%

R
O

P
U

F
[9

5
]

T
e
n

v
=

6
5

°C
5

(F
P

G
A

)
5
1
1

1
0
0

4
.0

0
%

4
7
.1

3
%

R
O

P
U

F
[9

5
]

V
d

d
−

2
0
%

5
(F

P
G

A
)

5
1
1

1
0
0

1
5
.0

0
%

4
7
.1

3
%

Im
p

ro
v
ed

R
O

P
U

F
[9

8
]

n
o
m

in
a
l

5
(F

P
G

A
)

2
5
5

?
0
.0

0
%

4
4
.1

0
%

Im
p

ro
v
ed

R
O

P
U

F
[9

8
]

T
e
n

v
=

6
5

°C
5

(F
P

G
A

)
2
5
5

?
0
.0

0
%

4
4
.1

0
%

Im
p

ro
v
ed

R
O

P
U

F
[9

8
]

V
d

d
−

2
0
%

5
(F

P
G

A
)

2
5
5

?
2
.0

0
%

4
4
.1

0
%

E
n

h
a
n

ce
d

R
O

P
U

F
[9

6
]

T
e
n

v
=

7
0

°C
1
2
5

(F
P

G
A

)
6
5
5
1
9

?
4
9
.9

9
%

1
0
%

G
li

tc
h

P
U

F
[7

]
T

e
n

v
=

7
0

°C
3
6

(F
P

G
A

)
1
2
8

?
3
.6

0
%

4
8
.3

0
%

G
li

tc
h

P
U

F
[1

3
3
]

n
o
m

in
a
l

1
6

(F
P

G
A

)
2
0
4
8

?
1
.3

0
%

3
5
.0

0
%

G
li

tc
h

P
U

F
[1

3
3
]

T
e
n

v
=

8
5

°C
&

V
d

d
+

5
%

1
6

(F
P

G
A

)
2
0
4
8

?
1
5
.0

0
%

3
5
.0

0
%

S
R

A
M

P
U

F
[5

0
]

n
o
m

in
a
l

?
(F

P
G

A
)

8
1
9
0

9
2

3
.5

7
%

4
9
.9

7
%

S
R

A
M

P
U

F
[5

0
]

T
e
n

v
=

8
0

°C
?

(F
P

G
A

)
8
1
9
0

?
1
2
.0

0
%

4
9
.9

7
%

S
R

A
M

P
U

F
[5

8
]

n
o
m

in
a
l

5
1
2
0

(C
O

T
S

)
6
4

?
3
.8

0
%

4
3
.1

6
%

S
R

A
M

P
U

F
[5

8
]

n
o
m

in
a
l

1
5

(µ
C

)
6
4

?
6
.5

0
%

4
9
.3

4
%

S
R

A
M

P
U

F
[1

3
0
]

n
o
m

in
a
l

6
8

(A
S

IC
)

2
0
4
8

?
<

4
%

≈
5
0
.0

0
%

(c
o
n

ti
n

u
es

o
n

n
ex

t
pa

ge
)

INTRINSIC PUF CONSTRUCTIONS 49

O
ve

rv
ie

w
of

ex
p

er
im

en
ta

l
re

su
lt

s
of

in
tr

in
si

c
P

U
F

co
ns

tr
uc

ti
on

s
in

th
e

lit
er

at
ur

e.

(c
o
n

ti
n

u
ed

fr
o
m

p
re

vi
o
u
s

pa
ge

)

I
n

t
r
in

s
ic

P
U

F
P

r
o

p
o

s
a

l
P

E
x

p
e
r
im

e
n

t
D

e
t
a

il
s

E
x

p
e
r
im

e
n

t
R

e
s
u

lt
s

C
o

n
d

it
io

n
α

N
p
u
f

N
ch

a
l

N
m

ea
s

µ
in

te
r

P
µ

in
tr

a
P

;α

S
R

A
M

P
U

F
[1

3
0
]

T
e
n

v
=

−
4
0

°C
6
8

(A
S

IC
)

2
0
4
8

?
<

1
9
%

≈
5
0
.0

0
%

S
R

A
M

P
U

F
[1

3
0
]

V
d

d
±

1
0
%

6
8

(A
S

IC
)

2
0
4
8

?
6
.0

0
%

≈
5
0
.0

0
%

S
R

A
M

P
U

F
[1

3
0
]

t r
a

m
p

=
1

m
s

6
8

(A
S

IC
)

2
0
4
8

?
<

1
0
%

≈
5
0
.0

0
%

S
R

A
M

P
U

F
[1

3
0
]

t a
g
e

=
1
4

y
ea

rs
6
8

(A
S

IC
)

2
0
4
8

?
<

1
4
%

≈
5
0
.0

0
%

L
a
tc

h
P

U
F

[1
3
7
]

n
o
m

in
a
l

1
9

(A
S

IC
)

1
2
8

?
3
.0

4
%

5
0
.5

5
%

F
li

p
-fl

o
p

P
U

F
[8

9
]

n
o
m

in
a
l

3
(F

P
G

A
)

4
0
9
6

?
<

5
%

≈
5
0
.0

0
%

F
li

p
-fl

o
p

P
U

F
[1

4
9
]

T
e
n

v
=

8
0

°C
4
0

(A
S

IC
)

1
0
2
4

?
<

1
3
%

3
6
.0

0
%

B
u

tt
er

fl
y

P
U

F
[7

7
]

T
e
n

v
=

8
0

°C
3
6

(F
P

G
A

)
6
4

?
<

5
%

≈
5
0
.0

0
%

B
is

ta
b

le
R

in
g

P
U

F
[2

8
]

n
o
m

in
a
l

8
(F

P
G

A
)

5
0
0
0
0

1
2

2
.1

9
%

4
1
.9

1
%

B
is

ta
b

le
R

in
g

P
U

F
[2

8
]

T
e
n

v
=

8
5

°C
8

(F
P

G
A

)
5
0
0
0
0

1
2

5
.8

1
%

4
1
.9

1
%

IC
ID

[8
7
]

n
o
m

in
a
l

5
5

(A
S

IC
)

1
3
2

?
1
.3

0
%

≈
5
0
.0

0
%

S
R

A
M

F
a
il

u
re

P
U

F
[4

3
]

n
o
m

in
a
l

5
3

(A
S

IC
)

1
2
8

?
0
.0

1
%

4
9
.9

2
%

50 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

2.4.7 Mixed-Signal PUF Constructions

Next, we describe a number of integrated electronic PUF proposals whose
PUF behavior is inherently of an analog nature. This means that they also
require embedded analog measurement techniques, and an analog-to-digital
conversion if their responses are required in digital form, making them mixed-
signal electronic constructions. While technically labelled as intrinsic PUFs,
since they can be integrated on a silicon die and take their randomness from
process variations, it is not straightforward to deploy these constructions in a
standard digital silicon circuit, due to their mixed-signal nature and possibly
due to non-standard manufacturing processes.

ICID: A Threshold Voltage PUF

To the best of our knowledge, Lofstrom et al. [87] were the first to propose an
embedded technique called ICID which measures implicit process variations on
integrated circuits and use them as unique identifier of the embedding silicon
die. Their construction consists of a number of equally designed transistors
laid out in an addressable array. The addressed transistor drives a resistive
load and because of the effect of random process variations on the threshold
voltages of these transistors, the current through this load will be partially
random. The voltage over the load is measured and converted to a bit string
with an auto-zeroing comparator. The technique was experimentally verified
on 55 ASICs produced in 350 nm CMOS technology. An average intra-distance
under extreme environmental variations of µintra

P = 1.3% is observed, while µinter

P

is very close to 50%.

Inverter Gain PUF

Puntin et al. [111] present a PUF construction based on the variable gain of
equally designed inverters, caused by process variations. The difference in gain
between a pair of inverters is determined in an analog electronic measurement
and converted into a single bit response. The proposed construction is
implemented in 90 nm CMOS and an experimentally observed average intra-
distance < 0.07% at nominal conditions and < 0.4% at (Tenv = 125 °C, Vdd +
10%) is reported, however this already includes a masking of the 20% least
stable response bits. The inter-distance is not presented, but it is mentioned
that the correlation between response strings from different PUF instances is
less than 1%.

INTRINSIC PUF CONSTRUCTIONS 51

SHIC PUFs

Rührmair et al. [121, 122] propose a circuit consisting of an addressable array of
diodes which is implemented as a crossbar memory in the aluminium-induced
layer exchange (ALILE) technology. They observe that the read-out time of
each memory cell, consisting of a single diode, is influenced by process variations
and hence usable as a PUF response. Since each crosspoint in a dense grid of
metal lines creates a diode, a very high physical density of response bits of up to
1010bit/cm2 can be obtained, hence the name Super-High Information Content
or SHIC PUF. The performance of the construction is very low, allowing read-
out speeds of merely 100 bit/s. The authors claim that the combination of
high density and low performance provides protection against full read-out
attacks, but it is unclear whether the particularly low performance allows for
any practical application. The physical mechanisms to produce such a SHIC
PUF were tested, but no experimental PUF data is provided.

SRAM Failure PUF

An SRAM PUF variant is proposed by Fujiwara et al. [43]. The static noise
margin (SNM) of an SRAM cell is a key figure of merit describing the resistance
of a cell to voltage noise. Voltage noise exceeding the SNM alters a cell’s state
and hence deletes the information it is storing, resulting in a bit failure. The
exact value of a cell’s SNM is also influenced by silicon process variations, hence
each cell in an SRAM array will produce a bit failure at a slightly different
noise level. Fujiwara et al. [43] apply this observation to build a PUF. By
gradually increasing the word line voltage of an SRAM array, the SNM of a
cell is reduced until it produces a bit failure. They do this for a large array
of cells and identify the first n failing cells. The addresses of these cells are
random and are used as the PUFs response. They present experimental results
from 53 test ASICs each producing 128 response bits and report an average
inter-distance of 49.92%. The average observed intra-distance is as low as 0.1%,
but this is already after an elaborate majority voting post-processing. A very
similar concept is proposed by Krishna et al. [75] as the MECCA PUF. They
shorten the word line duty cycle of the SRAM array to induce failures.

2.4.8 Overview of Experimental Results

Table 2.1 summarizes all experimental results on intrinsic PUF constructions
that are discussed in this section. We compare the average response intra-
and inter-distances of the proposals since they are the most important quality

52 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

parameters of a PUF and are therefore nearly always mentioned for a PUF
experiment. When possible, we also mention the details of the experiment
which produced these statistics, i.e. the condition under which the experiment
was performed (α), and the size of the experiment in terms of number of
different PUF instances (Npuf), number of challenges measured per instance
(Nchal), and number of evaluations of each challenge (Nmeas).

Although the intra- and inter-distance mean gives a good first notion of the
quality of a PUF, there are a number of other measures which need to be
considered when objectively comparing different PUF proposals. For one,
the PUF proposals listed in Table 2.1 represent a wide variety of different
implementations. Besides the basic PUF quality, the implementation efficiency
and performance are equally important for most applications. However,
for many PUF constructions, detailed implementation parameters are not
provided, or implementation efficiency is even sacrificed to improve the PUF
quality. This gives a distorted picture when comparing different PUFs
solely based on Table 2.1. Moreover, the listed PUF constructions are also
implemented on a variety of platforms and technologies. We differentiate the
used platforms between field-programmable gate arrays (FPGA), application-
specific integrated circuits (ASICs), commercial off-the-shelve products (COTS)
and microcontrollers (µC). However, even within a single platform, different
technologies can be used, e.g. the different scaling CMOS technology nodes.
Finally, as is clear from the experiment details, the size of the experiments and
hence the statistical significance of the obtained results also varies greatly. To
overcome these issues and provide an objective comparison between intrinsic
PUFs, we present an extensive experimental analysis of a number of intrinsic
PUFs constructions in Chapter 4.

2.5 PUF Extensions

2.5.1 POKs: Physically Obfuscated Keys

The concept of a physically obfuscated key or POK was introduced by Gassend
[45], and generalized to physically obfuscated algorithms by Bringer et al. [20].
The only condition for a POK is that a key is permanently stored in a ‘physical’
way instead of a digital way, which makes it hard for an adversary to learn the
key by a probing attack. Additionally, an invasive attack on the device storing
the key should destroy the key and make further use impossible, hence providing
tamper evidence. It is clear that POKs and PUFs are very similar concepts
and it has already been pointed out by Gassend [45] that POKs can be built
from (tamper-evident) PUFs and vice versa.

PUF EXTENSIONS 53

2.5.2 CPUFs: Controlled PUFs

A controlled PUF or CPUF, as introduced by Gassend et al. [46], is in fact
a mode of operation for a PUF in combination with other (cryptographic)
primitives. A PUF is said to be controlled if it can only be accessed via
an algorithm which is physically bound to the PUF in an inseparable way.
Attempting to break the link between the PUF and the access algorithm should
preferably lead to the destruction of the PUF. There are a number of advantages
in turning a PUF into a CPUF:

• A (cryptographic) hash function to generate the challenges of the PUF
can prevent chosen-challenge attacks, e.g. to make model-building attacks
more difficult. However, for arbiter PUFs it has been shown that model-
building attacks work equally well for randomly picked challenges.

• An error-correction algorithm acting on the PUF measurements makes
the final responses much more reliable, reducing the probability of a bit
error in the response to virtually zero.

• A (cryptographic) hash function applied on the error-corrected outputs
effectively breaks the link between the responses and the physical details
of the PUF measurement. This makes model-building attacks much
more difficult. When hashing a PUF’s response, error-correction is
indispensable since any minor deviation on the response gives an entirely
unrelated hash result.

• The hash function generating the PUF challenges can take additional
inputs, e.g. allowing to give a PUF multiple personalities. This might be
desirable when the PUF is used in privacy sensitive applications.

2.5.3 RPUFs: Reconfigurable PUFs

Reconfigurable PUFs or RPUFs were introduced by Kursawe et al. [78]. The
idea behind an RPUF is to extend the regular challenge-response behavior of a
PUF with an additional operation called reconfiguration. This reconfiguration
has as effect that the partial or complete challenge-response behavior of the
PUF is randomly and preferably irreversibly changed, leading to a new PUF.
Kursawe et al. [78] propose two possible implementations of RPUFs where
the reconfiguration mechanism is an actual physical reconfiguration of the
randomness in the PUF. One is an extension of optical PUFs, were a strong
laser beam briefly melts the optical medium, causing a random rearrangement
of the optical scatterers, which leads to a completely new optical challenge-
response behavior. The second proposal is based on a type of non-volatile

54 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

storage called phase change memory. Writing to such a memory amounts to
physically altering the phase of a small cell from crystalline to amorphous or
somewhere in between, and it is read out by measuring the resistance of the cell.
Since the resistance measurements are more accurate than the writing precision,
the exact measured resistances can be used as responses, and rewriting the cells
will change them in a random way. Both proposals are rather exotic at this
moment and remain largely untested. A third proposed option is actually a
logical extension of a regular PUF. By fixing a part of a PUF’s challenge with
a fuse register, the PUF can be reconfigured by blowing a fuse, which optimally
leads to a completely changed challenge-response behavior for the remaining
external challenge bits.

Katzenbeisser et al. [69] generalize this last option in a logically reconfigurable
PUF (LRPUF). An LRPUF consists of a regular PUF, a portion of non-
volatile memory that stores a state and a state dependent input and output
transformation, respectively on the PUF’s challenge and response. By updating
the state of an LRPUF using an appropriate state-update mechanism, the
input and output transformation change, resulting in a completely different
challenge-response behavior for the whole construction. This state update
is hence a logical form of reconfiguring the PUF. Katzenbeisser et al. [69]
propose a number of practical input and output transformations and state
update mechanisms which achieve interesting security properties. LRPUFs
have some drawbacks with respect to actual physically reconfigurable PUFs as
proposed by Kursawe et al. [78]: i) it is debatable whether the reconfiguration
of an LRPUF is truly irreversible, since if an old internal state is restored,
the same challenge-response behavior will reappear, and ii) the security of
the logical reconfiguration relies on the integrity of the state memory which
needs to be guaranteed by independent physical protection measures. However,
their relatively easy construction in comparison to the rather exotic physically
reconfigurable PUF proposals makes them immediately deployable.

A more specific form of a reconfigurable PUF is introduced by Rührmair et al.
[120] as an erasable PUF. An erasable PUF is best described as a reconfigurable
PUF with a reconfiguration granularity of a single challenge-response pair,
i.e. the behavior of a single challenge-response pair of an erasable PUF instance
can be (irreversibly) altered while keeping the behavior of all other pairs fixed.
As demonstrated by Rührmair et al. [120], this construction enables some
interesting security features for protocols based on erasable PUFs.

CONCLUSION 55

2.5.4 PPUFs: Public PUFs and SIMPL Systems

A number of attempts to use PUFs as part of a public-key-like algorithm have
been proposed. SIMPL systems were proposed by Rührmair [116] and are an
acronym for SImulation Possible but Laborious. Two potential implementations
of such a system are discussed by Rührmair et al. [119]. A very similar concept
was proposed by Beckmann and Potkonjak [12] as Public PUFs or PPUFs.
Both SIMPL systems and PPUFs rely on physical challenge-response systems
(PPUFs) which explicitly can be modeled, but for which evaluating the model
is laborious and takes a detectably longer amount of time than the evaluation
of the PPUF itself.

2.6 Conclusion

Overview of PUF Constructions

In this chapter, we have extensively studied the physically unclonable function
concept through an elaborate overview and discussion of known constructions.
This overview provides a deep exploration of the great diversity of different PUF
proposals, each with their own implementation details, practical considerations,
security characteristics and performance results. The listing and comparison of
these features, which by itself already serves as a convenient reference work, will
be of great value when trying to determine a set of common defining properties
of PUFs in Chapter 3. We also propose an interesting classification of PUFs
into intrinsic and non-intrinsic based on certain practical qualities of their
construction. It is argued why intrinsic PUFs are considered advantageous
regarding security and cost-efficiency. In the presented overview, as is the case
in PUF-related literature, the focus is therefore on intrinsic PUFs.

Insight in PUF Constructions

The presented overview also provides a lateral insight in PUF implementation
techniques and their effect on the quality of the PUF behavior. When we focus
on the intrinsic PUF proposals, a number of interesting observations can be
made:

• Most intrinsic PUF constructions deploy a differential measurement
technique, e.g. the arbiter PUF and the ring oscillator PUF, but also all of
the PUFs based on bistability. This turns out to be beneficial, both for the

56 PHYSICALLY UNCLONABLE FUNCTIONS: CONCEPT AND CONSTRUCTIONS

uniqueness and the reliability of its responses. Considering uniqueness, a
(small) differential structure is often much more strongly affected by the
locally random influence of process variations, and less prone to exhibit
bias due to deterministic variations which mostly manifest at larger
scales. For reliability, it is well-known that a differential measurement
exhibits a much lower sensitivity to measurement noise and is able to
even completely compensate the effect of some external conditions on a
measured value.

• For a given PUF construction, the quality of its PUF behavior can be
enhanced in one of two ways to amplify uniqueness and reduce noise: i) by
physically tweaking the implementation details, and ii) by algorithmically
post-processing the measured values into responses.

• For physical enhancements of a given PUF constructions, it is a rule
of thumb that the quality of a construction’s PUF behavior is directly
influenced by the degree of low-level physical control one has over the
implementation technology. The reasoning behind this is that the source
of the PUF behavior is always of a purely physical nature, and the closer
to bare physics one can design a construction, the more possibilities one
has of accurately capturing this behavior. This is clear from the results
on the mixed-signal based intrinsic PUF constructions in Section 2.4.7:
by evaluating the PUF behavior at the analog level, one is able to
build more reliable and more unique PUFs. However, on the down
side, the development effort also rises exponentially when designing
an implementation at increasingly lower levels of physical abstraction.
Additionally, many standard manufacturing flows do not provide low
levels of physical manufacturing detail.

• Simple algorithmic improvements such as masking of unreliable responses
and majority voting over many responses to improve reliability and/or
uniqueness are in some proposals considered an inherent part of the PUF
construction. As will become clear in the following chapters, algorithmic
post-processing of PUF responses, to make them fit for being used in an
application, can take very elaborate forms and is typically not considered
as part of the PUF construction, but as a separate primitive. Algorithmic
improvements nearly always imply a trade-off between the efficiency
and/or performance of the PUF construction and the quality of its output,
e.g. to obtain a number of PUF-derived bits with a very high reliability
level, the required number of actual PUF response bits can be a tenfold
or more.

Chapter 3

Physically Unclonable
Functions: Properties

“It’s partly true, too, but it isn’t all true. People always
think something’s all true.”

The Catcher in the Rye
J. D. Salinger

3.1 Introduction

3.1.1 Motivation

In Chapter 2, we introduced the PUF concept and illustrated it by means of an
extensive enumeration of exemplary constructions which have been proposed
over the years. From this list it is clear that the term ‘PUF’ has been used,
in printed publications but even more so in colloquial speech, as a label for
a wide variety of different constructions. However, intuitively it is clear that
all these constructions share a number of specific properties. When properly
and unambiguously described, these properties allow us to define a PUF,
i.e. to identify the specific attributes which make us intuitively label certain
constructions as PUFs and others not.

57

58 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

In many publications which introduce a new PUF construction, an attempted
definition for the more general PUF concept is formulated, using varying
degrees of formalism. While often fitting for the construction proposed in the
same publication, most of these definitions run into problems when applied to
the wider group of different PUF constructions as discussed in Chapter 2:

• Some proposed definitions are too strict since they clearly exclude a num-
ber of constructions which are labelled as PUFs, e.g. the early definition
of physical one-way function as proposed by Pappu [109] includes a one-
wayness property, but almost none of the PUF constructions proposed
afterwards meet this very strict condition.

• Other definitions are too loose, i.e. they apply equivalently to construc-
tions which are generally not considered as PUFs, e.g. true random
number generators.

• Many of the proposed definitions are an ad hoc listing of the perceived
qualities of the simultaneously proposed new PUF construction, and lack
a degree of generalization.

These issues, combined with the fact that there are nearly as many different
PUF definitions as there are PUF constructions, have caused confusion and
even lead to problematic situations. One particular problem which occurs
regularly is that some of these ad hoc properties which often appear in PUF
definitions are quickly generalized to all PUFs, whereas many proposed PUF
constructions do in fact not meet them. It becomes even worse when some
recurring properties are in practice even assumed for a newly proposed PUF
construction, without ever actually verifying if the construction meets them.
It goes without saying that this can lead to disastrous failures when security-
sensitive systems using such a PUF construction rely on these properties.

Most of these PUF definitions are moreover of an informal nature. While
not problematic by itself, this does cause issues when PUFs are deployed in
formal systems such as cryptographic algorithms and protocols. Designers of
such formal systems are typically not familiar with the physical intricacies of
a PUF construction and need to rely on a strictly defined formal model of the
PUF. On the other hand, it turns out to be particularly difficult to capture
the physical behavior in an unambiguous and meaningful formal description.
Either the description is not formal enough, which significantly reduces the
usability for a formal designer, or it is too formal, which makes it impossible
for practice-oriented PUF developers to evaluate the strict formal conditions
for their PUF construction. Especially in the latter case, there is the risk of
introducing a model which is picked up in the formal world, but which has no
realistic connection to actual implementations any more.

A DISCUSSION ON THE PROPERTIES OF PUFS 59

3.1.2 Chapter Goals

Whereas Chapter 2 was intended as an exploration of the expanding field
of physically unclonable functions, the goal of this chapter is to introduce a
classification in this large and widely differing collection of PUF proposals
based on the algorithmic properties of their challenge-response behavior. In
more detail, in this chapter we aim to:

• Give a detailed overview of significant properties which have, at one point
or another, been attributed to PUFs, and propose a semi-formal definition
of these properties based on their intuitive description.

• Make a comparative analysis of the defined properties on a representative
subset of PUF proposals in order to distinguish between defining and
nice-to-have characteristics. This analysis will yield a much more tactile
definition of what we have intuitively called a PUF in Chapter 2.

• Partially based on this semi-formal study, we also propose a formal
framework for deploying PUFs in formal security models. The objective
is to develop a framework which is formal enough to allow meaningful
security reductions, but at the same time sufficiently realistic and flexible
to actually demonstrate the formally defined properties for real PUF
implementations.

3.1.3 Chapter Overview

In Section 3.2, we make a study on the many different PUF properties which
have been proposed over time. By means of a comparative analysis over
a representative set of PUF constructions, we identify which properties are
defining and which are only nice to have. This study is an extended and
updated version of our earlier work in [93, Section 4]. In Section 3.3, we
propose a set of formal definitions of the most important PUF properties, which
is intended as a carefully balanced interface between practical PUF developers
and theorists. This section is based on our work in [8]. We conclude this
chapter in Section 3.4.

3.2 A Discussion on the Properties of PUFs

In this section, we start by listing a number of properties which are sensible to
assess for PUFs and most have them have therefore been attributed at one or

60 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

more occasions to particular PUF constructions. We define these properties in
a semi-formal way using the notation introduced in Section 2.2. The definitions
are semi-formal in the sense that, while attempting to be as unambiguous as
possible, we refrain from introducing a plethora of quality parameters which
would make the notation needlessly complex. In that respect, we use informal
qualifiers like easy and hard, small and large, and high and low, to express the
bounds imposed by most properties.

To avoid confusion, we want to state explicitly that at this moment we only
define a number of properties, but we make no claims yet as to which PUF
constructions meet which properties, or as to which properties are naturally
implied for all PUFs. Such an analysis is only done in Section 3.2.9 based
on a representative subset of proposed PUF constructions and discussed in
Section 3.2.10.

3.2.1 Constructibility and Evaluability

The notion of evaluability of a PUF construction is a purely practical and
rather basic consideration expressing the fact that the required effort to
obtain a meaningful outcome of a PUF instance should be feasible. Before
defining evaluability, we first want to introduce the even more basic notion
of constructibility, i.e. the condition that it is actually possible to produce
instantiations of a particular PUF design.

Constructibility

Definition 5. A PUF class P is constructible if it is easy to invoke its Create

procedure and produce a random PUF instance puf ← P.Create(rC $
← {0, 1}∗).

It is hard to discuss the remaining properties for proposals which have no
feasible instantiations. Constructibility is therefore a conditio sine qua non for
evaluability, and by extension for all of the following properties listed here. The
qualifier ‘easy’ in the definition is context dependent. Since PUFs are physical
objects, their constructibility requires at least that they are possible within the
laws of physics. From a more practical viewpoint, ‘easy’ relates to the cost of
producing an instance of a particular PUF class. An important detail in the
definition of constructibility is that it is merely easy to construct a random
PUF instance, i.e. without any specific requirements on its challenge-response
behavior, whereas constructing a specific PUF instance can be infeasibly hard.
In Section 3.2.4, we will discuss why it is even desirable that this is hard.

A DISCUSSION ON THE PROPERTIES OF PUFS 61

Evaluability

Definition 6. A PUF class P exhibits evaluability if it is constructible, and if
for any random PUF instance puf ∈ P and any random challenge x ∈ XP it is

easy to evaluate a response y ← puf(x).Eval(rE $
← {0, 1}∗).

Since the following properties all deal with the challenge-response behavior of
PUF instances, it is hard to discuss the meaningfulness of constructions which
are not evaluable. The ‘easiness’ expressed in the definition is again context
dependent. In a theoretical treatise, this typically points to some variant of ‘in
polynomial time and effort’. Practically however, an easy evaluation means an
evaluation which is possible within the strict timing, area, power, energy and
cost budget imposed by the application. From this point of view, an evaluation
which is easy for one application could be infeasible for another one.

3.2.2 Reproducibility

The first property of a PUF’s challenge-response behavior we will discuss is
its reproducibility, which is technically also of a practical nature. However, as
will become clear later on, it also has strong repercussions on the attainable
security parameters of PUF-based applications.

Definition 7. A PUF class P exhibits reproducibility if it is evaluable, and if

Pr (Dintra

P is small) is high.

Reproducibility is defined with respect to the distribution of the response
intra-distance of the entire PUF class, i.e. considering evaluations of random
challenges on random PUF instances. This means that with high probability,
responses resulting from evaluating the same challenge on the same PUF
instance should be similar, i.e. close in the considered distance metric. If
the evaluation condition (α) has an impact on the responses, the definition is
extended by considering the response intra-distance under condition α: Dintra

P;α.
The qualifiers ‘small’ and ‘high’ in the definition are context specific. Whether
an intra-distance is ‘small’ is generally determined in relation to similar notions
in other properties such as uniqueness (cf. Definition 8), e.g. as made explicit
in the definition of identifiability (cf. Definition 9). How ‘high’ the probability
needs to be typically follows from the application requirements.

62 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

3.2.3 Uniqueness and Identifiability

The most basic security-related property of PUFs is uniqueness: the observation
that a PUF response is a measurement of a random and instance-specific
feature.

Uniqueness

Definition 8. A PUF class P exhibits uniqueness if it is evaluable, and if

Pr (Dinter

P is large) is high.

In the same way as reproducibility, uniqueness is defined with respect to the
distribution of the response inter-distance random variable of the entire PUF
class, i.e. considering evaluations of random challenges on random pairs of PUF
instances. This means that with high probability, responses resulting from
evaluating the same challenge on different PUF instances should be dissimilar,
i.e. far apart in the considered distance metric. Uniqueness is generally assessed
at nominal operating conditions, hence there is no need to extend this definition
to varying evaluation conditions. The qualifiers ‘large’ and ‘high’ are again
context specific.

Identifiability

When a PUF class exhibits both reproducibility and uniqueness, it follows that
its PUF instances can be identified based on their responses. We express this
in the separate property of identifiability.

Definition 9. A PUF class P exhibits identifiability if it is reproducible and
unique, and in particular if

Pr (Dintra

P < Dinter

P) is high.

Identifiability expresses the fact that responses (to the same challenge) coming
from a single PUF instance are more alike than responses coming from different
instances. This means that, using their response evaluations, instances of the
PUF class can state a static identity which is with high probability unique.
The details of how such an identification scheme can be implemented are given
in Section 5.2. The extent to which a PUF class is identifiable is often quickly
estimated based on experimental results, by comparing the average observed
intra- and inter-distances and demonstrating that µintra

P ≪ µinter

P . From this and

A DISCUSSION ON THE PROPERTIES OF PUFS 63

the following definitions, it is also evident why the distributions of Dinter

P and Dintra

P

play a pivotal role in the assessment of the usability of a particular PUF class,
and why it is important to get accurate information about these distributions
from experimental statistics.

3.2.4 Physical Unclonability

Assume an adversary which has control over the creation procedure of a PUF
class, i.e. he can influence the conditions, parameters and randomness sources
of P.Create to a certain (feasible) extent. When considering identification
based on PUF responses in the presence of such an adversary, a stronger
argument is required to ensure that all PUF based identities are unique with
high probability. This is because this adversary can use his control over the
instance creation process to attempt to produce two PUF instances which are
more alike than one would expect based on the uniqueness property. To avoid
this, one would like to enforce the uniqueness property, i.e. to ensure that the
uniqueness property is met, even in the presence of such an adversary. This is
what we call physical unclonability.

Definition 10. A PUF class P exhibits physical unclonability if it is evaluable,
and if it is hard to apply and/or influence the creation procedure P.Create in
such a way as to produce two distinct PUF instances puf and puf′ ∈ P for
which it holds that

Pr
(
dist

[
Y ← puf(X); Y ′ ← puf′(X)

]
< Dinter

P (X)
)

is high,

for X ← XP . In extremis, it should be very hard to produce two PUF instances
for which it holds that

Pr
(
dist

[
Y ← puf(X); Y ′ ← puf′(X)

]
> Dintra

P (X)
)

is low.

The qualifier ‘hard’ in this definition reflects the physical and technical
difficulties (or impossibility) to create such a PUF instance pair. These
difficulties need to be evaluated with respect to the technical capabilities of the
adversary, which ultimately is a function of his expertise and his equipment
budget. Note that the difficulty of producing a non-unique PUF instance
pair, as described in the definition, implies the difficulty of producing a single
PUF instance which is more alike to a given PUF instance than expressed
by the uniqueness property. When combined with constructibility, physical
unclonability can be summarized as: it is easy to create a random PUF instance,
but hard to create a specific one.

A PUF class which exhibits physical unclonability has the interesting security
advantage that even the genuine manufacturer of PUF instances has no way

64 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

of breaking the uniqueness property. This means that one does not need
to trust the manufacturer to make sure every PUF instance is unique with
high probability, since this is implied by the physical unclonability of the PUF
class. This advantage of ‘physically unclonable PUFs’ is called manufacturer
resistance.

3.2.5 Unpredictability

Many applications of PUFs rely on their challenge-response functionality,
i.e. the ability to apply a challenge and to receive a random response in
reply. In that respect, uniqueness, and by extent physical unclonability, are
often not sufficient to ensure security. One also requires unpredictability
between responses on a single PUF instance, i.e. unobserved responses remain
sufficiently random, even after observing responses to other challenges on the
same PUF instance.

Definition 11. A PUF class P exhibits unpredictability if it is evaluable, and
if it is hard to win the following game for a random PUF instance puf ∈ P:

• In a learning phase, one is allowed to evaluate puf on a limited number of
challenges and observe the responses. The set of evaluated challenges is
X ′P and the challenges are either randomly selected (weak unpredictability)
or adaptively chosen (strong unpredictability).

• In a challenging phase, one is presented with a random challenge
X ← XP \ X

′
P . One is required to make a prediction Ypred for the response

to this challenge when evaluated on puf. One does not have access to puf,
but the prediction is made by an algorithm predict which is trained with
the knowledge obtained in the learning phase: Ypred ← predict(X)

• The game is won if

Pr (dist [Ypred ← predict(X); Y ← puf(X)] < Dinter

P (X)) is high.

Note the similarity in the expressions involving the distribution of the inter-
distance in this definition and the definition of physical unclonability. However,
instead of considering the distance to a second created PUF instance puf′, here
we consider the distance to a prediction algorithm predict which is trained on
an earlier observed set of challenges and responses on the same PUF instance.
We use a game-based description for unpredictability to avoid having to put
any restrictions on the prediction algorithm, i.e. unpredictability is defined with
respect to the best conceivable prediction algorithm which can be built, trained

A DISCUSSION ON THE PROPERTIES OF PUFS 65

and evaluated within the capabilities of the adversary. In the best case, one can
show that responses to different challenges are completely independent, which
means they cannot be predicted by any prediction algorithm. However, such
a strong quality can rarely be proven for a PUF construction, and at best one
can assume it for certain PUFs based on a physical motivation.

For other PUF constructions, responses are not independent and their
unpredictability relies on the computational difficulty of constructing, training
and evaluating an appropriate prediction algorithm. In that case, the extent of
unpredictability can only be estimated in relation to the currently best-known
modeling attack, since there is no guarantee that no better attacks exist. This
is similar to the situation for most cryptographic symmetric primitives, e.g. a
block cipher like AES, where a primitive is only as secure as indicated by
the currently best-known attack. Kerckhoffs’ principle typically also applies to
PUFs, i.e. an adversary has full knowledge about the design and implementation
details of a particular PUF construction, except for the instance-specific
random features introduced during the creation process. The efficiency of a
practical model building attack aimed at breaking the unpredictability of a
PUF is typically expressed by their prediction accuracy as a function of the
size of the training set, e.g. as done in the description of modeling attacks on
arbiter PUFs in Section 2.4.1.

3.2.6 Mathematical and True Unclonability

In the definition of unpredictability, an adversary is restricted to learn a limited
number of (possibly random) challenge-response pairs which he uses to train
his prediction algorithm. This is typically the case in a challenge-response
based protocol where the adversary eavesdrops on the protocol communications.
However, a stronger adversarial model needs to be considered when the
adversary has unlimited physical access to a PUF instance. This means he can
learn as many challenge-response pairs as he is capable of storing and possibly
even make useful observations of the PUF instance beyond the challenge-
response functionality.

Definition 12. A PUF class P exhibits mathematical unclonability if it is
unpredictable, even if there is no limit on the access to the PUF instance during
the learning phase (as described in Definition 11), besides one’s own capacities.

Mathematical unclonability is hence the extension of unpredictability to an
adversary with unlimited physical access to a PUF instance. It is therefore
evident that mathematical unclonability implies unpredictability.

66 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

A direct condition for a PUF class P to be mathematically unclonable is that
its challenge set XP is very large, preferably exponential in some construction
parameter of P. If this is not the case, an adversary with unlimited physical
access to a PUF instance can evaluate the complete challenge set and store the
observed responses in a table. This table then serves as a perfect prediction
model of the considered PUF instance and the unpredictability property is
broken (technically, there are no challenges left to play the challenging phase
of the unpredictability game with). The same argument holds if the challenge
set is large, but if a near-perfect response prediction algorithm can be trained
based on a small subset of these challenges.

True Unclonability

We have defined two different notions of unclonability: physical and math-
ematical unclonability. Both describe a property with the same objective,
i.e. it is hard to clone a PUF instance, but from a completely different
perspective. Physical unclonability deals with actual physical clones of PUF
instances, whereas mathematical unclonability deals only with cloning the
challenge-response behavior of a PUF instance. For a PUF class to exhibit
true unclonability, both properties need to be met.

Definition 13. A PUF class P exhibits true unclonability if it is both physically
and mathematically unclonable.

3.2.7 One-Wayness

We describe a one-wayness property for PUFs similar to the one in the definition
of physical one-way functions as proposed by Pappu [109].

Definition 14. A PUF class P exhibits one-wayness if it is evaluable, and
if given a random PUF instance puf ∈ P, there exists no efficient algorithm
invertpuf : YP → XP which is allowed to evaluate puf a feasible number of times
and for which it holds that

Pr (dist [Y ← puf(X); Y ′ ← puf(invertpuf(Y))] > Dintra

P (X)) is low,

for X ← XP .

Hence, given a PUF instance and a random response of that instance, there
exists no efficient inversion algorithm acting on the PUF instance, which finds
a challenge that would produce a response close to the given response. This
definition resembles the classic definition of a one-way function in theoretical

A DISCUSSION ON THE PROPERTIES OF PUFS 67

cryptography, but takes the unreliability and the uniqueness of a PUF instance
into account. However, the notion of one-wayness is somewhat ambiguous for
PUF constructions since, besides the actual algorithmic complexity of inverting
a PUF instance, it also depends very much on the attainable sizes of the
challenge and response set of the PUF construction. For PUF constructions
with a small challenge set, one-wayness is not achievable since the inversion
algorithm can easily evaluate every possible challenge and perform an inverse
table lookup to invert a given response. On the other hand, if the response set
is small, the inversion algorithm can evaluate random challenges on the PUF
instance and will quickly encounter one which inverts a given response.

3.2.8 Tamper Evidence

Tampering is the act of permanently altering the physical integrity of a system,
e.g. of a PUF instance, with the intent of modifying its operation in an
unauthorized and possibly harmful manner. It is hence a type of physical
transformation which we denote as puf ⇒ puf′ to make clear that physical
changes were made. Directed tampering represents a powerful attack against
security implementations. It can be used to remove or bypass protection
mechanisms and leave the implementation vulnerable, or to obtain information
about sensitive internal values and parameters. Protection against tampering
is a matter of detecting tampering and providing an appropriate reaction,
e.g. clearing confidential data and/or blocking all functionality. In order
to detect tampering, a security system needs to have some level of tamper
evidence, i.e. a tampering attempt will have an unavoidable and measurable
impact on the system. Certain types of PUF constructions, which rely on
sensitive measurements of random physical features of an instance, cannot
be physically tampered with without significantly changing their challenge-
response behavior.

Definition 15. A PUF class P exhibits tamper evidence if it is evaluable,
and if given a random PUF instance puf ∈ P, any physical transformation of
puf ⇒ puf′ has the effect that

Pr
(
dist

[
Y ← puf(X); Y ′ ← puf′(X)

]
> Dintra

P (X)
)

is high,

and ideally that

Pr
(
dist

[
Y ← puf(X); Y ′ ← puf′(X)

]
< Dinter

P (X)
)

is low.

Informally, tamper evidence means that it is very hard to physically alter a PUF
instance without having a noticeable effect on its challenge-response behavior,

68 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

i.e. an effect which with high probability is larger than the unreliability of the
PUF as expressed by the distribution of Dintra

P . Ideally, such an alteration even
causes the PUF instance to become a completely different one, i.e. the effect on
its challenge-response behavior is indiscernible from replacing the PUF instance
with a different unique instance as expressed by the distribution of Dinter

P .

In a sense, tamper evidence is an orthogonal property to physical unclonability.
Physical unclonability states that it is very hard to make two distinct PUF
instances more alike than is to be expected from physically different instances.
Tamper evidence on the other hand states that it is very hard to physically
alter a single PUF instance resulting in a different PUF instance which is more
alike to the original than is to be expected from physically different instances.
Tamper evident PUFs are self-protecting in the sense that a tampering attack
on their implementation unavoidably and substantially alters their responses,
which generally results in a blocked functionality or a loss of secret information.
Moreover, they can also be deployed as to make a larger security system tamper
resistant by encapsulating the system in a tamper evident PUF instance.

3.2.9 PUF Properties Analysis and Discussion

We will now evaluate the properties defined in this section on a representative
set of proposed PUF constructions described in Chapter 2, as well as on a
number of non-PUF reference cases. This analysis will clarify which of these
properties are met by all PUF proposals, which are only met by a few or by
none at all, and most importantly, which subset of properties differentiates the
PUF and non-PUF constructions.

Representative Subset of Constructions

We have selected a representative set of both non-intrinsic and intrinsic
PUF constructions to do this comparative analysis on. We have only
selected proposals for which actual implementations were made and for which
experimental data is available. The PUF constructions we will consider are:

1. The optical PUF as proposed by Pappu et al. [110].

2. The coating PUF as proposed by Tuyls et al. [145].

3. The simple arbiter PUF as proposed by Lee et al. [80].

4. The feed-forward arbiter PUF as proposed by Lee et al. [80].

A DISCUSSION ON THE PROPERTIES OF PUFS 69

5. The XOR arbiter PUF as proposed by Majzoobi et al. [100].

6. The basic ring oscillator PUF as proposed by Suh and Devadas [138].

7. The enhanced ring oscillator PUF as proposed by Maiti et al. [96].

8. The SRAM PUF as proposed by Guajardo et al. [50].

9. The latch, flip-flop, butterfly and buskeeper PUFs as respectively
proposed by Su et al. [137], Maes et al. [89], Kumar et al. [77] and Simons
et al. [136]. It is clear that these PUFs will have identical properties since
they only differ slightly in their construction details. Therefore we treat
them simultaneously.

10. The glitch PUF as proposed by Shimizu et al. [133].

11. The bistable ring PUF as proposed by Chen et al. [28].

To be able to make a differentiation between PUFs and non-PUF constructions
which are used to achieve similar objectives, we have selected a representative
set of non-PUF reference constructions. In order to be able to assess the
properties of this section on these non-PUF references, we explicitly state what
we consider to be the challenge and the response. The non-PUF reference cases
we consider are:

1. A true random number generator or TRNG. A TRNG is a process which
generates a stream of uniformly random numbers based on measurements
of a dynamically random physical process. A TRNG’s output is truly
random since it results from a non-deterministic physical process, as
opposed to the output of a mathematical algorithm known as a seeded
pseudo-random number generator, which only appears random but can
in fact be deterministically calculated if the seed is known. For easy
comparison, we say the single challenge of the TRNG is a request for a
random number and the response is a fixed-length random output string.

2. A very simple, unsecured radio-frequency identification (RFID) scheme.
In this most basic form, an RFID tag is nothing more than a small non-
volatile memory which upon deployment is programmed with a unique
identifier string. When triggered by a reader, the tag broadcasts this
string to identify itself. For easy comparison, we say the single challenge
of this RFID scheme is the reader’s trigger and the response is the
identifier string broadcasted by the tag.

3. An implementation of a secure (unkeyed) cryptographic hash function.
We say the challenge is a (fixed-length) message string and the response
is the resulting hash digest of that message.

70 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

4. An implementation of a secure cryptographic block cipher, with a
randomly generated encryption key which is programmed in a non-volatile
memory in the implementation. We say the challenge of this block cipher
is a single block of message data and the response is the resulting block
of ciphertext data.

5. An implementation of a secure cryptographic public-key signature
algorithm, with a randomly generated public/private keypair of which
the private key is programmed in a non-volatile memory in the
implementation. We say the challenge of this signature algorithm is a
(fixed-length) message string and the response is the resulting signature
on this message.

Comparative Analysis

For every construction listed above, we have assessed whether it meets the
different properties discussed in this section. The resulting analysis is shown
in Table 3.1. We make four differentiations as to what extent a construction
exhibits a certain property:

• V: the construction exhibits the property fully or to a large extent

• X: the construction does not exhibit the property

• !: the construction only exhibits the property under certain conditions

• ?: it is not clear or unknown whether the construction exhibits the
property

Note that the assessments presented in Table 3.1 are only a reflection of the
current state-of-the-art, to the best of our knowledge. However, due to the
natural progress in mathematical and physical attacks, and in manufacturing
techniques, some of these classifications can change over time. We will shortly
discuss the presented results for each property and or reasoning behind certain
classifications.

Constructibility. All considered constructions are constructible since for all
of them known implementations exist. However, some of them require more
construction effort than others. The optical and coating PUFs rely on explicitly
introduced randomness during manufacturing and are therefore non-intrinsic,
the other considered PUF constructions are intrinsic. The RFID scheme, the
block cipher and the signature algorithm also require an explicit programming
of a random string.

A DISCUSSION ON THE PROPERTIES OF PUFS 71

T
ab

le
3.

1:
P

ro
p

er
ti

es
of

a
re

pr
es

en
ta

ti
ve

su
bs

et
of

P
U

F
an

d
no

n-
P

U
F

co
ns

tr
uc

ti
on

s.

P
ro

p
e

rt
y

Optical PUF

Coating PUF

Simple Arbiter PUF

FF Arbiter PUF

XOR Arbiter PUF

Basic Ring Oscillator

PUF

Enhanced Ring

Oscillator PUF

SRAM PUF

Flip-flop / Butterfly /

Latch / Buskeeper PUF

Glitch PUF

Bistable Ring PUF

TRNG Output

RFID Broadcast

Cryptographic Hash

Function

Block Cipher

Encryption

Public-key Signature

C
o
n

s
tr

u
c
ti
b

ili
ty

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

E
v
a

lu
a

b
ili

ty
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V

R
e
p

ro
d

u
c
ib

ili
ty

V
V

V
V

V
V

V
V

V
V

V
X

V
V

V
V

U
n

iq
u

e
n

e
s
s

V
V

V
V

V
V

V
V

V
V

V
V

V
X

V
V

Id
e

n
ti
fi
a

b
ili

ty
V

V
V

V
V

V
V

V
V

V
V

X
V

X
V

V

P
h

y
s
ic

a
l
U

n
c
lo

n
a

b
ili

ty
V

V
V

V
V

V
V

V
V

V
V

V
X

X
X

X

U
n
p

re
d

ic
ta

b
ili

ty
V

V
!

!
?

V
?

V
V

?
?

V
X

X
V

V

M
a

th
e

m
a

ti
c
a

l
U

n
c
lo

n
a

b
ili

ty
V

X
X

X
?

X
?

X
X

?
?

V
X

X
!

!

T
ru

e
 U

n
c
lo

n
a

b
ili

ty
V

X
X

X
?

X
?

X
X

?
?

V
X

X
X

X

O
n

e
-w

a
y
n

e
s
s

V
X

X
X

X
X

X
X

X
X

X
X

X
V

V
X

T
a

m
p

e
r

E
v
id

e
n

c
e

V
V

?
?

?
?

?
?

?
?

?
?

!
X

!
!

V
?

X
!

L
e

g
e

n
d

:

c
o

n
s
tr

u
c
ti
o

n
 e

x
h

ib
it
s
 p

ro
p

e
rt

y

c
o

n
s
tr

u
c
ti
o

n
 d

o
e

s
 n

o
t

e
x
h

ib
it
 p

ro
p
e

rt
y

it
 i
s
 u

n
k
n

o
w

n
/u

n
te

s
te

d
 w

h
e
th

e
r

c
o

n
s
tr

u
c
ti
o

n
 e

x
h

ib
it
s
 p

ro
p

e
rt

y

(m
o
re

 r
e

s
e

a
rc

h
 r

e
q

u
ir
e

d
)

c
o

n
s
tr

u
c
ti
o

n
 e

x
h

ib
it
s
 p

ro
p

e
rt

y
 o

n
ly

 u
n
d

e
r

c
e

rt
a

in
 c

o
n
d

it
io

n
s

72 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

Evaluability. All considered constructions are also evaluable since experimen-
tal results are available for all of them. However, some of them require more
evaluation effort than others. The optical PUF evaluation procedure is quite
elaborate, requiring a laser and a very accurate mechanical positioning system.
The SRAM PUF and the flip-flop and buskeeper PUFs require a power cycle to
evaluate them, since they rely on the power-up behavior of their construction.

Reproducibility. This is the first differentiating property between PUFs and
non-PUFs, since it clearly distinguishes the PUF constructions from the
TRNG. A TRNG is by definition not reproducible, since this would make it
deterministic. The other non-PUF reference cases are perfectly reproducible,
i.e. with zero intra-distance. The reproducibility of the PUF proposals varies
from more than 25% average intra-distance for the optical PUF to less than
1% for the ring-oscillator PUF.

Uniqueness. All PUF proposals exhibit uniqueness with average inter-
distances of merely 23% and 38% for respectively the simple and feed-forward
arbiter PUFs, and very close to 50% for the other constructions. The TRNG
evidently also exhibits ideal uniqueness. Uniqueness is a differentiating feature
between PUFs and hash functions. Because the considered hash function has
no random elements, every implementation instance will exhibit exactly the
same challenge-response behavior. The other three non-PUF constructions are
unique if and only if they have been programmed with a unique bit string,
which is true with high probability in the regular manufacturing process.

Identifiability. This is the combination of reproducibility and uniqueness.
TRNGs and hash functions do not meet this property, respectively for
not being reproducible and not being unique. All other constructions
exhibit identifiability, with for most of them even a large separation between
the distributions of intra- and inter-distance, allowing an unambiguous
identification based on their responses.

Physical Unclonability. As expected, physical unclonability is the great
divider between PUF and non-PUF constructions. The uniqueness of all PUF
proposals results from random physical processes during their manufacturing
process, either implicitly or explicitly, which are so complex that it is
considered infeasible to have any meaningful influence on them. Moreover,
for all considered PUF constructions, these random processes take effect at
microscopic and (deep) submicron levels, which makes it even more technically

A DISCUSSION ON THE PROPERTIES OF PUFS 73

infeasible to analyse them or exert any control over them. This is in great
contrast to the uniqueness of the RFID scheme, the block cipher and the
signature algorithm which is based on the programming of a relatively short
random bit string. For an adversary which controls the manufacturing process,
and hence this programming step, it is not at all difficult to program more than
one instance with the same string. For this reason, these constructions are not
considered physically unclonable.

Unpredictability. Following the modeling attacks on simple and feed-forward
arbiter PUFs as discussed in Section 2.4.1, these two constructions only remain
unpredictable as long as an adversary does not learn enough challenge-response
pairs to accurately train his model. The actual number of unpredictable
responses depends on the details of the implementation and on the state-of-
the art in modeling attacks, but this can be very limited: modeling attacks
have been presented which achieve a better than random accuracy after less
than 100 training responses and improve to near perfect accuracy when more
responses are learned. For the XOR arbiter PUF with a sufficient number
of XOR-ed arbiters (≥ 5), no effective modeling attacks are yet known, and
the same holds for the enhanced ring oscillator PUF, the glitch PUF and
the bistable ring PUF. Although for none of these four PUFs, strong claims
of independence between response bits can be made. For the optical PUF,
reasonable arguments are presented by Tuyls et al. [147], Škorić et al. [155]
that modeling attacks are computationally infeasible. For the remaining PUFs,
response bits are produced by physically distinct elements which is a strong
motivation to assume that different responses are independent and hence
inherently unpredictable. Consequently, no modeling attacks are known for
these PUFs. All the non-PUF constructions except for the RFID scheme
and the hash function exhibit unpredictability, the TRNG because of random
physical influences and the block cipher and the signature scheme because of
a secret element and computational complexity arguments. The RFID scheme
is trivially predictable since it only has one single fixed response. The hash
function construction contains no unique element (key) and is easily predicted.

Mathematical Unclonability. Simple and feed-forward arbiter PUF construc-
tions are not mathematically unclonable since they are only conditionally
unpredictable. The coating PUF, the ring oscillator PUF, the SRAM PUF
and the four other bistable memory element PUFs do not exhibit mathematical
unclonability because the size of their challenge sets is small, which means they
can be fully evaluated to produce a lookup table as a trivial mathematical
clone. For the XOR arbiter PUF, the enhanced ring oscillator PUF, the glitch
PUF and the bistable ring PUF, no practical mathematical cloning attacks

74 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

are known, but more research is required before any strong claims can be
made. Tuyls et al. [147], Škorić et al. [155] argue that the optical PUF is
to a large extent mathematically unclonable, since even if (hypothetically) a
mathematical model of an optical PUF instance could be created, it would be
computationally too complex to be evaluated. However, this turns out to be
very implementation dependent, as Rührmair [117] states that a variant of an
optical PUF with reduced randomness can in fact be modeled. Finally, the
block cipher and the signature algorithm are assumed to be mathematically
unclonable under the condition that an adversary is not able to extract
the secret key during its unlimited physical access to an instance. This
implies that, besides being algorithmically secure, the implementations of these
cryptographic primitives also need to be physically protected, e.g. against side-
channel and fault attacks, and against reverse-engineering.

True Unclonability. This is the combination of physical and mathematical
unclonability. The optical PUF is the only one of the considered PUF
constructions for which strong claims of true unclonability can be made.

One-Wayness. Besides the optical PUF, none of the other studied PUF
proposals can be considered one-way since they either have a small challenge
or a small response set. Pappu [109] presents strong arguments why his optical
PUF construction does exhibit one-wayness, hence being labelled a physical
one-way function. If the block cipher is algorithmically secure and its key
remains secret, it is considered to be hard to invert. The same holds for the
unkeyed hash function. A public-key signature algorithm is not guaranteed
to be one-way, since everyone with knowledge of the public key can verify the
signature which possibly involves recovering the signed message.

Tamper Evidence. A certain level of tamper evidence was only experimentally
demonstrated for optical PUFs by Pappu [109] and for coating PUFs by Tuyls
et al. [145]. For all other proposed PUF constructions no results on tamper
evidence, neither in the positive nor in the negative sense, are known. Hence
no sensible claims on tamper evidence can be made for them. For TRNGs,
tamper evidence is not well defined. The remaining non-PUF proposals are
not inherently tamper evident, but can be implemented in a tamper evident
fashion by applying tamper detection measures.

A DISCUSSION ON THE PROPERTIES OF PUFS 75

3.2.10 Discussion on PUF Properties

PUF Defining Properties

³LPSOLHV´

Evaluable

Unique

Identifiable

Phys.
Unclonable

Math.
Unclonable

Truly
Unclonable

One-Way
Tamper
Evident

PUF Defining

Nice-to-Have

Constructible

Reproducible

Unpredictable

Figure 3.1: Relations between the different described PUF properties and an
indication of the PUF defining properties.

Looking at the results of the comparative property study in Table 3.1, and
assuming these are representative for all PUF and non-PUF constructions,
we can determine the properties which are defining for PUFs, i.e. which
properties do all PUFs meet but differentiate them from all conceivable non-
PUF constructions? The answer to this question turns out to be identifiability,
and to a larger extent physical unclonability which is in fact the enforcement
of uniqueness in the presence of an adversary with control over the instance
creation process. Note that these two properties imply that PUFs are also
constructible, evaluable, reproducible and unique. The relations between all
discussed properties, as well as an indication of the PUF defining properties
are shown in Figure 3.1. Based on this analysis, we tentatively propose a
definition of a PUF class.

Definition 16. A class of physical entities with a challenge-response function-
ality is called a PUF class if it exhibits identifiability (cf. Definition 9) and
physical unclonability (cf. Definition 10).

In the light of this definition, we argue that the acronym ‘PUF’ as standing
for physically unclonable function, i.e. with the qualifier ‘physically’ reflecting
on ‘unclonable’ not on ‘function’, is a particularly fitting name for the
concept. This strong emphasis on physical unclonability being the core PUF

76 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

property also implicates that if at one point the physical unclonability of a
particular PUF construction is disputed, e.g. due to the natural advancement
of manufacturing techniques, it will cease to be a PUF.

Nice-to-Have PUF Properties

Since only identifiability and physical unclonability actually define PUFs, the
remaining properties of unpredictability, mathematical and true unclonability,
one-wayness and tamper evidence are merely desirable extras, but are not
guaranteed for any PUF construction. In fact, there currently seems to be
only one PUF proposal which meets all these properties and that is the optical
PUF as proposed by Pappu [109]. This observation, combined with the fact
that it was one of the very first PUF proposals, grants the optical PUF the
status of prototype PUF. All following PUF constructions aim to achieve as
many of the desirable properties of the optical PUF as possible, but at the
same time aim to provide more integrated implementations.

Since these remaining properties are only nice-to-have qualities, they cannot
simply be assumed to be present in any PUF. This means that PUF designers
need to present strong arguments, preferably of an experimental nature, if
they claim any of these extra properties for their PUF proposal. (In fact,
they also need to show identifiability and physical unclonability to demonstrate
that their proposal is a PUF to begin with.) For developers of PUF-based
applications, this entails that they need to state explicitly if, and to what
extent they rely on any of these nice-to-have properties, since it means that
not all PUF constructions can be used for their application.

Improving PUF Properties

From Table 3.1 it is clear that mathematical unclonability, and by consequence
true unclonability, and also one-wayness are hard to come by for most PUF
proposals. When these properties are required in a PUF-based application,
they can be provided by extending the raw physical PUF instance with an
algorithmic primitive exhibiting this property, and enforcing that the resulting
PUF-system can only be evaluated with this primitive. This is what was defined
as a controlled PUF in Section 2.5.2.

FORMALIZING PUFS 77

3.3 Formalizing PUFs

In Section 3.2, we described meaningful properties of PUFs, and after a broad
comparison identified the ones which define a PUF. Based on this analysis, we
proceed towards a strictly formal description of PUFs and their key properties.
First, we study earlier proposed attempts at formally describing PUFs and
point out how they fall short. Next we discuss our approach in setting up
the framework and in Section 3.3.3 we introduce the basic primitives of the
framework itself. Using the introduced framework, we respectively propose
formal definitions for the notions of robustness, physical unclonability and
unpredictability. The rationale behind the definitions of all concepts and
properties in this section is to provide a meaningful formal model for both
hardware engineers (developing PUFs) and cryptographers (deploying PUFs).

Background. The development of the formal framework for physical functions
and the formal definitions of their properties as described in [8] and in
this section are the shared results of numerous fruitful discussions and an
intense research collaboration between the author and professor Frederik
Armknecht (Universität Mannheim), professor François-Xavier Standaert
(Université catholique de Louvain), Christian Wachsmann and professor
Ahmad-Reza Sadeghi (both Technische Universität Darmstadt).

3.3.1 Earlier Formalization Attempts

Throughout PUF literature, many authors have attempted to generalize the
concept of a PUF in a more or less formal definition, mainly as a means
to highlight the advantageous properties of a simultaneously proposed new
PUF construction. We briefly introduce these definitions and point out why
we believe none of them captures the full spectrum of proposed PUFs and
their properties, either by being too restrictive, i.e. excluding certain PUFs,
or by being too ad hoc, i.e. listing perceived and even assumed properties of
certain PUFs instead of providing a generalizing model. A similar overview
and discussion has been presented by Rührmair et al. [125]. However, we do
not completely follow all their arguments and moreover point out why the new
models they propose are still insufficient.

Another approach toward defining the functionality of a PUF comes from
the theoretical corner. Theorists, in an attempt to deploy PUFs in their
algorithms and protocols, provide rather rigid formal descriptions of PUFs on
which they can built security reductions. We also discuss these proposals and
their drawbacks.

78 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

Physical One-Way Functions

To the best of our knowledge, the first generalizing definition of the PUF
concept is given by Pappu [109], based on the properties of his optical PUF
construction. He focuses on the one-wayness property of this construction and
labels it a physical one-way function (POWF). The first part of the definition of
a POWF states that it is a deterministic physical interaction that is evaluable
in constant time but cannot be inverted by a probabilistic polynomial time
adversary with a non-negligible probability. The second part of the definition
focusses on the unclonability of the POWF: both simulating a response and
physically cloning the POWF should be hard. The POWF definition is solely
based on the optical PUF, which at that time was the only known PUF. As
other PUFs were introduced shortly after, it became clear that this definition
was too stringent, in particular regarding the one-wayness assumption. While
the optical PUF has very large challenge and response sets, many of the later
introduced PUFs do not. For these constructions, one-wayness does not hold
any longer since inverting such a PUF with non-negligible advantage becomes
trivial, as discussed in Section 3.2.7. It is also noteworthy to mention that,
as also pointed out by Rührmair et al. [125], for most PUF-based security
applications, one-wayness is not a required condition. A final issue with the
POWF definition is that it lacks any notion of noise, in fact it even describes
a POWF as a deterministic interaction. This is contradicted by the fact that
virtually all PUF proposals, including the optical PUF, produce noisy responses
due to uncontrollable physical influences affecting a response evaluation.

Physical Random Functions

With the introduction of delay-based intrinsic PUFs, Gassend et al. [47],
propose the definition of a physical random functions to describe PUFs. In
brief, a physical random function is defined as a function embodied by a
physical device, which is easy to evaluate but hard to predict from a polynomial
number of challenge-response observations. Note that this definition replaces
the very stringent one-wayness condition from POWFs by a more relaxed
unpredictability condition. However, the presentation of modeling attacks on
simple arbiter PUFs by Lee et al. [80] and on more elaborate arbiter PUFs by
Rührmair et al. [124] demonstrate a significantly reduced unpredictability of
these types of PUFs. Moreover, the later introduced memory-based intrinsic
PUFs only possess at most a polynomial number of challenges and hence do not
classify as physical random functions since they can be easily modeled through
exhaustive readout. Finally, the definition of physical random functions as

FORMALIZING PUFS 79

proposed by Gassend et al. [47] also does not capture the possibility of noisy
responses.

Weak and Strong PUFs

With the introduction of memory-based intrinsic PUFs, Guajardo et al. [50]
further refine the formal specification of a PUF. They describe PUFs as
inherently unclonable physical systems with a challenge-response behavior. It is
assumed that: i) responses to different challenges are independent of each other,
ii) it is difficult to come up with responses which have not been observed before,
and iii) tampering with a PUF instance substantially changes its challenge-
response behavior. For the first time, it is made explicit that PUF responses
are observed as noisy measurements. This definition also comes with a division
in strong and weak PUFs, depending on how many challenge-response pairs
an adversary is allowed to obtain in order to model the PUF. If the number
is exponentially large in some security parameter, the PUF is called a strong
PUF, otherwise the PUF is called weak. It can be argued that some of the
assumptions made in this description do not have a solid experimental basis,
in particular regarding tamper evidence, which has not been tested in practice
for any of the intrinsic PUF proposals. Also, strong PUFs are difficult to
characterize in general, as the idea of a security parameter is specific to each
PUF instance, and no practical procedure is proposed to exhibit the required
exponential behavior in practice.

Rührmair et al. [125] build upon the distinction between strong and weak PUFs
from Guajardo et al. [50] and redefine both notions in terms of a security game
with an adversary. Weak PUFs are called obfuscating PUFs and are basically
considered as physically obfuscated keys as described in Section 2.5.1. The
main statement in the definition of obfuscating PUFs is that an adversary
cannot learn the key after having had access to the PUF for a limited amount
of time. Strong PUFs are defined similarly, but here the adversary needs to
come up with the response to a randomly chosen challenge after having had
access to the PUF and a PUF oracle for some limited time. Some issues are
again left unresolved in this formalization: first, despite building upon the work
of Guajardo et al. [50], responses are not considered to be noisy. Next, the use
of a PUF oracle in the definition of a strong PUF seems questionable. It is
argued that this oracle is introduced to circumvent practical access restriction
to the PUF. However, if a PUF-based system is secured against any attacks
possible by the current state of technology, the access to such an oracle is an
unrealistic advantage to the adversary which weakens the proposed definition.

80 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

PUFs and PUF-PRFs

In [9] we have introduced a first formal PUF model which starts from a
theoretical application perspective, rather than from a practical construction-
based perspective as most earlier proposals. In [9], we aim to use a PUF as part
of a cryptographic algorithm, i.c. a block cipher, and for that goal the previously
discussed definitions prove to be insufficient. We explicitly make a distinction
between algorithmic and physical properties of a PUF. From the algorithmic
side, a PUF is said to be a noisy function for which the distribution of responses
is indistinguishable from a random distribution with a certain amount of min-
entropy. From the physical side, a PUF is assumed to be physically unclonable
and tamper evident. A PUF-PRF is then defined as a PUF-based system
with pseudo-random function-like qualities. We already pointed out the lack of
experimental proof for tamper evidence of intrinsic PUFs in practice, and the
same argument applies to this definition. The description of uniqueness and
unpredictability by means of min-entropy provides convenient qualities for the
theoretical application of PUFs, but as it turns out it is hard to give strong
proof of min-entropy levels for actual PUF constructions. Contrarily to most
of the previous definitions, PUFs are explicitly defined as noisy functions with
a strictly bounded noise magnitude.

PUFs in the Universal Composition Framework

Brzuska et al. [21] continue the theoretical application viewpoint approach
toward defining PUFs, and propose a very formal definition which allows
them to model PUF functionality in the universal composition framework
as proposed by Canetti [26]. Like our definition from [9], they define PUFs
based on response distributions having a certain level of min-entropy and
also incorporate a noise threshold. However, the presented formulation is
utterly theoretical which makes it unattractive for practice-oriented designers
of PUF constructions. Consequentially, there is a significant probability that
an actual PUF construction which lives up to this stringent definition will
never be proposed. Moreover, the strong min-entropy assumptions on the PUF
responses rule out many known PUF constructions and put strong restrictions
on others, leading to practical inefficiency.

FORMALIZING PUFS 81

3.3.2 Setup of the Formal Framework

Objective

The basic objective of the formal framework we present in [8] and which
is discussed in detail in the following, is to provide a workable model for
both practice-oriented PUF designers as well as theory-oriented cryptographers
deploying PUFs in algorithms and protocols. Ideally, the model is sufficiently
realistic, capturing measurable properties of actual PUF proposals, while at the
same time providing sufficient formalism and rigor to allow theoretical security
reductions of systems deploying a PUF as a primitive. Such a framework
could serve as an interface between hardware engineers and theoretical
cryptographers, which would be very beneficial for the continued successful
deployment of PUFs in security systems.

Approach

The approach we take is to start from a minimalistic axiomatic framework
to describe physical functions and increment it in a flexible manner. First,
by hierarchically expanding the notion of a physical function to more
extensive constructions, and secondly by defining modular properties of these
constructions within the framework.

The particular difficulty experienced by formal modeling attempts of PUFs
is dealing with the physical aspect. It is hard to argue about the security
properties of a physical object because they typically cannot be captured by
classical cryptographic notions such as security parameters or computationally
hard problems. To isolate this difficulty, we capture the physical aspect at the
lowest formal level when we axiomatically describe the notion of a physical
function. All higher level properties can then be defined using the formalism
introduced to describe physical functions. The particular properties which we
consider are robustness, physical unclonability and unpredictability. Note that
what we call a physical function is a very general concept, which is broader
than only PUFs, and physical unclonability is merely one possible property of
a physical function.

82 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

3.3.3 Definition and Expansion of a Physical Function

Physical Function (pf)

A physical function pf consists of a physical component p and an evaluation
procedure Evalaev

. A physical component can be physically stimulated, resulting
in a measurable effect. The evaluation procedure Evalaev

translates the physical
stimulus and resulting measurement in a digital form, respectively called the
challenge x and the response y of the physical function. The exact challenge-
response behavior of a pf is determined by the both the static and dynamical
physical state of its physical component, and by an evaluation parameter aev

which controls the challenge and response translation, e.g. the quantization
step size of an analog measurement.

Definition 17. A physical function pf is a probabilistic procedure

pfp,aev
: X → Y,

consisting of an evaluation procedure Eval acting upon a physical component p:

y ← pfp,aev
(x) = Evalaev

(p; x).

When the physical component and the evaluation parameter are clear from the
context, we simply write pf instead of pfp,aev

.

Extraction Algorithm (Extract)

A physical function is not a function in the classical sense since, when
challenged with the same challenge x twice, it may produce different responses.
This is an effect of the response representing a measurement of a physical
component whose physical state is partially dynamic, e.g. as a result of non-
deterministic random physical noise during the measurement. However, for
many applications this is an undesirable feature of a physical function, and it
is dealt with by an appropriate extraction algorithm Extractaex

for which it is
possible to guarantee the reproducibility of its output. Many instantiations of
extraction algorithms exist, including the seminal fuzzy extractor as proposed
by Dodis et al. [39] [38]. Like for physical functions, we describe extraction
algorithms as generically as possible to allow the greatest possible flexibility
of the framework. An extraction procedure extracts an output z ∈ Z from a
response y of a pf, and in the process it can also consume and/or produce some
additional side information which we call helper data and denote as w ∈ W.
We also introduce an extraction parameter aex which is used to exactly specify
all the deployment details of the extractor.

FORMALIZING PUFS 83

Definition 18. An extraction algorithm Extract is a probabilistic procedure

Extractaex
: Y ×W → Z ×W,

which operates in one of two modes depending on the format of the presented
helper data:

[setup] (z, w)← Extractaex
(y, ǫ),

[reconstruction] (z′, w′ = w)← Extractaex
(y′, w 6= ǫ),

with ǫ denoting the empty string.

When the extraction parameters are clear from the context, we simply write
Extract instead of Extractaex

.

In setup mode, when no helper data is presented as an input (w = ǫ), the
extraction algorithm produces an output z and helper data w. In reconstruction
mode, another possibly noisy evaluation of the response y′ is presented together
with helper data w which was produced in an earlier setup mode of the extractor.
The extraction algorithm re-extracts the output z′ and additionally outputs
the unchanged helper data w. The power of most extraction algorithms is
that, under certain conditions on the pf response distribution, they succeed
in recreating exactly the same output in both setup and reconstruction mode:
z = z′, given that the helper data generated by the setup mode is used during
reconstruction mode. Besides this reconstruction property, an extraction
algorithm can also provide guarantees about the randomness of its output z.
The actual implementation of the extraction algorithm, like is the case for the
physical function, is left up to the practical developer. The generic nature
of the definition allows a wide variety of extractor implementations, including
using no extractor at all by making it the identity function.

Physical Function System (pfs)

In many application scenarios, the use of an extraction algorithm is indis-
pensable, and by consequence a user will only be aware of the challenge
provided to the physical function and the output generated by the extractor.
The existence of an intermediate physical function response is transparent to
him. Additionally, the relevant security notions in such a scenario will be
determined by the combination of both the used physical function and the
deployed extraction algorithm. For these reasons, it makes sense to abstract
away the separate notions of a physical function and an extraction algorithm

84 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

and consider their combination as a single building block. We call such a
combination a physical function system pfs.

Definition 19. A physical function system pfs is a probabilistic procedure

pfsp,aev,aex
: X ×W → Z ×W,

consisting of the concatenation of a physical function (cf. Definition 17) with
an extraction algorithm (cf. Definition 18):

(z, w′)← pfsp,aev,aex
(x, w) = Extractaex

(pfp,aev
(x), w).

When the physical component and the parameters are clear from the context,
we write pfs(x, w) instead of pfsp,aev,aex

(x, w).

We believe that, from a theoretical perspective, it is easier to reason about
physical function systems than having to deal with the technical peculiarities
of physical functions and extractors. Therefore we will define formal properties
over physical function systems, rather than over physical functions, and we
only refer to the underlying physical functions and extractors when necessary.

Physical Function Infrastructure (F)

The physical component p in a physical function pf is the result of a physical
creation process Createacr

. The exact manifestation of a created physical
component is determined by stochastic influences during the creation process,
and by a controlled deterministic creation parameter acr which defines the full
details of the creation process.

Definition 20. For a fixed tuple of parameters (acr, aev, aex), the physical
function infrastructure F(acr,aev,aex) refers to the creation process Createacr

and
the set of all physical function systems consisting of the extraction algorithm
Extractaex

and a physical function pfp,aev
with a physical component created by

Createacr
:

F(acr,aev,aex)
△

=
(
Createacr

,
{

pfsp,aev,aex
: p← Createacr

})
.

Finally, a family of physical function infrastructures is defined as a general-
ization of a physical function infrastructure for more than one single creation
parameter acr:

F(Acr,aev,aex)
△

= {Facr,aev,aex
: acr ∈ Acr} .

FORMALIZING PUFS 85

If the parameters aev and aex are clear from the context, we simply write Facr

and FAcr
. We use a family of physical function infrastructures to express the

control one has over the creation procedure Createacr
, by being able to pick the

creation parameter acr from a certain set Acr.

Overview

p

Eval

Extract

Create physical

component

physical

function
physical

function

system
physical function

infrastructure

x

w Z¶

z y

p

exevppfs a,a ,

evppf ,a

),,(exevcr
F aaa

cra

eva

exa

Figure 3.2: Schematic overview of the concept of a physical function and its
expansion to a physical function system and a physical function infrastructure.

In Figure 3.2, we schematically show the concept of a physical function as
the combination of a physical component and an evaluation procedure. Also
shown is the expansion to a physical function system, by combining it with
an extraction procedure, and further to a physical function infrastructure, by
combining it with a creation procedure. Each of the three proposed procedures
is possibly probabilistic and is for the remainder fully determined by their
inputs and the respective parameters aev, aex and acr.

3.3.4 Robustness of a Physical Function System

Robustness as defined in this section is the formal counterpart of reproducibility
as described in Section 3.2.2, with the difference that reproducibility allows a
certain error between evaluations as long as it is small, whereas robustness
describes error-free reconstructions. In practice, an appropriate extraction
algorithm is able to transform a reproducible PUF into a robust physical
function system.

86 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

The robustness of a physical function system is defined as the probability that
an output z produced during setup mode can later be reproduced exactly in
reconstruction mode.

Definition 21. The challenge robustness of pfs with respect to x ∈ X is defined
as

ρpfs(x)
△

= Pr ((z, w)← pfs(x, w) : (z, w)← pfs(x, ǫ)) .

When considering a subset of challenges X ′ ⊆ X , the following related
robustness notions can be defined:

• Minimum robustness of pfs with respect to X ′:

ρmin
pfs (X ′)

△

= min
x∈X
{ρpfs(x)} .

This is useful when one requires every considered challenge to exhibit a
minimal level of robustness.

• Average robustness of pfs with respect to X ′:

ρav
pfs(X

′)
△

=
∑

x∈X

ρpfs(x) · Pr (x← X ′) .

From a practical viewpoint it is often sufficient to have a high enough
average robustness.

This notion of robustness can even be extended further to physical functions
infrastructures. The average robustness of a physical function infrastructure F
is defined as:

ρav
F (X ′)

△

=
∑

pfs∈F

ρav
F (X ′) · Pr (F ← Create) .

When X ′ = X or when the content of X ′ is clear from the context, we simply
write ρmin

pfs , ρav
pfs and ρav

F .

3.3.5 Physical Unclonability of a Physical Function System

Defining a (Physical) Clone

Before we define unclonability, we first need to agree on what we consider to
be a clone. Intuitively, we consider two instances clones if they show ‘similar

FORMALIZING PUFS 87

behavior.’ However, there are a number of technical details which have to be
taken into account in order to turn this intuition into a formal definition.

First of all, we need to make explicit that we consider physical unclonability,
and therefore also only physical clones. Given the definition of a physical
function system, there are a number of non-physical ways one can think of
to create ‘similar instances.’ For example, a physical function system deploying
an extraction algorithm which outputs a fixed constant is trivial to clone, but
it is obvious that we do not consider this a physical clone. A similar argument
holds for the evaluation procedure of the physical function, e.g. imagine an
evaluation procedure which quantizes a physical measurement into a zero bit
response, which is basically a fixed value. We explicitly only consider physical
clones by stating that two physical functions systems which are considered
clones can only differ in their physical component p, while their evaluation and
extraction procedures and parameters need to be identical.

Secondly, there are many levels of ‘similarity’: two physical function systems
can be ‘less different as expected’ or they can be truly ‘indistinguishable’. This
needs to be captured by a quantitative parameter. Also, we need to consider
similarity with respect to a subset of challenges. If two physical function
systems happen to coincide on a subset of challenges which is critical for a
particular application, they need to be considered clones, even if they show
completely different behavior on the remainder of challenges.

Finally, when attempting to formalize the notion of ‘similarity’ for physical
function systems, we will run into robustness again. How does one define
similarity with respect to a physical function system which even by itself does
not always generate similar outputs? To tackle this issue, we are guided by two
intuitive arguments: i) every physical function system pfs should be a clone of
itself (except for not deploying a different physical component), and ii) a clone
of a physical function system pfs cannot be more similar to pfs than pfs is to
itself, as expressed by its robustness. In other words, the robustness of pfs is
a natural upper bound for how similar a clone can be to pfs. Therefore, we
express the similarity of a clone to pfs relative to its robustness.

Definition 22. For a fixed tuple of parameters (aev, aex), let pfs(= pfsp,aev,aex
)

and pfs′(= pfsp′,aev,aex
) be two physical function systems which are identical

except for their physical components, p 6= p′. We say pfs is a δ-clone of pfs′

with respect to X ′ ⊆ X , if ∀x ∈ X ′ it holds that

Pr
(
(z, w)← pfs′(x, w) : (z, w)← pfs(x, ǫ)

)
≥ δ · ρpfs(x),

with 0 ≤ δ ≤ 1. In short-hand notation, we write: pfs
δ;X ′

≡ pfs′.

88 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

By p 6= p′ we mean that p and p′ are distinct physical entities, i.e. occupying
different positions in space-time, but they are allowed to be physically similar
to any level of precision. Note that, except for not deploying different physical
components, every physical function system is a (δ = 1,X ′ = X)-clone of itself.

Defining Physical Unclonability

Now that we have a formal definition of a clone, we can define physical
unclonability by formalizing the statement: ‘it is difficult to produce a clone.’
However, again some technicalities need to be considered before a formal
description can be presented.

We first need to specify the capabilities of the adversary A who is trying to
produce a clone. In practice, such an adversary will have access to a number
of executions of the creation procedure of physical components. Possibly,
he even has an amount of control over it, i.e. he can influence the physical
processes taking place during creation within certain boundaries. We capture
this formally by allowing the adversary to select the creation parameter acr from
a particular subset Acr. We use the notion of a family of physical function
infrastructures FAcr

to describe this. The adversarial model is described by
means of a security game between the adversary and a creation oracle.

We also need to distinguish between two variants of unclonability:

• Existential unclonability means that it is hard to create a pair of physical
function systems such that one is a clone of the other.

• Selective unclonability means that given a particular physical function
system, it is hard to create a second one which is a clone of the first one.

Note that in general, existential unclonability implies selective unclonability
and is therefore a stronger security notion. We will give a formal definition
for existential unclonability, but the same approach as presented here can be
applied to describe selective unclonability.

To formally define (existential) unclonability (or cloning resistance), we first
describe the adversary model A by means of a cloning game Gameclone

A (Acr, q):

• In the cloning game Gameclone
A (Acr, q), an adversary is allowed to make

up to q queries to a creation oracle OCreate
Acr

, with q ≥ 2.

• The creation oracle OCreate
Acr

expects a creation parameter acr as query
input. If acr ∈ Acr, then the oracle invokes the physical component

FORMALIZING PUFS 89

creation procedure with the queried parameter to create a single physical
component: Createacr

→ p and answers the query with p.

• The adversary is allowed to adaptively change the creation parameter acr

of his queries.

• When the game ends, the adversary is required to output a pair of physical
components (p, p′) both of which he received as a query reply from the
creation oracle during the game.

Definition 23. A family of physical function instantiations F(Acr,aev,aex) is
(γ, δ, q)-cloning resistant with respect to X ′ ⊆ X , if for every probabilistic
polynomial time adversary A it holds that:

Pr

(
pfsp,aev,aex

δ;X ′

≡ pfs′p′,aev,aex
: (p, p′)← Gameclone

A (Acr, q)

)
≤ γ.

The level of control an adversary has over the creation process will to a large
extent determine the cloning resistance of a physical function infrastructure
family. As explained, the influence an adversary has over the creation is
represented by Acr. We distinguish a special case when Acr = {acr}, i.e. the
creation process is fixed. This is typically so for the genuine manufacturer of the
physical function systems and therefore we call this the honest manufacturer
adversary model. Note that even the honest manufacturer can coincidentally
create clones and this should also only happen with low probability. In all other
cases, with more than one element in Acr, it means that the manufacturer is
deliberately influencing the creation process in order to create a clone. This is
also called the malicious manufacturer adversary model.

3.3.6 Unpredictability of a Physical Function System

When using a physical function system pfs in a security application, the
unpredictability of its output is the most basic expected security requirement.
In classic cryptography, unpredictability is a well-established concept, e.g. for
random functions, and it expresses the difficulty of predicting an unobserved
output of a function after having observed different function evaluations. Due
to the peculiarities of physical function systems, as discussed in detail in
the previous paragraphs, the classical definition of unpredictability does not
directly apply. We will adapt it in an appropriate manner as to make it capture
the notion of unpredictability for physical function systems.

90 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

Types of Unpredictability

We distinguish between two different types of unpredictability for physical
function systems: unpredictability with respect to different outputs on the
same system, and unpredictability with respect to the same outputs on different
systems. The first type is typically important when the physical function
system is used as a challenge-response entity, e.g. in an authentication protocol.
It would be highly undesirable if the response in the next run of the protocol
could be predicted based on previously observed runs of the protocol. The
second type is mainly of significance when the physical function system is
used as a secure storage mechanism, e.g. to generate cryptographic keys.
In that case, the independence of outputs from different physical function
systems is of the utmost importance to ensure the randomness of the derived
keys. Note that the first type of unpredictability is a direct extension of the
classical unpredictability notion to physical function systems, and a theoretical
definition will be a formal variant of the unpredictability property of PUFs as
discussed in Section 3.2.5. The second type of unpredictability on the other
hand, could be regarded as a generalization of the uniqueness property of
PUFs as discussed in Section 3.2.3. Whereas uniqueness only requires that
different PUF instances produce sufficiently different responses, this type of
unpredictability additionally requires a more stringent apparent independence
between the outputs of different physical function systems. The formalization
we propose next captures both types of unpredictability in a single definition,
as well as the continuum of intermediate cases.

Defining Unpredictability for Physical Function Systems

We again use a game-based approach to describe a model for the adversary
A. We distinguish between a weak and a strong prediction game, based on
the control the adversary has over picking the physical function systems and
challenges which are evaluated.

• The weak prediction game Gamepredict;weak
A (Plearn,Pchal, q) is a game

between an adversary A and an evaluation oracle OEval
Plearn,Pchal

which takes
place in two phases: a learning phase and a challenge phase.

• During the learning phase, A is allowed to query the oracle up to q times.
When queried, OEval

Plearn,Pchal
randomly selects pfsi

$
← Plearn and xi

$
← X and

evaluates (zi, wi)← pfsi(xi, ǫ). For each of these q queries, the adversary
A is allowed to observe the tuple (pfsi, xi, zi, wi).

FORMALIZING PUFS 91

• During the challenge phase, OEval
Plearn,Pchal

randomly selects pfs
$
← Pchal and

x
$
← X , making sure that the combination (pfs, x) was never evaluated

during the learning phase, and evaluates (z, w)← pfs(x, ǫ). The adversary
A is now allowed to observe the tuple (pfs, x, w).

• At the end of the game, the oracle outputs the tuple (pfs, x, z) and the
adversary outputs a prediction z′.

The strong prediction game Gamepredict;strong
A (Plearn,Pchal, q) is completely

equivalent to the weak prediction game, only now physical function systems and
challenges are no longer randomly selected by the oracle, but are adaptively
queried by the adversary. In the learning phase, the adversary queries the
oracle with up to q tuples (pfsi ∈ Plearn, xi, wi) and learns the full evaluations
(zi, w′i) ← pfsi(xi, wi) from the oracle. In the challenge phase, the adversary
queries the oracle with a single tuple (pfs ∈ Pchal, x, w) such that the
combination (pfs, x) was never queried during the learning phase. The oracle
evaluates (z, w′)← pfs(x, w) but A can only observe w′ this time.

Definition 24. Let Plearn and Pchal be subsets containing physical function
systems from the same physical function infrastructure F . We say the physical
function systems in Pchal are (λ, q)-weakly unpredictable with respect to Plearn if
for every probabilistic polynomial time adversary A, it holds that:

Pr
(

z = z′ : ((pfs, x, z), z′)← Gamepredict;weak
A (Plearn,Pchal, q)

)
≤ λ · ρpfs(x).

Similarly, we say the physical function systems in Pchal are (λ, q)-strongly
unpredictable with respect to Plearn if for every probabilistic polynomial time
adversary A, it holds that:

Pr
(

z = z′ : ((pfs, x, z), z′)← Gamepredict;strong
A (Plearn,Pchal, q)

)
≤ λ ·ρpfs(x).

Note that Pchal and Plearn do not need to be mutually exclusive and can even
be identical. In fact, if Pchal = Plearn = {pfs}, i.e. we only consider the
unpredictability of a single pfs with respect to itself, then Definition 24 closely
resembles the classical notion of unpredictability of a random function.

3.3.7 Discussion

Most of the concepts and properties defined in this section are more rigid
formalizations of concepts and properties which we introduced earlier in a more
intuitive way, respectively in Section 2.2.1 and in Section 3.2.

92 PHYSICALLY UNCLONABLE FUNCTIONS: PROPERTIES

• The formally defined notion of a physical function infrastructure (F)
coincides almost completely with what we, rather intuitively, have called
a PUF class (P) in Section 2.2.1. Both describe a set of instantiations
and a creation procedure (Create).

• A PUF instance (puf), described in Section 2.2.1 as having a physical state
which can be measured by an evaluation procedure (Eval), is equivalent
to a formal physical function (pf) consisting of a physical component (p)
and the same evaluation procedure.

• Concrete extractor constructions have not yet been described, but are
treated in detail in Chapter 6. It is evident that they are captured
formally by the rather generic extraction procedure introduced in this
section. The formal concept of a physical function system coincides with
the concatenation of a PUF with an extractor implementation.

• The formally defined property of robustness of a physical function system
is an extension of the earlier introduced PUF property of reproducibility
(cf. Definition 7), taking into account the effect of the extractor.

• Equivalently, the formal definition of cloning resistance is the extension
of physical unclonability (cf. Definition 10), related to the formal version
of robustness.

• The formal notion of unpredictability is defined in a broad sense,
considering both unpredictability with respect to the same instance as
well as regarding other instances. In that aspect, the formal unpredictabil-
ity is to be considered as the formalization of the earlier introduced
unpredictability notion (cf. Definition 11, describing unpredictability with
regard to different responses on the same PUF instance) in combination
with a generalized version of uniqueness (cf. Definition 8, describing
differentness of responses with regard to other PUF instances).

The resemblance between these formal definitions and the rather intuitive
concepts and properties which we have defined earlier, makes clear that the
proposed framework is of a significant practical value. This is strengthened by
the fact that most of the intuitive properties have been experimentally verified
for many PUF implementations and can hence be directly translated to their
formal counterparts. Evidently, to do this, the effect of the extractor needs to
be taken into account.

CONCLUSION 93

3.4 Conclusion

Following an extensive study of eleven meaningful PUF properties on a
representative subset of PUF constructions, and on a reference set of non-
PUF constructions, we are able to extract the defining properties of a
PUF: identifiability and physical unclonability, and by implication
constructibility, evaluability, reproducibility and uniqueness. The remaining
properties of unpredictability, mathematical and true unclonability, one-
wayness and tamper evidence are classified as nice-to-have, but are not strictly
required for a construction to be called a PUF. This also means that many
PUF proposals in fact do not exhibit these nice-to-have properties, or at the
very best it remains as yet unclear whether they do. In this light, the optical
PUF as proposed by Pappu et al. [110] serves as an exemplary prototype PUF,
meeting all mentioned properties to a major extent. Most intrinsic PUFs fall
short on the property of mathematical unclonability, and the existence of a
strong intrinsic PUF with motivated and verified security guarantees remains
an open question. One-wayness turns out to be a particularly unfitting property
for intrinsic PUFs, which is partially caused by the ambiguity of considering
the one-wayness of PUFs. Tamper evidence, while often proclaimed as one of
the major advantages of using PUFs, remains a question mark for all intrinsic
PUF proposals, as no experimental results on any construction are known.

Based on these results and with the aim of formalizing these particularly
interesting properties, we introduce a framework for working with PUFs (and
physical function in general) in a theoretical security setting. Using the
introduced primitives in this framework, we formally define robustness, physical
unclonability and unpredictability of a physical function.

Chapter 4

Implementation and
Experimental Analysis of
Intrinsic PUFs

Performing an experiment amounts to asking the
Universe a question.

John Walker

4.1 Introduction

4.1.1 Motivation

All currently known intrinsic PUF implementations are silicon-based and obtain
their PUF behavior from process variations during the manufacturing of silicon
chips. These PUFs are of particular interest, because their response values
can be used as a secret element in a larger security implementation on the
same silicon chip. Deploying an intrinsic PUF in a security application in this
way provides interesting practical and security advantages. We will discuss
applications of intrinsic PUFs and their added value in great detail, respectively
for PUF-based authentication in Chapter 5 and PUF-based key generation in
Chapter 6.

95

96 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

The realization that a silicon intrinsic PUF can serve as an integral hardware
security primitive with valuable properties such as uniqueness and unpre-
dictability, and in particular physical unclonability which cannot be obtained
solely from algorithmic constructions, has led to a great interest into their
construction. Many intrinsic PUF implementations were proposed over time
and are discussed in detail in Section 2.4. When one actually wants to deploy
an intrinsic PUF in a hardware security system, interest goes out to the levels
of efficiency and performance of all these different constructions, both from a
PUF perspective (which construction shows the best PUF behavior) as well
as from a typical hardware design perspective (which construction offers the
lowest area, highest speed, lowest power use, etc.). Section 2.4.8 provides an
overview of known experimental results concerning PUF behavior, but it is
also made clear that a comparison of different proposals solely based on these
results is not entirely objective. This for a number of reasons:

1. For all known intrinsic PUF constructions, as for nearly all hardware
security primitives, there exists a trade-off between area/speed and
security, i.e. larger and/or slower implementations typically offer higher
levels of security. In the overview in Section 2.4.8, which lists
experimental PUF results available in literature, some of the considered
implementations are heavily biased towards optimizing their PUF
behavior by greatly sacrificing on implementation area and/or speed,
while others are not.

2. Experimental PUF results always focus on two properties, reliability and
uniqueness, which are mostly summarized by calculating the average
response intra-distance (µintra

P) and inter-distance (µinter

P) of the experiment.
Good PUF behavior is expressed by a small µintra

P and a large µinter

P .
However, it is not immediately clear how to combine both measures into
a single quality parameter for a particular PUF construction.

3. The results presented in Section 2.4.8 come from implementations in a
variety of different technologies and platforms. It is typically hard to
accurately scale implementation results such as area and speed from one
technology to another, e.g. between different CMOS technology nodes,
and scaling between different platforms, e.g. from FPGA to ASIC, can
only be done very roughly. Extrapolation of PUF behavior results to
different technologies and platforms is virtually impossible.

The first two issues cannot be dealt with for bare PUFs, but need to be
considered in the application context of the bigger system deploying the
PUF. The optimal trade-off between security and efficiency, as well as the
relation between reliability and uniqueness, are determined by the requirements

INTRODUCTION 97

and constraints of the security system as a whole. Optimizing the PUF
implementation is an entangled part of a bigger design optimization process
which will be discussed in detail for PUF-based authentication systems in
Chapter 5 and for PUF-based cryptographic key generation in Chapter 6.

The last issue can be approached by implementing different intrinsic PUF
proposals on the same platform and in the same technology. This will be the
main topic of this chapter. A selection is made of intrinsic PUF proposals which
were proven to show acceptable PUF behavior, and a number of instantiations
of each of them is integrated in an ASIC design. This ASIC design is processed
and a significant set of silicon chips implementing this design is manufactured.
Based on this set of devices, valuable experimental PUF data is gathered
which can be cross-compared without restraint, since it results from PUF
constructions implemented on the same silicon die.

Background. Designing and manufacturing an ASIC is a complex, time-
consuming, and costly undertaking with significant risk of failure. The findings
presented in this chapter are the joint successful result of a larger European
research project called ‘UNIQUE’ in which our institution was a partner [6].
We definitely want to acknowledge the other project partners which contributed
heavily to the design, production and evaluation of the test chip discussed in
this chapter. The main contributions of the author and its institution are in the
preparation and setup of the ASIC development, the development and design of
the ring oscillator PUF, the arbiter PUF and the latch PUF implementations,
the monitoring of the back-end ASIC manufacturing process, the development
of interfacing methods for the ASIC, and the analysis and interpretation of the
measurement results.

4.1.2 Chapter Goals

The main goal of this chapter is to produce a practical and an objective analysis
and comparison of different intrinsic PUF constructions, by implementing them
on the same platform, evaluating them under the same conditions, and assessing
them on the same characteristics. In more detail, in this chapter we plan to:

• Discuss the design process and implementation details of a custom test
chip carrying instantiations of six different intrinsic PUFs.

• Present an in-depth analysis of the uniqueness and reproducibility of
the evaluation results of the test chip implementations, including the
influence of varying evaluation conditions. This analysis should result

98 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

in a practically usable characterization of these properties for every
PUF instance, which can be immediately plugged in to the design and
optimization process of an application seeking to deploy one of these PUF
implementations.

• Discuss the notion of PUF response entropy and introduce a number of
practical entropy bounds which can be computed based on experimentally
obtained response evaluations, including a method to calculate a PUF
response entropy bound based on the results of a modeling attack.

4.1.3 Chapter Overview

Section 4.2 discusses the realization of the intrinsic PUF test chip, from
its initial design rationale and requirements, over its architecture and the
description of its building blocks, up to its manufacturing flow details. In
Section 4.3, we describe how the test chip samples were evaluated and we
present a complete analysis of the uniqueness and reproducibility based on a
large data set of evaluation results. The entropy of a PUF response is described
in Section 4.4 as a measure for its unpredictability. We introduce a number
of increasingly tighter bounds on the response entropy of a PUF, based on
considering increasingly more advanced adversary models. Finally the main
results of this chapter are summarized in Section 4.5.

4.2 Test Chip Design

4.2.1 Design Rationale

The rationale behind the design of the test chip is guided by two main
considerations:

i. In the end, the goal of the test chip is to collect statistically significant
experimental data from intrinsic PUF implementations. Ideally, we would like
to implement as many and as large instances as possible from as many different
intrinsic PUF proposals as possible and evaluate them in a quick, easy and
realistic manner, taking into account that the available area budget should be
more or less evenly distributed among the different PUFs.

ii. Designing and producing an ASIC is a very complex process with a minimal
margin for error. The probability of critical failures increases steadily with the
size and complexity of the design. Since the coordinating project provides only

TEST CHIP DESIGN 99

a single opportunity for ASIC production, it needs to be first-time-right and
any risk of failure should be minimized.

These two considerations lead to the following design choices:

• To minimize risk, the overall architecture is kept minimalistic, with the
major portion of the silicon area budget devoted to implementations of
PUF instances.

• We mainly choose to implement PUF constructions which (at the time)
were proven to show PUF behavior in earlier experiments.

• The additional components are kept to the bare minimum required to
realistically evaluate the PUFs. This leaves the most area to the actual
PUF implementations. All measurement post-processing is done off-line.

• The measurement communication interface, being a single-point-of-failure
in the whole design, is kept as simple as possible to minimize all risk. This
comes at a significant sacrifice in measurement speed.

• Whenever possible, standard design flows are used. Except for the low-
level implementation of some of the PUFs, the whole design is described
at the RTL level and synthesized using reliable third-party standard cell
libraries for the considered technology.

4.2.2 Design Requirements

PUF Selection

Six intrinsic PUF structures are selected for integration on the test chip:

1. The ring oscillator PUF as proposed by Suh and Devadas [138].

2. The latch PUF as proposed by Su et al. [137].

3. The SRAM PUF as proposed by Guajardo et al. [50].

4. The D Flip-Flop PUF as proposed by Maes et al. [89].

5. The arbiter PUF as proposed by Lee et al. [80].

6. The buskeeper PUF as proposed by Simons et al. [136].

100 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

The first five PUF constructions are selected because they were proven to show
PUF behavior in earlier implementations. The buskeeper PUF is a newly
proposed PUF construction by Simons et al. [136]. For the ring oscillator
and the arbiter PUF structures, we analyse two different evaluation methods
(cf. Section 4.3.1) resulting in a total of eight different PUF constructions on
the chip.

Evaluation Control

Additional control over the evaluation conditions of the selected PUF imple-
mentations is desirable:

• In order to study the effects of the power-up conditions on the PUF
constructions which depend on power-up behavior, a number of PUF
instances are grouped under a separate power supply on the chip. This
allows to test instances on the same chip under different supply voltage
conditions.

• In a realistic application, a PUF is integrated on the same silicon die
implementing the complete hardware system, including a large amount of
rapidly switching logic. This might have an effect on the PUF’s behavior,
e.g. because it introduces switching noise on the supply voltage. To mimic
this behavior, we implement an active core on the test chip whose sole
purpose is to generate switching activity while the PUFs are evaluated.

Interfacing

To transfer the measurement data off-chip we require a communication interface
which offers reasonable transfer rates at minimal design complexity and low
pin-count. We prefer a standardized interface for easy integration with other
components. A Serial Peripheral Interface (SPI) [66] was selected.

Internally, the different building blocks on the chip need to be accessible in a
straightforward manner. However, since all blocks operate in slave-mode, we
don’t require advanced communication control and we don’t want to dedicate
silicon area to complex bus interfaces. We opted for a memory-mapped
organization, with a single address decoder controlling which building block is
being read from or written to. Since most selected PUF blocks are inherently
memory elements, they are trivially integrated in this organization. For the
other building blocks, input and output ports are being accessed through
addressable registers.

TEST CHIP DESIGN 101

4.2.3 Top-Level Architecture

Arbiter PUF

Block

Ring Oscillator

PUF Block

SRAM PUF

Block

D Flip-Flop PUF

Block

Latch PUF Block

Buskeeper PUF

Block

A
c

tiv
e

 C
o

re

SPI
Encoding/
Decoding

M
e

m
o

ry
 M

a
p

p
in

g

Power/Clock
Controller

SPI Data In

SPI Data Out

Clock Control

Power Control

Write Data

Read Data

Address

SPI Clock

System Reset

32

32

19

System Clock

Figure 4.1: Top-level block diagram of the test chip.

Figure 4.1 indicates the top-level architecture of the test chip design. All data
communication is done through the SPI/memory-mapped interface, except for
the basic clock and power domain control which has dedicated control and
status pins. The SPI encoder and decoder is a standard design supporting
the SPI protocol. The active core is basically an implementation of a large
number of unrolled rounds of a random substitution/permutation layer, with
the only intention of generation a lot of switching activity. The memory mapper
consists of a large multiplexer and demultiplexer which direct data to and from
the addressed building block. Internally, data interfaces are 32-bit signals and
the address is a 19-bit signal.

Figure 4.2 details the memory map of the different building blocks onto the
address space. The three most significant address bits are used to select
a particular building block. The next four address bits select a particular
instance within the building block, e.g. a particular instance of a PUF type.
The remaining 12 address bits are used for addressing within a single instance.

102 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

9 8 7 6 5 4 3 2 1 0

Block Select Instance Select Internal Instance Addressing

Address Bits

Block Select Block Name

0x0 Ring Oscillator PUF Block

0x1 Latch PUF Block

0x2 SRAM PUF Block

0x3 D Flip-flop PUF Block

0x4 Arbiter PUF Block

0x5 Buskeeper PUF Block

0x6 Active Core

Instance Select Block Name

0x0 ± 0x7 Select PUF Instance 0...7

0xF Select PUF Controller

18 17 16 15 14 13 12 11 10

Figure 4.2: Address structure of the internal memory map of the test chip.

4.2.4 PUF Block: Arbiter PUF

We design the arbiter PUF according to the original construction from Lee
et al. [80], as shown in Figure 2.1. The switch blocks are constructed using
two 2-to-1 multiplexers. The arbiter is an SR latch consisting of two cross-
coupled NAND-gates. Each arbiter PUF has a delay chain consisting of 64
concatenated switch blocks, which is long enough to accumulate sufficient delay
randomness in order to exhibit an observable difference between both lines and
with high probability avoid the arbiter going into the metastable state. This
also means the arbiter PUF takes 64-bit challenges. Using more switch blocks
gives even longer challenges, but would not substantially increase the arbiter
PUF’s unpredictability and does result in larger area use and slower evaluation.
To minimize bias in the delay lines and in the arbiter circuit, the whole arbiter
PUF is a full custom design, i.e. all design steps including the geometrical sizing,
placement and routing of the transistors and interconnecting metal lines are
done by hand. Special attention is paid to the symmetry of the arbiter circuit
and to balancing the parasitic capacitances of the delay lines as closely as
possible. The test chip contains 256 instantiations of this arbiter PUF design,
which are grouped in 8 instances of 32 arbiter PUFs each. This grouping is
only for evaluation performance reasons (32 arbiter PUF response bits can be
read out simultaneously over the 32-bit data bus), since all instantiations are
identical.

TEST CHIP DESIGN 103

4.2.5 PUF Block: Ring Oscillator PUF

The design of the ring oscillator PUF is based on the construction from Suh and
Devadas [138] which is depicted in Figure 2.3. A ring oscillator consists of 80
chained inverters and one NAND gate to control the oscillation. The number of
looped inverters roughly determines the nominal frequency of the ring oscillator,
and in the order of 60-80 inverters is required to obtain frequencies in the
range of 500 − 700MHz which are countable with regular digital counters
in the targeted technology. Of this ring oscillator, 4096 identical copies are
implemented on the test chip, arranged in 16 batches of 256 oscillators each.
Every batch has a single frequency counter and a 256-to-1 multiplexer connects
one of the batch’s oscillators to the counter. To cope with the high frequency
oscillations, the counter is implemented as a 32-bit toggle counter which has a
very short critical path. Since there are 16 batches, each with its own counter,
16 oscillation frequencies can be measured in parallel. The measurement time
during which oscillations are counted is determined as a particular number of
oscillations of an independent, slightly faster, oscillators (64 inverters + NAND)
which feeds a timer. The exact number of oscillations of this timing loop can
be set by the user. The actual response bit generation is not implemented on
the test chip, but the counter values are measured directly. The response bit
generation based on the measured frequencies is performed off-line, using an
algorithm of one’s choice. The response evaluation methods we use are detailed
in Section 4.3.1.

4.2.6 PUF Block: SRAM PUF

The SRAM PUF, as proposed by Guajardo et al. [50], basically consists of
standard SRAM cells of which the power-up value is measured. We implement
an SRAM PUF using a third-party (TSMC) SRAM IP block implementing an
addressable array of 2048x32 SRAM cells, each cell consisting of six MOSFETs.
Each of these blocks can generate 65536 response bits (64kbit). Four of these
SRAM PUF instances are placed on the test chip.

4.2.7 PUF Blocks: D Flip-Flop PUF, Latch PUF and
Buskeeper PUF

The design of these three PUFs basically consists of instantiations of the basic
elements: D flip-flops, latches and buskeeper cells. For our test chip, the
operation of all three these PUFs is based on the power-up behavior of their
basic cells. The design of each of these cells comes from a third-party (TSMC)

104 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

standard cell library. The only other difference between these PUFs is the
number of cells which are instantiated and the way the cells are organized in
arrays.

D Flip-flop PUF Block

One D flip-flop PUF is designed containing 8192 D flip-flop standard cells. Four
of these PUFs are instantiated on the test chip. In the first two instances, the
D flip-flops are organized in a long scan chain, allowing them to be read out
sequentially. In the last two instances, the flip-flops are organized in a large
multiplexer tree, allowing them to be addressed individually. The flip-flops in
the multiplexer tree have their data inputs connected to the write input of the
memory map, which is grounded when the D flip-flop PUF is not addressed.

Latch PUF

We design a latch PUF which consists of 8192 standard cell latches, and four
of these latch PUFs instances are implemented on the test chip. Again, the
first two instances have a scan chain based organization while the latter are
organized in a multiplexer tree. For latches, the scan chain design is slightly
more advanced. Because latches are level-triggered, as opposed to flip-flops
which are edge-triggered, the latches cannot be all clocked at the same time
to shift their values in a chain. The latches in the multiplexer tree have their
data inputs grounded.

Buskeeper PUF

The buskeeper PUF design contains 8192 buskeeper cells, and two of the
buskeeper PUFs are instantiated on the test chip. Both are organized in an
addressable multiplexer tree, since buskeeper cells cannot be chained (they have
only a single-bit bidirectional port).

Practical Comparison

D flip-flop, latch and buskeeper PUFs are very similar in design, the main
difference being the implementation of their basic cells. The following practical
considerations can be made:

TEST CHIP DESIGN 105

• Buskeeper cells, consisting of two inverters, are the smallest of the three,
which makes the buskeeper PUF the most area efficient in terms of
response bits per silicon area. However, since they cannot be chained,
they do require a (rather large) multiplexer tree to read them out.

• Latches, which consist of two cross-coupled NAND or NOR gates, are
larger than buskeeper cells, but smaller than D flip-flops. They can be
chained, but this is not trivial.

• D flip-flops are typically constructed from two latches and are therefore
the largest of all three basic cells, but they can be easily chained.
Moreover, D flip-flops are also a very common cell in regular digital
designs, which could make them reusable for other purposes after they
have generated their PUF response bit at power-up.

In comparison to SRAM PUFs, these three PUF types are less efficient since
SRAM arrays are heavily area-optimized. However, their cell-based design
allows more flexibility since they can be instantiated one cell at a time, while
SRAM only comes in bulky arrays. This also allows to spread, e.g. a D flip-
flop PUF, randomly over the whole area of a silicon die, which adds a layer of
physical obscurity against optical scrutiny attacks. SRAM arrays on the other
hand are easily spotted due to their large and very regular matrix structure.

Besides these practical observations, the PUF behavior of each of these memory-
based PUFs should of course also be taken into account. This is the goal of the
test chip as discussed in this chapter.

4.2.8 Power Domains

The test chip design contains two separate core power domains. The primary
goal of the separated power domain is to ease reading out the memory-based
PUFs which require a power cycle. This way, the main part of the test chip
core containing the communication interface can stay active while some of the
memory-based PUFs in the separate power domain are power cycled to generate
a new response. Besides this goal, the separate power domain is also convenient
when performing reliability test under varying supply voltages.

The separate power domain contains one SRAM PUF instance (out of four),
one D flip-flop PUF instance (out of four), one latch PUF instance (out of
four), and one buskeeper PUF instance (out of two). The separate power
domain has independent supply voltage and ground pins. Moreover, all signal
lines connecting both power domains can be blocked, effectively electrically
isolating the PUF instances in the separate power domain.

106 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

4.2.9 Implementation Details

Floor Plan

Figure 4.3: Floorplan of the structures on the test chip.

The schematic floorplanning for the different PUF instances and other building
blocks on the test chip’s silicon die area is shown in Figure 4.3. The separate
power domain is also depicted, and as shown it contains one instance from
all four memory-based PUFs. The active core is placed in the free space in
between the different instances, in order to increase the impact of its toggling
activity on the PUF evaluations.

Development Flow

Except for the arbiter and ring oscillator PUF blocks, the whole test chip design
is described at the RTL level using a hardware description language (VHDL)
and synthesized using a standard cell library. The back-end design is done by
an external party (Invomec). The arbiter PUF is designed as a full-custom
layout to have the most control over delay line and arbiter circuit balancing.
The ring oscillator PUF is designed as an array of identically laid out hard-
macro copies of an inverter chain. This is to make sure that all oscillators have
the same nominal frequency, and any frequency difference is only caused by
silicon process variations.

TEST CHIP DESIGN 107

Table 4.1: Silicon area breakdown of the different test chip building blocks.

Building Block
Silicon

Area
(mm2)

Relative
Area

(./total logic)
Building Block Content

Ring Oscillator PUF 0.241 10.7%
4096 ring oscillators + 16×
32-bit counters + control

Latch PUF 0.272 9.5%
4× 8192 latches +
2× multiplexer tree

SRAM PUF 0.213 12.1% 4× 64kbit SRAM array

D Flip-flop PUF 0.392 17.4%
4× 8192 D flip-flops +
2× multiplexer tree

Arbiter PUF 0.279 12.4%
256× 64-bit arbiter PUF +
control

Buskeeper PUF 0.076 3.4%
2× 8192 buskeeper cells +
2× multiplexer tree

Active Core 0.353 15.7%
32× 128-bit substitution-
permutation rounds

Additional Blocks 0.425 18.9%
SPI interface, memory
mapping, power control, . . .

Total Logic Area 2.251 100.0% all of the above

Overhead 1.405 62.4%
I/O pads, power/ground rings,
empty space, . . .

Complete Test Chip 3.656 162.4% 1912 µm× 1912 µm silicon die

Implementation Technology

The final design of the test chip is implemented in 65 nm low-power CMOS
technology (TSMC 65nm CMOS Low Power MS/RF and TCBN65LP (nominal
Vt) standard cell library). Both power domains of the core logic are nominally
powered by Vdd = 1.2 V, and the I/O voltage is Vio = 2.5 V. The resulting
silicon die is packaged in an LQFP64 package. In total, 192 packaged chips are
produced.

108 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

Area Breakdown

Table 4.1 shows an estimate of the silicon die area breakdown of the different
building blocks on the test chip. The estimates in this table are used in
Chapter 5 and Chapter 6 to estimate the required PUF size for a PUF based
application with given requirements. This provides an as objective as possible
comparison between the different PUF constructions.

4.3 Experimental Uniqueness and Reproducibility

Results

4.3.1 Evaluation of Delay-based PUFs

Before we present the statistics of the experimental data, we first need to
describe the manner in which we evaluate bit responses for the delay-based
PUF constructions, i.e. the arbiter and the ring oscillator PUF. The evaluation
of the memory-based PUFs follows trivially from their design.

Arbiter PUF Evaluation Modes

The basic arbiter PUF already produces single bit responses. We also consider
2-XOR arbiter PUFs as proposed by Majzoobi et al. [100] by pairing up arbiter
PUFs and perform an XOR-operation on their outputs to produce a single
bit response. The XOR-operation is not implemented on the test chip but is
performed off-line on the evaluated response bits of the basic arbiter PUFs.

Ring Oscillator PUF Evaluation Modes

As mentioned in Section 4.2.5, the ring oscillator PUF design outputs the
frequency counter values directly. While these values already show some PUF
behavior, it is difficult to use them as such in an application. For ease of
integration, the frequency counter values need to be encoded in a meaningful
binary response format. This will also make the comparison with the other PUF
types more relevant. Ring oscillator PUF response bits are typically generated
based on the relative comparisons between measured frequencies, as these
comparison are much more resilient to noise and varying evaluation conditions
than the absolute frequency values. We present two encoding methods based
on relative orderings of the frequency counter values.

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 109

The first method is a basic pairwise comparison (P.C.) between counted
frequencies from different but simultaneously measured oscillators, as was
proposed by Suh and Devadas [138] (but without the 1-out-of-k masking
technique). A single response bit is generated based on the outcome of each
comparison. To ensure independent responses, every oscillator is only used
for the generation of a single bit. The arrangement of our ring oscillator
PUF design in 16 batches, with 256 oscillators and one frequency counter per
batch, allows to measure 16 frequencies simultaneously and hence produce 8
response bits in one evaluation. Using this evaluation method, the complete
ring oscillator PUF design can generate 256× 8 = 2048 response bits.

In [92], we developed a new response bit generation method for ring oscillator
PUFs based on the ordering of the measured frequencies. Suh and Devadas
[138] and Yin and Qu [158] already observed that the amount of information in
the ordering of n independent and identically distributed frequencies is as high
as log2 n!. If one can find an efficient and noise-resilient encoding of such an
ordering, this will lead to a significant increase in the number of independent
response bits, since log2 n! =

∑n
i=2 log2 i ≈ n · log2

n
e

is superlinear in n, as
opposed to the pairwise comparison method which can only produce a number
of response bits which is linear in n, i.e. n

2 .

In [92], we propose to use a Lehmer encoding [81, 129] to represent the
ascending order of a vector of simultaneously measured frequencies, followed
by a Gray encoding [49] of the Lehmer coefficients. A Lehmer code is
a unique numerical representation of an ordering (permutation) which is
moreover efficient to obtain since it does not require explicit value sorting.
If fn = (f1, . . . , fn) is a vector containing n frequency measurements, then the
Lehmer code of the ascending order of these values is a coefficient vector rn−1 =
(r1, . . . , rn−1) with ri ∈ {0, 1, . . . , i}. It is clear that rn−1 can take 2× 3× . . .×
n = n! possible values which is exactly the number of possible orderings of fn,
hence each ordering has a unique Lehmer code representation. The Lehmer
coefficients are calculated from fn as rj =

∑j
i=1 gt(fj+1, f ′i), with gt(x, y) = 1

if x > y and 0 otherwise. The Lehmer encoding has the nice property that
a minimal change in the sorted ordering, caused by two neighboring values
swapping places after sorting, only changes a single Lehmer coefficient by ±1.
Using a binary Gray encoding for the Lehmer coefficients, this translates to
only a single bit difference, which makes the overall response bit generation
particularly noise resilient. The length of the binary representation becomes∑n

i=2⌈log2 i⌉ which is a nearly optimal representation of the actual amount of
information in the ordering, i.e.

∑n
i=2 log2 i.

For our ring oscillator PUF design on the test chip, we apply this Lehmer-Gray
(L.G.) encoding off-line on each vector of n = 16 simultaneously measured
frequencies, yielding 49 response bits. In total, the ring oscillator PUF can

110 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

generate 256 × 49 = 12544 response bits using this method, which is over six
times more than using the pairwise comparison method.

4.3.2 PUF Experiment: Goals, Strategy and Setup

Experiment Goals

The goal of the experiments on the test chip is to characterize the meaningful
properties of the eight studied PUF constructions as realistically and as
accurately as possible. As explained in Section 4.1.1, it is not possible to
make a comprehensive ranking of the different PUFs solely based on their
bare characteristics. In order to make such an objective comparison, the
envisioned application needs to be taken into account as well. We will do
this respectively in Chapter 5 and Chapter 6 for PUF-based authentication
and PUF-based key generation. However, a common interface is desirable,
i.e. a uniform set of characterization parameters for the meaningful properties
of every PUF construction, which can be used in an unambiguous manner to
determine their usability in a particular application. Here, we will provide
such characterization parameters for the uniqueness and reproducibility of all
studied PUF constructions, respectively in Section 4.3.3 and in Section 4.3.4.
The unpredictability of the different PUF constructions is discussed based on
the response entropy in Section 4.4.

Experiment Strategy and Setup

To realistically determine the behavior of the different PUFs, in particular
regarding their reproducibility, they need to be tested under varying conditions.
In particular, we consider variations in test chip’s supply voltage: Vdd =
1.02 V . . . 1.32 V, and environment temperature: Tenv = −45 °C . . . 85 °C,
during evaluation. These conditions are created by powering the test chip with
a variable power supply and placing it in a climate chamber with temperature
control. To comprehensibly assess the PUF’s behavior over these intervals, we
test it at the four extreme corner conditions:

• The low-low corner (LL) or αLL = (Tenv = −45 °C, Vdd = 1.02 V).

• The low-high corner (LH) or αLH = (Tenv = −45 °C, Vdd = 1.32 V).

• The high-low corner (HL) or αHL = (Tenv = 85 °C, Vdd = 1.02 V).

• The high-high corner (HH) or αHH = (Tenv = 85 °C, Vdd = 1.32 V).

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 111

In addition, the test chip is also evaluated at the nominal reference condition:
αref = (Tenv = 25 °C, Vdd = 1.20 V).

At all considered conditions, all PUF constructions on all Npuf = 192 test chips
are evaluated for all their possible challenges, except for the arbiter PUFs which
are only evaluated on a set of 256 randomly generated challenges. In fact,
for the memory-based PUFs, the notion of ‘number of challenges’ is rather
arbitrary since it depends on how many bits one considers to be in a response,
which we denote by ℓresp. In that respect, it is much more natural to detail the
total number of generated response bits instead, denoted as Nbits ≡ Nchal × ℓresp.
Since all considered evaluation methods for the delay-based PUFs also generate
bitwise responses, we also describe them in this manner. For the arbiter PUFs,
we consider all bits generated by all arbiter PUFs at the same time, hence for
the basic arbiter PUF experiment: Nbits = 256 × 256 = 65536, and for the
2-XOR arbiter PUF: Nbits = 256×128 = 32768. All response bits are evaluated
Nmeas = 20 times under each condition for all PUFs on all chips.

4.3.3 Experimental PUF Uniqueness Results

Uniqueness Quantifiers

As expressed in Definition 8, the uniqueness of a PUF class is determined by the
distribution of its inter-distance, in particular at nominal conditions. To study
this distribution, we calculate the inter-distances Dinter

Exp(P) on the measured
responses for all PUF constructions and report the most important statistics
on the observed inter-distances in Table 4.2. Since all responses are bitwise, all
inter-distances are measured using Hamming distances. However, to make it
easier to compare the different PUF constructions, we report them as fractional
Hamming distances, i.e. the Hamming distances are expressed as a ratio of the
total number of evaluated response bits Nbits.

The basic inter-distance statistics we report in Table 4.2 are:

• The sample mean µinter

P and the sample standard deviation σinter

P , re-
spectively expressing the location and dispersion of the inter-distance
distribution.

• The first percentile P [1%]inter

P of the samples and the sample minimum
mininter

P . These two order statistics give a good idea of the left tail of the
distribution, which is of interest when quantifying identifiability later.

In addition to these standard statistics, we introduce a custom statistic which
will be of use later on: the inter-distance binomial probability estimator p̂inter

P .

112 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

For many applications, we need to make assumptions about the distribution
of the inter-distance of a PUF construction. In particular, we often need
to extrapolate the observed empirical distribution to very small or large
probabilities for which we have no reliable measurements. For efficiency
reasons it is important that this can be done as accurately as possible.
However, any overestimation of the uniqueness could be disastrous for the
security requirements of an application and should be avoided at all cost.
For extrapolations beyond the observed inter-distance values, we make the
assumption that the inter-distance is binomially distributed with parameter p̂inter

P .
This parameter is chosen to be as large as possible, but sufficiently small such
that all three following constraints are met, with Fbino(x; n, p) the cumulative
binomial distribution function with parameters n and p, evaluated in x:

1. Fbino(µinter

P ·Nbits; Nbits, p̂inter

P) ≥ 50%, i.e. the estimated binomial distribution
should produce values smaller than or equal to the observed sample mean
with a probability of at least 50%.

2. Fbino(P [1%]inter

P · Nbits; Nbits, p̂inter

P) ≥ 1%, i.e. the estimated binomial distri-
bution should produce values smaller than or equal to the observed first
percentile with a probability of at least 1%. If this is not the case, values
smaller than or equal to the first percentile of the samples are unlikely to
occur as often as they do in the experiment, which means the estimated
binomial distribution is an overestimation.

3. Fbino(mininter

P ·Nbits; Nbits, p̂inter

P) ≥ 10−6, i.e. the estimated binomial distribu-
tion should produce values smaller than or equal to the observed sample
minimum with a probability of at least 10−6 (the total number of observed
samples is in the order of one million). If this is not the case, the observed
sample minimum is unlikely to occur in the experiment according to the
estimated binomial distribution, which is hence an overestimation.

The largest value for p̂inter

P meeting all these three constraints is computed for all
the PUF constructions and also reported in Table 4.2. When the inter-distance
is approximately binomially distributed, the value for p̂inter

P should closely match
µinter

P . When this is not the case, the three constraints make sure that the
binomial estimation based on p̂inter

P at least accurately models the left tail of the
actual inter-distance distribution, to avoid overestimation for extrapolations to
small probabilities.

Discussion on Uniqueness Results

When presented as fractional Hamming distance, the optimal inter-distance
is 50% which indicates two response bit vectors are maximally uncorrelated.

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 113

T
ab

le
4.

2:
E

xp
er

im
en

ta
l

un
iq

ue
ne

ss
re

su
lt

s:
in

te
r-

di
st

an
ce

st
at

is
ti

cs
(a

t
no

m
in

al
co

nd
it

io
n)

.

P
U

F
N

o
.

N
b
it

s
µ

in
te

r

P
σ

in
te

r

P
P

[1
%

]in
te

r

P
m

in
in

te
r

P
p̂

in
te

r

P

SR
A

M
P

U
F

0
65

53
6

49
.5

9%
0.

33
%

48
.7

7%
47

.8
2%

48
.7

5%
1

65
53

6
49

.6
1%

0.
33

%
48

.7
6%

47
.9

3%
48

.8
6%

2
65

53
6

49
.6

8%
0.

31
%

48
.8

8%
47

.8
0%

48
.7

2%
3

65
53

6
49

.7
2%

0.
30

%
48

.9
4%

48
.1

2%
49

.0
4%

L
at

ch
P

U
F

0
81

92
34

.8
4%

1.
20

%
31

.8
2%

28
.3

7%
30

.7
7%

1
81

92
37

.0
1%

1.
23

%
33

.8
6%

31
.2

4%
33

.7
0%

2
81

92
33

.1
7%

1.
62

%
29

.3
1%

25
.2

7%
27

.5
9%

3
81

92
16

.3
7%

2.
02

%
12

.1
0%

10
.4

3%
12

.1
0%

D
F

lip
-fl

op
P

U
F

0
81

92
42

.3
5%

0.
83

%
40

.3
6%

38
.1

4%
40

.7
0%

1
81

92
42

.4
2%

1.
01

%
40

.1
5%

38
.2

0%
40

.7
6%

2
81

92
41

.8
8%

0.
89

%
39

.8
0%

37
.8

7%
40

.4
3%

3
81

92
41

.2
0%

0.
87

%
39

.1
5%

36
.9

5%
39

.5
0%

B
us

ke
ep

er
P

U
F

0
81

92
48

.8
8%

0.
71

%
47

.1
2%

45
.6

5%
48

.2
7%

1
81

92
48

.9
2%

0.
69

%
47

.2
3%

45
.6

7%
48

.2
8%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
47

.1
3%

0.
44

%
46

.1
3%

45
.5

1%
46

.4
3%

A
rb

it
er

P
U

F
(2

-X
O

R
)

0
32

76
8

49
.7

4%
0.

29
%

49
.0

7%
48

.4
0%

49
.7

1%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

49
.6

0%
1.

11
%

47
.0

2%
44

.5
8%

49
.5

4%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
46

.8
6%

0.
48

%
45

.7
7%

44
.3

4%
46

.4
5%

114 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

A reported inter-distance sample mean (and binomial probability estimator)
close to 50% hence indicates high uniqueness. In this respect, the SRAM
PUF and the buskeeper PUF perform particularly well, whereas the D flip-
flip PUF and the latch PUF show slightly reduced uniqueness. In particular
latch PUF instance number three, with an average inter-distance of merely
16%, shows strikingly little uniqueness, even in comparison to the other latch
PUF instances. This is a sign of a possible implementation error in latch this
instance. The basic arbiter PUF shows high uniqueness which is an indication
that the full-custom design approach succeeded in minimizing the arbiter PUF
bias. For the 2-XOR arbiter PUF the uniqueness is evidently even higher.
Both ring oscillator PUF evaluation methods also offer high uniqueness. The
pairwise comparison approach has slightly better uniqueness than the Lehmer-
Gray encoding, but the latter method of course produces significantly more
response bits from the same amount of oscillators. For all the PUFs, the
comparison between the inter-distance sample mean and binomial probability
estimator is also an indication of how closely their inter-distance distribution
resembles a binomial distribution.

4.3.4 Experimental PUF Reproducibility Results

Reproducibility Quantifiers

The reproducibility of a PUF class is determined by the distribution of its
intra-distance (cf. Definition 7), in particular at the most extreme reference
corner conditions. To study these distribution, we calculate the intra-distances
Dintra

Exp(P) on the measured responses for all PUF constructions at the reference
condition αref , and at all four corner conditions: αLL, αLH, αHL, αHH, and report
the most important statistics on the observed intra-distances. Tables 4.3,
4.4, 4.5, 4.6 and 4.7 respectively report the intra-distance statistics for the
experiments under conditions αref , αLL, αLH, αHL and αHH.

The basic intra-distance statistics we report in these tables are:

• The sample mean µintra

P and the sample standard deviation µintra

P , re-
spectively expressing the location and dispersion of the intra-distance
distributions.

• The 99th percentile P [99%]intra

P of the samples and the sample maximum
maxintra

P . These two order statistics give a good idea of the right tail of the
distribution, which is of interest when quantifying identifiability later.

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 115

In addition to these standard statistics, we again introduce a custom statistic for
realistically approximating the observed distribution by a binomial distribution:
the intra-distance binomial probability estimator p̂intra

P . This time, this estimator
is constrained to at least accurately model the right tail of the distribution to
avoid underestimation of the intra-distance distribution at high values. The
reported values for p̂intra

P are computed to be as small as possible, but sufficiently
large such that all three following constraints are met.

1. Fbino(µintra

P ·Nbits; Nbits, p̂intra

P) ≤ 50%, i.e. the estimated binomial distribution
should produce values larger than or equal to the observed sample mean
with a probability of at least 50%.

2. Fbino(P [99%]intra

P · Nbits; Nbits, p̂intra

P) ≤ 99%, i.e. the estimated binomial
distribution should produce values larger than or equal to the observed
99th percentile with a probability of at least 1%. If this is not the case,
values larger than or equal to the 99th percentile of the samples are
unlikely to occur as often as they do in the experiment, which means the
estimated binomial distribution is an underestimation.

3. Fbino(maxintra

P · Nbits; Nbits, p̂intra

P) ≤ 1 − 10−6, i.e. the estimated binomial
distribution should produce values larger than or equal to the observed
sample maximum with a probability of at least 10−6 (the number of
samples in the experiment is in the order of one million). If this is
not the case, the observed sample maximum is unlikely to occur in the
experiment according to the estimated binomial distribution, which is
hence an underestimation.

When the intra-distance is approximately binomially distributed, the value for
p̂intra

P should closely match µintra

P . When this is not the case, the three constraints
make sure that the binomial estimation based on p̂intra

P at least accurately models
the right tail of the actual intra-distance distribution, to avoid underestimation
for extrapolations to larger probabilities.

Discussion on Reproducibility Results

The intra-distance statistics reported in Tables 4.3 to 4.7 clearly show that
the evaluation conditions impact the reproducibility of a PUF. For integration
in a realistic application, we are particularly interested in the worst-case
reproducibility behavior over all considered conditions. In Table 4.8, we
summarize the worst-case results from 4.3 to 4.7, i.e. the statistics from these
tables which show the largest intra-distances. Note that different worst-case
results can come from different conditions.

116 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

T
ab

le
4.

3:
In

tr
a-

di
st

an
ce

st
at

is
ti

cs
at

no
m

in
al

co
nd

it
io

n:
α

re
f

=
(T

e
n

v
=

25
°C

,V
d

d
=

1.
20

V
).

P
U

F
N

o
.

N
b
it

s
µ

in
tr

a

P
σ

in
tr

a

P
P

[9
9%

]in
tr

a

P
m

ax
in

tr
a

P
p̂

in
tr

a

P

SR
A

M
P

U
F

0
65

53
6

5.
46

%
0.

14
%

5.
77

%
6.

06
%

5.
63

%
1

65
53

6
5.

46
%

0.
14

%
5.

76
%

6.
02

%
5.

59
%

2
65

53
6

5.
46

%
0.

14
%

5.
76

%
5.

96
%

5.
55

%
3

65
53

6
5.

47
%

0.
14

%
5.

76
%

6.
00

%
5.

58
%

L
at

ch
P

U
F

0
81

92
2.

61
%

0.
24

%
3.

16
%

3.
65

%
2.

77
%

1
81

92
2.

78
%

0.
25

%
3.

37
%

3.
92

%
3.

00
%

2
81

92
3.

40
%

0.
34

%
4.

28
%

5.
16

%
4.

10
%

3
81

92
2.

64
%

0.
55

%
4.

13
%

5.
27

%
4.

20
%

D
F

lip
-fl

op
P

U
F

0
81

92
3.

54
%

0.
23

%
4.

08
%

4.
61

%
3.

61
%

1
81

92
3.

76
%

0.
53

%
5.

71
%

14
.4

7%
12

.7
0%

2
81

92
3.

50
%

0.
24

%
4.

10
%

4.
88

%
3.

85
%

3
81

92
3.

45
%

0.
23

%
4.

00
%

4.
74

%
3.

72
%

B
us

ke
ep

er
P

U
F

0
81

92
4.

16
%

0.
24

%
4.

72
%

5.
21

%
4.

22
%

1
81

92
4.

17
%

0.
24

%
4.

74
%

5.
21

%
4.

23
%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
3.

04
%

0.
08

%
3.

23
%

3.
39

%
3.

07
%

A
rb

it
er

P
U

F
(2

-X
O

R
)

0
32

76
8

5.
89

%
0.

15
%

6.
26

%
6.

57
%

5.
95

%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

1.
53

%
0.

39
%

2.
44

%
3.

13
%

1.
80

%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
3.

56
%

0.
63

%
4.

68
%

5.
26

%
4.

38
%

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 117

T
ab

le
4.

4:
In

tr
a-

di
st

an
ce

st
at

is
ti

cs
at

L
L

co
rn

er
co

nd
it

io
ns

:
α

L
L

=
(T

e
n

v
=
−

40
°C

,V
d

d
=

1.
02

V
).

P
U

F
N

o
.

N
b
it

s
µ

in
tr

a

P
;α

L
L

σ
in

tr
a

P
;α

L
L

P
[9

9%
]in

tr
a

P
;α

L
L

m
ax

in
tr

a

P
;α

L
L

p̂
in

tr
a

P
;α

L
L

SR
A

M
P

U
F

0
65

53
6

7.
36

%
0.

19
%

7.
79

%
8.

02
%

7.
55

%
1

65
53

6
7.

33
%

0.
19

%
7.

81
%

8.
11

%
7.

62
%

2
65

53
6

7.
33

%
0.

19
%

7.
80

%
8.

09
%

7.
60

%
3

65
53

6
7.

34
%

0.
19

%
7.

83
%

8.
11

%
7.

62
%

L
at

ch
P

U
F

0
81

92
23

.1
0%

1.
92

%
26

.5
8%

28
.2

1%
25

.9
1%

1
81

92
23

.3
6%

1.
73

%
26

.8
9%

28
.3

5%
26

.0
4%

2
81

92
15

.8
5%

1.
11

%
18

.7
3%

19
.5

8%
17

.7
6%

3
81

92
9.

34
%

1.
56

%
14

.6
2%

17
.1

1%
15

.2
2%

D
F

lip
-fl

op
P

U
F

0
81

92
12

.7
9%

0.
91

%
15

.2
6%

16
.6

1%
14

.7
4%

1
81

92
15

.6
1%

4.
06

%
29

.6
0%

32
.8

3%
30

.4
1%

2
81

92
12

.5
6%

1.
10

%
15

.5
3%

16
.7

0%
14

.8
2%

3
81

92
12

.3
5%

1.
20

%
16

.4
8%

17
.8

6%
15

.9
3%

B
us

ke
ep

er
P

U
F

0
81

92
9.

68
%

0.
41

%
10

.6
2%

11
.3

9%
9.

86
%

1
81

92
9.

89
%

0.
39

%
10

.8
0%

11
.4

4%
10

.0
4%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
7.

41
%

0.
23

%
7.

98
%

8.
25

%
7.

75
%

A
rb

it
er

P
U

F
(2

-X
O

R
)

0
32

76
8

13
.7

2%
0.

40
%

14
.7

0%
15

.1
4%

14
.2

5%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

3.
75

%
0.

47
%

4.
83

%
5.

62
%

3.
88

%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
9.

01
%

0.
47

%
10

.3
5%

11
.1

7%
9.

89
%

118 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

T
ab

le
4.

5:
In

tr
a-

di
st

an
ce

st
at

is
ti

cs
at

L
H

co
rn

er
co

nd
it

io
ns

:
α

L
H

=
(T

e
n

v
=
−

40
°C

,V
d

d
=

1.
32

V
).

P
U

F
N

o
.

N
b
it

s
µ

in
tr

a

P
;α

L
H

σ
in

tr
a

P
;α

L
H

P
[9

9%
]in

tr
a

P
;α

L
H

m
ax

in
tr

a

P
;α

L
H

p̂
in

tr
a

P
;α

L
H

SR
A

M
P

U
F

0
65

53
6

7.
46

%
0.

20
%

7.
91

%
8.

15
%

7.
67

%
1

65
53

6
7.

44
%

0.
20

%
7.

94
%

8.
28

%
7.

78
%

2
65

53
6

7.
44

%
0.

20
%

7.
93

%
8.

28
%

7.
78

%
3

65
53

6
7.

44
%

0.
20

%
7.

96
%

8.
25

%
7.

75
%

L
at

ch
P

U
F

0
81

92
23

.3
8%

1.
92

%
26

.9
2%

28
.1

3%
25

.8
2%

1
81

92
23

.6
6%

1.
74

%
27

.2
7%

28
.6

5%
26

.3
3%

2
81

92
15

.5
1%

0.
99

%
17

.9
6%

19
.2

0%
17

.2
1%

3
81

92
13

.7
0%

2.
34

%
19

.8
1%

24
.0

4%
21

.8
6%

D
F

lip
-fl

op
P

U
F

0
81

92
12

.9
0%

0.
91

%
15

.3
3%

16
.9

2%
15

.0
3%

1
81

92
15

.6
8%

4.
08

%
29

.6
3%

33
.0

2%
30

.6
0%

2
81

92
12

.6
4%

1.
09

%
15

.5
9%

16
.7

5%
14

.8
7%

3
81

92
12

.4
2%

1.
20

%
16

.5
2%

17
.7

6%
15

.8
3%

B
us

ke
ep

er
P

U
F

0
81

92
9.

77
%

0.
41

%
10

.7
2%

11
.5

1%
9.

96
%

1
81

92
10

.0
2%

0.
39

%
10

.9
3%

11
.6

5%
10

.1
6%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
5.

41
%

0.
22

%
6.

20
%

6.
94

%
6.

48
%

A
rb

it
er

P
U

F
(2

-X
O

R
)

0
32

76
8

10
.2

3%
0.

39
%

11
.5

8%
12

.8
8%

12
.0

2%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

3.
03

%
0.

42
%

4.
05

%
4.

98
%

3.
19

%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
7.

81
%

0.
41

%
8.

69
%

9.
32

%
8.

15
%

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 119

T
ab

le
4.

6:
In

tr
a-

di
st

an
ce

st
at

is
ti

cs
at

H
L

co
rn

er
co

nd
it

io
ns

:
α

H
L

=
(T

e
n

v
=

85
°C

,V
d

d
=

1.
02

V
).

P
U

F
N

o
.

N
b
it

s
µ

in
tr

a

P
;α

H
L

σ
in

tr
a

P
;α

H
L

P
[9

9%
]in

tr
a

P
;α

H
L

m
ax

in
tr

a

P
;α

H
L

p̂
in

tr
a

P
;α

H
L

SR
A

M
P

U
F

0
65

53
6

7.
28

%
0.

15
%

7.
63

%
7.

95
%

7.
46

%
1

65
53

6
7.

33
%

0.
15

%
7.

70
%

8.
01

%
7.

52
%

2
65

53
6

7.
33

%
0.

16
%

7.
72

%
7.

99
%

7.
50

%
3

65
53

6
7.

34
%

0.
14

%
7.

68
%

7.
99

%
7.

50
%

L
at

ch
P

U
F

0
81

92
10

.6
2%

1.
10

%
14

.4
7%

17
.9

6%
16

.0
2%

1
81

92
11

.9
9%

1.
24

%
15

.9
7%

19
.4

3%
17

.4
3%

2
81

92
12

.5
1%

1.
20

%
15

.6
6%

17
.0

4%
15

.1
5%

3
81

92
7.

90
%

1.
45

%
12

.4
2%

13
.9

4%
12

.2
1%

D
F

lip
-fl

op
P

U
F

0
81

92
18

.1
0%

0.
79

%
20

.1
1%

21
.0

3%
19

.1
1%

1
81

92
17

.9
5%

1.
66

%
21

.8
9%

23
.7

1%
21

.5
4%

2
81

92
18

.2
7%

0.
78

%
20

.2
3%

21
.0

8%
19

.2
3%

3
81

92
18

.1
5%

0.
81

%
19

.9
6%

20
.8

4%
18

.9
6%

B
us

ke
ep

er
P

U
F

0
81

92
17

.7
1%

0.
90

%
20

.0
6%

21
.1

4%
19

.0
7%

1
81

92
17

.6
0%

0.
91

%
19

.9
5%

21
.0

3%
18

.9
7%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
5.

23
%

0.
21

%
5.

91
%

6.
29

%
5.

86
%

A
rb

it
er

P
U

F
(2

-X
O

R
)

0
32

76
8

9.
90

%
0.

37
%

11
.1

3%
11

.8
3%

11
.0

0%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

2.
84

%
0.

40
%

3.
81

%
4.

54
%

2.
98

%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
7.

11
%

0.
42

%
8.

10
%

9.
19

%
8.

03
%

120 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

T
ab

le
4.

7:
In

tr
a-

di
st

an
ce

st
at

is
ti

cs
at

H
H

co
rn

er
co

nd
it

io
ns

:
α

H
H

=
(T

e
n

v
=

85
°C

,V
d

d
=

1.
32

V
).

P
U

F
N

o
.

N
b
it

s
µ

in
tr

a

P
;α

H
H

σ
in

tr
a

P
;α

H
H

P
[9

9%
]in

tr
a

P
;α

H
H

m
ax

in
tr

a

P
;α

H
H

p̂
in

tr
a

P
;α

H
H

SR
A

M
P

U
F

0
65

53
6

7.
28

%
0.

15
%

7.
63

%
7.

87
%

7.
39

%
1

65
53

6
7.

33
%

0.
15

%
7.

69
%

8.
00

%
7.

51
%

2
65

53
6

7.
32

%
0.

15
%

7.
70

%
7.

95
%

7.
47

%
3

65
53

6
7.

33
%

0.
14

%
7.

66
%

8.
08

%
7.

59
%

L
at

ch
P

U
F

0
81

92
10

.6
0%

1.
08

%
14

.4
2%

17
.8

1%
15

.8
8%

1
81

92
11

.9
8%

1.
21

%
15

.8
6%

19
.0

7%
17

.0
8%

2
81

92
12

.7
1%

1.
27

%
16

.0
8%

19
.1

0%
17

.1
2%

3
81

92
7.

37
%

1.
28

%
10

.8
2%

12
.0

4%
10

.4
2%

D
F

lip
-fl

op
P

U
F

0
81

92
17

.8
9%

0.
79

%
19

.9
0%

20
.8

7%
18

.9
0%

1
81

92
17

.7
7%

1.
67

%
21

.7
9%

23
.3

8%
21

.2
2%

2
81

92
18

.1
2%

0.
78

%
20

.0
6%

20
.8

4%
19

.0
6%

3
81

92
17

.9
8%

0.
81

%
19

.8
1%

20
.4

8%
18

.8
2%

B
us

ke
ep

er
P

U
F

0
81

92
17

.4
8%

0.
89

%
19

.8
1%

20
.7

0%
18

.8
2%

1
81

92
17

.3
8%

0.
89

%
19

.6
9%

20
.7

9%
18

.7
3%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
5.

34
%

0.
24

%
5.

92
%

6.
46

%
6.

02
%

A
rb

it
er

P
U

F
(2

-X
O

R
)

0
32

76
8

10
.1

1%
0.

44
%

11
.1

4%
12

.1
3%

11
.3

0%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

3.
27

%
0.

42
%

4.
30

%
5.

22
%

3.
41

%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
8.

35
%

0.
53

%
9.

89
%

10
.7

9%
9.

54
%

EXPERIMENTAL UNIQUENESS AND REPRODUCIBILITY RESULTS 121

T
ab

le
4.

8:
W

or
st

-c
as

e
in

tr
a-

di
st

an
ce

st
at

is
ti

cs
ov

er
al

l
fo

ur
co

rn
er

s
(α

W
C
).

P
U

F
N

o
.

N
b
it

s
µ

in
tr

a

P
;α

W
C

P
[9

9%
]in

tr
a

P
;α

W
C

m
ax

in
tr

a

P
;α

W
C

p̂
in

tr
a

P
;α

W
C

SR
A

M
P

U
F

0
65

53
6

7.
46

%
7.

91
%

8.
15

%
7.

67
%

1
65

53
6

7.
44

%
7.

94
%

8.
28

%
7.

78
%

2
65

53
6

7.
44

%
7.

93
%

8.
28

%
7.

78
%

3
65

53
6

7.
44

%
7.

96
%

8.
25

%
7.

75
%

L
at

ch
P

U
F

0
81

92
23

.3
8%

26
.9

2%
28

.2
1%

25
.9

1%
1

81
92

23
.6

6%
27

.2
7%

28
.6

5%
26

.3
3%

2
81

92
15

.8
5%

18
.7

3%
19

.5
8%

17
.7

6%
3

81
92

13
.7

0%
19

.8
1%

24
.0

4%
21

.8
6%

D
F

lip
-fl

op
P

U
F

0
81

92
18

.1
0%

20
.1

1%
21

.0
3%

19
.1

1%
1

81
92

17
.9

5%
29

.6
3%

33
.0

2%
30

.6
0%

2
81

92
18

.2
7%

20
.2

3%
21

.0
8%

19
.2

3%
3

81
92

18
.1

5%
19

.9
6%

20
.8

4%
18

.9
6%

B
us

ke
ep

er
P

U
F

0
81

92
17

.7
1%

20
.0

6%
21

.1
4%

19
.0

7%
1

81
92

17
.6

0%
19

.9
5%

21
.0

3%
18

.9
7%

A
rb

it
er

P
U

F
(b

as
ic

)
0

65
53

6
7.

41
%

7.
98

%
8.

25
%

7.
75

%
A

rb
it

er
P

U
F

(2
-X

O
R

)
0

32
76

8
13

.7
2%

14
.7

0%
15

.1
4%

14
.2

5%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

3.
75

%
4.

83
%

5.
62

%
3.

88
%

R
in

g
O

sc
ill

at
or

P
U

F
(L

.G
.)

0
12

54
4

9.
01

%
10

.3
5%

11
.1

7%
9.

89
%

122 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

Studying the worst-case intra-distance statistics in Table 4.8, we see that
of all the memory-based PUF constructions the SRAM PUF is particularly
reproducible, with even worst-case maximal intra-distances smaller than
10%. The buskeeper, D flip-flop and latch PUFs have a considerably worse
reproducibility. We also remark two outlying behaviors:

1. Latch PUF instances number two and three show lower intra-distances
than the other two, which is a side-effect of them already having low
uniqueness. This is most likely a result of an implementation fault in these
instances, which we also already spotted based on the outlying uniqueness
results. Note that latch instances number two and three deploy the rather
complex scan-chain based read-out technique, as opposed to the other two
which use a multiplexer tree, which is likely the cause of this problem.

2. D flip-flop PUF instance number one shows considerably larger intra-
distances than the other three instances. The cause for this is unknown,
but is likely also due to an implementation fault.

To avoid that these outlying results affect this objective comparison between
different PUF constructions, we will ignore them in all following analysis.

The delay-based PUFs also show relatively good reproducibility. The worst-case
statistics of the basic arbiter PUF are nearly identical to those of the SRAM
PUF. For the 2-XOR arbiter PUF, the intra-distances get approximately twice
as large, which follows from their construction: when one of both XOR-ed
arbiter PUFs produces a faulty bit, the XOR-ed result will also be wrong. The
ring oscillator PUF response bits based on pairwise comparison of frequencies is
extremely reproducible, which proves the strength of this method. The Lehmer-
Gray encoding method has worse reproducibility than the pairwise comparison
method, but is still fairly good with a worst-case average smaller than 10%.

4.4 Assessing Entropy

For many applications, and in particular for PUF-based key generation, it
is important to accurately estimate the entropy of a random PUF response.
Entropy is a function of the distribution of a random variable and expresses
the amount of uncertainty one has about the outcome of the random variable.
In the case of PUF responses, it represents a generalized and unconditional
upper bound on the average predictability of an unobserved random outcome
Y of a response evaluation. However, in general it is also very difficult or even
impossible to calculate the entropy of a PUF response exactly. In the end,

ASSESSING ENTROPY 123

the distribution of most PUF responses is determined by very complex and
even chaotic physical processes, and it cannot be learned in the complete detail
which is required to calculate its entropy exactly. Typically, only estimated
upper bounds on the underlying entropy can be provided. These bounds are
either derived from a high-level physical model of the PUF construction, or
based on the experimental data one observes.

In this section, we will present increasingly tighter upper bounds on the
entropy of a PUF response based on increasingly more powerful adversary
models, i.e. adversaries which gain more and more insight into the underlying
distribution of the PUF’s responses. We do this for all eight PUF constructions
studied on the test chip and we compute entropy bounds based on the
experimentally observed response distributions of these PUFs.

4.4.1 Adversary Models and Basic Entropy Bounds

In the following, Y n represents a random bit vector of length n, and Yi ← {0, 1}
is a binary random variable whose distribution is completely determined
by pi

△

= Pr (Yi = 1). We also use the following notation for the conditional
distribution of Yi conditioned on the previous bits Y (i−1) = (Y1, . . . , Y(i−1)):

pi|y(i−1)
△

= Pr
(
Yi = 1|Y (i−1) = y(i−1)

)
. An overview of the general notions of

probability theory and information theory used in this section is found in
Appendix A.

Completely Ignorant Adversary

An adversary which is completely ignorant of the underlying distribution of the
responses can make no better prediction than just guessing every bit completely
at random. To him, it looks as if the PUF response has full entropy. Based on
this adversary, we can introduce the following trivial response entropy bound:

H(Y n) ≤ n .

Using entropy density, this bound is denoted as

ρignorant(Y
n)

△

= 100% ,

such that ρ(Y n) ≤ ρignorant(Y n). This ignorant entropy bound is very trivial,
but we include it nonetheless for completeness and to detail the manner in
which we will discuss the following bounds.

124 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

Adversary Knows Global Bias

The most basic deviation from a completely uniform and independent
distribution of the response bits is caused by an overall global bias, i.e. on
average every bit is more likely to be either ’0’ or ’1’. Such a global bias in the
response Y n can be expressed as:

pglobalbias =
1
n

E

[
n∑

i=1

Yi

]
.

An adversary with knowledge of this global bias can make better than random
predictions by guessing in favor of the bias, i.e. if pglobalbias < 50% he predicts a
‘0’ and else a ‘1’. To him, it looks as if all PUF response bits are independent
and identically distributed (i.i.d.) according to a Bernoulli distribution with
parameter pglobalbias. Based on such an adversary, the following response entropy
bound is introduced:

H(Y n) ≤ n · h(pglobalbias) .

This global bias entropy bound is expressed using entropy density as ρ(Y n) ≤
ρglobalbias(Y n), with:

ρglobalbias(Y
n)

△

= h(pglobalbias) .

Adversary Knows Bit-dependent Bias

In a more realistic setting, every bit position in a PUF response vector will
have its own bias, as expressed by pi = Pr (yi = 1). An adversary knowing
these individual bit-dependent biases can make a more accurate prediction by
guessing individual bits in favor of these biases. To him, it looks as if all PUF
response bits are independently, but no longer identically distributed, with each
bit sampled from its own Bernoulli distribution with parameter pi. Taking into
account this adversary, the response entropy bound can be refined further:

H(Y n) ≤
n∑

i=1

h(pi) .

Again we rewrite this bit-dependent bias entropy bound using entropy density
as ρ(Y n) ≤ ρbitbias(Y n), with:

ρbitbias(Y
n)

△

=
1
n

n∑

i=1

h(pi) .

ASSESSING ENTROPY 125

Adversary Knows Inter-bit Dependencies

In the previous three adversary models, we moved from an adversary who
sees a PUF response as an i.i.d. uniformly random bit vector to one who
observes it as a vector of independently distributed bits which are no longer
uniform or identically distributed. The next improvement to the adversary
model would be to give him insight into the dependencies between different
response bits, i.e. he does no longer assume that the response bits are completely
independently distributed. It is clear that full knowledge of all inter-bit
dependencies is generally unattainable since that would give the complete and
exact distribution of the responses. Instead, we assume an adversary which
has a certain realistic yet only partial model of the inter-bit dependencies. We
consider two such partial dependency models:

1. The adversary has insight in the pairwise joint distributions p(yi, yj) of
all possible pairs of response bits in Y n. This is a natural extension of
insight in the bit-dependent bias of individual bits.

2. The adversary has partial insight in the conditional distribution p(yi|y
(i−1))

of a response bit Yi given the observation of the previous response bits
Y (i−1) = y(i−1). This is typically the case when the adversary deploys
a successful next-bit modeling attack on response bits, with a prediction
model which is trained on earlier observed responses.

We discuss both these adversarial models separately.

Adversary Knows Pairwise Joint Distributions

When an adversary knows all pairwise joint distributions between the response
bits in Y n, the response entropy bound is further lowered to:

H(Y n) ≤
n∑

i=1

h(pi)−
n−1∑

i=1

I(Yi; Yi+1) .

We call this the pairwise joint distribution entropy bound and using entropy
density, we write ρ(Y n) ≤ ρpairjoint(Y n), with:

ρpairjoint(Y
n)

△

=
1
n

(
n∑

i=1

h(pi)−
n−1∑

i=1

I(Yi; Yi+1)

)
.

The mutual information values, i.e. the information shared by consecutive
pairs of random bits, is subtracted from the bit-dependent bias entropy bound

126 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

since they are in a way counted twice. The mutual information between two
consecutive random bits can be computed from their pairwise joint distribution.
Note that the subtracted amount is dependent on the way the individual
random bit variables are ordered in Y n, since the mutual information is
computed over consecutive pairs (Yi, Yi+1) from Y n = (Y1, . . . , Yn). Without
loss of generalization, we assume that the bits are ordered in such a way as to
maximize the subtracted amount. This yields the tightest lower bound on the
response entropy.

Adversary Deploys Next-Bit Modeling Attack

In this model, we assume an adversary can perform a modeling attack on the
PUF response bits, which after having been trained with (i − 1) previously
observed response bits, can predict the i-th bit with an average success
probability of pmodel(i). This results in a response entropy bound of:

H(Y n) ≤
n∑

i=1

h(pmodel(i)) .

We call this the model entropy bound, and in terms of entropy density this
becomes ρ(Y n) ≤ ρmodel(Y n), with:

ρmodel(Y
n)

△

=
1
n

n∑

i=1

h(pmodel(i)) .

The tightness of this bound depends on the strength of the assumed model, and
hence on the information and computational power available to the adversary
in order to build this model. The goal of the model is to exploit dependencies
between bits in order to make a better than random prediction for the next bit.
In general, the model’s success rate gets better and better as it is trained on
more responses, i.e. pmodel(i) increases with i. This also means that ρmodel(Y n),
unlike for the previous discussed bounds, is not a constant, but is dependent
on n. In general, ρmodel(Y n) decreases for increasing n. For example, if a model
produces near perfect predictions after having been trained with a large number
of observed response bits, all following response bits will no longer contribute
any meaningful entropy since they are perfectly predictable. Hence, producing
more response bits will only increase the response length and not its entropy,
i.e. the entropy density of the response decreases.

ASSESSING ENTROPY 127

4.4.2 Entropy Bound Estimations Based on Experimental
Results

Next, we evaluate the different discussed entropy bounds on the measured
responses obtained from the performed experiments which were discussed in
Section 4.3. All entropy bounds are expressed using entropy density to allow
an easy comparison between different PUF constructions.

Bound Estimation Strategy

For all memory-based PUF instances, we consider a response bit vector
containing n = 5000 bits to estimate the following entropy bounds:

• The ignorant entropy bound is trivially equal to 100% for all PUFs.

• For the global bias entropy bound, we estimate the global bias by
computing the response bit sample mean over all 5000 considered bits
on all 192 devices.

• For the bit-dependent bias entropy bound, we estimate the bit-dependent
biases by computing the response bit sample mean over all 192 devices
for every bit individually.

• For the pairwise distribution entropy bound, we estimate the pairwise
joint distributions of all possible pairs of the considered response bits,
by counting the occurrences of each of the four possible outcomes (0, 0),
(0, 1), (1, 0) or (1, 1) for each considered pair on all 192 devices.

We do not consider the model entropy bound for memory-based PUFs, as no
successful modeling attacks on memory-based PUFs are known. All bound
estimations are done based on responses measured at nominal conditions.

For the delay-based PUF instances, we differentiate between the arbiter and
the ring oscillator PUFs. For both response generation methods of the ring
oscillator PUF, we perform the same bound estimations as for the memory-
based PUFs, only on different sizes of response bit vectors, respectively n =
2048 for the pairwise comparison method and n = 12544 for the Lehmer-Gray
method. No model-building attacks for these ring oscillator PUFs are known.

For the arbiter PUF we take a slightly different approach. The first four bounds
are computed for response bit vectors of only n = 256 bits, for each of the 256
arbiter PUF instances and 128 2-XOR arbiter PUF instances on the test chip
individually, but we report only the results for the worst observed instance.

128 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

Besides these four bounds, we also consider the model entropy bound for both
types of arbiter PUFs. This is discussed in more detail in Section 4.4.3.

Bound Estimation Results

The results for the estimations of the ignorant entropy bound, the global
bias entropy bound, the bit-dependent bias entropy bound and the pairwise
distribution entropy bound are presented in Table 4.9. From these results, it is
evident that these four estimates represent consecutively tighter upper bounds
on the real response entropy.

4.4.3 Modeling Attacks on Arbiter PUFs

From the initial introduction of arbiter PUFs, it was recognized that they are
susceptible to modeling attacks. This is a result of the reduced complexity of
the dependency between arbiter PUF challenges and responses. For the basic
arbiter PUF it was made clear, e.g. by Lee et al. [80], that this dependency is to
a high level of accuracy even a linear system. In that case, the unpredictability
of the responses results only from the unknown parameters of this underlying
system, since once they are learned every response bit is easily predictable
with high accuracy. A modeling attack attempts to estimate the unknown
model parameters as a function of observed challenge-response pairs. For
more advanced arbiter PUF constructions, e.g. the 2-XOR arbiter PUF, the
underlying model becomes more complex, but as shown by Rührmair et al.
[123], it is still modelable with more advanced modeling techniques.

Modeling with Machine Learning Techniques

A particularly interesting set of modeling techniques are based on machine
learning [104]. Machine learning algorithms are able to automatically learn
complex behavior and unknown model parameters by generalizing on presented
training examples. Another strong motivation for using machine learning
algorithms in modeling attacks is that they are generic, i.e. they have the ability
to learn any complex behavior and are not a-priori restricted to a particular
model description (e.g. a linear model).

In [60], we apply two basic machine learning techniques to our experimental
arbiter PUF results to test for modelability: i) artificial neural networks or
ANNs [104], and ii) support-vector machines or SVMs [32]. Both techniques
have been demonstrated to be able to effectively model basic arbiter PUFs,

ASSESSING ENTROPY 129

T
ab

le
4.

9:
E

nt
ro

py
de

ns
it

y
up

p
er

-b
ou

nd
es

ti
m

at
io

ns
.

P
U

F
N

o
.

n
ρ

ig
n
o
ra

n
t(

Y
n
)

ρ
g
lo

b
a
lb

ia
s(

Y
n
)

ρ
b
it

b
ia

s(
Y

n
)

ρ
p
a
ir

jo
in

t(
Y

n
)

SR
A

M
P

U
F

0
50

00
10

0.
00

%
99

.9
9%

99
.0

4%
94

.1
1%

1
50

00
10

0.
00

%
99

.9
9%

99
.0

5%
94

.0
9%

2
50

00
10

0.
00

%
99

.9
9%

99
.1

4%
94

.1
8%

3
50

00
10

0.
00

%
99

.9
9%

99
.2

0%
94

.2
7%

L
at

ch
P

U
F

0
50

00
10

0.
00

%
80

.0
1%

77
.1

2%
71

.9
2%

1
50

00
10

0.
00

%
81

.6
9%

79
.5

6%
74

.3
6%

2
50

00
10

0.
00

%
91

.8
8%

90
.9

1%
85

.8
4%

3
50

00
10

0.
00

%
59

.2
2%

51
.0

5%
45

.5
1%

D
F

lip
-fl

op
P

U
F

0
50

00
10

0.
00

%
88

.8
8%

88
.3

6%
83

.3
6%

1
50

00
10

0.
00

%
89

.1
3%

88
.6

5%
83

.7
0%

2
50

00
10

0.
00

%
88

.0
0%

87
.5

5%
82

.5
7%

3
50

00
10

0.
00

%
86

.7
7%

86
.3

4%
81

.3
4%

B
us

ke
ep

er
P

U
F

0
50

00
10

0.
00

%
98

.8
2%

97
.9

4%
93

.0
0%

1
50

00
10

0.
00

%
99

.0
3%

98
.0

2%
93

.0
5%

A
rb

it
er

P
U

F
(b

as
ic

)
0

25
6

10
0.

00
%

94
.2

7%
92

.7
9%

89
.6

2%
A

rb
it

er
P

U
F

(2
-X

O
R

)
0

25
6

10
0.

00
%

99
.3

9%
98

.7
2%

95
.8

2%
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
0

20
48

10
0.

00
%

99
.9

9%
99

.0
4%

94
.6

9%
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
0

12
54

4
10

0.
00

%
99

.9
2%

94
.8

7%
86

.6
3%

130 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

respectively by Gassend et al. [48] and Rührmair et al. [123]. However, we
apply these attacks on PUF responses resulting from a modern implementation
(65 nm CMOS), as opposed to these earlier results which work with older
technologies [48] or only with simulated data [123]. For this analysis of the
model entropy bound, we are mainly interested in the results of these modeling
attacks. For more details on their implementation, we refer to [60].

Modeling Results

Using both ANN and SVM, we were able to successfully model both basic and
2-XOR arbiter PUFs. Both ANN and SVM first take a number of known arbiter
PUF challenge-response pairs which they use to train their model. Afterwards,
their modeling performance is evaluated by their success rate of accurately
predicting unobserved responses when presented with a challenge from a large
test set. It is evident that, the more training examples a machine learning
algorithm is allowed to use, the better its modeling accuracy becomes. In
Figure 4.4, we summarize the outcome of our machine learning modeling attacks
on the experimental data from the basic and the 2-XOR arbiter PUFs. It shows
the average success rate (pmodel(i)) of the best machine learning technique, ANN
or SVM, after having been trained with (i− 1) earlier observed response bits.

We can draw some conclusions on the machine learning results as represented
in Figure 4.4:

• The 2-XOR arbiter PUF is more difficult to model with our techniques
than the basic arbiter PUF, as expressed by the larger number of training
examples required to achieve the same modeling success rate. This is a
result of the challenge-response relation being more complex for the 2-
XOR arbiter PUF.

• The basic arbiter PUF can be modeled with ≈ 90% accuracy after
training with ≈ 500 examples and with ≈ 95% accuracy after training
with ≈ 2000 examples. Note that the maximal attainable success rate
of any modeling attack is naturally limited by the reproducibility of
the considered PUF instance. In that respect, the obtained modeling
accuracy of ≈ 97% after training with ≈ 5000 examples can be considered
perfect, given that the average intra-distance of the basic arbiter PUF at
nominal conditions is about 3% (cf. Table 4.3). This means that all
following response bits do not contribute any entropy except for their
reproducibility uncertainty.

ASSESSING ENTROPY 131

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000

p
m
o
d
e
l(

n
)

n

Basic Arbiter PUF 2-XOR Arbiter PUF

Figure 4.4: Average success rate of a machine-learning attack on basic and 2-
XOR arbiter PUFs. The success rate pmodel(n) presents the probability of correctly
predicting the n-th response bit after having been trained with (n−1) previously
observed bits.

• The 2-XOR arbiter PUF can be modeled with ≈ 75% accuracy after
training with ≈ 4000 examples and with nearly 90% after training with
9000 examples.

Modeling Entropy Bound

Using the machine learning modeling attack results as presented in Figure 4.4,
we can calculate the model entropy bound as ρmodel(Y n) = 1

n

∑n
i=1 h(pmodel(i)).

The resulting entropy bound, as a function of n, is presented in Figure 4.5.

From Figure 4.5 we learn that for the basic arbiter PUF, ρmodel(Y 100) < 90%
and ρmodel(Y 1000) ≈ 50%. For response bit vectors of more than 1000 bits,
the entropy density drops drastically as each additional response bit adds very
little entropy. After about 5000 bits, each additional response bit only adds a

132 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

!
m
o
d
e
l(

Y
n
)

n

Basic Arbiter PUF 2-XOR Arbiter PUF

Figure 4.5: Estimated entropy density bounds for the basic and 2-XOR arbiter
PUFs, based on a modeling adversary deploying the machine-learning attack
results presented in Figure 4.4.

little noise entropy which is not useful. For the 2-XOR PUF, the results are
less severe with ρmodel(Y 5000 < 90%) and ρmodel(Y 8000 < 80%).

As a final remark, we want to make clear that the obtained model entropy
bounds are likely not very tight, since our machine-learning modeling attacks
are not optimal. More advanced or more fine-tuned modeling techniques are
likely to obtain even higher success rates, and hence lower model entropy
bounds, than our results which are based on relatively basic machine learning
algorithms.

4.5 Conclusion

In this chapter, we have presented a detailed discussion on the realization,
evaluation and analysis of a collection of different PUF constructions in a
realistic, practical and objective manner. We have developed and produced

CONCLUSION 133

a test chip carrying six different intrinsic PUF implementations: four memory-
based PUFs (SRAM, latch, D flip-flop and buskeeper) and two delay-based
PUFs (arbiter and ring oscillator). Both delay-based PUFs are (off-line)
evaluated using two different methods, giving a total of eight studied PUF
constructions. A large scale experimental evaluation is performed of all eight
PUF constructions on 192 manufactured test chips under different temperature
and supply voltage conditions. The large response data set produced by this
experiment is meticulously analyzed in order to assess the behavior of the
different PUF constructions, concerning their reproducibility, their uniqueness
and the entropy of their responses.

Summary of PUF Behavior Results

As a final conclusion, we present a concise summary of the most important
results related to the PUF behavior of the different intrinsic PUF implementa-
tions which we studied in this chapter. We characterize the different PUFs for
each of the three analyzed properties (reproducibility, uniqueness and response
entropy) in a single quantifier which will be of particular practical use in the
following chapters which discuss PUF-based applications. The three quantifiers
we consider are:

1. The intra-distance binomial probability estimator p̂intra

P as a characteriza-
tion of reproducibility. This will allow us to accurately and safely estimate
the right tail of the intra-distance distribution, i.e. the probability that
the intra-distance becomes very large.

2. The inter-distance binomial probability estimator p̂inter

P as a characteriza-
tion of uniqueness. This quantifier allows us to accurately and safely
estimate the left tail of the inter-distance distribution, i.e. the probability
that very low inter-distances occur.

3. The tightest upper bound on the response entropy density ρ(Y n) as a
characterization of response entropy.

For all three quantifiers, we selected the worst-case measured values over all
implemented instances of the individual PUF types, respectively from Tables
4.8, 4.2 and 4.9. Note that we discarded all results from latch PUF instances 2
and 3 and from D flip-flop PUF instance 1, since they exhibit a strong outlier
behavior which is likely caused by an implementation error. For the entropy
density bound on the basic and 2-XOR arbiter PUFs, we cannot provide a
single constant quantifier, since their entropy density bound depends on the
considered response length. Instead, we refer to Figure 4.5 which shows this

134 IMPLEMENTATION AND EXPERIMENTAL ANALYSIS OF INTRINSIC PUFS

Table 4.10: Summary of the most important results on the PUF behavior of
the implemented intrinsic PUFs.

PUF Class P p̂intra

P p̂inter

P ρ(Y n) ≤

SRAM PUF 7.78% 48.72% 94.09%
Latch PUF 26.33% 30.77% 71.92%
D Flip-flop PUF 19.23% 39.50% 81.34%
Buskeeper PUF 19.07% 48.27% 93.00%
Arbiter PUF (basic) 7.75% 46.43% Figure 4.5
Arbiter PUF (2-XOR) 14.25% 49.71% Figure 4.5
Ring Oscillator PUF (P.C.) 3.88% 49.54% 94.69%
Ring Oscillator PUF (L.G.) 9.89% 46.45% 86.63%

relation for the machine-learning modeling attacks we performed. Relating to
the reported entropy density results, we also point out that these are merely
upper bounds and that the actual response entropy is smaller.

The summary of PUF behavior results in Table 4.10, together with the overview
of the area breakdown of the different PUF implementations on the test chip
presented in Table 4.1, will be of great value for assessing and optimizing the
deployment of these PUF constructions in actual applications.

Chapter 5

PUF-based Entity
Identification and
Authentication

Human beings are given free will in order to choose
between insanity on the one hand and lunacy on the
other.

Brave New World
Aldous Huxley

5.1 Introduction

5.1.1 Motivation

Due to their combination of uniqueness and reproducibility, a PUF embedded
by an entity serves as an identifying feature of that entity, as already intuitively
expressed by Definition 9. Moreover, the physical unclonability exhibited by an
embedded PUF construction provides even strong security guarantees regarding
this expressed identity, which could be used for authentication purposes.
However, in order to be of any practical value, the security and robustness

135

136 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

of a PUF-based identification or authentication needs to be quantified based
on their experimentally verified behavioral characteristics.

Entity Authentication

In information security, the term ‘authentication’ has a very broad meaning,
which often leads to confusion when not described in more detail. First of all,
authentication can relate to entities or to data. In the former case one speaks
of entity authentication, while the latter is called message authentication. Since
a PUF provides a measure of an entity-specific physical feature, we particularly
consider entity authentication in this chapter. Whenever we talk about PUF-
based authentication, entity authentication is implied.

Entity authentication by itself is still a catchall for a collection of techniques
used to check and be assured of the identity of an entity. The Handbook of
Applied Cryptography [102] defines entity authentication as:

Definition 25. An entity authentication technique assures one party, through
acquisition of corroborative evidence, of both: i) the identity of a second party
involved, and ii) that the second party was active at the time the evidence was
created or acquired.

Besides convincing proof of its identity, an entity authentication technique also
needs to guarantee that the authenticating entity is actively present in the
authentication.

Identification

The Handbook of Applied Cryptography [102] treats ‘identification’ and ‘entity
authentication’ as synonyms. However, in this thesis, as in many other treatises
of the subject, we consider identification to be a related but significantly weaker
concept than authentication (see also [102, Remark 10.2]). Identification is
the mere claiming or stating of its identity, without necessarily presenting
any convincing proof thereof. While not strictly a security technique since
it doesn’t fulfill any meaningful security objective, identification still has very
useful qualities:

• Identification is in many cases a necessary precondition for entity
authentication and hence an inherent part of most entity authentication

INTRODUCTION 137

techniques. An entity that cannot be identified, cannot be individually
authenticated.1

• For applications without strict security objectives, identification can be
a sufficient condition, e.g. for applications which involve the tracking of
products in a closed system.

• In certain situations, identification is sufficient to achieve entity authen-
tication, since the authentication conditions are implicitly met.

For this reason, we will first discuss PUF-based identification in this chapter,
before we treat PUF-based authentication.

5.1.2 Chapter Goals

The primary goal of this chapter is to propose practical methods for
achieving entity identification and authentication based on the uniqueness
and unpredictability of a PUF’s challenge-response behavior, and introduce
a methodology for quantifying the resulting identification and authentication
performance in terms of security and robustness. More specifically, we aim to:

• Study how to use an entity’s inherent PUF responses as an identifying
feature in an identification system, and how this relates to classic
identification based on assigned identities.

• Derive performance metrics for such a PUF-based identification system
and apply these on the experimentally derived intrinsic PUF charac-
teristics from Chapter 4, to provide an objective comparison of the
identification performance and efficiency of the studied PUFs.

• Develop an entity authentication protocol which: i) uses a PUF’s unique
and unpredictable responses directly as an authentication secret, ii) can
be deployed based on existing intrinsic PUFs, and iii) is sufficiently
lightweight to be implemented on resource-constrained devices.

• Derive the performance metrics of the developed authentication scheme
and equivalently apply them to the experimental intrinsic PUF char-
acteristics from Chapter 4 to make an objective comparison of their
authentication performance.

1In an anonymous credential scheme, an entity can prove his group membership without
revealing his individual identity.

138 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

5.1.3 Chapter Overview

How to safely and reliably identify an entity based on its inherent PUF
responses is discussed and analyzed in Section 5.2, and a performance overview
of the different intrinsic PUFs studied in Chapter 4 is given. In Section 5.3, we
first describe the operation of an earlier proposed basic PUF-based challenge-
response authentication scheme and point out its perceived shortcomings.
Based on this analysis, we propose a new and more practical PUF-based mutual
authentication scheme and study its authentication performance. Finally, we
conclude this chapter in Section 5.4.

5.2 PUF-based Identification

5.2.1 Background: Assigned versus Inherent Identities

When we compared PUFs to human fingerprints in Section 2.1.1, we already
introduced the concept of an inherent identifying feature, i.e. an entity-specific
characteristic that arises in the creation process of the entity. As opposed to
inherent identities, an entity can also have assigned identities. In the analogy
with human beings, this is the distinction we make between fingerprints, which
are inherent, and, e.g. a person’s name, which is ‘assigned’ after birth. The
inherency of its instance-specific behavior was indicated as one of the key
conditions for a construction to be called a PUF.

An inanimate object can also have an assigned identity, e.g. a unique serial
number or barcode which is printed on its surface, and in most applications that
require entity identification, assigned identities are currently standard practice.
In particular for digital silicon chips, unique bit strings which are programmed
in a non-volatile memory embedded on the chip were until recently the only
way of identifying a specific chip in a digital interaction. With the introduction
of silicon PUF technology, it is now possible to also use inherent unique features
of a silicon chip for instance identification.

Identity Provisioning versus Enrollment

Identification techniques based on assigned as well as on inherent identities
typically work in two phases. The first phase is different for both types:

PUF-BASED IDENTIFICATION 139

• For assigned identities, the first phase of any identification technique
consists of providing every entity that needs to be identified with a
permanent unique identity. We call this the provisioning phase.

• For inherent identities, the first phase of any identification technique
consists of collecting the inherent identities of every entity that needs
to be identified. We call this the enrollment phase.

The second phase is very similar for both types and consists of an entity
presenting its identity, either assigned or inherent, when requested. This is
called the identification phase.

Practical Advantages of Inherent Identities

The differences between provisioning, for assigned identities, and enrollment,
for inherent identities, highlight interesting practical advantages of the latter:

• A unique assigned identity needs to be generated before it is assigned to
an entity. To ensure that all generated identities are unique (with high
probability), the provisioning party either needs to keep state, e.g. using
a monotonic counter, or requires a randomness source, e.g. a true random-
number generator. For inherent identities this is not required, since their
uniqueness results from the creation process of the entities.

• When assigning an identity to an entity, the provisioning party needs to
make permanent (or at least non-volatile) physical changes to each entity.
This needs to be supported by the entity’s construction. In particular for
silicon chips, the inclusion of a non-volatile digital memory can induce
a non-negligible additional cost. Evidently, inherent identities do not
require additional physical storage capabilities.

• Enrollment (reading an identity) is generally less intrusive than provision-
ing (writing an identity), hence it can be done faster and with a higher
reliability. This is of particular interest for entities created in high-volume
manufacturing flows (like silicon chip products), where unit cost is directly
affected by the yield and processing time of each manufacturing step.

On the downside, there is no direct control over the actual values taken by
inherent identifiers. This is an issue if one wants to assign a meaning to an
identifier value, e.g. a serial number which is based on an entity’s creation
date. For assigned identities, one has absolute control over the identifier values.
Another peculiarity of most inherent identities is their so-called fuzzy nature,
which we discuss next.

140 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

5.2.2 Fuzzy Identification

Fuzzy Nature of Inherent Identifiers

A particular trait of most types of inherent identifying features which needs
to be dealt with, is that they show fuzzy random behavior.2 We say that
a random variable, like a PUF response or a biometric feature, shows fuzzy
behavior if: i) it is not entirely uniformly distributed, and ii) it is not perfectly
reproducible when measured multiple times. For PUF responses, both fuzzy
characteristics are caused by the physical nature of their generation. Random
physical processes that introduce entity-specific features during manufacturing
are typically not uniformly distributed. Also, as already discussed in detail
in Section 3.2.2, the response evaluation mechanisms of a PUF construction
are subject to physical noise and environmental conditions which cause a non-
perfect reproducibility of a PUF response value.

Assigned identities on the other hand are typically not fuzzy. The provisioning
party can make sure that the assigned identities are generated from a uniform
distribution. Also, once provisioned, an entity can typically reproduce its
assigned identity with near-perfect reproducibility.

Fuzzy Identification with a Threshold

The fuzziness of a PUF response is most clearly depicted by its inter- and
intra-distance distributions. When we consider binary response vectors and
fractional Hamming distance as a distance metric, then perfectly uniformly
random responses would have an expected inter-distance of exactly 50%. It is
clear from our literature overview of intrinsic PUF results in Section 2.4.8,
as well as from our summarized experimental results on intrinsic PUFs in
Section 4.5, that none of the existing intrinsic PUF constructions meet this
condition, although some have an average inter-distance very close to 50%.
Equivalently, no intrinsic PUF exhibits perfect reproducibility with a fixed
intra-distance of 0%, and many are only reproducible up to an average intra-
distance of 10% or even more.

To assess the extent to which a PUF response can be used as an inherent
identifier, we need to take their fuzziness into account. This is where the earlier

2When we use the term ‘fuzzy’ in this thesis, we relate to the notion of fuzziness as
introduced by Juels and Wattenberg [65] to describe fuzzy commitment, which was later
extended to fuzzy vaults by Juels and Sudan [64] and finally to fuzzy extractors by Dodis
et al. [38, 39]. We are not referring to the homonymous but unrelated use of the word ‘fuzzy’
as used in fuzzy logic and fuzzy set theory. To avoid any confusion, we will also not use the
ambiguous term fuzzy random variable in this context.

PUF-BASED IDENTIFICATION 141

discussed PUF property of identifiability comes into play (cf. Definition 9).
We defined a PUF class to exhibit identifiability if with high probability
its responses’ intra-distances are smaller than their inter-distances. In this
section, we make this intuitive definition very tangible, by computing the
identifying power of a PUF’s responses based on their intra- and inter-distance
distributions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 4 8 12 16

P
ro

b
a
b

il
it

y

Response Hamming Distance [bits]

Inter-distance Distribution Intra-distance Distribution

Figure 5.1: Example: estimated inter- and intra-distance distributions for 16-
bit responses from the D flip-flop PUF.

Figure 5.1 shows an example of an estimated distribution of the inter- and
intra-distances of a PUF’s response. For this example, we consider a D flip-flop
PUF which produces a 16-bit response. As an estimate for both distributions,
we assume a binomial distribution with as parameters the binomial probability
estimators p̂inter

P and p̂intra

P resulting from the experimental analysis from Chapter 4
and summarized in Section 4.5. The process by which we computed these
estimators guarantees that the assumed binomial distributions provide an
accurate estimation, in particular for the right tail of the intra-distance
distribution and for the left tail of the inter-distance distribution. As will
become clear, this is specifically the region of interest for most applications.

From Figure 5.1, it is clear that this PUF construction exhibits some level of
identifiability, since the expected intra-distance is noticeably smaller than the
expected inter-distance. However, there is also a significant overlap between
the curves of both distributions, which points out the issue of identification
based on fuzzy responses. When an observed distance between responses from
the enrollment and the identification phase falls in this overlapping region, it

142 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

can be a result of intra-distance, in which case it is the same entity, or of
inter-distance, in which case it concerns a different entity, and there is no way
of distinguishing between both cases. In a practical identification system for
fuzzy identities, one needs to determine a rather pragmatic response distance
threshold. Distances smaller or equal to this threshold are assumed to be intra-
distances between responses from a single entity, while distances above this
threshold are assumed to be inter-distances between responses from different
entities. We call this threshold the identification threshold.

False Acceptance, False Rejection, and Equal Error Rates

During the identification phase of a PUF-based identification system, the
generated response of an entity is checked against a list of enrolled responses.
When an enrolled response is found whose distance to the presented response is
smaller or equal to the identification threshold, then the entity is identified as
the matching entry in the list. It is clear that a fuzzy identification system based
on such a pragmatic identification threshold is not 100% reliable, especially
when there is a large overlap between inter- and intra-distance distribution as
for the example in Figure 5.1. When comparing a presented entity response to
a response from the enrollment list, four possible situations can arise:

1. The presented entity is the same entity that produced the enrolled
response, and manages to reproduce the enrolled response with an intra-
distance smaller than the identification threshold. The presented entity
is correctly identified. This is called a true acceptance.

2. The presented entity is the same entity that produced the enrolled
response, but is not able to reproduce the enrolled response with an
intra-distance smaller than the identification threshold. The presented
entity is mistakenly rejected. This is called a false rejection.

3. The presented entity is not the same entity that produced the enrolled
response, but happens (by chance) to produce a response whose inter-
distance to the enrolled response is smaller than the identification
threshold. The presented entity is mistakenly identified. This is called a
false acceptance.

4. The presented entity is not the same entity that produced the enrolled
response, and it produces a response whose inter-distance is larger than
the identification threshold. The presented entity is correctly rejected.
This is called a true rejection.

PUF-BASED IDENTIFICATION 143

It is clear that false rejections and false acceptances are both undesirable for
a practical identification system. The probability that a random identification
attempt results in one of these cases is respectively expressed as the false
rejection rate or FRR, and as the false acceptance rate or FAR of the system.
FAR expresses the security of an identification system, since a low FAR means
that there is little risk of misidentification which could lead to security issues.
FRR on the other hand expresses the robustness or usability of a system, as it
expresses the risk of wrongfully rejecting legitimate entities, which would be
very impractical. For a usable identification system, both FAR and FRR need
to be as small as possible, but it is evident that they cannot be both minimized
at the same time. As is often the case, an acceptable trade-off between security
and usability needs to be made.

For a given identification system, FAR and FRR depend on the choice for
the identification threshold value which we denote as tid. A high threshold
minimizes the risk of a false rejection but increases the likelihood of false
acceptances, and vice versa for a low threshold. When the distributions of
the inter- and intra-distances of the considered PUF are known, the respective
relations between FAR, FRR and tid can be computed:

• FAR is the probability that the inter-distance is smaller than or equal to
tid. This is equivalent to the evaluation of the cumulative distribution
function of the inter-distance at tid.

• FRR is the probability that the intra-distance is larger than tid. This
is equivalent to the complement of the evaluation of the cumulative
distribution function of the intra-distance at tid.

For the example presented in Figure 5.1, we have assumed a binomial
distribution for both inter- and intra-distances, hence FAR and FRR become:

FAR(tid) = Fbino(tid; 16, p̂inter

P),

FRR(tid) = 1− Fbino(tid; 16, p̂intra

P),

with Fbino(t; n, p) the cumulative binomial distribution function with parame-
ters n and p evaluated in t, and p̂inter

P and p̂intra

P the binomial estimators for the
D flip-flop PUF taken from Table 4.10. The resulting FAR and FRR for every
identification threshold value between 0 and 16 are plotted in Figure 5.2a. From
this figure it is clear that there is a threshold, and a corresponding error rate,
where the plots of FAR and FRR intersect. We call this the equal error threshold
tEER and the corresponding error rate the equal error rate or EER. For discrete

144 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

0.001

0.01

0.1

1

0 4 8 12 16

E
rr

o
r

R
a

te

Identification Threshold

FAR FRR

Equal Error Rate

E
q
u
a
l E

rr
o
r

T
h
re

s
h
o
ld

(a) FAR and FRR plots.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

lo
g

1
0
(F

R
R

)

log10(FAR)

ROC Equal Error Line

Equal Error Rate (ERR)

(b) ROC curve plot.

Figure 5.2: Example: identification metrics for a threshold identification system
based on the PUF described by Figure 5.1.

distributions, FAR and FRR will never be exactly equal for a discrete threshold,
and in that case tEER and EER are defined as:

tEER

△

= argmint{max{FAR(t), FRR(t)}},

and

EER
△

= max{FAR(tEER), FRR(tEER)}.

The equal error rate is also indicated in Figure 5.2a.

When designing a PUF-based identification system, the FAR and FRR plots
as shown in Figure 5.2a can be used to find a suitable trade-off meeting the
application requirements. This can, but does not need to be the EER, e.g. in
some applications more care is given to security than to usability, or vice versa.
A more convenient way for assessing the FRR-vs-FAR trade-off is the plot of
FRR as a function of FAR as shown in Figure 5.2b. Such a plot is also called
the receiver-operating characteristic or ROC plot of the system. In a ROC plot,
the EER is found as the intersection with the identity function which we have
labelled the equal error line in Figure 5.2b. ROC curves completely summarize
the identification performance of an identification system and are particularly
useful for comparing the performance of different systems. A more condensed
performance qualifier of a particular identification system is given by its EER

value.

PUF-BASED IDENTIFICATION 145

5.2.3 Identification Performance for Different Intrinsic PUFs

In Section 5.2.2 we presented a toy example of a 16-bit D flip-flop PUF
identification system and used it to introduce the different performance metrics
of fuzzy identification systems. Now, we will use these introduced metrics to
objectively compare the identification performance of the different intrinsic
PUFs which were experimentally studied in Chapter 4. As in Section 5.2.2, we
will assume a binomial distribution for both the inter- and intra-distances of
these intrinsic PUFs and use the binomial probability estimators as summarized
in Table 4.10. This assumption is justified by the fact that these estimators
where derived to accurately describe the critical region of both distributions,
i.e. the part where both probability mass functions overlap.

We will first compare the identification performance of all considered PUFs
for a fixed length response. Afterwards, we compare the required parameters
of the different PUFs in order to obtain the same identification performance.
Ultimately, we combine these obtained parameters with each PUF’s area
estimation to generate an objective as possible comparison of identification
performance versus silicon area use for each of the intrinsic PUF constructions.

Comparison of ROC Curves for 64-bit Identification with Different PUFs

We consider an identification system based on 64-bit PUF responses and apply
the methods introduced in Section 5.2.2 to derive the ROC curves for all eight
considered intrinsic PUFs, based on their parameters from Table 4.10. All eight
ROC curves are plotted on the same graph in Figure 5.3.

When reading a ROC curve, it is important to know that the more one
moves to the left (up) on a curve, the more secure an identification system
becomes, i.e. the less likely that a misidentification will happen. On the
other hand, moving down (to the right) on a ROC curve gives more robust
systems, i.e. systems which are less likely to result in an unjustified rejection.
In this respect, the closer to the lower left corner a particular ROC curve is
situated, the better its overall identification performance and the easier to make
a meaningful security-usability trade-off.

Analyzing the ROC curves from Figure 5.3, it is clear that an identification
system based on 64-bit responses from the ring oscillator PUF with pairwise
comparison greatly outperforms all the other PUFs and is the only PUF
which obtains an EER ≤ 10−6. Looking at Table 4.10, the high identification
performance of this ring oscillator PUF is caused by a combination of having
nearly the highest inter-distance parameter (second to the 2-XOR arbiter PUF)
and by far the best intra-distance parameter. The ROC curves of the SRAM

146 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

-12

-10

-8

-6

-4

-2

0

-12 -10 -8 -6 -4 -2 0
lo

g
1
0
(F

R
R

)

log10(FAR)

Latch PUF

D Flip-flop PUF

Buskeeper PUF

2-XOR Arbiter
PUF

Ring Oscillator
PUF (L.G.)

Basic Arbiter
PUF

SRAM PUF

Ring Oscillator
PUF (P.C.)

Equal Error Line

More secure
M

o
re

 r
o
b
u
s
t

Figure 5.3: Comparison of ROC curves for identification systems based on
64-bit responses from each of the eight experimentally verified intrinsic PUFs
which are summarized by Table 4.10.

PUF and the basic arbiter PUF follow at a considerable distance, both reach
an EER ≤ 10−4. Notable is the fact that the 2-XOR arbiter PUF, while
having a better inter-distance parameter than the basic arbiter PUF, performs
significantly worse due to its much worse intra-distance behavior. At the
bottom of the ranking we find the latch PUF which performs very weakly.
It does not even reach an EER ≤ 10% which means that over one in ten
identification attempts will either be rejected or misidentified. In fact, looking
at the inter- and intra-distance parameters of the latch PUF in Table 4.10, we
may conclude that the latch PUF hardly exhibits identifiability (and can hence
only barely be called a PUF), since its average intra-distance is only slightly
smaller than its average inter-distance.

PUF-BASED IDENTIFICATION 147

Comparison of PUF Parameters and Areas for Practical Identification
Requirements

The required identification performance of an identification system is deter-
mined by its application, but for most practical applications a FAR and FRR

both ≤ 10−6, and hence an EER ≤ 10−6, is minimally desired. For many
applications, EER even needs to be considerably smaller, e.g. EER ≤ 10−9 or
even EER ≤ 10−12 can be required for critical systems. Aiming for a lower
EER also provides more freedom in selecting an optimal FAR-vs-FRR trade-
off. The results from Figure 5.3 show that with a 64-bit PUF response, only
the pairwise-comparison ring oscillator PUF achieves EER ≤ 10−6. In order
to obtain a better identification performance based on the same PUF, longer
responses need to be considered as identifiers. In the following we examine
which response lengths, denoted as nid, are needed for every considered PUF
to reach an identification performance of respectively EER ≤ 10−6, EER ≤ 10−9

and EER ≤ 10−12.

To ultimately obtain an objective comparison of the identification performance
of the different considered PUFs, we also need to take their silicon area efficiency
into account. After determining the minimal required response length nid to
achieve a certain identification performance, we estimate the required silicon
area a PUF construction needs to occupy to produce a response of that length.
These area estimations are based on the area breakdown of our test chip as
presented in Table 4.1. We use the following approach for scaling the area of
the different PUFs:

• For the memory-based PUFs, we scale the area completely bitwise,
i.e. the estimated silicon area of the entire PUF block as presented in
Table 4.1 is divided by the total number of bit cells of the considered
PUF implemented on the test chip and multiplied by nid. This is a very
rough estimation as it does not take fixed overhead into account, and it
assumes bit cells can be instantiated one by one. Especially for the SRAM
PUF this is not very accurate since it neglects the overhead of the address
decoder, sense amplifiers, readout circuitry, etc. Moreover typical SRAM
array implementations come in multiples of kilobytes, not bits. However,
given the limited knowledge we have about the implemented PUF areas,
this is the best estimate we can give. For the other memory-based PUFs
the estimate is better since they can be instantiated on a bit by bit basis.
For the D flip-flop PUF with the chained read-out implementation, this
estimation is even fairly accurate.

• For both arbiter-based PUFs, the silicon area is relatively independent of
the required number of response bits, since a single 64-bit arbiter PUF

148 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

can technically produce 264 response bits. It will become clear that for
most applications, large problems arise when too many response bits
of a single arbiter-based PUF are used, but for plain identification (no
authentication) this is not an issue. This means that the identification
performance of a single arbiter PUF is virtually unlimited. The area of
a single basic arbiter PUF is estimated by dividing the estimated area of
the entire arbiter PUF block as reported in Table 4.1 by the total number
of instantiated arbiter PUFs on the test chip. The estimated area of the
2-XOR arbiter PUF is that of two basic arbiter PUFs.

• For both ring oscillator PUFs, responses are bit vectors which are
computed from 16 simultaneously measured ring oscillator frequencies.
The pairwise comparison method produces 8 bit per response, and
the Lehmer-Gray method 49 bit. Multiples of these response lengths
are obtained by incrementing the number of oscillators in each of the
16 batches by the same amount. The required area for these ring
oscillator PUFs is estimated by dividing nid by 8 and 49 respectively,
and multiplying the ceiled outcome of this division with the area of a set
of 16 oscillators. The area of a single oscillator is estimated by dividing
the total area of the ring oscillator block from Table 4.1 by the number
of oscillators implemented on the test chip. This estimation is also not
very accurate as it neglects the overhead of the frequency counters.

The results of these estimations are presented in Tables 5.1, 5.2 and 5.3,
respectively for EER ≤ 10−6, EER ≤ 10−9 and EER ≤ 10−12. We want to
point out again that the reported silicon area results need to be considered as
rough estimates at best, and even better as indications of order of magnitude.

Table 5.1: Comparison of PUF parameters and estimated silicon area for an
identification system with EER ≤ 10−6.

PUF Class nid tid
log10

FAR

log10

FRR

Silicon
Area (µm2)

SRAM PUF 89 21 −6.00 −6.03 72.3
Latch PUF 9344 2664 −6.00 −6.01 77562.5
D Flip-flop PUF 448 128 −6.05 −6.16 5359.4
Buskeeper PUF 223 72 −6.03 −6.05 1034.4
Arbiter PUF (basic) 101 23 −6.13 −6.21 1089.8
Arbiter PUF (2-XOR) 142 42 −6.06 −6.12 2179.7
Ring Oscillator PUF (P.C.) 62 12 −6.06 −6.20 7531.3
Ring Oscillator PUF (L.G.) 121 30 −6.12 −6.24 2824.2

PUF-BASED IDENTIFICATION 149

Table 5.2: Comparison of PUF parameters and estimated silicon area for an
identification system with EER ≤ 10−9.

PUF Class nid tid
log10

FAR

log10

FRR

Silicon
Area (µm2)

SRAM PUF 143 34 −9.11 −9.04 116.2
Latch PUF 14881 4243 −9.00 −9.02 123523.9
D Flip-flop PUF 703 201 −9.00 −9.09 8409.9
Buskeeper PUF 355 115 −9.02 −9.09 1646.7
Arbiter PUF (basic) 160 37 −9.04 −9.39 1089.8
Arbiter PUF (2-XOR) 226 67 −9.15 −9.09 2179.7
Ring Oscillator PUF (P.C.) 104 20 −9.83 −9.28 12238.3
Ring Oscillator PUF (L.G.) 192 48 −9.13 −9.36 3765.6

Table 5.3: Comparison of PUF parameters and estimated silicon area for an
identification system with EER ≤ 10−12.

PUF Class nid tid
log10

FAR

log10

FRR

Silicon
Area (µm2)

SRAM PUF 196 47 −12.0 −12.1 159.3
Latch PUF 20464 5835 −12.0 −12.0 169867.2
D Flip-flop PUF 968 277 −12.0 −12.1 11580.1
Buskeeper PUF 488 158 −12.1 −12.0 2263.7
Arbiter PUF (basic) 217 50 −12.1 −12.1 1089.8
Arbiter PUF (2-XOR) 312 93 −12.1 −12.3 2179.7
Ring Oscillator PUF (P.C.) 155 29 −14.8 −12.4 18828.1
Ring Oscillator PUF (L.G.) 260 65 −12.1 −12.2 5648.4

From Tables 5.1 to 5.3 we conclude that, even though only based on rough
estimations, SRAM PUFs exhibit by far the best area efficiency for a required
identification performance, being an order of magnitude smaller than the next
best PUF. This is due to a combination of their relatively strong PUF behavior,
and in particular their very small cell area. Pairwise comparison ring oscillator
PUFs, though showing the overall best identification performance in Figure 5.3,
are very area inefficient which makes them almost the least favorable choice for
a required performance. Latch PUFs still behave the worst, even when taking
into account their silicon area, because they require huge response lengths to
provide meaningful levels of identification performance.

150 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

5.3 PUF-based Entity Authentication

5.3.1 Background: PUF Challenge-Response Authentication

When an entity wants to authenticate itself to an another party, typically called
the verifier, it needs to provide, besides a plain identification, also corroborative
evidence of its presented identity, i.e. evidence which could only have been
created by that particular entity. An entity typically achieves this goal by
proving to the verifier that it knows, possesses or contains a particular secret
which only that entity can know, have or contain. In addition, the entity
also needs to convince the verifier that it was actively, i.e. at the time of
authenticating, involved in creating that evidence. In this section, we discuss
how an entity can authenticate itself based on the possession/containment
of a unique PUF instance. An authentication scenario is considered with a
centralized verifier and entities which authenticate to the central verifier, not
to each other.

There are two main approaches towards developing a PUF-based authentication
system. The first approach is to develop an authentication scheme which
directly deploys the unique and unpredictable challenge-response behavior of
a particular PUF instance. The second approach consists of deriving a robust
and secure cryptographic key from a PUF response and use this key in an
existing classic key-based cryptographic authentication protocol. PUF-based
key generation is discussed in detail in Chapter 6. In this section, we focus on
the challenge-response approach which is usually more efficient, since it does
not require an additional implementation of a key generation algorithm and
other keyed cryptographic primitives.

Basic PUF-based Challenge-Response Authentication

The basic PUF-based challenge-response entity authentication scheme, among
others described by Gassend et al. [47], Ranasinghe et al. [113] and Devadas
et al. [36], consists of two phases: enrollment and verification:

1. Before deployment, every entity goes through enrollment by the verifier.
During the enrollment phase, the verifier records the identity3 ID of every
entity, and collects a significant subset of challenge-response pairs of every
entity’s PUF, for randomly generated challenges. The collected challenge-

3Identification can happen both with assigned or inherent identifiers, as discussed in detail
in Section 5.2. For simplicity, but without loss of generality, we assume an entity identifies
with an assigned identifier ID in this section.

PUF-BASED ENTITY AUTHENTICATION 151

response pairs are stored in the verifier’s database DB, indexed by the
entity’s ID.

2. During the verification phase, an entity identifies to the verifier by
sending its ID. The verifier looks up the ID in its DB, and selects a
random PUF challenge-response pair stored with that ID. The PUF
challenge is sent to the entity, the entity evaluates its PUF with that
challenge and replies with the obtained response. The verifier checks
whether the replied response is close to the response it has in its
database, i.e. both responses differ no more than some predetermined
authentication threshold tauth. If this check succeeds, the entity is
authenticated, otherwise the authentication is rejected. The used
challenge-response pair is removed from DB.

The correctness of this authentication scheme is ensured by the fact that
PUF responses are reproducible over time, up to a small intra-distance. If
tauth is set large enough such that with high probability the intra-distance is
smaller, the authentication of a legitimate entity succeeds. For the security
of the authentication, the verifier relies on the fact that PUFs are unique and
unclonable, and only the genuine PUF can with high probability reproduce a
close response to a previously unobserved and random challenge.

Drawbacks of the Basic Protocol

Unfortunately, while strikingly simple and low-cost, this basic protocol exhibits
a number of major shortcomings and drawbacks:

• It is clear that challenge-response pairs cannot be reused in order to avoid
replay attacks, and a used pair is therefore removed from DB after the
protocol finishes. This entails that the verifier needs to store a large
number of pairs for each entity to make sure that every entity can be
authenticated a reasonable number of times. Maintaining such a large
database is a significant effort. Moreover, it requires that the considered
PUF construction has a large challenge set to begin with, which already
rules out a significant number of proposed PUF constructions.

• When the stored challenge-response pairs in DB of an entity run out, the
entity can no longer be authenticated by the verifier. To make further
authentications possible, the entity needs to be re-enrolled. This requires
either a physical withdrawal of the entity from the field to undergo re-
enrollment at the verifier’s secured premises, or an elaborate and costly
extension of the basic protocol to make remote re-enrollment possible.

152 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

• The basic protocol only provides authentication of an entity to the
verifier, no mutual authentication can be supported without significantly
extending the basic protocol.

• The basic protocol is only secure for truly unclonable PUFs (cf. Defi-
nition 13), i.e. PUFs which are also mathematically unclonable. PUFs
which can be cloned in a mathematical sense (and which are hence
still considered PUFs according to Definition 16), do not offer secure
authentication, since the basic protocol can no longer distinguish between
the real entity with the physical PUF, and an impersonator with a
mathematical clone of that PUF. From Table 3.1, it is clear that
only the optical PUF presents convincing evidence to be considered
mathematically unclonable, which means the basic scheme is currently
only secure when an optical PUF is deployed.4

Improvements and extensions of this basic protocol have been proposed,
e.g. by Bolotnyy and Robins [15] and Kulseng et al. [76], to relax the strict
requirements on the PUF construction and the database. However, these
proposals do not completely succeed to overcome the shortcomings of the
basic protocol, or they introduce new restrictions. Some of these proposals
are moreover shown to be insecure, e.g. Kardas et al. [68] point out significant
security weaknesses of the proposal by Kulseng et al. [76].

Motivation

The simplicity of the basic PUF-based challenge-response authentication
protocol is very appealing, especially when entities are heavily constrained
silicon devices such as RFID tags which cannot dedicate many resources
to implementations of cryptographic building blocks. A possibly significant
improvement in the resource-security trade-off of such devices is possible,
if they can be authenticated only based on an efficient embedded intrinsic
PUF implementation. Unfortunately, no intrinsic PUF candidates currently
exist which meet the very strong requirement of mathematical unclonability
needed to make the basic challenge-response authentication protocol secure.
Constructing a practical intrinsic PUF for which strong guarantees of math-
ematical unclonability can be provided is currently considered an important
open problem in the study of PUFs and their constructions.

Instead of attempting to tackle this difficult open problem, we will propose
an alternative PUF-based authentication protocol in this section, which has

4Intrinsic PUF constructions have been proposed which are candidates for mathematical
unclonability, but currently they lack convincing argumentation to be classified as such.

PUF-BASED ENTITY AUTHENTICATION 153

considerably relaxed requirements for the PUF which is used, and which
moreover provides mutual authentication. We need a little more complexity
than the basic protocol (less is virtually impossible), but aim to keep it at a
minimum, especially on the entity’s side which we consider to be a resource-
constrained device like an RFID tag.

5.3.2 A PUF-based Mutual Authentication Scheme

Rationale

The premise on which we base our proposed protocol is that the amount of
unpredictability in the challenge-response behavior of an intrinsic PUF instance
is strictly limited, and increasing it comes at a high relative implementation cost.
Note that this is the case for all currently known intrinsic PUF constructions. It
is therefore not recommendable to publicly disclose challenge-response pairs in
the protocol’s communications, as the basic protocol does, since every disclosed
pair significantly reduces the remaining unpredictability of the PUF’s behavior.
This quickly result in a situation where the PUF-carrying entity can no longer
be securely authenticated.

In classic cryptographic challenge-response authentication protocols based on
symmetric-key techniques (cf. [102, Section 10.3.2]), an entity does also not
authenticate itself by disclosing its secret key, since this would render the
authentication insecure after one protocol run. Instead, an entity only proves
its knowledge of the secret key by showing that it can calculate encryptions or
keyed one-way function evaluations of randomly applied challenges, without
revealing any information about the key’s value. We follow the same line
of thought in our protocol: an entity demonstrates its possession of a PUF
instance by demonstrating that it can calculate a function evaluation which
takes an unpredictable PUF response as input, without fully disclosing the
unpredictable nature of the response in the result of this evaluation.

An obvious choice for such a concealing function would be a one-way function,
e.g. instantiated as a cryptographic hash function, since a one-way function
evaluation of a PUF response does not disclose any significant information
about the response value. The verifier could then calculate the same one-way
function evaluation on the response in its database and check if this matches
the entity’s response. However, this runs into the problem of the non-perfect
reproducibility of the PUF’s responses. Whereas the entity’s PUF response
value will typically be close to the enrolled PUF response value in the verifier’s
database, the one-way function evaluations of both are completely independent
and can not be meaningfully matched to each other. This is also a (in this case

154 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

negative) consequence of the one-way function destroying any predictability
between input and output.

To overcome this issue, we need to deploy some form of error-correction in the
protocol to make sure that both parties, the entity and the verifier, compute
the one-way function on exactly the same PUF response value. In order to
be able to do this, the entity and the verifier need to publicly exchange an
amount of information about the PUF response. This is typically called side
information, or also helper data in the context of PUF-based key generation
algorithms (cf. Chapter 6). We show that it is possible for some intrinsic
PUFs to find a good balance between the amount of side information one
needs to disclose, and the amount of unpredictability that is left in the PUF
response after observing the side information, to obtain a reliable but secure
authentication. Note that at no point in our proposed protocol do we derive
a cryptographically secure key or do we use a keyed cryptographic primitive.
Moreover, while being related to the key-generation algorithms discussed in
Chapter 6, the used error-correction technique in this protocol is considerably
less computationally expensive, especially on the entity’s side.

Background. The mutual authentication scheme as described in [150], of
which a slightly adapted version is presented in this section, is the shared result
of numerous fruitful discussions and an intense research collaboration between
the author and Anthony van Herrewege, Roel Peeters and professor Ingrid
Verbauwhede (all University of Leuven), and Christian Wachsmann, professor
Stefan Katzenbeisser and professor Ahmad-Reza Sadeghi (all Technische
Universität Darmstadt). The key idea and development of the “reverse” secure
sketch is due to the author.

“Reversed” Secure Sketching based on Linear Block Code Syndromes

The error-correction technique we deploy in the protocol is a practical version
of the syndrome construction of a secure sketch, as described by Dodis et al.
[39] [38], with the sketching procedure executed by the entity, and the recovery
procedure executed by the verifier. Note that this execution order implies that
the entity generates the “correct” version of the PUF response and the verifier
needs to correct his stored response value to match that of the entity. This is
the opposite way as secure sketching is typically deployed, e.g. in PUF-based
key generation, with the verifier storing a single fixed secret key and helper
data string and requiring the entity to correct its noisy response, with the help
of the helper data, to generate the same key as the verifier. For this reason, we

PUF-BASED ENTITY AUTHENTICATION 155

call this a reverse secure sketch. The use of such a reverse secure sketch has
some peculiar and interesting side effects:

• Since the entity’s PUF response is only non-perfectly reproducible, the
actual response value on which the authentication is based will possibly
be different for each run of the protocol. This means the exchanged side
information will also be different for each run. Since the side information
partially discloses the response value, we need to consider this when
showing the security of the protocol, i.e. we do not want multiple runs of
the protocol to disclose the full response value. We are able to prove that
even after an indeterminate number of protocol runs, with each a possibly
different side information string based on a different noisy response value,
the remaining unpredictability of the PUF response remains high.

• Since the sketching procedure of a secure sketch is typically much less
computationally complex than the recovery procedure, it can be efficiently
implemented by each entity using a small amount of resources. The
central verifier is assumed to be less resource-constrained and easily
capable of implementing the recovery procedure.

Secure sketch constructions based on linear block codes are explained in detail
in Section 6.2.1. We refer to that section for more background on the operation
of the syndrome construction used in our protocol. Summarized very briefly:

• The sketching procedure of the syndrome construction, executed by an
entity, consists of a binary matrix multiplication of the entity’s PUF
response evaluation with the parity-check matrix of a linear block code,
resulting in the side information for the protocol run: wi := y′i ·H

T.

• The recovery procedure, as executed by the verifier, consists of three
steps: i) a syndrome is calculated based on the received side information
and the stored PUF response value from the verifier’s database: si :=
wi ⊕ yi ·H

T ≡ ei ·H
T, with ei = (y′i ⊕ yi). ii) the syndrome is decoded

to an error string: Decode(si) → e′i, with e′i = ei if HD (yi; y′i) ≤ tauth,
with tauth the bit error correction capacity of the underlying code. iii) the
response reconstruction: y′′i := yi⊕ e′i, with y′′i = y′i if HD (yi; y′i) ≤ tauth.

The Mutual Authentication Protocol

The execution flow of our proposed PUF-based mutual authentication protocol
is shown in Figure 5.4. This is a modified version of the protocol we have
introduced in [150], the main difference being the reversal of the authentication

156 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

checks such that the an entity will only authenticate to a legitimate verifier. We
explain the different operations in more detail:

• Each entity (Enti) is assigned a unique identifier ID and equipped with
a unique PUF instance pufi. We only require a single challenge-response
pair per PUF, hence we do not explicitly write the challenge: pufi → y′i.

• Prior to deployment, all entities are enrolled by the verifier (Ver), which
keeps a database DB of a single response evaluation yi of every entity’s
PUF, indexed by the entity’s ID. PUF responses can only be enrolled
once. This is enforced by physically blocking or even destroying the
entity’s enrollment interface which directly outputs the PUF response.

• Each entity implements the sketching procedure of the secure sketch,
which is simply a binary matrix multiplication with a parity-check matrix
HT of a linear block code. Due to the special structure of these matrices
for many block codes, this multiplication can often be very efficiently
implemented in digital hardware.

• The verifier implements the recovery procedure of the secure sketch:
Recover(yi, wi). This procedure contains an error-correction decoding
algorithm which typically requires a considerable computational effort.

• Each entity, as well as the verifier, implements a cryptographically secure
hash function: Hash(.).

• Each entity, as well as the verifier, has access to a cryptographically secure
random bit generator which they use to generate random nonces used in
the protocol: ri ← {0, 1}ℓ. The nonces are used to introduce freshness
in the protocol’s messages in order to avoid replay attacks. Later we
propose a possible optimization in which entities do not need to produce
a nonce and hence do not require a random bit generator.

Correctness

The correctness of the protocol is guaranteed by the error-correction capability
of the underlying linear block code of the secure sketch. If, with high probability,
the intra-distance between the PUF response produced by a legitimate entity
during a protocol run and the response in the legitimate verifier’s database, is
smaller or equal to the error-correcting capacity tauth of the underlying block
code, then the verifier is able to recover the same response value produced
by the entity. In that case, both hash value checks will succeed and mutual
authentication is accomplished. Based on the intra-distance distribution of

PUF-BASED ENTITY AUTHENTICATION 157

Figure 5.4: A PUF-based mutual authentication scheme between a PUF-
carrying entity and a central verifier.

Entity Enti : IDi, pufi Verifier Ver : DB

pufi → y′i
wi := y′i ·H

T

r1
$
← {0, 1}ℓ IDi,wi,r1

−−−−−−−−−→ Identify IDi: DB[IDi]→ yi

y′′i := Recover(yi, wi)

r2
$
← {0, 1}ℓ

Hash(IDi, wi, y′i, r1, r2)
?
= u1

u1,r2
←−−−−−−−−− u1 := Hash(IDi, wi, y′′i , r1, r2)

· No match → Abort
· Match → Accept Ver

u2 := Hash(IDi, y′i, r2)
u2−−−−−−−−−→ Hash(IDi, y′′i , r2)

?
= u2

· No match → Abort
· Match → Accept Enti

the deployed PUF construction, a code with an appropriate error-correction
threshold is selected. This will ultimately result in a false rejection rate, in a
manner equivalent to PUF-based identification as discussed in Section 5.2.2.

Security

Next, we discuss the different security aspects of the protocol. We refer to [150]
for a detailed security analysis, including a security proof, of a variant of the
presented protocol.

Physical Unclonability. Due to the physical unclonability of the deployed
PUFs, an impersonation attempt of an entity carrying a different PUF will
fail with high probability. Equivalently to the identification system discussed
in Section 5.2.2, a false acceptance rate can be computed which depends on
the inter-distance distribution of the PUFs, the number of bits nauth in the
considered PUF responses, and the selected error-correction threshold tauth.
Note that this false acceptance rate expresses the probability that two different
PUFs are, coincidentally, similar enough to impersonate each other. The
actual false acceptance rate of the overall protocol also depends on the collision
resistance of the used hash function and could be considerably higher.

158 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

Replay Attacks. The random nonces r1 and r2 respectively generated by the
entity and the verifier preclude replay attacks from both sides, by introducing
freshness in the protocol communications. An adversary trying to replay
protocol messages in order to impersonate the verifier will fail since the entity
will present a different nonce value and the adversary cannot recompute the
hash evaluation over this new nonce since he doesn’t know the PUF response.
The same holds for an adversary trying to impersonate an entity by replaying
earlier recorded messages from a successful entity authentication. Under certain
conditions, the nonce generated by the entity can even be omitted. This is the
case if the expected intra-distance on the entity’s PUF response is large enough
such that it is highly unlikely that exactly the same response value will ever
be reproduced. In that case, the freshness of the protocol is guaranteed by
the noise on the entity response, given that it is large enough. A practical
advantage of this variant is that entities do not need access to a random bit
generator any longer, which reduces the resource requirements of the protocol.

Response Unpredictability. We still need to assess the unpredictability of
responses, given that the adversary can observe multiple side information
strings from many successful authentication attempts of an entity. We first
consider the unpredictability of a response after observing one side information
string. After observing a protocol run, an adversary can launch an offline attack
on the unknown response value y′i based on the observed quartet (IDi, r1, wi, u1),

by guessing a response value y∗i and checking whether Hash(IDi, wi, y∗i , r1)
?
= u1.

Note that, by observing the side information, an adversary gains quite some
information about the response value y′i, since every bit of wi is a linear
combination of bits from y′i, which helps him in the guessing attack. We
express the remaining unpredictability of the response as its conditional
entropy when conditioned on the side information. It is rather trivial to
show that H(Y ′i |Wi) ≥ H(Y ′i)− |Wi|. This means that to ensure there is any
unpredictability left, the length of the side information needs to be smaller
than the response’s entropy. Now we show that the unpredictability of the PUF
response remains this high even after observing many side information strings
computed over different (possibly noisy) evaluations of the same response, by
proving the following lemma:5

Lemma 1. If ∀j : Y ′i and Dintra
j are pairwise independently distributed, then:

H(Y ′i |f(Y ′i), f(Y ′i ⊕Dintra

1), f(Y ′i ⊕Dintra

2), . . . , f(Y ′i ⊕Dintra

q)) = H(Y ′i |f(Y ′i)),

for any positive integer q and for any linear function f .

5Note that this proof also differs from the security proof given in [150].

PUF-BASED ENTITY AUTHENTICATION 159

Proof.

H(Y ′i |f(Y ′i), f(Y ′i ⊕Dintra

1), f(Y ′i ⊕Dintra

2), . . . , f(Y ′i ⊕Dintra

q)),

(f is a linear function),

= H(Y ′i |f(Y ′i), f(Y ′i)⊕ f(Dintra

1), f(Y ′i)⊕ f(Dintra

2), . . . , f(Y ′i)⊕ f(Dintra

q)),

= H(Y ′i |f(Y ′i), f(Dintra

1), f(Dintra

2), . . . , f(Dintra

q)),

(∀j : Y ′i and Dintra

j are independent),

= H(Y ′i |f(Y ′i)).

The assumption of independence between the distributions of response values
and intra-distances is very reasonable since they originate from different
physical processes. This lemma is directly applicable to our situation, since
every helper data string is a linear function of a response evaluation. Based on
a similar reasoning, one can also show that the remaining min-entropy remains
high. This is proven in a generalized form by Boyen [19]. The response’s
unpredictability as expressed by H(Y ′i |Wi) measures the resistance against an
offline attack, hence it needs to be sufficiently large to offer long-term security.

5.3.3 Authentication Performance of Different Intrinsic PUFs

Proposed Entity Design

We first determine a concrete and realistic design of an entity which is used
to compare the authentication performance of different intrinsic PUFs in the
proposed protocol. The main design choice is the selection of the underlying
error-correcting linear block code of the secure sketch. We refer to Burr [24,
Chapter 6] for a detailed introduction to block codes. We propose to use a
concatenation of a simple repetition code followed by a BCH code as introduced
by Hocquenghem [56] and Bose and Ray-Chaudhuri [18], which yields an overall
syndrome construction with a relatively high error correction performance. The
BCH code’s parameters are [nBCH, kBCH, tBCH], which means that it has code words
of length nBCH and dimension kBCH, and up to tBCH bit errors in a single code
word can be corrected. The corresponding parameters of the repetition code
are [nREP, 1, nREP−1

2], with nREP odd.

160 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

pufi

Buffer wi and send to Verifier/Hash

REPn
BCHBCH

kn �

iy'

(nREP - 1) bit repetition

code side information

for every nREP PUF

response bits

(nBCH - kBCH) bit BCH

code side information

for every nREP î nBCH

PUF response bits

pass every

nREP¶WK�ELW

LFSR with feedback taps determined

by BCH code generator polynomial

(shift once for every nREP response bits)

(e.g. = 3)

Hash(.)

IDi

wi

r1

IDi

TRNG
?

=

From Verifier
u1

Accept/Reject

To Verifier
r2

u2

u2

wi

Figure 5.5: Design of an entity’s side information generator, based on a
concatenated repetition and BCH block code, and the corresponding verifier
authentication check.

An [n, k, t] binary linear block code can be fully described by its generation
matrix Gk×n or its corresponding parity-check matrix H(n−k)×n, which meet
the condition G · HT = 0. For a repetition code, a multiplication of
an nREP-bit word with the code’s parity check matrix can be implemented
straightforwardly in hardware using (nREP − 1) 2-input XOR gates. Due to
its special algebraic structure, the multiplication of an nBCH-bit word with the
parity-check matrix of a BCH code can also be implemented very efficiently
using an (nBCH−kBCH)-bit linear feedback shift register (LFSR) with the feedback
taps determined by the generator polynomial of the BCH code. The overall
side information generation of a concatenated repetition and BCH code can
hence be efficiently implemented using only minimal resources on the entity’s
side. A schematic representation of the side information generator is shown in
Figure 5.5. Note that in the proposed design, the BCH code’s side information
and the verifier authentication hash value are only computed over every nREP’th
response bit. Since the remaining nREP−1 bits are immediately disclosed by the
repetition code’s side information, it makes no sense to consider them further
for authentication and they are discarded.

For the hash function implementation, we propose to use a lightweight hash
function. In our prototype implementation in [150] we used the SPONGENT
hash function as proposed by Bogdanov et al. [14]. To keep the side information
generator small, we constrain the repetition code to nREP ≤ 11 and the BCH

PUF-BASED ENTITY AUTHENTICATION 161

code to nBCH ≤ 255. We now investigate the implementation parameters of
this proposed design, within these constraints, when the deployed PUF is one
of the intrinsic PUFs studied in Chapter 4. In particular, we determine the
required code parameters based on the intrinsic PUFs’ statistics summarized
in Table 4.10. Based on these code parameters, the required number of PUF
response bits, and ultimately the required PUF silicon area to reach a particular
authentication performance can be calculated.

Example of Authentication Performance Calculation

We demonstrate how the authentication performance is calculated for a single
PUF in an exemplary but realistic scenario. Next, we present the results of
the same calculations for all the studied intrinsic PUFs studied in a number of
possible scenarios.

As an example, we consider the SRAM PUF, and we aim for an authentication
performance with EER ≤ 10−9 and an unpredictability of at least 128 bits,
i.e. H(Y |W) ≥ 128. Searching the design space constrained by the proposed
entity design above yields the following parameters:

• A [nREP = 3, 1, 1] repetition code and a [nBCH = 223, kBCH = 83, tBCH = 21]
BCH code are used. In total, 3× a BCH code length is required.

• These code parameters achieve an overall FRR = 10−9.63 and
FAR = 10−104.84.

• The total number of required PUF response bits is
nauth = 3× nREP × nBCH = 2007.

• The total number of exchanged side information bits is
ℓauth = 3× (nREP × nBCH − kBCH) = 1785.

• The remaining entropy is calculated as H(Y |W) ≥ H(Y)− |W | =
nauth × ρ(Y nauth)− ℓauth = 2007× 94.09%− 1758 = 130.4 bits.

Note that these parameters are optimized within the given constraints to yield
to smallest possible number of required PUF bits. For most intrinsic PUFs,
the entropy density ρ(Y nauth) is a constant and independent of the number of
considered response bits, as shown in Table 4.10. However, for both arbiter-
based PUFs, ρ(Y nauth) is a decreasing function of the required number of bits
nauth, of which an upper bound is given by Figure 4.5.

162 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

Performance Comparison of Different Intrinsic PUFs

Now we apply the same calculation as in this example on all studied intrinsic
PUFs for three different authentication performances:

1. A low-cost security scenario with EER ≤ 10−6 and H(Y |W) ≥ 80.

2. A realistic security scenario with EER ≤ 10−9 and H(Y |W) ≥ 128.

3. A critical security scenario with EER ≤ 10−12 and H(Y |W) ≥ 256.

Based on the number of response bits needed, the required silicon area is
also calculated in the same manner (and with the same disclaimers) as in
Section 5.2.3. The results are presented in Table 5.4.

From Table 5.4, it is clear that for many studied intrinsic PUFs, no parameter
solutions meeting the presented design constraints can be found. This is mostly
a result of a too high average intra-distance, a too low entropy density, or a
combination of both. Only the SRAM PUF and the pairwise comparison ring
oscillator PUF succeed in providing a solution for all three considered scenarios.
The SRAM PUF solution offers a better area efficiency than the ring oscillator
PUF by almost two orders of magnitude.

5.4 Conclusion

In Section 5.2 of this chapter, we have successfully demonstrated that a
PUF response can be used as a secure and reliable inherent identifier of a
PUF-embedding entity. The identification performance, in terms of a false
acceptance, false rejection and equal error rate, scales only with the bit length of
the PUF response. For the intrinsic PUFs studied in Chapter 4, this ultimately
comes down to a scaling with the required silicon area needed to implement the
PUF. The scaling factor is different for every intrinsic PUF constructions and is
determined by the characteristics of their inter- and intra-distance distributions.
A comparative analysis, as presented in Tables 5.2 up to 5.3, indicates that for a
given silicon area, the SRAM PUF provides the best identification performance
in terms of equal error rate. The latch PUF on the other hand exhibits very
poor identification capabilities, which severely undermines its usage as a PUF.

We build upon these identification capabilities of intrinsic PUFs to provide
secure entity authentication. In order to obtain a cryptographic level of
authentication security, we proposed a new authentication protocol between
a central verifier and a deployed entity, shown in Figure 5.4, that utilizes a

CONCLUSION 163

T
ab

le
5.

4:
R

eq
ui

re
d

co
de

pa
ra

m
et

er
s,

P
U

F
re

sp
on

se
bi

ts
an

d
es

ti
m

at
ed

si
lic

on
ar

ea
fo

r
ac

hi
ev

in
g

th
re

e
di

ff
er

en
t

au
th

en
ti

ca
ti

on
p

er
fo

rm
an

ce
s.

‘/
’

m
ea

ns
th

at
no

pa
ra

m
et

er
so

lu
ti

on
w

it
hi

n
th

e
gi

ve
n

de
si

gn
co

ns
tr

ai
nt

s
ca

n
b

e
fo

un
d.

P
U

F
C

la
ss

E
E

R
≤

10
−

6
a
n

d
H

(Y
′ |
W

)
≥

80
S

il
ic

o
n

A
re

a
(µ

m
2
)

×
B

C
H

n
R

E
P

n
B

C
H

k
B

C
H

t B
C

H
lo

g 1
0

E
E

R
H

(Y
′ |
W

)
n

a
u
th

SR
A

M
P

U
F

1
3

24
8

12
4

18
−

7.
05

80
74

4
60

4.
5

L
at

ch
P

U
F

/
/

/
/

/
/

/
/

/
D

F
lip

-fl
op

P
U

F
/

/
/

/
/

/
/

/
/

B
us

ke
ep

er
P

U
F

/
/

/
/

/
/

/
/

/
A

rb
it

er
P

U
F

(b
as

ic
)

/
/

/
/

/
/

/
/

/
A

rb
it

er
P

U
F

(2
-X

O
R

)
1

5
23

2
10

0
19

−
6.

2
80

11
60

21
79

.7
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
2

1
21

6
52

25
−

6.
1

81
43

2
50

83
5.

9
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
/

/
/

/
/

/
/

/
/

E
E

R
≤

10
−

9
a
n

d
H

(Y
′ |
W

)
≥

12
8

SR
A

M
P

U
F

3
3

22
3

83
21

−
9.

63
13

0
20

07
16

30
.7

A
rb

it
er

P
U

F
(2

-X
O

R
)

/
/

/
/

/
/

/
/

/
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
2

3
16

7
91

10
−

9.
19

12
8

10
02

11
79

11
.1

E
E

R
≤

10
−

1
2

a
n

d
H

(Y
′ |
W

)
≥

25
6

SR
A

M
P

U
F

7
3

24
9

81
26

−
12

.3
7

25
7

52
29

42
48

.7
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
8

1
25

4
46

42
−

14
.3

5
26

0
20

32
23

91
17

.2

164 PUF-BASED ENTITY IDENTIFICATION AND AUTHENTICATION

unique and unpredictable response of a PUF instance embedded by each entity
as an authentication secret. The protocol requires some form of error-correction
which we accomplish by using a secure sketch in a ‘reversed’ mode of operation,
i.e. an entity generates new side information in each protocol run and the
verifier uses this side information to modify his fixed PUF response to match
the current response evaluation of the entity. Based on the linearity of the
sketching procedure, we are able to prove that even after many protocol runs,
the unpredictability of the PUF response remains high. The authentication
performance metrics of this protocol are derived in a similar way as for
the PUF-based identification, and applied on the experimental intrinsic PUF
results. From this analysis, summarized in Table 5.4, it is clear that most
of the intrinsic PUFs studied in Chapter 4 are not able to achieve a high-
level authentication performance within a resource-constrained environment.
The SRAM PUF and the pairwise-comparison ring oscillator PUF, and to a
lesser extent also the 2-XOR arbiter PUF, are the only constructions which
are sufficiently unpredictable and reproducible to be practically usable in the
protocol, with the SRAM PUF exhibiting the best silicon area efficiency.

Chapter 6

PUF-based Key Generation

Arguing with an engineer is like wrestling with a pig in
the mud; after a while you realize you are muddy and
the pig is enjoying it.

Random signature block

6.1 Introduction

6.1.1 Motivation

An indispensable premise for a large majority of cryptographic implementations
is the ability to securely generate, store and retrieve keys. While often
considered trivial in the description of cryptographic primitives, the required
effort to meet these conditions is not to be underestimated. The minimal
common requirements for a secure key generation and storage are: i) a
source of randomness to ensure that freshly generated keys are unpredictable
and unique, and ii) a protected memory which reliably stores the key’s
information while shielding it completely from unauthorized parties. From
an implementation perspective, both requisites are non-trivial to achieve. The
need for unpredictable and unique randomness is typically filled by applying
a (seeded pseudo-) random bit generator (PRNG). However, the fact that
such generators are difficult to implement properly was just recently made
clear again by the observation by Lenstra et al. [82] that a large collection of

165

166 PUF-BASED KEY GENERATION

“random” public RSA keys contains many pairs which share a prime factor,
which is immediately exploitable and should not have occurred when they were
generated based on true randomness. On the other hand, implementing a
protected memory is also a considerable design challenge, often leading to an
increased implementation overhead and/or restricted application possibilities in
order to enforce the physical security of the stored key. Countless examples can
be provided of broken cryptosystems due to poorly designed or implemented key
storages, or bad handling of keys. Moreover, even high-level physical protection
mechanisms are often not sufficient to prevent well-equipped and motivated
adversaries from discovering digitally stored secrets, e.g. as demonstrated by
Tarnovsky [140], Torrance and James [143].

A PUF-based key generator tries to tackle both requirements at once by using
a PUF to harvest static but device-unique randomness and processing it into a
cryptographic key. This avoids the need for both a PRNG, since randomness
which is already intrinsically present in the device is used, and the need for
a protected non-volatile memory, since the used randomness is considered
static over the lifetime of the device and can be measured again and again
to regenerate the same key from the otherwise illegible random features. Due
to these very interesting properties, cryptographic key generation is one of the
main applications of (intrinsic) PUFs and various PUF-based key generation
techniques have been proposed by numerous authors, among others by Bösch
et al. [17], Guajardo et al. [50], Tuyls and Batina [144], Yu et al. [159]. Since
PUF responses are generally not perfectly reproducible and not uniformly
distributed, they can evidently not be used directly as a cryptographic key. A
PUF-based key generator faces two main challenges: increasing the reliability
to a practically acceptable level and compressing sufficient entropy in a fixed
length key.

6.1.2 Chapter Goals

Developing a PUF-based key generator is a process involving many design
decisions and trade-offs, both of a pragmatic nature (e.g. information-
theoretical versus computational security) and a quantitative nature (e.g. key
reliability versus required silicon area). The main goal of this chapter is
to investigate the available techniques and methods for generating a usable
cryptographic key from a PUF’s response, and apply the obtained insight to
develop practical PUF-based key generation methodologies, building blocks
and systems. In more detail:

• We will study existing notions and constructions used for generating
cryptographic keys from entropic sources.

PRELIMINARIES 167

• We will propose improvements and extensions for some of these existing
constructions.

• We aim to develop a methodology for practical PUF-based key generation
by adopting an as realistic as possible model, both for the randomness
source as for the envisioned application requirements, and explicitly
stating the security design constraints for a given efficient construction
in this model.

• Finally, we plan to apply this methodology, first to provide an assessment
of the performance and efficiency of the intrinsic PUFs tested in Chapter 4
with regard to key generation, and finally to develop a complete and
practical PUF-based key generation system.

6.1.3 Chapter Overview

In Section 6.2, we give an overview of existing notions and constructions which
are of interest for PUF-based key generation, such as secure sketches, strong
and fuzzy extractors and entropy accumulators. In Section 6.3, we present the
main results of our work in [90, 91] which lead to a significantly improved secure
sketch implementation based on the use of soft-decision information from the
PUF response bits. A complete practical PUF-based key generation system
is discussed in Section 6.4. The main contribution of this last section is the
presented transition to a more efficient practical PUF-based key generation
methodology by abandoning the information-theoretical security requirement.
In this new mindset, we provide a comparative overview of the key generation
performance of the intrinsic PUFs studied in Chapter 4 and finally develop
and implement a complete yet efficient and flexible, practical PUF-based key
generator. Section 6.5 concludes this chapter.

6.2 Preliminaries

6.2.1 Secure Sketching

Concept

Dodis et al. [38, 39] introduce the concept of a secure sketch as:

Definition 26. An (Y, m, m′, t)-secure sketch is a pair of randomized proce-
dures, Sketch and Recover, with the following properties:

168 PUF-BASED KEY GENERATION

• The sketching procedure Sketch on input y ∈ Y returns a bit string
w ∈ {0, 1}∗.

• The recovery procedure Recover takes an element y′ ∈ Y and a bit string
w ∈ {0, 1}∗, and returns a bit string y′′ ∈ Y.

• The correctness property of secure sketches guarantees that if dist [y; y′] ≤ t,
then Recover(y′, Sketch(y)) = y. If dist [y; y′] > t, then no guarantee is
provided about the output of Recover.

• The security property guarantees that if y is randomly selected from Y
according to a distribution with min-entropy m, then the value of y can
be recovered by the adversary who observes w with probability no greater
than 2−m′

. That is, H̃∞(Y |Sketch(Y)) ≥ m′.

A secure sketch is efficient if Sketch and Recover run in expected polynomial
time.

The key notion of a secure sketch is that a ‘noisy’ version y′ of an earlier
observed value y can be exactly recovered by a recovery procedure when some
side information w about the original value is available, without having this side
information reveal the complete unpredictability of the value of y. Dodis et al.
[38] also propose two practical constructions of secure sketches for a Hamming
distance metric. Both constructions are based on the use of a binary error-
correcting linear block code. Let C be a binary error-correcting block code
with parameters [n, k, t], i.e. C contains 2k different codewords of length n bits
which are each at least 2t− 1 bits apart, and an efficient correction procedure
exists which can correct up to t bit errors on each code word. The code is
completely characterized by its generator matrix Gk×n and its parity-check
matrix H(n−k)×n, with G ·HT = 0. This code can be used to construct an
({0, 1}n, m, m− (n− k), t)-secure sketch, as demonstrated by the following two
constructions.

The Code-Offset Construction

• Sketch(y)→ w : the sketching procedure samples uniformly at random a
codeword c

$
← C (independently from the value of y) and the n-bit side

information string is the binary offset between y and c: w := y ⊕ c.

• Recover(y′, w)→ y′′ : the recovery procedure calculates a noisy codeword
as c′ := y′ ⊕ w ≡ (y′ ⊕ y)⊕ c and applies the error-correcting procedure
of the code C to correct c′: c′′ := Correct(c′). The recovered value is
computed as y′′ := w ⊕ c′′ = y ⊕ (c⊕ c′′).

PRELIMINARIES 169

• The correctness property of the construction follows from the error-
correction capacity of the underlying code: if HD (y; y′) ≤ t then
HD (c; c′) ≤ t and the correction procedure can perfectly correct the
noisy codeword: c′′ = c, and hence y′′ = y.

• The security property of the construction is intuitively explained by the
fact that w discloses at most n bits of which k (≤ n) are independent from
y, hence the remaining min-entropy is H̃∞(Y |W) ≥ H∞(Y)− (n− k) =
m− (n− k). For a formal proof we refer to [38].

The Syndrome Construction

• Sketch(y)→ w : the sketching procedure generates an (n− k)-bit helper
data string as w := y ·HT.

• Recover(y′, w)→ y′′ : the recovery procedure calculates a syndrome s of
the code C as s := y′ ·HT ⊕ w ≡ (y ⊕ y′) ·HT. The syndrome decoding
procedure of C finds the unique error word e such that s = e ·HT and
HW (e) ≤ t. The recovered value is computed as y′′ := y′ ⊕ e.

• The correctness property of the construction follows from the fact that,
if HD (y; y′) ≤ t, then e = y ⊕ y′ and hence y′′ = y.

• The security property of the construction follows immediately by
application of Lemma 3 from Appendix A.

6.2.2 Randomness Extraction

Concept

In many situations high entropy or nearly-uniform bit strings are required,
e.g. to serve as a key in key-based security applications. However, often only
a low entropy random source is available, e.g. a source which produces heavily
biased and/or dependent bits. A method is required to extract near-uniform
or ‘high quality’ randomness from ‘low quality’ randomness sources with only
a limited entropy per bit. This is the purpose of a randomness extractor. We
first discuss randomness extraction from a theoretical perspective and next
some recommended methods which are often used in practice.

170 PUF-BASED KEY GENERATION

Information-theoretically Secure Randomness Extraction

The notion of a strong randomness extractor was introduced by Nisan and
Zuckerman [106].

Definition 27. Let Ext : {0, 1}n → {0, 1}ℓ be a polynomial time probabilistic
function which uses r bits of randomness. We say that Ext is an efficient
(n, m, ℓ, ǫ)-strong extractor if for all random variables Y ← {0, 1}n with
H∞(Y) ≥ m, it holds that

SD ((Ext(Y ; R), R); (Uℓ, R)) ≤ ǫ,

where R is uniform on {0, 1}r and Uℓ is uniform on {0, 1}ℓ

An (n, m, ℓ, ǫ)-strong extractor with a small ǫ is hence able to extract high
quality (ǫ-uniform) random strings from a low-quality source whose randomness
is expressed by its min-entropy.

Randomness extractors can be constructed from so-called universal hash
function families as introduced by Carter and Wegman [27]. A hash function
family, which is a set of indexed functions H = {hr : {0, 1}n → {0, 1}ℓ}r∈R, is
called universal if

∀a 6= b ∈ {0, 1}n : Prr∈R (hr(a) = hr(b)) ≤ 2−ℓ.

An important property of universal hash functions is given by the left-over
hash lemma which actually states that a universal hash function is a strong
randomness extractor.

Lemma 2. If H = {hr : {0, 1}n → {0, 1}ℓ}r∈R is a universal hash function
family, then for any random variable Y ← {0, 1}n it holds that:

SD ((hR(Y), R); (Uℓ, R)) ≤ 1
2

√
2ℓ−H∞(Y).

From the left-over hash lemma, it follows directly that a universal hash function
is a (n, m, ℓ, ǫ)-strong extractor if ℓ ≤ m − 2 log2(1

ǫ
) + 2. Moreover, from

an information-theoretical perspective this is the maximal number of nearly
uniform bits which can be extracted from a source with min-entropy m.
Observe that one pays a high price in min-entropy to obtain such information-
theoretically strong claims. For example, consider one desires an extracted
bit string of length ℓ = 128 which is ǫ = 2−128-close to uniform, which by
itself will have a min-entropy very close to 128 bits. To derive such a string
with a strong extractor, one requires a randomness source with a min-entropy
of at least m ≥ ℓ + 2 log2

1
ǫ

+ 2 = 382. Hence, at least 382 − 128 = 254

PRELIMINARIES 171

bits of min-entropy are lost in the extraction process. Moreover, to obtain
good randomness extraction, the index r of the used universal hash function
(also called the seed) needs to be uniform random for every extraction, i.e. one
already requires a high-quality random value (of smaller length) to bootstrap
the extraction process.

Practical Randomness Extraction

High quality randomness is often required in practical security applications,
e.g. for session keys, random nonces, randomized procedures, etc. However,
the earlier described information-theoretic approach is often too restrictive.
In many practical systems, entropy collection from truly random physical
sources is limited and comes at a rather high cost. It either needs to be
collected over relatively long periods of time, or in the case of PUFs, more
randomness comes at a direct area cost. The rather wasteful operation of a
strong extractor is hence undesirable. It is moreover very difficult or impossible
to accurately estimate the (min-)entropy of a randomness source, as required
to have strong guarantees for the extractor. This entails that one needs to work
with pessimistic underestimations which even causes more entropy losses.

A more practical approach is considered in the construction of seeded
cryptographic pseudo-random number generators. Such PRNGs also take their
seed from physical sources of entropy, but abandon the very strict requirement
of generating information-theoretically secure randomness. Instead, they are
based on a collection of randomness, measured by an estimation of its (Shannon)
entropy, and the application of cryptographic primitives to accumulate
sufficient entropy in a fixed-length buffer. Through the use of well-studied
design principles and after considerable public scrutiny, a number of practical
PRNG-constructions are developed which are considered cryptographically
secure, and which are widely used in practical applications. These design
principles and current best-practice techniques for such constructions are
discussed, e.g. by Barker and Kelsey [10], Eastlake et al. [40], Kelsey et al.
[70]. We also refer to Gutmann [52, Chapter 6] for an extensive overview of
existing PRNG-constructions and a discussion on their (in)security.

The building block of these PRNG-constructions which is of interest to us is
the so-called entropy accumulator, i.e. the primitive which operates directly on
the physical source of randomness in order to produce a highly random seed for
the PRNG. Kelsey et al. [70] describe the properties an entropy accumulator
should meet. Based on this description, we formulate the following informal
definition of an entropy accumulator:

172 PUF-BASED KEY GENERATION

Definition 28. An m-bit entropy accumulator is a procedure Acc : {0, 1}∗ →
{0, 1}m with an internal state of m bits which is called the entropy pool, and
which meets the following conditions:

• It is expected that nearly all entropy of the input bitstream is accumulated
in the pool, up to the size of the pool, even when the entropy is distributed
in various odd ways in this bitstream, e.g. only entropy in every 100th bit,
or no entropy in a long stream of bits and then suddenly 100 bits with full
entropy, etc.

• An adversary who has momentary control over the input bitstream, must
not be able to undo the effect of the previous unknown bits which were
accumulated in the pool.

• An adversary who has momentary control over the input bitstream, must
not be able to force the pool into a weak state such that no further entropy
can be accumulated.

• An adversary who can choose which bits in the bitstream will be unknown
to him, but still has to allow n unknown bits, must not be able to narrow
down the number of states of the pool to substantially fewer than 2−n.

When the entropy accumulator assesses that it has accumulated at least m bits
of entropy in its entropy pool, the current state of the pool is outputted. This
decision can be based on internal (conservative) entropy estimation methods,
or on a realistic entropy model of the input bitstream.

In [10, Sect. 10.4], constructions for entropy accumulators based on a generic
cryptographic hash function or a block cipher are provided. Kelsey et al. [70]
and Ferguson and Schneier [41, Chapter 10] also propose a PRNG design which
deploys a cryptographic hash function as an entropy accumulator.

6.2.3 Fuzzy Extractors

Dodis et al. [38, 39] define a fuzzy extractor as:

Definition 29. An (Y, m, ℓ, t, ǫ)-fuzzy extractor is a pair of randomized
procedures, Generate and Reproduce, with the following properties:

• The generation procedure Generate on input y ∈ Y outputs an extracted
string z ∈ {0, 1}ℓ and a helper data string w ∈ {0, 1}∗.

PRELIMINARIES 173

• The reproduction procedure Reproduce takes an element y′ ∈ Y and a bit
string w ∈ {0, 1}∗ as inputs and outputs an extracted string z′ ∈ {0, 1}ℓ.

• The correctness property of fuzzy extractors guarantees that if dist [y; y′] ≤ t
and z, w were generated by (z, w)← Generate(y), then Reproduce(y′, w) = z.
If dist [y; y′] > t, then no guarantee is provided about the output of
Reproduce.

• The security property guarantees that if y is randomly sampled from
Y according to a distribution with min-entropy at least m, the ex-
tracted string z is nearly uniform even for those who observe w: if
(Z, W)← Generate(Y), then SD ((Z, W); (Uℓ, W)) ≤ ǫ.

A fuzzy extractor is efficient if Generate and Reproduce run in expected
polynomial time.

A more generic description of a fuzzy extractor for continuous random variables,
in the context of biometrics, was introduced as a shielding function by Linnartz
and Tuyls [86]. From its definition, it is clear that a fuzzy extractor is a
generalization of both a secure sketch, generating a highly random output
instead of reconstructing the original input, and a strong extractor, operating
on a noisy input instead of a fixed value. Consequently, the basic construction
of a fuzzy extractor as proposed by Dodis et al. [39] [38] consists of a
straightforward combination of a secure sketch with a randomness extractor.
The secure sketch respectively executes its sketching and reconstruction
procedures in the fuzzy extractor’s generation and reproduction procedures.
The strong extractor is the same, and uses the same seed, in both procedures.
The side information produced by the secure sketch and the strong extractor’s
seed, both produced during the generation procedure, are passed to the
reproduction procedure as helper data. This construction is shown in Figure 6.1.

Taking two realizations of the same fuzzy secret as an input, this fuzzy extractor
construction is able to generate the same (nearly-)uniformly random output,
i.e. given that the fuzzy source meets the distance and min-entropy conditions
of the fuzzy extractor, z = z′. Since the full unpredictability of the output
is guaranteed even when the helper data is known, the helper data does not
need to be kept confidential. This makes it possible to store and transfer the
helper data in a public manner. The integrity of the helper data needs to be
guaranteed though.

The correctness property of this construction of a (Y, m, ℓ, t, ǫ)-fuzzy extractor
is evidently guaranteed by the correctness property of the used (Y, m, m′, t)-
secure sketch. The security property is taken care of by deploying a (n, m′, ℓ, ǫ)-

174 PUF-BASED KEY GENERATION

\´

Secure Sketch:

Sketch(...)

Secure Sketch:

Recover(...,...)

Strong

Extractor

Ext(...)

y \¶

z

RNG
r

Z¶

Strong

Extractor

Ext(...)

]¶

w = (Z¶��U)
Z¶

r

Fuzzy

Source
Fuzzy

Source

helper

data:

Generate Reproduce

Figure 6.1: Construction of a fuzzy extractor from a secure sketch and a strong
extractor.

strong extractor, given that Y = {0, 1}n. In other words, the strong-
extractor compresses the remaining min-entropy, after publication of the side-
information, into a fully random output which can be used as a secret key.
Due to the deployment of a randomness extractor, a fuzzy extractor provides
the same very high information-theoretic guarantees, but also suffers from the
same very stringent min-entropy requirements and losses.

6.3 A Soft-Decision Secure Sketch Construction

6.3.1 Motivation

When deploying a secure sketch to generate a reliable version of a noisy PUF
response, it is typically assumed that every single PUF response bit is equally
likely to be erroneous in a given evaluation. This is often expressed by a static
bit error rate pe which is estimated as the average ratio of the number of bit
errors in the total number of evaluated response bits. Secure sketches are
designed to cope with the given bit error rate of PUF. In particular the error-
correcting code parameters, e.g. of the code-offset or syndrome construction,
are adapted to this fixed error rate.

A SOFT-DECISION SECURE SKETCH CONSTRUCTION 175

In [91], we argue that at least for SRAM PUFs, the assumption of a single fixed
error rate is too simplistic and too pessimistic. When analyzing experimental
data from an SRAM PUF experiment, it is readily observed that the large
majority of the response bits are extremely robust, i.e. they never or hardly
ever will change their value between evaluations. A minority of bits are more
noisy, occasionally presenting a bit error, and a few bits have no preferred value
at all and are basically completely random at each evaluation. This means that
every SRAM PUF response bit has its own individual error probability, and
the values of these error probabilities are themselves randomly distributed for
each bit. In [91] we succeeded in deriving an expression for this distribution
based on a simplified model of the construction and operation of an SRAM
PUF, and experimentally verified the accuracy of this distribution.

From this observation, it follows that an assumed fixed error probability of pe

for every SRAM PUF response bit is an overestimation for a large majority of
bits. A secure sketch designed for such a fixed error rate will hence be overly
conservative for most bits. A more efficient secure sketch would take into
account the individual likelihood for every response bit to be wrong. This
is precisely what a secure sketch based on a soft-decision error correction
decoder could achieve, given that soft-decision information for the response
bits is available. We call this a soft-decision secure sketch. For an SRAM PUF,
soft-decision information for the response bits can be obtained by measuring
every bit many times and publishing the observed individual error probabilities
as helper data for the soft-decision secure sketch. In [91], we have demonstrated
that at least for SRAM PUFs this is a possibility, since the publication of these
probabilities does not induce any additional min-entropy loss for the actual
unpredictable values of every response bit.

6.3.2 Soft-Decision Error Correction

Soft-decision error correction is a generalization of discrete (hard-decision)
error correction. Besides using the redundancy in a codeword to achieve error
correction, like a hard-decision decoder, soft-decision decoding will also consider
the estimated reliability of every bit in a codeword and will adapt its correction
strategy based on this soft-decision information. As a result, soft-decision
decoders are typically more efficient than their hard-decision counterparts,
i.e. they can correct more bit errors based on the same amount of redundancy,
or equivalently they can achieve the same correction capability by using a
code with less redundancy. For the code-offset and syndrome constructions of
secure sketches, based on a binary linear block code with parameters [n, k, t],
the redundancy of (n− k) bits is precisely the amount of (min-)entropy which
is lost due to the publication of the helper data. When a soft-decision decoder

176 PUF-BASED KEY GENERATION

is used, less redundancy is needed and hence less (min-)entropy is lost. This
results in a relaxed requirement on the number of PUF response bits which are
needed to derive a key of a particular length, and ultimately in a smaller PUF
implementation.

Two well known soft-decision decoding algorithms are the Viterbi algorithm
for convolution codes, as proposed by Viterbi [151], and the belief propagation
algorithm for LDPC codes, as proposed by Gallager [44]. However, both types
are not really adequate for use in typical secure sketch constructions since
they require very long data streams to work efficiently, while the length of a
fuzzy secret such as a PUF response is often limited. We would like to use a
soft-decision decoding algorithm for rather short linear block codes in order to
maintain efficiency. Although less common, soft-decision decoding techniques
for short linear block codes exist.

Soft-decision Maximum-Likelihood Decoding (SDML)

Soft-decision maximum-likelihood decoding (SDML) is a straightforward
algorithm that selects the code word that was most likely transmitted based
on the bit reliabilities. SDML achieves the best error-correcting performance
possible, but generally at a decoding complexity exponential in the code
dimension k. Repetition codes (k = 1) can still be efficiently SDML decoded.
Conversely, for k = n SDML decoding degenerates to making a hard decision
on every bit individually only based on its reliability, and for k = n − 1 the
block code is a parity-check code and SDML decoding is done efficiently by
flipping the least reliable bit to match the parity. This last technique is also
known as Wagner decoding and is described by Silverman and Balser [134].

Generalized Multiple Concatenated (GMC) Decoding of Reed-Muller Codes

An r-th order Reed-Muller code RM(r, m), is a binary linear block code with
parameters [n = 2m, k =

∑r
i=0

(
m
i

)
, t = 2m−r−1 − 1]. It is well known that

RM(r, m) can be decomposed into the concatenation of two shorter inner
codes, RM(r − 1, m − 1) and RM(r, m − 1), and a simple length-2 block
code as outer code. This decomposition can be applied recursively until one
reaches RM(0, m′), which is a repetition code, or RM(r′ − 1, r′) (or RM(r′, r′)),
which is a parity check (or degenerated) code, all of which can be efficiently
soft-decision decoded with SDML. This technique, introduced as Generalized
Multiple Concatenated decoding (GMC) by Schnabl and Bossert [127], yields
a much lower decoding complexity than SDML, but only a slightly decreased
error-correcting capability.

A SOFT-DECISION SECURE SKETCH CONSTRUCTION 177

6.3.3 Soft-Decision Secure Sketch Design

Soft-Decision Secure Sketch

In [90], we propose a practical soft-decision secure sketch based on the code-
offset construction deploying a concatenated soft-decision decoding of an inner
repetition code and an outer Reed-Muller code. Soft-decision information
is obtained from response bits during the initial generation procedure and
published as helper data. The soft-decision information represents the log-
likelihood for every bit to be wrong, which is calculated from the estimated
error probability pe(i) of response bit i as:

Ki = ⌊logβ
1−pe(i)

pe(i) ⌉ .

The log-likelihoods are represented as an 8-bit two’s-complement integer value
and the logarithm base β is chosen to avoid overflows in this representation.

In the recovery phase of the secure sketch, the regular helper data is combined
with the PUF response evaluation to construct a noisy codeword c′ as for the
regular code-offset construction described in Section 6.2.1. The bits of this
noisy codeword are now combined with the log-likelihood soft-decision helper
data to derive the soft-decision input of the decoder algorithms as follows:

Li = (−1)c′

i ·Ki ,

i.e. ‘0’ code bits become positive log-likelihoods, and ‘1’ code bits negative ones.

Soft-Decision Decoding Algorithms

SDML repetition decoding of soft-decision information L amounts to calcu-
lating L∗ =

∑n−1
i=0 Li. The most-likely transmitted code word was all zeros

if L∗ > 0 and all ones if L∗ < 0. Moreover, the magnitude of L∗ gives
a reliability for this decision which allows to perform a second soft-decision
decoding for the outer code. Algorithm 1 outlines the simple operation for the
SDML decoding of a repetition code. As an outer code, we use a RM(r, m)
code and decode it with an adapted version of the soft-decision GMC decoding
algorithm as introduced by Schnabl and Bossert [127]. The soft-decision output
of the repetition decoder is used as input by the GMC decoder. The operation
of the GMC decoder we use is given by Algorithm 2. Note that this a recursive
algorithm, calling itself twice if 0 < r < m.

178 PUF-BASED KEY GENERATION

Algorithm 1 SDML-DECODE-Repetitionn(L) with soft output

L∗ :=
∑n−1

i=0 Li

return (L∗, . . . , L∗)n

Algorithm 2 GMC-DECODE-RM(r, m)(L) with soft output

define F (x, y) := sign(x · y) ·min{abs(x), abs(y)}
define G(s, x, y) := ⌊ 1

2 (sign(s) · x + y)⌋
if r = 0 then

L∗ = SDML-DECODE-Repetition2m(L)
else if r = m then

L∗ = L
else

L
(1)
j = F (L2j−1, L2j),∀j = 0 . . . 2m−1 − 1

L(1)∗ = GMC-DECODE-RM(r − 1, m− 1)(L(1))
L

(2)
j = G(L(1)∗

j , L2j−1, L2j),∀j = 0 . . . 2m−1 − 1

L(2)∗ = GMC-DECODE-RM(r, m− 1)(L(2))

L∗ =
(

F (L(1)∗
0 , L

(2)∗
0), L

(2)∗
0 , . . . , F (L(1)∗

2m−1−1, L
(2)∗
2m−1−1), L

(2)∗
2m−1−1

)

end if
return L∗

Decoder Architecture

We propose a resource-optimized hardware architecture to efficiently execute
the soft-decision decoders given by Algorithms 1 and 2. As a general
architecture, we opt for a highly serial execution of the algorithms using a
small 8-bit custom datapath. The summation in Algorithm 1 is implemented
by means of a serial accumulator. The functions F (x, y) and G(s, x, y) in
Algorithm 2 are respectively evaluated in a 3-cycle execution and a 2-cycle
execution. The high-level architecture is shown in Figure 6.2. The algorithm
execution is controlled by a programmable controller taking instructions from
an instruction ROM, which allows support for different code parameters. The
size of both data RAMs depends on the used codes.

6.3.4 Implementation Results on FPGA

Table 6.1 presents the implementation results for a reference design of our
soft-decision secure sketch on a Xilinx® Spartan®-3E500 FPGA platform. The
reference design implements a concatenation of a [3, 1, 1] repetition soft-decision

A SOFT-DECISION SECURE SKETCH CONSTRUCTION 179

Input RAM
Output

RAM

Accumulator

Arithmetic

Unit

Data_in

Data_out

Acc_out
Arith_out

Instruction

ROM

Instruction

Decoder/

Controller

Figure 6.2: Architecture design of the soft-decision decoder.

Table 6.1: Overview of the implementation results of our reference design soft-
decision secure sketch, and an efficiency comparison to an earlier proposed
hard-decision secure sketch implementation.

Our design [90] Bösch et al. [17]

FPGA slices 164 580
FPGA Block RAMs 2 ?
Cycles for one decoding 1248 1716
Critical path 19.9 ns 6.6 ns

SRAM PUF response size 192 264
Min-entropy after sketching 22 13

decoder and a RM(2, 6) ≡ [64, 22, 7] Reed-Muller soft-decision decoder. This
combination is able to correct all errors in an SRAM PUF response with a
simulated bit error rate of 15%, with a failure rate ≤ 10−6. These parameters
are chosen to objectively compare our results against the hard-decision secure
sketch implementation presented by Bösch et al. [17].

From Table 6.1 it is clear that the use of soft-decision information results in a
significant efficiency gain. Whereas the earlier proposed hard-decision decoder
is left with 13 bits of min-entropy from a (full-entropy) 264-bit SRAM PUF
response after sketching, our soft decision reference design keeps 22 bits of min-
entropy from a 192-bit response. Moreover, as it turns out, the implementation
of our soft-decision decoder is also significantly more area-efficient.

180 PUF-BASED KEY GENERATION

6.4 Practical PUF-based Key Generation

6.4.1 Motivation

The main rationale behind what we call practical PUF-based key generation
is that we abandon the requirement of generating information-theoretically
random keys and instead aim for cryptographically secure randomness based on
reasonable assumptions and best-practice techniques, aiming to gain in overall
efficiency. While representing a certain sacrifice in security from a theoretical
perspective, the abandonment of information-theoretical randomness can be
convincingly motivated from a practical viewpoint:

• As argued in Section 6.2.2, the choice for information-theoretical
randomness comes at a direct implementation cost for the randomness
source due to the unavoidable and large min-entropy losses in the strong
extractor.

• Information-theoretical randomness is conditioned on strong min-entropy
guarantees for the randomness source. In practice it is very often
impossible to provide a reasonably accurate estimation of a source’s min-
entropy, let alone a guarantee thereon. If such guarantees cannot be
provided, it doesn’t make much sense to consider information-theoretical
randomness any further.

• For most applications, information-theoretical randomness is not strictly
required. In fact, apart from a few notable exceptions, nearly all practical
cryptographic primitives are themselves not information-theoretically se-
cure operations, which makes the requirement of information-theoretical
randomness a practical exaggeration.

• Most currently deployed security systems and key generators do not use
information-theoretical randomness, but also apply a more pragmatic
practical approach based on seeded PRNGs, as detailed in Section 6.2.2.

6.4.2 Practical Key Generation from a Fuzzy Source

Practical Secure Sketch

The secure sketch, as defined in Definition 26 is already practical in the sense
that it can be constructed quite efficiently, as demonstrated by the code-offset
and the syndrome construction described in Section 6.2.1, and its efficiency is

PRACTICAL PUF-BASED KEY GENERATION 181

typically only limited by the efficiency of the underlying error-correcting codes.
We propose a slightly more generalized definition of a secure sketch which will
prove its use in the practical fuzzy extractor we describe next.

Definition 30. An (ℓ, pe, µ, pfail, µ′)-practical secure sketch is a pair of efficient
(possibly randomized) procedures Sketch : {0, 1}ℓ → {0, 1}∗ : y → w and
Recover : {0, 1}ℓ × {0, 1}∗ → {0, 1}ℓ : (y′, w) → y′′, with the following two
properties:

• The correctness property of a practical secure sketch guarantees that if

Pr (HD (Y ; Y ′) ≤ t) ≥ Fbino(t; ℓ, pe) ,

then

Pr (Y 6= Recover(Y ′, Sketch(Y))) ≤ pfail .

• The security property of a practical secure sketch guarantees that if
ρ(Y) ≥ µ then ρ(Y |W) ≥ µ′.

It is clear that a practical secure sketch is very similar to a secure sketch as
defined in Definition 26, and can be built with the same constructions described
in Section 6.2.1. However, both the correctness and the security property are
slightly relaxed:

• The correctness property is no longer conditioned on a hard limit on
the number of errors, but instead on an error rate parameter pe which
describes the probability of a number of differing bits by means of a
binomial distribution. An even further generalization can be made by
considering a generic cumulative distribution function of the errors on the
fuzzy secret, but the binomial case will suffice for our use. Equivalently,
the recovery is no longer hard guaranteed, but is only certain up to
a certain failure probability pfail. This generalization more accurately
captures realistic scenarios where hard bounds on error rates can only
rarely be provided.

• The security property is also more relaxed since it is no longer conditioned
on the min-entropy, but only on the Shannon entropy (density) of the
fuzzy secret. Equivalently, it only provides a guarantee about the
Shannon entropy (density) of the output.

Practical Fuzzy Extractor

In analogy to practical secure sketches, we also propose a practical fuzzy
extractor:

182 PUF-BASED KEY GENERATION

Definition 31. An (ℓ, pe, µ, pfail, m)-practical fuzzy extractor is a pair of
efficient (possibly randomized) procedures

Generate : {0, 1}ℓ → {0, 1}m × {0, 1}∗ : y → (z, w) ,

and

Reproduce : {0, 1}ℓ × {0, 1}∗ → {0, 1}m : (y′, w)→ z ,

with the following two properties:

• The correctness property of a practical key generator guarantees that if

Pr (HD (Y ; Y ′) ≤ t) ≥ Fbino(t; ℓ, pe) ,

and (Z, W)← Generate(Y), then

Pr (Z 6= Reproduce(Y ′, W)) ≤ pfail .

• The security property of a practical key generator states that if ρ(Y) ≥ µ,
then Z is the result of an entropy accumulation over at least m bits of
entropy: Z ← Acc(S), with H(S|W) ≥ m.

It is clear that this practical fuzzy extractor is a variant of a fuzzy extractor
with relaxed conditions. As a consequence, the practical key generator does no
longer produce an information-theoretically secure random output. However,
through the use of a secure entropy accumulator as described in Section 6.2.2,
the produced output is still at least as random as that of secure cryptographic
PRNGs which are currently widely used in practice to generate secure keys
from low-entropy physical randomness sources.

It is evident that an (ℓ, pe, µ, pfail, m)-practical fuzzy extractor can be straight-
forwardly constructed from an (ℓ, pe, µ, pfail, µ′)-practical secure sketch and an
m-bit entropy accumulator with m ≤ µ′ℓ, in the same way as a regular fuzzy
extractor is constructed from a secure sketch and a randomness extractor. The
construction of a practical fuzzy extractor is shown in Figure 6.3.

Design and Design Constraints of a Practical Fuzzy Extractor Construction

We propose a design of a (ℓ, pe, µ, pfail, m)-practical fuzzy extractor based
on a syndrome construction for the practical secure sketch and an m-bit
cryptographic hash function for the entropy accumulator. When the syndrome
construction deploys an [n, k, t] linear block code C, a number of design
constraints on the parameters of usable codes can be derived:

PRACTICAL PUF-BASED KEY GENERATION 183

Practical

Secure Sketch:

Sketch(...)

Practical

Secure Sketch:

Recover(...,...)

Entropy

Accumulator

Acc(...)

y \¶

z

w

Entropy

Accumulator

Acc(...)

]¶

\´

w w

Fuzzy

Source
Fuzzy

Source

helper

data:

Generate Reproduce

Figure 6.3: Construction of a practical fuzzy extractor from a practical secure
sketch and an entropy accumulator.

1. Practicality constraint: an efficient decoding algorithm for C[n, k, t] is
known.

2. Rate constraint: k
n

> 1− µ, and ℓ ≥ r · n with r = ⌈ m
k−n(1−µ)⌉.

3. Correction constraint: t ≥ F−1
bino((1− pfail)

1
r ; n, pe).

Any binary linear block code which meets these constraints can be used to
build the practical fuzzy extractor. It will become clear that an efficiency
optimization in practice comes down to selecting an appropriate code which
minimizes the required length ℓ of the input from a fuzzy source with given
characteristics (pe, µ), in order to meet the desired requirements (pfail, m) for
the output. This optimization hence needs to be performed over these three
constraints.

The practicality constraint is an evident requirement. If the used code
is not efficiently decodable, the syndrome construction cannot be practically
executed.

The rate constraint expresses the requirement that not all unpredictability
of the fuzzy secret can be leaked through the helper data. For every n bits of

184 PUF-BASED KEY GENERATION

the fuzzy secret, a helper data string of (n−k) bits is generated. The remaining
conditional entropy in the n bits of the fuzzy secret is at least n ·µ− (n− k) =
k − n(1 − µ). To have any arguable entropy left which can be accumulated,
this quantity needs to be strictly positive, from which the first part of the rate
constraint immediately follows. Even if the remaining entropy per n-bit fuzzy
input is positive, the construction still requires at least r = ⌈ m

k−n(1−µ)⌉ such
n-bit inputs from the fuzzy source in order to accumulate m bits of entropy.

The correction constraint expresses the requirement that the used code needs
to be able to correct a minimal amount of bit errors for the construction to
meet the overall failure rate. The probability of a successful recovery of a single
n-bit fuzzy input is at least Pr (HD (Y n; Y ′n) ≤ t) = Fbino(t; n, pe) and for the
overall construction this is repeated r times, hence the overall success rate is
at least Fbino(t; n, pe)r ≥ 1 − pfail. From this, the correction constraint on the
used code immediately follows.

Extension to Concatenated Codes

Often, fuzzy sources, e.g. intrinsic PUFs, have relatively high error rates, up to
10% and even more. Single linear block codes have difficulties in reducing such
high error rates to a practically acceptable failure rate, which means that only
excessively long codes and/or codes with relatively low rates can be used. This
restriction can be relaxed through the use of code concatenation, i.e. using two
(or more) block codes one after the other. Typically, a simple but robust inner
block code brings down the relatively high error rate to a lower intermediate
error probability, and a more advanced outer block code can then achieve a very
low final failure rate much more efficiently. The power of code concatenation
in the context of fuzzy extractors was first discussed by Bösch et al. [17].

We extend our proposed practical fuzzy extractor construction by deploying
code concatenation. In particular, we consider using a [nREP = 2tREP + 1, 1, tREP]
repetition code as the inner code. A repetition code en/decoder is trivially
simple to implement with a very low overhead, and is more efficient on high
error rates than more advanced block codes. The outer code can still be any
[n2, k2, t2] binary linear block code C2. Following the same reasoning as above,
the design constraints for this extended construction then become:

1. Practicality constraint: an efficient decoding algorithm for C2[n2, k2, t2] is
known. (Efficient decoding of the repetition code is trivial.)

2. Rate constraint: k2

nREPn2
> 1− µ,

and ℓ ≥ r · nREPn2 with r = ⌈ m
k2−nREPn2(1−µ)⌉.

PRACTICAL PUF-BASED KEY GENERATION 185

3. Correction constraint: t2 ≥ F−1
bino((1− pfail)

1
r ; n, p′e),

with p′e = 1− Fbino(tREP; nREP, pe).

6.4.3 Comparison of Key Generation with Intrinsic PUFs

A practical fuzzy extractor can be directly used to generate PUF-based keys
of cryptographic quality, when an accurate characterization of the used PUF’s
response distribution in terms of binary error rate (pe) and response entropy
density (µ) is available. These are exactly the quantifiers we obtained from the
eight experimentally verified intrinsic PUF constructions discussed in Chapter 4
and which are summarized in Table 4.10. We will now use these quantifiers in
combination with the practical fuzzy extractor design presented in Section 6.4.2
to assess the key generation efficiency of the different intrinsic PUFs.

Concrete Practical Fuzzy Extractor Implementation

We consider a practical fuzzy extractor design that deploys the syndrome
construction practical secure sketch based on a concatenation of a binary
repetition code as an inner code and a binary BCH code as an outer code. BCH
codes are a class of particularly efficient linear block codes for which efficient
decoding algorithms exist. Binary BCH codes with parameters [nBCH, kBCH, tBCH]
are defined for nBCH = 2u − 1, but through the use of code word shortening,
BCH codes of any length [nBCH = 2u − 1 − s, kBCH − s, tBCH] can be constructed.
For the comparison, we assume that a generic BCH decoder is available which
can efficiently decode code lengths up to nBCH = 2047. In Section 6.4.4 we
argue that this is a reasonable assumption by presenting a hardware design
and efficient implementation of such a decoder. For the entropy accumulator
we consider an implementation of a secure cryptographic hash function which
generates m-bit outputs. The output of the practical fuzzy extractor is the
running hash value of the recovered fuzzy inputs.

Comparison of Optimized Key Generation Efficiencies

A PUF-based key generator is constructed from each of the eight studied
intrinsic PUFs with parameters (p̂intra

P , ρ(Y ℓ)) as summarized in Table 4.10, and a
(ℓ, p̂intra

P , ρ(Y ℓ), pfail, m)-practical fuzzy extractor design as presented above. For
a given key requirement (pfail, m), the overall construction is optimized to need
the smallest possible number of PUF response bits ℓ, since the implementation
cost of the PUF generally scales with ℓ. For both arbiter-based PUFs, the

186 PUF-BASED KEY GENERATION

optimization goal is slightly different: they require the least amount of fuzzy
inputs, as expressed by r in the constraints, since each input needs to be
generated from a different arbiter PUF. This is a result of the decreasing entropy
density of an arbiter PUF’s responses when their length increases. In both cases,
the optimization is performed over the constraints expressed in Section 6.4.2
(the extended construction with code concatenation).

The obtained optimal code selections and corresponding implementation results
for each of the eight intrinsic PUF constructions, and for each of three key
requirements, is presented in Table 6.2. The considered key requirements are:

1. A 128-bit generated key with failure rate at most 10−6;

2. A 128-bit generated key with failure rate at most 10−9;

3. A 256-bit generated key with failure rate at most 10−12.

The required silicon area is also calculated in the same manner (and with the
same disclaimers) as described in Section 5.2.3. It is immediately clear that
the latch PUF, the D flip-flop PUF and the basic arbiter PUF are not able to
generate a key even for the most relaxed key requirements, i.e. no combination
of code parameters can be found meeting the design constraints. This is either
due to a too large intra-distance, a too low entropy density, or a combination
of both. The SRAM PUF again performs particularly well, but so does the 2-
XOR arbiter PUF. Both types of ring oscillator PUFs also manage to produce
a key for all three key requirements, but at a considerably higher silicon area
cost than the SRAM and the 2-XOR arbiter PUFs. The buskeeper can only
produce a key for the first two requirements, and only at a very large area cost
which is the result of its relatively large intra-distance.

Note that the results presented in Table 6.2 are based on the estimated entropy
densities for the different PUF constructions as summarized in Table 4.10 and
in Figure 4.5, and these estimations are only upper bounds. Any more accurate
(i.e. lower) entropy upper bounds will also affect these key generation results.
Especially for the arbiter-based PUFs, we want to point out that the considered
entropy bounds are only based on rather basic modeling attacks, and more
advanced modeling attacks will result in lower entropy density estimations.
The results presented in Table 6.2 should be interpreted in that context.

6.4.4 A Full-Fledged Practical Key Generator Implementation

In [92], we demonstrate the practical nature of the methods and primitives
introduced in Section 6.4.2 by designing and implementing a complete, front-

PRACTICAL PUF-BASED KEY GENERATION 187

T
ab

le
6.

2:
P

U
F

-b
as

ed
ke

y
ge

ne
ra

ti
on

re
su

lt
s

fo
r

ei
gh

t
in

tr
in

si
c

P
U

F
co

ns
tr

uc
ti

on
s

st
ud

ie
d

in
C

ha
pt

er
4.

‘/
’

m
ea

ns
th

at
no

su
it

ab
le

pa
ra

m
et

er
so

lu
ti

on
ca

n
b

e
fo

un
d

to
m

ee
t

th
e

de
si

gn
co

ns
tr

ai
nt

s.

P
U

F
C

la
ss

m
=

12
8

a
n

d
p

fa
il
≤

10
−

6
S

il
ic

o
n

A
re

a
(µ

m
2
)

n
R

E
P

n
B

C
H

k
B

C
H

t B
C

H
r

ℓ
lo

g 1
0

p
fa

il
m

SR
A

M
P

U
F

3
37

5
19

5
21

1
11

25
−

6.
03

12
8.

51
91

4.
1

L
at

ch
P

U
F

/
/

/
/

/
/

/
/

/
D

F
lip

-fl
op

P
U

F
/

/
/

/
/

/
/

/
/

B
us

ke
ep

er
P

U
F

7
20

02
10

45
99

2
28

02
8

−
6.

82
12

8.
04

13
00

12
.7

A
rb

it
er

P
U

F
(b

as
ic

)
/

/
/

/
/

/
/

/
/

A
rb

it
er

P
U

F
(2

-X
O

R
)

5
49

0
23

8
30

1
24

50
−

6.
15

12
8.

00
21

79
.7

R
in

g
O

sc
ill

at
or

P
U

F
(P

.C
.)

1
44

3
15

2
39

1
44

3
−

6.
00

12
8.

48
52

71
8.

8
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
3

13
71

67
8

69
1

41
13

−
6.

01
12

8.
09

79
07

8.
1

m
=

12
8

a
n

d
p

fa
il
≤

10
−

9

SR
A

M
P

U
F

3
45

1
20

8
29

1
13

53
−

9.
21

12
8.

04
10

99
.4

B
us

ke
ep

er
P

U
F

9
20

20
12

94
73

6
10

90
80

−
9.

02
12

8.
40

50
59

86
.3

A
rb

it
er

P
U

F
(2

-X
O

R
)

5
25

2
88

25
2

25
20

−
9.

19
12

8.
88

43
59

.4
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
1

51
0

15
6

51
1

51
0

−
9.

35
12

8.
92

60
25

0.
0

R
in

g
O

sc
ill

at
or

P
U

F
(L

.G
.)

3
18

12
85

5
99

1
54

36
−

9.
96

12
8.

21
10

44
96

.1

m
=

25
6

a
n

d
p

fa
il
≤

10
−

1
2

SR
A

M
P

U
F

3
85

3
40

8
49

1
25

59
−

12
.6

9
25

6.
76

20
79

.3
B

us
ke

ep
er

P
U

F
/

/
/

/
/

/
/

/
/

A
rb

it
er

P
U

F
(2

-X
O

R
)

5
46

0
16

0
41

4
92

00
−

12
.4

1
25

6.
36

87
18

.8
R

in
g

O
sc

ill
at

or
P

U
F

(P
.C

.)
1

99
4

30
9

89
1

99
4

−
12

.5
2

25
6.

22
11

76
75

.8
R

in
g

O
sc

ill
at

or
P

U
F

(L
.G

.)
3

19
61

87
2

11
4

3
17

64
9

−
12

.5
2

25
6.

33
33

98
47

.7

188 PUF-BASED KEY GENERATION

to-back PUF-based cryptographic key generation module which we have titled
‘PUFKY’. A reference implementation of PUFKY is developed for a modern
FPGA platform. The PUFKY module integrates:

• An implementation of an intrinsic ring oscillator PUF with Lehmer-Gray
response encoding and additional entropy condensing.

• An implementation of a practical secure sketch based on the syndrome
construction with concatenated linear block codes.

• An implementation of an entropy accumulator as a lightweight crypto-
graphic hash function.

• The required communication and controller blocks which orchestrate the
key generation.

Besides being a convincing proof-of-concept, the result of this development
is a complete and practically usable hardware security primitive which can
be immediately deployed in an FPGA-based system. Moreover, the applied
modular design methodology allows for an easy reconfiguration using other
PUFs, error correction methods or entropy accumulators which can be
described in the model presented in this section. It is also straightforward
to adapt the design parameters in order to obtain other key requirements.

Top-Level Architecture

Figure 6.4 shows the top-level architecture of the design of PUFKY, based
on a concatenated repetition and BCH code. The helper data interface can
be used to both read and write helper data, depending on which phase of the
practical fuzzy extractor is executed (Generate or Reproduce). Only every nREPth
corrected bit of the repetition decoder is passed on to the BCH block, since the
remaining (nREP − 1) bits are leaked through the repetition code’s helper data
and will not contribute any entropy.1 They are discarded in the remainder of
the construction.

PUF Building Block

As a PUF in the FPGA reference implementation, we take a ring oscillator
PUF according to the design as described in Section 4.2.5. The individual

1Note that it is a convenient property of repetition codes in this situation that the entropy-
bearing bits can be very straightforwardly separated from the redundant bits, which is in
fact a highly efficient lossless form of randomness extraction. This is in general not possible
for other codes.

PRACTICAL PUF-BASED KEY GENERATION 189

Helper data R/W

ROPUF

(L.G.)

.HT
REP

Repetion

Parity-Check

Multiplication

.HT
BCH

BCH

Parity-Check

Multiplication

CREP

Error

Correction

CBCH

Error

Correction

Repetition code practical

secure sketch
BCH code practical

secure sketch

BCH helper data in/out

Cryptographic

Hash
(Entropy

Accumulator)

REP helper data in/out

Key out

Controller

Control

RAM
(Helper Data)

Application
Interface:

Figure 6.4: Top-level architecture of a PUF-based key generator.

oscillators are implemented in a single FPGA slice and are arranged in b =
16 batches of a oscillators each. The overall design of the implemented ring
oscillator PUF is shown in Figure 6.5. To generate binary response vectors, we
apply the Lehmer-Gray encoding of the ordering of 16 simultaneously measured
oscillator frequencies, as introduced in Section 4.3.1. However, we deploy two
additional techniques to improve the entropy density of the generated responses:
i) frequency normalization prior to the Lehmer-Gray encoding, and ii) entropy
condensing after the encoding.

... ... ++

... ... ++

... ... ++

...

...

ROM
Normalization

Terms

Lehmer-
Gray

Encoder

Entropy

Condensing
Normalize

1F

2F

bF

b
F c

"c
S

a

b
"

Y

Figure 6.5: Design of PUFKY’s ring oscillator PUF with frequency
normalization, Lehmer-Gray response encoding and entropy condensing.

Frequency Normalization: Only a portion of a measured frequency Fi will
be random, and only a portion of that randomness will be caused by the
effects of process variations on the considered oscillator. The analysis from

190 PUF-BASED KEY GENERATION

Maiti et al. [95] demonstrates that Fi is subject to both device-dependent and
oscillator-dependent structural bias. Device-dependent bias does not affect the
ordering of oscillators on a single device, so we will not consider it further.
Oscillator-dependent structural bias on the other hand is of concern to us since
it may have a severe impact on the randomness of the frequency ordering.
From a probabilistic viewpoint, it is reasonable to assume the frequencies
Fi to be independent, but due to the oscillator-dependent structural bias
we can not consider them to be identically distributed since each Fi has a
different expected value E [Fi]. The ordering of Fi will be largely determined
by the deterministic ordering of E [Fi] and not by the effect of random process
variations on Fi. Fortunately, we are able to obtain an accurate estimate µ̃Fi

of
E [Fi] by averaging over many measurements of Fi on many devices. Embedding
this estimate permanently in the design and subtracting it from the measured
frequency gives us a normalized frequency F ′i = Fi−µ̃Fi

. Assuming µ̃Fi
≈ E [Fi],

the resulting normalized frequencies F ′i will be independent and identically
distributed (i.i.d.).

Entropy Condensing: Based on the i.i.d. assumption of the normalized
frequencies, the resulting Lehmer-Gray encoding will have a full entropy of
H(Sℓ′

) =
∑b

i=2 log2 i expressed in a vector of length ℓ′ =
∑b

i=2⌈log2 i⌉. This
means the entropy density of this vector is already quite high; for the considered
design with b = 16, this becomes ρ(Sℓ′

) = 44.25
49 = 90.31%. However, this

density can be increased further by compressing it to Y ℓ with ℓ < ℓ′. Note that
Sℓ′

is not quite uniform over {0, 1}ℓ′

since some bits of Sℓ′

are biased and/or
dependent. This results from the fact that most of the Lehmer coefficients,
although uniform by themselves, can take a range of values which is no integer
power of two, leading to a suboptimal binary encoding. We propose a simple
compression by selectively XOR-ing bits from Sℓ′

which suffer the most from
bias and/or dependencies, leading to an overall increase of the entropy density.
The price one pays for this entropy condensing operation is a slight reduction
in absolute entropy of the responses, since XOR is a lossy operation, and a
slight increase of the error rate of the response bits, by at most a factor ℓ′

ℓ
.

For our reference implementation, we consider a condensing to ℓ = 42, yielding
ρ(Y ℓ) = 97.95%.

Error-Correction Building Blocks

Both the repetition code parity-check multiplication and syndrome decoder are
implemented very efficiently in a fully combinatorial manner. The parity check
multiplication of a BCH code is also implemented efficiently by means of an
LFSR, which results from the special structure of a BCH code’s parity check

PRACTICAL PUF-BASED KEY GENERATION 191

matrix. This was already discussed in Section 5.3.3 where we implemented such
a multiplication as part of our authentication protocol. The most complex part
of the practical secure sketch is the BCH syndrome decoder.

Decoding a BCH syndrome into the minimum Hamming weight error word is
typically performed in three steps. First, so called syndrome evaluations zi are
calculated by evaluating the syndrome as a polynomial for α, . . . , α2tBCH , with
α a generator for F2u . The next step is using these zi to generate an error
location polynomial Λ. This is generally accomplished with the Berlekamp-
Massey algorithm. First published by Berlekamp [13] and later optimized by
Massey [101], this algorithm requires the inversion of an element in F2u in each
of its 2tBCH iterations. A less computationally intensive inversionless variant of
the Berlekamp-Massey algorithm was proposed later by Burton [25]. Finally,
by calculating the roots of Λ, one can find the error vector en. This is done with
the Chien search algorithm, which was proposed by Chien [29], by evaluating
Λ for α, . . . , αtBCH . If Λ evaluates to zero for αi then the corresponding error
bit enBCH−i = 1.

The computationally demanding BCH decoding algorithm is typically imple-
mented with a focus on performance since it is generally applied in communi-
cation applications which require high throughput. However, in our context of
a practical PUF-based key generator, an area-efficient implementation is much
more desirable since only a few decodings need to be computed. In [92], we
propose a BCH decoder coprocessor which is highly optimized for area efficiency,
but still achieves a reasonable performance. The coprocessor is programmable
with a most specialized instruction set in order to support many different code
parameters with the same implementation. The presented decoder supports
BCH code lengths at least up to nBCH = 2047. The architecture of this
coprocessor is shown in Figure 6.6.

Data RAM

Address

RAM

Finite Field

ALU

Address

ALU

Instruction

ROM

Instruction Decoder /

Controller

Figure 6.6: Architecture of an area-optimized BCH decoding coprocessor.

192 PUF-BASED KEY GENERATION

Entropy Accumulator

We use a cryptographic hash function as an entropy accumulator. For our
reference implementation, we implemented the lightweight SPONGENT-128
hash function which was proposed by Bogdanov et al. [14].

Reference Implementation

The presented PUFKY reference design was synthesized and implemented on a
Xilinx® Spartan®-6 FPGA (XC6SLX45) which is a modern low-end FPGA in
45 nm CMOS technology, specifically targeted for embedded system solutions.

Ring Oscillator PUF Characterization. The ring oscillator PUF implementa-
tion, with a = 64 oscillators per batch, is characterized through an experiment
on Npuf = 10 identical FPGA devices by measuring every ℓ = 42-bit response
on every device Nmeas = 25 times at nominal condition. A single FPGA
was also measured at two temperature corners αL = (Tenv = 10 °C) and
αH = (Tenv = 80 °C) in order to assess temperature sensitivity. A conservative
worst-case bit error rate estimation of 13% (at the αH corner) is obtained.
The entropy density of the PUF responses is assumed to be the optimal
ρ(Y ℓ) = 97.95% as a result of frequency normalization and entropy condensing.

FPGA Implementation Results. Based on the PUF characterization, we can
optimize the number of required PUF response bits over the constraints for
the code parameters. We aim for a key length m = 128 with failure rate
pfail ≤ 10−9. After a thorough exploration of the design space with these
parameters, we converge on the following PUFKY reference implementation:

• A practical secure sketch applying a concatenation of a [7, 1, 3] repetition
code and a [318, 174, 17] BCH code. The repetition block generates 36
bits of helper data for every 42-bit PUF response and outputs 6 bits to
the BCH block. The BCH block generates 144 bits of helper data once
and feeds 318 bits to the entropy accumulator. The BCH decoder is only
executed once (r = 1). The required number of bits is ℓ = 7×318 = 2226
which can be provided by using a = ⌈ 2226

42 ⌉ = 53 oscillators per batch
of the ring oscillator PUF, totalling to 53 × 16 = 848 oscillators for the
whole ring oscillator PUF.

• The PUF generates in total a × ℓ = 2226 bits containing a× ℓ× ρ(Y ℓ)
= 2180.4 bits of entropy. The total helper data length is 53× 36 + 144

CONCLUSION 193

= 2052. The remaining entropy after secure sketching is at least
2180.4− 2052 = 128.4 bits which are accumulated in an m = 128-bit key
by the SPONGENT-128 hash function implementation.

The total size of our PUFKY reference implementation for the considered
FPGA platform is 1162 slices, of which 82% is taken up by the ring oscillator
PUF. Table 6.3a lists the size of each submodule used in the design. The total
time spent to extract the 128-bit key is approximately 5.62 ms (at 54 MHz).
Table 6.3b lists the number of cycles spent in each step of the key extraction.

Table 6.3: Area consumption and runtime of our reference PUFKY
implementation on a Xilinx® Spartan® 6 FPGA. Due to slice compression and
glue logic the sum of module sizes is not equal to total size. The PUF runtime
is independent of clock speed.

(a) Area consumption

Module
Size

(slices)

ROPUF 952
REP decoder 37
BCH syndrome calc. 72
BCH decoder 112
SPONGENT-128 22
data RAM 38

Total 1162

(b) Runtimes

Step of extraction
Time

(cycles)

PUF output 4.59 ms
REP decoding 0
BCH syndrome calc. 511
BCH decoding 50320
SPONGENT hashing 3990
control overhead 489

Total @ 54 MHz 5.62 ms

6.5 Conclusion

In this chapter we have studied in detail the constructions and methodologies
required to generate a cryptographically secure key in a reliable manner from a
PUF response, and we have presented a variety of new techniques and insights
which make PUF-based key generation more efficient and practical.

In Section 6.3, we have introduced an important extension to secure sketches
by taking the soft-decision information of PUF response bits into account. This
results in a significant improvement with regard to the entropy loss induced by
secure sketches, leading to a large gain in PUF response efficiency as expressed
by the results in Table 6.1. Moreover, a practical design and implementation

194 PUF-BASED KEY GENERATION

of such a soft-decision secure sketch has been presented which turns out to be
more area-efficient than all previously proposed implementations.

The notions of a practical secure sketch and a practical fuzzy extractor are
introduced in Section 6.4. These present a number of generalizations of
the traditional concepts, the most important one being the abandonment of
information-theoretical security requirements in favor of the more practical
and efficient technique of entropy accumulation which is also widely used in
implementations of cryptographic PRNGs. We propose an efficient generic
construction of a practical secure sketch and a practical fuzzy extractor and
derive a number of parameter constraints for this construction. We use these
derived constraints to assess the key generation performance of the intrinsic
PUFs studied in Chapter 4 in the newly proposed practical fuzzy extractor
construction and present a comparative analysis in Table 6.2. From this
analysis, it is clear that SRAM PUFs and also 2-XOR arbiter PUFs can be
used to efficiently generate cryptographic keys.

Finally, to demonstrate the practicality of the newly proposed construction,
we present a complete front-to-back PUF-based key generator design which
we have called ‘PUFKY’, and a reference implementation on an FPGA
platform. This implementation contains a functional ring oscillator PUF
with Lehmer-Gray response encoding, an efficient practical secure sketch
implementation deploying a newly developed low-weight BCH decoder and an
entropy accumulator implemented as a lightweight cryptographic hash function.
This reference system generates 128-bit secure keys with a reliability ≥ 1−10−9,
and can be directly instantiated as a hardware security IP core in an FPGA-
based digital system.

Chapter 7

Conclusion and Future Work

Scio me nescire.

Socrates

Ignoramus et ignorabimus.

Emil du Bois-Reymond

Wir müssen wissen – wir werden wissen!

David Hilbert

7.1 Conclusions

PUFs are physical security primitives which enable trust in the context of digital
hardware implementations of cryptographic constructions, in particular they
are able to initiate physically unclonable and secure key generation and storage.
In this thesis we have studied physically unclonable functions or PUFs, in
particular: i) their concept and constructions, ii) their properties, and iii) their
applications as a physical root of trust, and the relations between these three.

In Chapter 2 we have introduced the concept of a physically unclonable
function in great detail through an extensive study and analysis of earlier work

195

196 CONCLUSION AND FUTURE WORK

and existing constructions. Based on similar and distinguishing construction
characteristics, we have discussed strengths and weaknesses and possible
classifications. The most noteworthy identified subclass are so-called intrinsic
PUFs, i.e. PUF constructions which are based on internal evaluations of
implicitly obtained random creation features, because they are particularly
well-fit for integration in larger security systems. It is however difficult
to compare the practical value of different proposals from the literature
due to a wide variety of implementation technologies and experimental
considerations. The lateral overview does present a good insight in recurring
intrinsic PUF implementation techniques: i) amplification of microscopic
unique features through differential measurement, ii) physical enhancement
of PUF behavior through low-level (design-intensive) implementation control,
and iii) algorithmic behavioral improvement through adapted post-processing
techniques.

In Chapter 3 we identify the most important usability and physical security
properties attributed to PUFs and we have introduced clear definitions pointing
out what exactly each of these properties signify. Through a comparative
analysis on a representative subset of PUF constructions and a number of
important non-PUF reference cases, we have discovered which properties are
really defining for a PUF construction, and which are convenient additions but
are in no way guaranteed for every PUF. As it turns out, the core defining
property of a PUF is its physical unclonability. A second contribution of
this chapter is the introduction of a formal framework for using PUFs, and
more general physical security primitives, in theoretical security reductions
at a higher level. We have defined robustness, physical unclonability and
unpredictability in this framework.

With the goal of testing their security and usability characteristics as accurately
and as objectively as possible, we have implemented and evaluated eight
different intrinsic PUF constructions on a 65 nm CMOS silicon platform. The
design process and the experimental results of this ASIC chip are described in
detail in Chapter 4. The measurements of each of these eight constructions are
tested for their reproducibility and their uniqueness through a characterization
of their respective intra- and inter-distance distributions using well-chosen
statistical parameters. The unpredictability of the studied PUFs is also
estimated by proposing and evaluating a number of increasingly tighter upper
bounds of the entropy density of their response bitstrings. The experiments
in this chapter yield the first ever objective comparison between multiple
different intrinsic PUF constructions on the same platform, and a quantitative
representation of their primary characteristics which can be directly used
to assess their efficiency and performance in the following physical security
applications.

FUTURE WORK 197

The first PUF-based security applications we consider in Chapter 5 are
entity identification and authentication, as defined in Section 5.1.1. We first
elaborate on the identifiability property of PUFs and demonstrate how a
fuzzy identification scheme based on PUF responses can be set up, equivalent
to biometric identification. Based on the measured characteristics of the
eight intrinsic PUF construction studied in Chapter 4, we evaluate their
identifying capabilities based on the typical fuzzy identification performance
metrics of false acceptance and rejection rates which are combined in receiver-
operating characteristics and equal error rates. Next, we propose a new mutual
authentication protocol for PUF-carrying entities with significantly relaxed
security conditions for the used PUF such that it can deploy any intrinsic PUF
construction. The primary innovative aspect of this protocol is an atypical use
of an error-correction technique which results in a secure yet very lightweight
authentication solution. Based on this scheme, the authentication performance
and efficiency of the eight studied intrinsic PUFs is again compared.

Next, in Chapter 6, we discuss in detail the prerequisites and security
considerations for PUF-based secure key generation and storage, and present
and evaluate practical constructions and implementations. We first study
existing techniques and constructions for enhancing the reliability of fuzzy data,
so-called secure sketches, and for boosting the unpredictability of a derived key,
either from an information-theoretic perspective, based on strong and fuzzy
extractors, or from a practical perspective, based on entropy accumulators.
The first main contribution of Chapter 6 is a new and significantly improved
construction of a secure sketch based on the innovative idea of using available
soft-decision information of the PUF’s response bits. Secondly, we introduce
a practical generalization of fuzzy extractors in which we trade information-
theoretical security for a large gain in efficiency, while still retaining adequate
security based on widely used best-practice entropy accumulation. Again, we
test the key generation capacity of the eight studied intrinsic PUFs, based on
a proposed design of a practical fuzzy extractor. Lastly, to demonstrate the
feasibility and applicability of this design, we have made a fully functional,
efficient yet flexible FPGA reference implementation of a PUF-based key
generator, including a newly proposed ring-oscillator PUF with Lehmer-Gray
response encoding, a practical secure sketch based on a new highly optimized
BCH decoder, and entropy accumulation with a lightweight hash function.

7.2 Future Work

The generic concept of a physically unclonable function was presented little over
a decade ago, but the major research contributions on this topic are situated

198 CONCLUSION AND FUTURE WORK

in the last couple of years. PUFs are hence a relatively new subject in the field
of physical security, and a number of interesting future research directions, as
well as some encountered open problems can be identified.

PUF Constructions. As pointed out a number of times in this thesis, one
of the major open questions on the side of PUF constructions is if, and how,
an efficient truly unclonable intrinsic PUF, also called a strong PUF by some
authors, can be built. Some candidate circuits have been proposed, but they
are currently lacking any convincing argumentation of being unpredictable
which is required for achieving mathematical and true unclonability. Due to
the difficulty of mathematically proving unpredictability based on physical
arguments, it is more convenient to assess unpredictability in relation to
the best known attack. This method has been applied successfully in the
last decades to cryptographic symmetric-key primitives. However, to make
independent analysis possible, Kerckhoffs’ principle needs to be obeyed. For
physical security primitives like PUFs, this entails that the full design and
implementation details of a proposed construction need to be disclosed. A
more practical alternative is to publish, in an easily accessible electronic format,
extensive datasets of experimental PUF evaluations for public scrutiny. We
hope that the practical performance evaluation methods proposed in this thesis
can contribute to more meaningful and objective assessments of the value of
different PUF constructions.

Another open issue is the construction of a physically reconfigurable PUF, as
discussed in Section 2.5.3. Rather exotic suggestions were proposed but never
tested. A logically reconfigurable PUF is a good emulation from the behavioral
perspective, but does not achieve the same strong physical security qualities.

Finally, as with all hardware (security) primitives, continuing research effort is
required to develop increasingly more efficient constructions which offer better
trade-offs and enable applications in resource-constrained environments.

PUF Properties. For PUF properties, we see the need for research effort on
two levels. Firstly, on a practical level, more detailed methods and techniques
need to be developed and investigated for assessing if, and to what extent, a
proposed PUF constructions meets a particular property. For some properties,
this is based on an analysis of the inter- and intra-distance distributions of
measured PUF responses, and a number of evaluation methods have been
proposed in this thesis. Presenting detailed and accurate statistics of these
distributions is hence indispensable when proposing a new PUF construction.
In-depth and independent analysis of a PUF’s construction and experimental

FUTURE WORK 199

results is required to assess its unpredictability, e.g. by means of tighter response
entropy bounds.

For other properties, an assessment is based on physical arguments and this
is again difficult to approach from a mathematical perspective. Qualities like
physical unclonability and tamper evidence can, and should only be assessed
in a heuristic manner. Especially the core property of physical unclonability
requires special attention in that regard. A PUF which, through improved
physical insights or technological progress, is found to be no longer physically
unclonable, ceases to be a PUF.

On a more theoretical level, it needs to be further investigated how PUFs can
be deployed as formal primitives in a security system, i.e. allow theoretical
designers to reason about PUFs in a formal way without having to worry
about their physical aspects, which are often beyond their expertise. We have
proposed such a formal framework for describing physical functions and have
applied to PUFs and their core properties. Extending this framework to other
primitives and properties will be an interesting and fruitful exercise.

PUF Applications. In this thesis, we have demonstrated how to achieve two
primary PUF-based security objectives: entity authentication and secure key
generation/storage. We see further developments possible, both in trying
to achieve basic security objectives based on PUFs, as well as attempting
to integrate PUFs and PUF-based primitives securely and efficiently into
larger security systems. A noteworthy direction of the former which was not
further discussed in this thesis is so-called hardware-entangled cryptography,
i.e. designing basic cryptographic primitives which directly deploy a PUF as
a building block. We introduced this approach in [9] and illustrated it with a
secure design of a PUF-based block cipher.

To facilitate the further deployment of PUFs in security systems, we see the
following interesting and essential future challenges:

• A greater insight and effort on the low-level silicon circuit design of
intrinsic PUF constructions will result in increasingly more efficient
(smaller, more robust, more random) structures.

• Both incremental and fundamental progress in the development and
application of post-processing techniques required to use a PUF (relia-
bility enhancement, randomness extraction, . . .) is possible, e.g. the use
of alternative error-correction techniques (non-binary codes, non-linear
codes, . . .) and more insight in entropy accumulation techniques.

200 CONCLUSION AND FUTURE WORK

• Other physical security qualities of PUFs need to be considered, in
particular their resistance to side-channel attacks. Initial work on side-
channel analysis of PUFs is recently introduced by Karakoyunlu and
Sunar [67], Merli et al. [103], but more elaborate research efforts are
required.

To conclude, we expect that the continuous improvements and better under-
standing of their practicality and of the physical as well as algorithmic security
of PUFs will enable and accelerate their further transition into common and
new security applications.

Appendix A

Notation and Definitions
from Probability Theory and
Information Theory

A.1 Probability Theory

A.1.1 Notation and Definitions

Variables and Sets. In this thesis we use the standard notions and definitions
of probability theory, such as a random event, a random variable and a
probability distribution. A random variable is typically denoted as an upper
case letter: Y , and a particular outcome thereof as the corresponding lower
case letter: Y = y. The set of all outcomes of Y is denoted by a calligraphic
letter: Y. The number of elements in Y, also called the cardinality of Y is
denoted as #Y.

Vectors and Distances. If Y is a (random) vector, we denote its length
(number of elements) as |Y |. Hamming distance is a distance metric between
two vectors of equal length and is defined as the number of positions in both

201

202 NOTATION AND DEFINITIONS FROM PROBABILITY THEORY AND INFORMATION THEORY

vectors with differing values:

HD (Y ; Y ′)
△

= #{i : Yi 6= Y ′i } .

Often, the Hamming distance is expressed as a fraction of the vectors’ length,
also called the fractional Hamming distance:

FHD (Y ; Y ′)
△

=
HD (Y ; Y ′)
|Y |

.

The Hamming weight of a single vector is the number of positions with non-zero
values:

HW (Y)
△

= #{i : Yi 6= 0} .

The Euclidean distance between two real-values vectors is defined as:

||Y − Y ′||
△

=
|Y |∑

i=1

√
(Yi − Y ′i)2 .

To make explicit that we consider a vector of length n, we also write
Y n = (Y1, Y2, . . . , Yn). Sometimes, we need to refer to the first portion
of a vector Y n, up to and including the i-th element, we denote this as
Y (i) = (Y1, Y2, . . . , Yi).

Distributions and Sampling. The probability distribution of a discrete
random variable1 is specified by its probability mass function:

p(y)
△

= Pr (Y = y) ,

or its corresponding cumulative distribution function:

P (y)
△

= Pr (Y ≤ y) .

Note that random variables, probability distributions and probability mass
functions are intimately linked and are often used as synonyms of each other.
We write Y ← Y to signify that Y is a random variable which is distributed
over Y according to its corresponding distribution. Equivalently, we write
y

$
← Y to signify that the value y is randomly sampled from Y according to

the distribution of Y . If no explicit distribution is given, the sampling of y is
considered according to a uniform distribution over Y.

1We only use discrete random variables in this work, hence we do not elaborate on
continuous extensions.

PROBABILITY THEORY 203

Distribution Parameters. The expected value or expectation of a random
variable Y is defined as:

E [Y]
△

=
∑

y∈Y

yp(y) ,

and equivalently the expected value of a function of Y , f(Y) is defined as:

Ey∈Y [f(Y)]
△

=
∑

y∈Y

f(y)p(y) .

The variance of a random variable is defined as:

Σ2 [Y]
△

= Ey∈Y

[
(Y − E [Y])2

]
,

and the standard deviation of Y as:

Σ [Y]
△

=
√

Σ2 [Y] .

Statistical Distance. The difference between the distributions of two discrete
random variables A and B which take samples from the same set V is often
quantified by means of their statistical distance:

SD (A; B)
△

= 1
2

∑

v∈V

|Pr (A = v)− Pr (B = v) | .

Based on their statistical distance, a number of useful statistical and
information-theoretic properties of the relation between two random variables
can be shown. Of particular interest is the statistical distance between a
random variable V ← V, and U which is the uniformly distributed variable
over V. This is an effective measure for the uniformity of the distribution of V .

A.1.2 The Binomial Distribution

A discrete probability distribution which is of particular interest and recurs
a number of times in this thesis is the binomial distribution. The binomial
distribution describes the number of successes in n independent but identical
Bernoulli experiments with success probability p. The probability mass
function of the binomial distribution function is given by:

fbino(t; n, p)
△

=

(
n

t

)
pt(1− p)n−t ,

204 NOTATION AND DEFINITIONS FROM PROBABILITY THEORY AND INFORMATION THEORY

and the corresponding cumulative distribution function by:

Fbino(t; n, p)
△

=
t∑

i=0

fbino(t; n, p) .

The expectation of a binomially distributed random variable Y is given by
E [Y] = np and its variance by Σ2 [Y] = np(1− p).

A.2 Information Theory

A.2.1 Basics of Information Theory

In this thesis, we use the standard information-theoretical entropy and mutual
information definitions and relations, e.g. as given by Cover and Thomas [33].

Entropy is a measure of the uncertainty one has about the outcome of a
random variable distributed according to a given distribution. In that sense,
it quantifies the average amount of information one learns when observing
the outcome. In the context of security, entropy is also used to express the
unpredictability of a secret random variable. The concept of entropy as a
measure of information was introduced by Shannon [131] and is therefore also
called Shannon entropy.

Definition 32. The (Shannon) entropy H(Y) of a discrete random variable
Y ← Y is defined as:

H(Y)
△

= −
∑

y∈Y

p(y) · log2 p(y).

With, by convention, 0 · log2 0 ≡ 0.

The entropy of a binary random variable Y ← {0, 1}, with p(y = 1) = p and
p(y = 0) = (1 − p), becomes H(Y) = −p log2 p − (1 − p) log2(1 − p). We call
this the binary entropy function h(p):

h(p)
△

= −p log2 p− (1− p) log2(1− p).

For random vectors Y n it is sometimes convenient to express the average
entropy per element, or its entropy density. We denote this as

ρ(Y n)
△

= H(Y n)
n

.

INFORMATION THEORY 205

Definition 33. The joint entropy H(Y1, Y2) of two discrete random variables
Y1 ← Y1 and Y2 ← Y2 with a joint distribution given by p(y1, y2) is defined as:

H(Y1, Y2)
△

= −
∑

y1∈Y1

∑

y2∈Y2

p(y1, y2) · log2 p(y1, y2).

Definition 34. The conditional entropy H(Y2|Y1) of Y2 given Y1 is defined as:

H(Y2|Y1)
△

= Ey1∈Y1
[H(Y2|Y1 = y1)]

= −
∑

y1∈Y1

∑

y2∈Y2

p(y1, y2) · log2 p(y2|y1).

Theorem 1. The chain rule for entropy states that:

H(Y1, Y2) = H(Y1) + H(Y2|Y1),

and more generally for an arbitrary collection of random variables:

H(Y n) = H(Y1, Y2, . . . , Yn) =
n∑

i=1

H(Yi|Yi−1, . . . , Y1).

Definition 35. The mutual information I(Y1; Y2) between two random
variables Y1 and Y2 is defined as:

I(Y1; Y2)
△

=
∑

y1∈Y1

∑

y2∈Y2

p(y1, y2) · log2

p(y1, y2)
p(y1)p(y2)

.

The mutual information between two random variables is a measure for the
amount of information which is shared by both variables, or in other words,
the average amount of information (reduction in uncertainty) we learn about
one variable when observing the other, and vice versa.

Theorem 2. The following relations exist between entropy and mutual
information:

I(Y1; Y2) = I(Y2; Y1),

I(Y1; Y1) = H(Y1),

I(Y1; Y2) = H(Y1)−H(Y1|Y2) = H(Y2)−H(Y2|Y1),

I(Y1; Y2) = H(Y1) + H(Y2)−H(Y1, Y2).

206 NOTATION AND DEFINITIONS FROM PROBABILITY THEORY AND INFORMATION THEORY

Definition 36. The conditional mutual information I(Y1; Y2|Y3) between Y1

and Y2 given a third random variable Y3 is defined as:

I(Y1; Y2|Y3)
△

= H(Y1|Y3)−H(Y1|Y2, Y3).

Theorem 3. The chain rule for mutual information states that:

I(Y n; Yn+1) = I(Y1, . . . , Yn; Yn+1) =
n∑

i=1

I(Yi; Yn+1|Yi−1, . . . , Y1).

A.2.2 Min-entropy

Min-entropy, as introduced by Rényi [114], is a more pessimistic notion of the
uncertainty of a random variable than Shannon entropy. We use the definitions
of min-entropy and average min-entropy as defined by Dodis et al. [38].

Definition 37. The min-entropy H∞(Y) of a random variable Y ← Y is
defined as:

H∞(Y)
△

= − log2 max
y∈Y

p(y).

If Y is uniformly distributed, its min-entropy is equal to its Shannon entropy:
H∞(Y) = H(Y) = log2#Y. For other distributions, min-entropy is strictly
upper-bounded by Shannon entropy: H∞(Y) < H(Y). For two independent
random variables Y1 and Y2 it holds that H∞(Y1, Y2) = H∞(Y1) + H∞(Y2).
However, when Y1 and Y2 are not independent, no prior statement can be
made about this relation: H∞(Y1, Y2) ≶ H∞(Y1) + H∞(Y2).

Definition 38. The average min-entropy H̃∞(Y |W) of Y given W is defined
as:

H̃∞(Y |W)
△

= − log2 Ew∈W

[
2−H∞(Y |W =w)

]
.

Note that this definition of average min-entropy differs from the way conditional
entropy is typically defined in Definition 34, in particular the order of the
expectation operator and the logarithm operator are reversed. To make this
distinction explicit, the tilde sign (˜) is added to the average min-entropy
operator: H̃∞(.). The following useful lemma about average min-entropy is
proven by Dodis et al. [38]:

Lemma 3. If W ←W and #W ≤ 2λ, then:

H̃∞(Y |W) ≥ H∞(Y, W)− λ ≥ H∞(Y)− λ.

Appendix B

Non-Intrinsic PUF(-like)
Constructions

In this appendix chapter we discuss non-intrinsic PUF constructions proposed
in literature. According to the classification proposed in Section 2.3.3, they are
labelled ‘non-intrinsic’ because they either are not completely integrated in an
embedding device, or they are not produced in the standard manufacturing
process of their embedding device, or both. A great variety of different
constructions which could be listed here, have been proposed over time.
Some even long before the concept of a PUF was introduced. We made an
extensive selection and have grouped them based on their operating principles.
Section B.1 list a number of PUF proposals which use optical effects to obtain
PUF behavior. Section B.2 describes PUFs using radio-frequency effects and
Section B.3 lists non-intrinsic PUFs based on electronics. In Section B.4, we
discuss a number of unrelated proposals which are of independent interest.

B.1 Optics-based PUFs

B.1.1 Optical PUF

The interaction of visible light with a randomized microstructure quickly
becomes very complex to describe, as it is a result of several physical
phenomena such as absorption, transmission, reflection and scattering. If the

207

208 NON-INTRINSIC PUF(-LIKE) CONSTRUCTIONS

microstructure contains random elements, the resulting interaction will often
also contain a high degree of randomness and unpredictability. Optical PUFs
capture the result of such a complex interaction and use it as a PUF response.

Well before the introduction of the PUF concept, Simmons [135], Tolk [142]
proposed an unclonable identification system based on random optical reflection
patterns. These so-called reflective particle tags were specifically developed for
the identification of strategic arms in arms control treaties. A similar solution
for smartcards based on an optical token with a unique three-dimensional
reflection pattern and stereoscopic measurement was commercialized already
in 1994 by Unicate BV as 3DAS® [148].

An optical PUF based on a transparent medium was proposed by Pappu
et al. [110][109] as a physical one-way function (POWF). They construct
tokens containing an optical microstructure consisting of microscopic refractive
particles randomly mixed in a small transparent epoxy plate. When irradiated
with a laser, the token produces an irregular random speckle pattern due to
the multiple scattering of the beam with the refractive particles. The pattern
is digitally captured and processed into a binary feature vector using an image
processing technique known as Gabor hashing. The resulting feature vector
turns out to be highly unique for every token and is moreover very sensitive to
minute changes in the relative positioning of the token and the laser beam. The
authors propose to use different orientations of the laser to produce multiple
vectors per token. In PUF terminology, the laser positioning is considered the
PUF challenge and the resulting feature vector the response.

Figure B.1: Operation of the optical PUF as proposed by Pappu et al. [110].

In his thesis, Pappu [109, Chapter 3] lists a number of earlier proposed similar
constructions which served as inspiration. Following the introduction of the

OPTICS-BASED PUFS 209

optical PUF by Pappu et al. [110], the construction and security aspects of
optical PUFs were further studied by Ignatenko et al. [61], Tuyls et al. [147],
Škorić et al. [155]. A more practical integrated design of an optical PUF was
proposed by Gassend [45, Section 3.1.3] and also by Tuyls and Škorić [146], but
no known implementations exist.

It is clear that the use of an optical PUF as proposed by Pappu et al. [110] is
rather laborious, requiring a large and expensive external measurement setup
involving a laser and a tedious mechanical positioning system. The reliability
of optical PUF responses is also relatively low in comparison to other proposals.
However, in many ways this optical PUF construction can be considered as the
prototype PUF. The physical functionality of the PUF is obvious, including a
well-defined physical challenge and response, and all desirable PUF properties
are achieved: tokens produced by the same process exhibit responses with a
high level of uniqueness, yet responses can be relatively easily and reliably
measured. These optical PUFs also have a very large challenge space, and it
was shown [147, 155] that predicting unseen responses for a particular token is
computationally hard, even when an adversary has a lot of information about
the token. Pappu et al. [110] moreover claim that their PUF exhibits a degree
of one-wayness, hence their name physical one-way function, however this is
not one-wayness in the cryptographic sense. Ultimately, it was shown [110]
that the tokens are tamper evident, i.e. a physical modification of the token,
e.g. drilling a microscopic hole in it, alters its expected responses by nearly
50%.

From the discussion in this chapter, it will be clear that not any single other
PUF construction achieves all these properties at once. In this respect, the
optical PUF can be considered a benchmark for PUF properties. The goal of
all following PUF proposals is to match the properties of an optical PUF as
closely as possible, but using a more integrated and practical construction.

B.1.2 Paper-based PUFs

The basic idea behind all paper-based PUFs is scanning the unique and random
fiber microstructure of regular or modified paper. As with the optical PUF,
also for paper PUFs there were a number of early proposals, among others
by Bauder [11], Commission on Engineering and Technical Systems (CETS)
[31], Simmons [135], well before the introduction of the PUF concept. These
were mainly considered as an anti-counterfeiting measure for currency notes.
Buchanan et al. [22] propose a construction where the reflection of a focused
laser beam of the irregular fiber structure of a paper document is used as
fingerprint of that document to prevent forgery. A similar approach is used

210 NON-INTRINSIC PUF(-LIKE) CONSTRUCTIONS

by Bulens et al. [23], but they explicitly introduce ultraviolet fibers in the
paper during the manufacturing process. This makes it possible to measure
the paper structure using a regular desktop scanner instead of an expensive
laser. Bulens et al. [23] also introduce a method to strongly link the data on
the document with the paper by constructing a combined digital signature of
the data and the paper’s fingerprint, which is printed on the document. A very
similar concept was already proposed much earlier by Simmons [135] based on
quadratic residues. Recently, Sharma et al. [132] proposed a technique which
enables to read unique microfeatures of regular paper using low cost commodity
equipment. They also give a good overview of many earlier proposed similar
constructions. Yamakoshi et al. [156] describe a very similar concept using
infrared scans of regular paper.

B.1.3 Phosphor PUF

Chong et al. [30] [63] propose to randomly blend small phosphor particles in
the material of a product or its cover. The resulting random phosphorent
pattern can be detected using regular optical equipment and used as a unique
fingerprint to identify the product.

B.2 RF-based PUFs

B.2.1 RF-DNA

A construction called RF-DNA was proposed by Dejean and Kirovski [35]. They
construct a small inexpensive token comparable to the one used for the optical
PUF, but now consisting of a flexible silicon sealant containing thin randomly
arranged copper wires. Instead of observing the scattering of light as with
optical PUFs, the near-field scattering of electromagnetic waves by the copper
wires at other wavelengths is observed, notably in the 5 − 6 GHz band. The
random scattering effects are measured by a prototype scanner consisting of a
matrix of RF antennas.

B.2.2 LC PUF

An LC PUF as proposed by Guajardo et al. [51] is a small glass plate with a
metal plate on each side, forming a capacitor, serially chained with a metal coil
on the plate acting as an inductive component. Together they form a passive LC

ELECTRONICS-BASED PUFS 211

resonator circuit which will absorb an amount of power when placed in an RF
field. A frequency sweep reveals the resonance frequencies of the circuit, which
depend on the exact values of the capacitive and inductive component. Due
to manufacturing variations in the construction of the tokens, this resonance
peak will be slightly different and unique for equally constructed LC PUFs.

B.3 Electronics-based PUFs

B.3.1 Coating PUF

Figure B.2: Construction of a Coating PUF as proposed by Tuyls et al. [145].

Coating PUFs were introduced by Tuyls et al. [145] and consider the
randomness of capacitance measurements in comb-shaped sensors in the top
metal layer of an integrated circuit. Instead of relying solely on the random
effects of manufacturing variability, random elements are explicitly introduced
by means of a passive dielectric coating sprayed directly on top of the
sensors. Moreover, since this coating is opaque and chemically inert, it offers
strong protection against physical attacks as well. An experimental security
evaluation [145] reveals that the coating PUF is also tamper evident, i.e.
after an attack with a focused ion beam (FIB) the responses of the PUF are
significantly changed. A more theoretical evaluation of coating PUFs was done
by Škorić et al. [154].

B.3.2 Power Distribution Network PUF

Helinski et al. [55] propose a PUF based on the resistance variations in the

212 NON-INTRINSIC PUF(-LIKE) CONSTRUCTIONS

power grid of a silicon chip. Voltage drops and equivalent resistances in the
power distribution system are measured using external instruments and it is
observed that these electrical parameters are affected by random manufacturing
variability.

B.4 More Non-Intrinsic PUFs

B.4.1 CD-based PUF

Hammouri et al. [53] observed that the measured lengths of lands and pits on
a regular compact disk (CD) exhibit a random deviation from their intended
lengths due to probabilistic variations in the manufacturing process. Moreover,
this deviation is even large enough to be observed by monitoring the electrical
signal of the photodetector in a regular CD player. This was tested for a large
number of CDs and locations on every CD. After an elaborate quantization
procedure, an average intra-distance of µintra

P = 8% and an average inter-distance
of µinter

P = 54% on the obtained bit strings is achieved.

B.4.2 Acoustical PUF

Acoustical delay lines are components used to delay electrical signals. They
convert an alternating electrical signal into a mechanical vibration and back.
Acoustical PUFs, as proposed by Vrijaldenhoven [153], are constructed by
observing the characteristic frequency spectrum of an acoustical delay line. A
bit string is extracted by performing principal component analysis (PCA).

B.4.3 Magstripe-based PUF

The concept of a magnetic PUF was introduced by Indeck and Muller [62].
They use the inherent uniqueness of the particle patterns in magnetic media,
e.g. in magnetic swipe cards. Magstripe-based PUFs are used in a commercial
application to prevent credit card fraud [94].

Bibliography

[1] 2012. English Wiktionary: -able.
http://en.wiktionary.org/wiki/-able. pages 25

[2] 2012. Java™ Platform Standard Ed. 6: Interface Cloneable.
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html.
pages 25

[3] 2012. Research on Physical Unclonble Functions (PUFs) at SES Lab,
Virginia Tech.
http://rijndael.ece.vt.edu/puf. pages 39

[4] 2012. The Complexity Zoo.
http://qwiki.stanford.edu/index.php/Complexity_Zoo. pages 14

[5] 2012. The SHA-3 Zoo.
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo. pages 14

[6] 2012. UNIQUE: Foundations for Forgery-Resistant Security Hardware (EC-
FP7: 238811).
http://unique-security.eu/. pages 97

[7] Anderson, J. 2010. A PUF Design for Secure FPGA-based Embedded
Systems. In Asia and South-Pacific Design Automation Conference – ASP-
DAC 2010. 1–6. pages 40, 48

[8] Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., and
Wachsmann, C. 2011. A Formal Foundation for the Security Features of
Physical Functions. In IEEE Symposium on Security and Privacy – SP 2011.
IEEE, 397–412. pages 11, 59, 77, 81

[9] Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., and Tuyls, P.
2009. Memory Leakage-Resilient Encryption based on Physically Unclonable
Functions. In Advances in Cryptology – ASIACRYPT 2009. Lecture Notes
in Computer Science (LNCS), vol. 5912. Springer, 685–702. pages 80, 199

213

http://en.wiktionary.org/wiki/-able
http://docs.oracle.com/javase/6/docs/api/java/lang/Cloneable.html
http://rijndael.ece.vt.edu/puf
http://qwiki.stanford.edu/index.php/Complexity_Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://unique-security.eu/

214 BIBLIOGRAPHY

[10] Barker, E. and Kelsey, J. 2012. Recommendation for Random
Number Generation Using Deterministic Random Bit Generators. NIST
Special Publication 800-90A
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.
pages 171, 172

[11] Bauder, D. 1983. An Anti-Counterfeiting Concept for Currency Systems.
Tech. Rep. PTK-11990, Sandia National Labs, Albuquerque, NM, US. pages
209

[12] Beckmann, N. and Potkonjak, M. 2009. Hardware-Based Public-Key
Cryptography with Public Physically Unclonable Functions. In International
Workshop on Information Hiding – IH 2009. Lecture Notes in Computer
Science (LNCS), vol. 5806. Springer, 206–220. pages 55

[13] Berlekamp, E. 1965. On Decoding Binary Bose-Chadhuri-Hocquenghem
Codes. IEEE Transactions on Information Theory 11, 4, 577–579. pages 191

[14] Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varici, K.,
and Verbauwhede, I. 2011. SPONGENT: a Lightweight Hash Function.
In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2011. Lecture Notes in Computer Science (LNCS), vol. 6917. Springer, 312–
325. pages 160, 192

[15] Bolotnyy, L. and Robins, G. 2007. Physically Unclonable Function-
Based Security and Privacy in RFID Systems. In IEEE International
Conference on Pervasive Computing and Communications – PERCOM 2007.
IEEE, 211–220. pages 152

[16] Boneh, D., DeMillo, R. A., and Lipton, R. J. 1997. On the
Importance of Checking Cryptographic Protocols for Faults. In Advances
in Cryptology – EUROCRYPT 1997. Lecture Notes in Computer Science
(LNCS), vol. 1233. Springer, 37–51. pages 7

[17] Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., and
Tuyls, P. 2008. Efficient Helper Data Key Extractor on FPGAs. In
Workshop on Cryptographic Hardware and Embedded Systems – CHES 2008.
Lecture Notes in Computer Science (LNCS), vol. 5154. Springer, 181–197.
pages 166, 179, 184

[18] Bose, R. C. and Ray-Chaudhuri, D. K. 1960. On A Class of Error
Correcting Binary Group Codes. Information and Control 3, 1, 68–79. pages
159

[19] Boyen, X. 2004. Reusable Cryptographic Fuzzy Extractors. In ACM
Conference on Computer and Communications Security – CCS 2004. ACM,
82–91. pages 159

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

BIBLIOGRAPHY 215

[20] Bringer, J., Chabanne, H., and Icart, T. 2009. On Physical
Obfuscation of Cryptographic Algorithms. In International Conference
on Cryptology in India – INDOCRYPT 2009. Lecture Notes in Computer
Science (LNCS), vol. 5922. Springer, 88–103. pages 52

[21] Brzuska, C., Fischlin, M., Schröder, H., and Katzenbeisser,
S. 2011. Physically Uncloneable Functions in the Universal Composition
Framework. In Advances in Cryptology – CRYPTO 2011. Lecture Notes in
Computer Science (LNCS), vol. 6841. Springer, 51–70. pages 80

[22] Buchanan, J. D. R., Cowburn, R. P., Jausovec, A.-V., Petit, D.,
Seem, P., Xiong, G., Atkinson, D., Fenton, K., Allwood, D. A., and
Bryan, M. T. 2005. Forgery: ‘Fingerprinting’ Documents and Packaging.
Nature 436, 7050, 475. pages 209

[23] Bulens, P., Standaert, F.-X., and Quisquater, J.-J. 2010. How
to Strongly Link Data and its Medium: the Paper Case. IET Information
Security 4, 3, 125–136. pages 210

[24] Burr, A. 2001. Modulation and Coding for Wireless Communications.
Pearson. pages 159

[25] Burton, H. 1971. Inversionless Decoding of Binary BCH codes. IEEE
Transactions on Information Theory 17, 4 (July), 464–466. pages 191

[26] Canetti, R. 2001. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. In IEEE Symposium on Foundations of
Computer Science – FOCS 2001. IEEE, 136–145. pages 80

[27] Carter, J. L. and Wegman, M. N. 1977. Universal Classes of Hash
Functions. In ACM Symposium on Theory of Computing – STOC 1977.
ACM, 106–112. pages 170

[28] Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., and Ruhrmair,
U. 2011. The Bistable Ring PUF: A New Architecture for Strong Physical
Unclonable Functions. In IEEE International Symposium on Hardware-
Oriented Security and Trust – HOST 2011. IEEE, 134–141. pages 47, 49,
69

[29] Chien, R. 1964. Cyclic Decoding Procedures for Bose-Chaudhuri-
Hocquenghem Codes. IEEE Transactions on Information Theory 10, 4, 357–
363. pages 191

[30] Chong, C. N., Jiang, D., Zhang, J., and Guo, L. 2008. Anti-
Counterfeiting with a Random Pattern. In International Conference on
Emerging Security Information, Systems and Technologies – SECURWARE
2008. IEEE, 146–153. pages 210

216 BIBLIOGRAPHY

[31] Commission on Engineering and Technical Systems (CETS).
1993. Counterfeit Deterrent Features for the Next-Generation Currency
Design. The National Academic Press. Appendix E. pages 209

[32] Cortes, C. and Vapnik, V. 1995. Support-Vector Networks. Machine
Learning 20, 3, 273–297. pages 128

[33] Cover, T. M. and Thomas, J. A. 2006. Elements of Information
Theory. Wiley. pages 204

[34] Daemen, J. and Rijmen, V. 2002. The Design of Rijndael. Springer.
pages 41

[35] Dejean, G. and Kirovski, D. 2007. RF-DNA: Radio-Frequency
Certificates of Authenticity. In Workshop on Cryptographic Hardware and
Embedded Systems – CHES 2007. Lecture Notes in Computer Science
(LNCS), vol. 4727. Springer, 346–363. pages 26, 210

[36] Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., and
Khandelwal, V. 2008. Design and Implementation of PUF-Based
“Unclonable” RFID ICs for Anti-Counterfeiting and Security Applications.
In IEEE International Conference on RFID – RFID 2008. IEEE, 58–64.
pages 150

[37] Diffie, W. and Hellman, M. E. 1976. New Directions in Cryptography.
IEEE Transactions on Information Theory 22, 6, 644–654. pages 5

[38] Dodis, Y., Ostrovsky, R., Reyzin, L., and Smith, A. 2008. Fuzzy
Extractors: How to Generate Strong Keys from Biometrics and Other Noisy
Data. SIAM Journal on Computing 38, 1, 97–139. pages 82, 140, 154, 167,
168, 169, 172, 173, 206

[39] Dodis, Y., Reyzin, L., and Smith, A. 2004. Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data. In Advances
in Cryptology – EUROCRYPT 2004. Lecture Notes in Computer Science
(LNCS), vol. 3027. Springer, 523–540. pages 82, 140, 154, 167, 172, 173

[40] Eastlake, D., Schiller, J., and Crocker, S. 2005.
Randomness Requirements for Security. IETF RFC 4086
http://www.ietf.org/rfc/rfc4086.txt. pages 171

[41] Ferguson, N. and Schneier, B. 2003. Practical Cryptography. Wiley.
pages 172

[42] Fischer, V. and Drutarovský, M. 2002. True Random Number
Generator Embedded in Reconfigurable Hardware. In Workshop on

http://www.ietf.org/rfc/rfc4086.txt

BIBLIOGRAPHY 217

Cryptographic Hardware and Embedded Systems – CHES 2002. Lecture Notes
in Computer Science (LNCS), vol. 2523. Springer, 415–430. pages 7

[43] Fujiwara, H., Yabuuchi, M., Nakano, H., Kawai, H., Nii, K., and
Arimoto, K. 2011. A Chip-ID Generating Circuit for Dependable LSI Using
Random Address Errors on Embedded SRAM and On-chip Memory BIST.
In Symposium on VLSI Circuits – VLSIC 2011. IEEE, 76–77. pages 49, 51

[44] Gallager, R. G. 1962. Low Density Parity-Check Codes. IRE
Transactions on Information Theory 8, 21–28. pages 176

[45] Gassend, B. 2003. Physical Random Functions. M.S. thesis,
Massachusetts Institute of Technology (MIT), MA, USA. pages 36, 52, 209

[46] Gassend, B., Clarke, D., van Dijk, M., and Devadas, S. 2002a.
Controlled Physical Random Functions. In Annual Computer Security
Applications Conference – ACSAC 2002. IEEE. pages 53

[47] Gassend, B., Clarke, D., van Dijk, M., and Devadas, S. 2002b.
Silicon Physical Random Functions. In ACM Conference on Computer and
Communications Security – CCS 2002. ACM, 148–160. pages xv, 24, 27, 36,
37, 48, 78, 79, 150

[48] Gassend, B., Lim, D., Clarke, D., van Dijk, M., and Devadas,
S. 2004. Identification and Authentication of Integrated Circuits: Research
Articles. Concurrency and Computation: Practice and Experience 16, 11,
1077–1098. pages 31, 32, 34, 48, 130

[49] Gray, F. 1947. Pulse Code Communication. US Patent No. 2,632,058.
pages 109

[50] Guajardo, J., Kumar, S. S., Schrijen, G. J., and Tuyls, P. 2007.
FPGA Intrinsic PUFs and Their Use for IP Protection. In Workshop on
Cryptographic Hardware and Embedded Systems – CHES 2007. Lecture Notes
in Computer Science (LNCS), vol. 4727. Springer, 63–80. pages 27, 29, 44,
48, 69, 79, 99, 103, 166

[51] Guajardo, J., Škorić, B., Tuyls, P., Kumar, S. S., Bel, T., Blom,
A. H., and Schrijen, G.-J. 2009. Anti-Counterfeiting, Key Distribution,
and Key Storage in an Ambient World via Physical Unclonable Functions.
Information Systems Frontiers 11, 1, 19–41. pages 26, 210

[52] Gutmann, P. 2004. Cryptographic Security Architecture. Springer. pages
171

218 BIBLIOGRAPHY

[53] Hammouri, G., Dana, A., and Sunar, B. 2009. CDs Have Fingerprints
Too. In Workshop on Cryptographic Hardware and Embedded Systems –
CHES 2009. Lecture Notes in Computer Science (LNCS), vol. 5747. Springer,
348–362. pages 212

[54] Hammouri, G., Öztürk, E., Birand, B., and Sunar, B. 2008.
Unclonable Lightweight Authentication Scheme. In International Conference
on Information, Communications, and Signal Processing – ICICS 2008. 33–
48. pages 35

[55] Helinski, R., Acharyya, D., and Plusquellic, J. 2009. A Physical
Unclonable Function Defined Using Power Distribution System Equivalent
Resistance Variations. In Design Automation Conference – DAC 2009. ACM,
676–681. pages 211

[56] Hocquenghem, A. 1960. Codes Correcteurs d’Erreurs. Chiffres 2, 147–
156. pages 159

[57] Holcomb, D. E., Burleson, W. P., and Fu, K. 2007. Initial SRAM
State as a Fingerprint and Source of True Random Numbers for RFID Tags.
In Workshop on RFID Security and Privacy – RFIDSec 2007. pages 44

[58] Holcomb, D. E., Burleson, W. P., and Fu, K. 2009. Power-Up
SRAM State as an Identifying Fingerprint and Source of True Random
Numbers. IEEE Transactions on Computers 58, 9, 1198–1210. pages 44,
48

[59] Hopper, N. and Blum, M. 2000. A Secure Human-Computer
Authentication Scheme. Tech. Rep. CMU-CS-00-139, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, US. pages 35

[60] Hospodar, G., Maes, R., and Verbauwhede, I. 2012. Implications
of Machine Learning Attacks on Arbiter PUF-based Challenge-Response
Authentication and Secure Key Generation. Tech. Rep. 2220, COSIC, KU
Leuven, Leuven, Belgium. (under submission). pages 128, 130

[61] Ignatenko, T., Schrijen, G.-J., Škorić, B., Tuyls, P., and
Willems, F. M. J. 2006. Estimating the Secrecy Rate of Physical
Uncloneable Functions with the Context-Tree Weighting Method. In IEEE
International Symposium on Information Theory – ISIT 2006. IEEE, 499–
503. pages 209

[62] Indeck, R. S. and Muller, M. W. 1994. Method and Apparatus for
Fingerprinting Magnetic Media. US Patent No. 5,365,586. pages 212

BIBLIOGRAPHY 219

[63] Jiang, D. and Chong, C. N. 2008. Anti-Counterfeiting Using Phosphor
PUF. In International Conference on Anti-counterfeiting, Security and
Identification – ASID 2008. 59–62. pages 210

[64] Juels, A. and Sudan, M. 2006. A Fuzzy Vault Scheme. Designs, Codes
and Cryptography 38, 2 (Feb.), 237–257. pages 140

[65] Juels, A. and Wattenberg, M. 1999. A Fuzzy Commitment Scheme.
In ACM Conference on Computer and Communications Security – CCS 1999.
ACM, 28–36. pages 140

[66] Kalinsky, D. and Kalinsky, R. 2002. Introduction to Serial Peripheral
Interface. EETimes
http://www.eetimes.com/discussion/beginner-s-corner/4023908

/Introduction-to-Serial-Peripheral-Interface. pages 100

[67] Karakoyunlu, D. and Sunar, B. 2010. Differential Template Attacks
on PUF Enabled Cryptographic Devices. In IEEE International Workshop
on Information Forensics and Security – WIFS 2010. IEEE, 1–6. pages 200

[68] Kardas, S., Akgun, M., Kiraz, M. S., and Demirci, H.
2011. Cryptanalysis of Lightweight Mutual Authentication and Ownership
Transfer for RFID Systems. Workshop on Lightweight Security and Privacy:
Devices, Protocols, and Applications – LightSec 2011 , 20–25. pages 152

[69] Katzenbeisser, S., Koçabas, U., van der Leest, V., Sadeghi,
A.-R., Schrijen, G.-J., Schröder, H., and Wachsmann, C. 2011.
Recyclable PUFs: Logically Reconfigurable PUFs. In Workshop on
Cryptographic Hardware and Embedded Systems – CHES 2011. Lecture Notes
in Computer Science (LNCS), vol. 6917. Springer, 374–389. pages 54

[70] Kelsey, J., Schneier, B., and Ferguson, N. 1999. Yarrow-160: Notes
on the Design and Analysis of the Yarrow Cryptographic Pseudorandom
Number Generator. In International Workshop on Selected Areas in
Cryptography – SAC 1999. Lecture Notes in Computer Science (LNCS), vol.
1758. Springer, 13–33. pages 171, 172

[71] Kerckhoffs, A. 1883. La Cryptographie Militaire. Journal des Sciences
Militaires IX, 5–83. pages 4

[72] Kim, I., Maiti, A., Nazhandali, L., Schaumont, P., Vivekraja, V.,
and Zhang, H. 2010. From Statistics to Circuits: Foundations for Future
Physical Unclonable Functions. In Towards Hardware-Intrinsic Security, A.-
R. Sadeghi and D. Naccache, Eds. Information Security and Cryptography.
Springer, 55–78. pages 40

http://www.eetimes.com/discussion/beginner-s-corner/4023908
/Introduction-to-Serial-Peripheral-Interface

220 BIBLIOGRAPHY

[73] Kocher, P. C. 1996. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In Advances in Cryptology –
CRYPTO 1996. Lecture Notes in Computer Science (LNCS), vol. 1109.
Springer, 104–113. pages 7

[74] Kocher, P. C., Jaffe, J., and Jun, B. 1999. Differential Power
Analysis. In Advances in Cryptology – CRYPTO 1999. Lecture Notes in
Computer Science (LNCS), vol. 1666. Springer, 388–397. pages 7

[75] Krishna, A., Narasimhan, S., Wang, X., and Bhunia, S. 2011.
MECCA: A Robust Low-Overhead PUF Using Embedded Memory Array.
In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2011. Lecture Notes in Computer Science (LNCS), vol. 6917. Springer, 407–
420. pages 51

[76] Kulseng, L., Yu, Z., Wei, Y., and Guan, Y. 2010. Lightweight
Mutual Authentication and Ownership Transfer for RFID Systems. In IEEE
International Conference on Computer Communications – INFOCOM 2010.
IEEE, 1–5. pages 152

[77] Kumar, S., Guajardo, J., Maes, R., Schrijen, G.-J., and Tuyls,
P. 2008. Extended abstract: The Butterfly PUF Protecting IP on Every
FPGA. In IEEE International Symposium on Hardware-Oriented Security
and Trust – HOST 2008. IEEE, 67–70. pages 10, 46, 49, 69

[78] Kursawe, K., Sadeghi, A.-R., Schellekens, D., Tuyls, P., and
Škorić, B. 2009. Reconfigurable Physical Unclonable Functions – Enabling
Technology for Tamper-Resistant Storage. In IEEE International Symposium
on Hardware-Oriented Security and Trust – HOST 2009. IEEE, 22–29. pages
53, 54

[79] Lao, Y. and Parhi, K. 2011. Reconfigurable Architectures for Silicon
Physical Unclonable Functions. In IEEE International Conference on
Electro/Information Technology – EIT 2011. IEEE, 1–7. pages 35

[80] Lee, J. W., Lim, D., Gassend, B., Suh, G. E., van Dijk, M., and
Devadas, S. 2004. A Technique to Build a Secret Key in Integrated Circuits
for Identification and Authentication Application. In Symposium on VLSI
Circuits – VLSIC 2004. 176–159. pages xv, 31, 32, 33, 34, 48, 68, 78, 99, 102,
128

[81] Lehmer, D. H. 1960. Teaching Combinatorial Tricks to a Computer.
In Symposium on Applied Mathematics and Combinatorial Analysis. AMS,
179–193. pages 109

BIBLIOGRAPHY 221

[82] Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung,
T., and Wachter, C. 2012. Ron was Wrong, Whit is Right. Cryptology
ePrint Archive, Report 2012/064. pages 7, 165

[83] Lim, D. 2004. Extracting Secret Keys from Integrated Circuits. M.S.
thesis, Massachusetts Institute of Technology (MIT), MA, USA. pages 31,
32, 34

[84] Lim, D., Lee, J. W., Gassend, B., Suh, G. E., van Dijk, M., and
Devadas, S. 2005. Extracting Secret Keys from Integrated Circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 13, 10, 1200–
1205. pages 48

[85] Lin, L., Holcomb, D., Krishnappa, D. K., Shabadi, P., and
Burleson, W. 2010. Low-Power Sub-Threshold Design of Secure Physical
Unclonable Functions. In ACM/IEEE International Symposium on Low
power Electronics and Design – ISLPED 2010. ACM, 43–48. pages 32

[86] Linnartz, J.-P. and Tuyls, P. 2003. New Shielding Functions
to Enhance Privacy and Prevent Misuse of Biometric Templates. In
International Conference on Audio- and Video-based Biometric Person
Authentication – AVBPA 2003. Lecture Notes in Computer Science (LNCS),
vol. 2688. Springer, 393–402. pages 173

[87] Lofstrom, K., Daasch, W. R., and Taylor, D. 2000. IC Identification
Circuit Using Device Mismatch. In IEEE International Solid-State Circuits
Conference – ISSCC 2000. IEEE, 372–373. pages 49, 50

[88] Maes, R., Rozic, V., Verbauwhede, I., Koeberl, P., van der Sluis,
E., and van der Leest, V. 2012. Experimental Evaluation of Physically
Unclonable Functions in 65 nm CMOS. In European Solid-State Circuits
Conference – ESSCIRC 2012. pages 11

[89] Maes, R., Tuyls, P., and Verbauwhede, I. 2008. Intrinsic PUFs from
Flip-flops on Reconfigurable Devices. In Benelux Workshop on Information
and System Security – WISSec 2008. pages 10, 46, 49, 69, 99

[90] Maes, R., Tuyls, P., and Verbauwhede, I. 2009a. Low-Overhead
Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs.
In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2009. Lecture Notes in Computer Science (LNCS), vol. 5747. Springer, 332–
347. pages 11, 167, 177, 179

[91] Maes, R., Tuyls, P., and Verbauwhede, I. 2009b. Soft Decision
Helper Data Algorithm for SRAM PUFs. In IEEE International Symposium
on Information Theory – ISIT 2009. IEEE, 2101–2105. pages 167, 175

222 BIBLIOGRAPHY

[92] Maes, R., Van Herrewege, A., and Verbauwhede, I. 2012. PUFKY:
A Fully Functional PUF-based Cryptographic Key Generator. In Workshop
on Cryptographic Hardware and Embedded Systems – CHES 2012. Lecture
Notes in Computer Science (LNCS), vol. 7428. Springer. pages 11, 109, 186,
191

[93] Maes, R. and Verbauwhede, I. 2010. Physically Unclonable Functions:
A Study on the State of the Art and Future Research Directions. In
Towards Hardware-Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds.
Information Security and Cryptography. Springer, 3–37. pages 10, 11, 15, 59

[94] MagneTek(R). MagnePrint(R). http://www.magneprint.com/. pages
212

[95] Maiti, A., Casarona, J., McHale, L., and Schaumont, P. 2010. A
Large Scale Characterization of RO-PUF. IEEE International Symposium
on Hardware-Oriented Security and Trust – HOST 2010 , 94–99. pages 39,
48, 190

[96] Maiti, A., Kim, I., and Schaumont, P. 2012. A Robust Physical
Unclonable Function With Enhanced Challenge-Response Set. IEEE
Transactions on Information Forensics and Security 7, 1 (feb.), 333–345.
pages 40, 48, 69

[97] Maiti, A. and Schaumont, P. 2009. Improving the Quality of a Physical
Unclonable Function Using Configurable Ring Oscillators. In International
Conference on Field Programmable Logic and Applications – FPL 2009. 703–
707. pages 39

[98] Maiti, A. and Schaumont, P. 2011. Improved Ring Oscillator PUF: An
FPGA-friendly Secure Primitive. Journal of Cryptology 24, 375–397. pages
39, 48

[99] Majzoobi, M., Koushanfar, F., and Potkonjak, M. 2008. Testing
Techniques for Hardware Security. In IEEE International Test Conference –
ITC 2008. IEEE, 1–10. pages 34

[100] Majzoobi, M., Koushanfar, F., and Potkonjak, M. 2009.
Techniques for Design and Implementation of Secure Reconfigurable PUFs.
ACM Transactions on Reconfigurable Technology and Systems 2, 1, 1–33.
pages 35, 69, 108

[101] Massey, J. 1969. Shift-Register Synthesis and BCH Decoding. IEEE
Transactions on Information Theory 15, 1, 122–127. pages 191

[102] Menezes, A. J., Vanstone, S. A., and Oorschot, P. C. V. 1996.
Handbook of Applied Cryptography. CRC Press. pages 5, 136, 153

http://www.magneprint.com/

BIBLIOGRAPHY 223

[103] Merli, D., Schuster, D., Stumpf, F., and Sigl, G. 2011. Side-
Channel Analysis of PUFs and Fuzzy Extractors. In International Conference
on Trust and Trustworthy Computing – TRUST 2011. Lecture Notes in
Computer Science (LNCS), vol. 6740. Springer, 33–47. pages 200

[104] Mitchell, T. M. 1997. Machine learning. McGraw-Hill. pages 128

[105] Morozov, S., Maiti, A., and Schaumont, P. 2010. An Analysis of
Delay Based PUF Implementations on FPGA. In International Workshop on
Applied Reconfigurable Computing – ARC 2010. Lecture Notes in Computer
Science (LNCS), vol. 5992. Springer, 382–387. pages 33

[106] Nisan, N. and Zuckerman, D. 1996. Randomness is Linear in Space.
Journal of Computer and System Sciences 52, 1, 43–52. pages 170

[107] Öztürk, E., Hammouri, G., and Sunar, B. 2008a. Physical
Unclonable Function with Tristate Buffers. In IEEE International
Symposium on Circuits and Systems – ISCAS 2008. IEEE, 3194–3197. pages
35

[108] Öztürk, E., Hammouri, G., and Sunar, B. 2008b. Towards Robust
Low Cost Authentication for Pervasive Devices. In IEEE International
Conference on Pervasive Computing and Communications – PERCOM 2008.
IEEE, 170–178. pages 35

[109] Pappu, R. S. 2001. Physical One-Way Functions. Ph.D. thesis,
Massachusetts Institute of Technology (MIT), MA, USA. pages 24, 29, 58,
66, 74, 76, 78, 208

[110] Pappu, R. S., Recht, B., Taylor, J., and Gershenfeld, N. 2002.
Physical One-Way Functions. Science 297, 2026–2030. pages xvi, 29, 68, 93,
208, 209

[111] Puntin, D., Stanzione, S., and Iannaccone, G. 2008. CMOS
Unclonable System for Secure Authentication Based on Device Variability. In
European Solid-State Circuits Conference – ESSCIRC 2008. 130–133. pages
50

[112] Quisquater, J.-J. and Samyde, D. 2001. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In International
Conference on Research in Smart Cards – E-SMART 2001. Lecture Notes in
Computer Science (LNCS), vol. 2140. Springer-Verlag, 200–210. pages 7

[113] Ranasinghe, D. C., Engels, D. W., and Cole, P. H. 2004. Security
and Privacy: Modest Proposals for Low-Cost RFID Systems. In Auto-ID
Labs Research Workshop 2004. pages 150

224 BIBLIOGRAPHY

[114] Rényi, A. 1960. On Measures of Information and Entropy. In Berkeley
Symposium on Mathematics, Statistics and Probability 1960. 547–561. pages
206

[115] Rivest, R. L., Shamir, A., and Adleman, L. 1978. A
Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM 21, 2, 120–126. pages 5

[116] Rührmair, U. 2009. SIMPL Systems: On a Public Key Variant of
Physical Unclonable Functions. Cryptology ePrint Archive, Report 2009/255.
pages 55

[117] Rührmair, U. 2011. SIMPL Systems, or: Can We Design Cryptographic
Hardware without Secret Key Information? In Conference on Current
Trends in Theory and Practice of Computer Science – SOFSEM 2011.
Lecture Notes in Computer Science (LNCS), vol. 6543. Springer, 26–45.
pages 74

[118] Rührmair, U., Busch, H., and Katzenbeisser, S. 2010. Strong
PUFs: Models, Constructions, and Security Proofs. In Towards Hardware-
Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds. Information Security
and Cryptography. Springer, 79–96. pages 29

[119] Rührmair, U., Chen, Q., Lugli, P., Schlichtmann, U., and
Martin Stutzmann, G. C. 2009. Towards Electrical, Integrated
Implementations of SIMPL Systems. Cryptology ePrint Archive, Report
2009/278. pages 55

[120] Rührmair, U., Jaeger, C., and Algasinger, M. 2011. An Attack on
PUF-Based Session Key Exchange and a Hardware-Based Countermeasure:
Erasable PUFs. In International Conference on Financial Cryptography and
Data Security – FC 2012. Lecture Notes in Computer Science (LNCS), vol.
7035. Springer, 190–204. pages 54

[121] Rührmair, U., Jaeger, C., Bator, M., Stutzmann, M., Lugli, P.,
and Csaba, G. 2011. Applications of High-Capacity Crossbar Memories in
Cryptography. IEEE Transactions on Nanotechnology 10, 3, 489–498. pages
51

[122] Rührmair, U., Jaeger, C., Hilgers, C., Algasinger, M., Csaba,
G., and Stutzmann, M. 2010. Security Applications of Diodes with Unique
Current-Voltage Characteristics. In International Conference on Financial
Cryptography and Data Security – FC 2010. Lecture Notes in Computer
Science (LNCS), vol. 6052. Springer, 328–335. pages 51

BIBLIOGRAPHY 225

[123] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S.,
and Schmidhuber, J. 2010a. Modeling Attacks on Physical Unclonable
Functions. In ACM Conference on Computer and Communications Security
– CCS 2010. ACM, 237–249. pages 34, 35, 128, 130

[124] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S.,
and Schmidhuber, J. 2010b. Modeling Attacks on Physical Unclonable
Functions. Cryptology ePrint Archive, Report 2010/251. pages 78

[125] Rührmair, U., Sölter, J., and Sehnke, F. 2009. On the Foundations
of Physical Unclonable Functions. Cryptology ePrint Archive, Report
2009/277. pages 77, 78, 79

[126] Schindler, W. and Killmann, W. 2002. Evaluation Criteria for True
(Physical) Random Number Generators Used in Cryptographic Applications.
In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2002. Lecture Notes in Computer Science (LNCS), vol. 2523. Springer, 431–
449. pages 7

[127] Schnabl, G. and Bossert, M. 1995. Soft-Decision Decoding of
Reed-Muller Codes as Generalized Multiple Concatenated Codes. IEEE
Transactions on Information Theory 41, 1, 304–308. pages 176, 177

[128] Schrijen, G.-J. and van der Leest, V. 2012. Comparative Analysis
of SRAM Memories Used as PUF Primitives. In Design, Automation and
Test in Europe – DATE 2012. 1319–1324. pages 44

[129] Sedgewick, R. 1977. Permutation Generation Methods. ACM
Computing Surveys 9, 2, 137–164. pages 109

[130] Selimis, G. N., Konijnenburg, M., Ashouei, M., Huisken, J.,
de Groot, H., van der Leest, V., Schrijen, G. J., van Hulst, M.,
and Tuyls, P. 2011. Evaluation of 90nm 6T-SRAM as Physical Unclonable
Function for Secure Key Generation in Wireless Sensor Nodes. In IEEE
International Symposium on Circuits and Systems – ISCAS 2011. IEEE,
567–570. pages 44, 48, 49

[131] Shannon, C. E. 1948. A Mathematical Theory of Communication. Bell
Systems Technical Journal 27, 623–656. pages 204

[132] Sharma, A., Subramanian, L., and Brewer, E. A. 2011.
PaperSpeckle: Microscopic Fingerprinting of Paper. In ACM Conference on
Computer and Communications Security – CCS 2011. ACM, 99–110. pages
210

226 BIBLIOGRAPHY

[133] Shimizu, K., Suzuki, D., and Kasuya, T. 2012. Glitch PUF:
Extracting Information from Usually Unwanted Glitches. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer
Sciences E95.A, 1, 223–233. pages xv, 41, 42, 48, 69

[134] Silverman, R. and Balser, M. 1954. Coding for Constant-Data-Rate
Systems-Part I. A New Error-Correcting Code. Proceedings of the IRE 42, 9,
1428–1435. pages 176

[135] Simmons, G. 1991. Identification of Data, Devices, Documents and
Individuals. In IEEE International Carnahan Conference on Security
Technology – ICCST 1991. IEEE, 197–218. pages 208, 209, 210

[136] Simons, P., van der Sluis, E., and van der Leest, V. 2012.
Buskeeper PUFs, a Promising Alternative to D Flip-Flop PUFs. IEEE
International Symposium on Hardware-Oriented Security and Trust – HOST
2012 , 7–12. pages 47, 69, 99, 100

[137] Su, Y., Holleman, J., and Otis, B. 2007. A 1.6pJ/bit 96% Stable
Chip-ID Generating Circuit using Process Variations. In IEEE International
Solid-State Circuits Conference – ISSCC 2007. IEEE, 406–611. pages 45, 49,
69, 99

[138] Suh, G. E. and Devadas, S. 2007. Physical Unclonable Functions for
Device Authentication and Secret Key Generation. In Design Automation
Conference – DAC 2007. ACM, 9–14. pages xv, 37, 38, 39, 48, 69, 99, 103,
109

[139] Suzuki, D. and Shimizu, K. 2010. The Glitch PUF: A New Delay-
PUF Architecture Exploiting Glitch Shapes. In Workshop on Cryptographic
Hardware and Embedded Systems – CHES 2010. Lecture Notes in Computer
Science (LNCS), vol. 6225. Springer, 366–382. pages 41

[140] Tarnovsky, C. 2010. Deconstructing a ‘Secure’ Processor. Talk at
Black Hat Federal 2010
http://www.blackhat.com/presentations/bh-dc-10

/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf.
pages 7, 166

[141] Tiri, K., Hwang, D., Hodjat, A., Lai, B., Yang, S., Schaumont,
P., and Verbauwhede, I. 2005. Prototype IC with WDDL and Differential
Routing - DPA Resistance Assessment. In Workshop on Cryptographic
Hardware and Embedded Systems – CHES 2005. Lecture Notes in Computer
Science (LNCS), vol. 3659. Springer, 354–365. pages 8

http://www.blackhat.com/presentations/bh-dc-10
/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf

BIBLIOGRAPHY 227

[142] Tolk, K. 1992. Reflective Particle Technology for Identification of
Critical Components. Tech. Rep. SAND-92-1676C, Sandia National Labs,
Albuquerque, NM, US. pages 208

[143] Torrance, R. and James, D. 2009. The State-of-the-Art in IC
Reverse Engineering. In Workshop on Cryptographic Hardware and Embedded
Systems – CHES 2009. Lecture Notes in Computer Science (LNCS), vol. 5747.
Springer, 363–381. pages 7, 166

[144] Tuyls, P. and Batina, L. 2006. RFID-Tags for Anti-Counterfeiting. In
Topics in Cryptology: Cryptographers’ Track of the RSA Conference – CT-
RSA 2006. Lecture Notes in Computer Science (LNCS), vol. 3860. Springer,
115–131. pages 166

[145] Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J.,
Verhaegh, N., and Wolters, R. 2006. Read-Proof Hardware from
Protective Coatings. In Workshop on Cryptographic Hardware and Embedded
Systems – CHES 2006. Lecture Notes in Computer Science (LNCS), vol. 4249.
Springer, 369–383. pages xvi, 29, 68, 74, 211

[146] Tuyls, P. and Škorić, B. 2006. Physical Unclonable Functions for
Enhanced Security of Tokens and Tags. In Information Security Solutions
Europe – ISSE 2006. Vieweg, 30–37. pages 209

[147] Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A. H. M.,
and Ophey, W. 2005. Information-Theoretic Security Analysis of
Physical Uncloneable Functions. In International Conference on Financial
Cryptography and Data Security – FC 2005. Lecture Notes in Computer
Science (LNCS), vol. 3570. Springer, 141–155. pages 73, 74, 209

[148] Unicate BV. 1999. Guaranteeing Identity and
Secure Payments – The Foundation for eCommerce.
http://www.andreae.com/Unicate/emerge.pdf. pages 208

[149] van der Leest, V., Schrijen, G.-J., Handschuh, H., and Tuyls,
P. 2010. Hardware Intrinsic Security from D Flip-flops. In ACM Workshop
on Scalable Trusted Computing – STC 2010. ACM, 53–62. pages 46, 49

[150] Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R.,
Sadeghi, A.-R., Verbauwhede, I., , and Wachsmann, C. 2012. Reverse
Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-
enabled RFIDs. In International Conference on Financial Cryptography and
Data Security – FC 2012. Lecture Notes in Computer Science (LNCS), vol.
7397. Springer. pages 11, 154, 155, 157, 158, 160

http://www.andreae.com/Unicate/emerge.pdf

228 BIBLIOGRAPHY

[151] Viterbi, A. 1967. Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm. IEEE Transactions on
Information Theory 13, 2, 260–269. pages 176

[152] von Neumann, J. 1951. Various Techniques Used in Connection with
Random Digits. Journal of Research of the National Bureau of Standards 12,
36–38. pages 46

[153] Vrijaldenhoven, S. 2005. Acoustical Physical Uncloneable Functions.
M.S. thesis, Technische Universiteit Eindhoven, the Netherlands. pages 212

[154] Škorić, B., Maubach, S., Kevenaar, T., and Tuyls, P. 2006.
Information-Theoretic Analysis of Capacitive Physical Unclonable Functions.
Journal of Applied Physics 100, 2. pages 211

[155] Škorić, B., Tuyls, P., and Ophey, W. 2005. Robust Key Extraction
from Physical Uncloneable Functions. In International Conference on
Applied Cryptography and Network Security – ACNS 2005. Lecture Notes
in Computer Science (LNCS), vol. 3531. Springer, 407–422. pages 73, 74,
209

[156] Yamakoshi, M., Tanaka, J., Furuie, M., Hirabayashi, M.,
and Matsumoto, T. 2008. Individuality Evaluation for Paper Based
Artifact-Metrics Using Transmitted Light Image. In Security, Forensics,
Steganography, and Watermarking of Multimedia Contents X. Conference
Series of the Society of Photo-Optical Instrumentation Engineers (SPIE, vol.
6819. pages 210

[157] Yamamoto, D., Sakiyama, K., Iwamoto, M., Ohta, K., Ochiai,
T., Takenaka, M., and Itoh, K. 2011. Uniqueness Enhancement of PUF
Responses Based on the Locations of Random Outputting RS Latches. In
Workshop on Cryptographic Hardware and Embedded Systems – CHES 2011.
Lecture Notes in Computer Science (LNCS), vol. 6917. Springer, 390–406.
pages 46

[158] Yin, C.-E. D. and Qu, G. 2010. LISA: Maximizing RO PUF’s
Secret Extraction. In IEEE International Symposium on Hardware-Oriented
Security and Trust – HOST 2010. IEEE, 100 –105. pages 39, 109

[159] Yu, M.-D. M., M’Raihi, D., Sowell, R., and Devadas, S. 2011.
Lightweight and Secure PUF Key Storage Using Limits of Machine Learning.
In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2011. Lecture Notes in Computer Science (LNCS), vol. 6917. Springer, 358–
373. pages 166

Curriculum Vitae

Roel Maes was born on September 19, 1984 in Lommel, Belgium. He
received the Master’s degree in Electrical Engineering (Multimedia and Signal
Processing) from the University of Leuven (KU Leuven), Belgium in July 2007.
He was a laureate for the Master thesis awards of the Royal Engineering Society
(KVIV) with his thesis on physically unclonable functions in 2007.

In September 2007, he joined the COSIC research group at the department of
Electrical Engineering (ESAT) of KU Leuven. His PhD research was sponsored
by a four year fellowship from the Agency for Innovation by Science and
Technology in Flanders (IWT).

From August till September 2007, he was an intern in the Information and
Systems Security group at Philips Research in Eindhoven, the Netherlands.
From May till August 2011, he was a graduate technical intern in the Security
Research Lab at Intel Labs in Hillsboro (Portland), Oregon, US.

229

List of Publications

Journal Papers

1. Maes, R., Schellekens, D., and Verbauwhede, I. 2012. A Pay-
per-Use Licensing Scheme for Hardware IP Cores in Recent SRAM
FPGAs. IEEE Transactions on Information Forensics and Security 7
1, 98–108

Book Chapters

2. Maes, R., Verbauwhede, I. 2010. Physically Unclonable Functions:
A Study on the State of the Art and Future Research Directions. In
Towards Hardware-Intrinsic Security, A.-R. Sadeghi and D. Naccache,
Eds. Information Security and Cryptography. Springer, 3–37.

3. Knežević, M., Batina, L., De Mulder, E., Fan, J., Gierlichs, B.,
Lee, Y.K., Maes, R., and Verbauwhede, I. 2010 & 2012. Signal
Processing for Cryptography and Security Applications. In Handbook of
Signal Processing Systems (1st & 2nd Edition), S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers and J. Takala, Eds. Springer, 161–177.

4. Maes, R. and Tuyls, P. 2010. Process Variations for Security:
PUFs. In Secure Integrated Circuits and Systems, I. Verbauwhede, Ed.
Integrated Circuits and Systems. Springer, 125–143.

International Conferences: Lecture Notes in Computer Science

5. Maes, R., Van Herrewege, A., and Verbauwhede, I. 2012.
PUFKY: A Fully Functional PUF-based Cryptographic Key Generator.
In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2012. Lecture Notes in Computer Science (LNCS), vol. 7428. Springer.

231

232 LIST OF PUBLICATIONS

6. Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R.,
Sadeghi, A.-R., Verbauwhede, I., and Wachsmann, C. 2012.
Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication
for PUF-enabled RFIDs. In International Conference on Financial
Cryptography and Data Security – FC 2012. Lecture Notes in Computer
Science (LNCS), vol. 7397. Springer.

7. Koeberl, P., Li, J., Maes, R., Rajan, A., Vishik, C., and Wójcik,
M. 2011. Evaluation of a PUF Device Authentication Scheme on a
Discrete 0.13um SRAM. In International Conference on Trusted Systems
– INTRUST 2011. Lecture Notes in Computer Science (LNCS), vol. 7222.
Springer, 271–288.

8. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., and Tuyls,
P. 2009. Memory Leakage-Resilient Encryption based on Physically
Unclonable Functions. In Advances in Cryptology – ASIACRYPT 2009.
Lecture Notes in Computer Science (LNCS), vol. 5912. Springer, 685–
702.

9. Maes, R., Tuyls, P., and Verbauwhede, I. 2009. Low-Overhead
Implementation of a Soft Decision Helper Data Algorithm for SRAM
PUFs. In Workshop on Cryptographic Hardware and Embedded Systems
– CHES 2009. Lecture Notes in Computer Science (LNCS), vol. 5747.
Springer, 332–347.

International Conferences: IEEE, ACM, . . .

10. Maes, R., Rožić, V., Verbauwhede, I., Koeberl, P., van der
Sluis, E., and van der Leest, V. 2012. Experimental Evaluation
of Physically Unclonable Functions in 65 nm CMOS. In European Solid-
State Circuits Conference – ESSCIRC 2012.

11. Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., and
Wachsmann, C. 2011. A Formal Foundation for the Security Features
of Physical Functions. In IEEE Symposium on Security and Privacy –
SP 2011. IEEE, 397–412.

12. Verbauwhede, I., Maes, R. 2011. Manufacturing Variability as an
Unclonable Device Identifier. In ACM Great Lakes Symposium on VLSI
– GLSVLSI 2011. ACM, 455–460.

13. Maes, R., Tuyls, P., and Verbauwhede, I. 2009. Soft Decision
Helper Data Algorithm for SRAM PUFs. In IEEE International
Symposium on Information Theory – ISIT 2009. IEEE, 2101–2105.

LIST OF PUBLICATIONS 233

14. Fan, J., Knežević, M., Karaklajić, D., Maes, R., Rožić, V.,
Batina, L., and Verbauwhede, I. 2009. FPGA-based Testing
Strategy for Cryptographic Chips. In IEEE International On-Line
Testing Symposium – IOLTS 2009. IEEE, 189–191.

15. Maes, R., Schellekens, D., Tuyls, P., and Verbauwhede, I.
2009. Analysis and Design of Active IC Metering Schemes. In IEEE
International Symposium on Hardware-Oriented Security and Trust –
HOST 2009. IEEE, 74–81.

16. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.-J., and Tuyls,
P. 2008. Extended abstract: The Butterfly PUF Protecting IP on
Every FPGA. In IEEE International Symposium on Hardware-Oriented
Security and Trust – HOST 2008. IEEE, 67–70.

Peer-Reviewed Workshop Presentations and Posters

17. Maes, R., Verbauwhede, I. 2010. A Discussion on the Properties
of Physically Unclonable Functions. In Workshop on Security Hardware
2008.

18. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., and Tuyls,
P. 2010. Memory Leakage-Resilient Encryption based on Physically
Unclonable Functions. In Workshop on Secure Components and System
Identification – SECSI 2010.

19. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., and Tuyls,
P. 2009. PUF-PRFs: A New Tamper-Resilient Cryptographic Primitive.
In Poster Session, Advances in Cryptology – EUROCRYPT 2009.

20. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., and Tuyls,
P. 2008. Physically Unclonable Pseudorandom Functions. In Benelux
Workshop on Information and System Security – WISSec 2008.

21. Maes, R., Tuyls, P., and Verbauwhede, I. 2008. Intrinsic PUFs
from Flip-flops on Reconfigurable Devices. In Benelux Workshop on
Information and System Security – WISSec 2008.

22. Maes, R., Tuyls, P., and Verbauwhede, I. 2008. Statistical
Analysis of Silicon PUF Responses for Device Identification. In Workshop
on Secure Components and System Identification – SECSI 2008.

234 LIST OF PUBLICATIONS

Other

23. Hospodar, G., Maes, R., and Verbauwhede, I. 2012. Implications
of Machine Learning Attacks on Arbiter PUF-based Challenge-Response
Authentication and Secure Key Generation. COSIC Tech. Rep.
2220, University of Leuven (KU Leuven), Leuven, Belgium. (under
submission).

24. Maes, R. 2009. Veiligheid uit de “biometrie” van chips. In Het
Ingenieursblad 78 1

25. Maes, R. 2007. Sleutelextractie van een Silicon-PUF op FPGA. M.S.
thesis, University of Leuven (KU Leuven), Leuven, Belgium.

Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Electrical Engineering (ESAT)

Computer Security and Industrial Cryptography (COSIC)

Kasteelpark Arenberg 10 box 2446

B-3001 Heverlee

	Abstract
	Beknopte samenvatting
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction and Preview
	Introduction
	Trust and Security in a Modern World
	Information Security and Cryptology
	Physical Security and Roots of Trust

	Preview
	Introducing Physically Unclonable Functions
	Thesis Outline and Contributions

	Physically Unclonable Functions: Concept and Constructions
	Introduction
	The PUF Concept
	Chapter Goals
	Chapter Overview

	Preliminaries
	Conventions on Describing PUFs
	Details of a PUF Experiment
	PUF Response Intra-Distance
	PUF Response Inter-Distance

	Terminology and Classification
	``PUFs: Physical(ly) Unclon(e)able Functions''
	Non-electronic, Electronic and Silicon PUFs
	Intrinsic and Non-intrinsic PUFs
	Weak and Strong PUFs

	Intrinsic PUF Constructions
	Arbiter PUF
	Ring Oscillator PUF
	Glitch PUF
	SRAM PUF
	Latch, Flip-flop, Butterfly, Buskeeper PUFs
	Bistable Ring PUF
	Mixed-Signal PUF Constructions
	Overview of Experimental Results

	PUF Extensions
	POKs: Physically Obfuscated Keys
	CPUFs: Controlled PUFs
	RPUFs: Reconfigurable PUFs
	PPUFs: Public PUFs and SIMPL Systems

	Conclusion

	Physically Unclonable Functions: Properties
	Introduction
	Motivation
	Chapter Goals
	Chapter Overview

	A Discussion on the Properties of PUFs
	Constructibility and Evaluability
	Reproducibility
	Uniqueness and Identifiability
	Physical Unclonability
	Unpredictability
	Mathematical and True Unclonability
	One-Wayness
	Tamper Evidence
	PUF Properties Analysis and Discussion
	Discussion on PUF Properties

	Formalizing PUFs
	Earlier Formalization Attempts
	Setup of the Formal Framework
	Definition and Expansion of a Physical Function
	Robustness of a Physical Function System
	Physical Unclonability of a Physical Function System
	Unpredictability of a Physical Function System
	Discussion

	Conclusion

	Implementation and Experimental Analysis of Intrinsic PUFs
	Introduction
	Motivation
	Chapter Goals
	Chapter Overview

	Test Chip Design
	Design Rationale
	Design Requirements
	Top-Level Architecture
	PUF Block: Arbiter PUF
	PUF Block: Ring Oscillator PUF
	PUF Block: SRAM PUF
	PUF Blocks: D Flip-Flop PUF, Latch PUF and Buskeeper PUF
	Power Domains
	Implementation Details

	Experimental Uniqueness and Reproducibility Results
	Evaluation of Delay-based PUFs
	PUF Experiment: Goals, Strategy and Setup
	Experimental PUF Uniqueness Results
	Experimental PUF Reproducibility Results

	Assessing Entropy
	Adversary Models and Basic Entropy Bounds
	Entropy Bound Estimations Based on Experimental Results
	Modeling Attacks on Arbiter PUFs

	Conclusion

	PUF-based Entity Identification and Authentication
	Introduction
	Motivation
	Chapter Goals
	Chapter Overview

	PUF-based Identification
	Background: Assigned versus Inherent Identities
	Fuzzy Identification
	Identification Performance for Different Intrinsic PUFs

	PUF-based Entity Authentication
	Background: PUF Challenge-Response Authentication
	A PUF-based Mutual Authentication Scheme
	Authentication Performance of Different Intrinsic PUFs

	Conclusion

	PUF-based Key Generation
	Introduction
	Motivation
	Chapter Goals
	Chapter Overview

	Preliminaries
	Secure Sketching
	Randomness Extraction
	Fuzzy Extractors

	A Soft-Decision Secure Sketch Construction
	Motivation
	Soft-Decision Error Correction
	Soft-Decision Secure Sketch Design
	Implementation Results on FPGA

	Practical PUF-based Key Generation
	Motivation
	Practical Key Generation from a Fuzzy Source
	Comparison of Key Generation with Intrinsic PUFs
	A Full-Fledged Practical Key Generator Implementation

	Conclusion

	Conclusion and Future Work
	Conclusions
	Future Work

	Notation and Definitions from Probability Theory and Information Theory
	Probability Theory
	Notation and Definitions
	The Binomial Distribution

	Information Theory
	Basics of Information Theory
	Min-entropy

	Non-Intrinsic PUF(-like) Constructions
	Optics-based PUFs
	Optical PUF
	Paper-based PUFs
	Phosphor PUF

	RF-based PUFs
	RF-DNA
	LC PUF

	Electronics-based PUFs
	Coating PUF
	Power Distribution Network PUF

	More Non-Intrinsic PUFs
	CD-based PUF
	Acoustical PUF
	Magstripe-based PUF

	Bibliography
	Curriculum Vitae
	List of Publications

