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FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

Physical Unclonable Functions (PUFs) are an emerging technology, which makes it
possible to base secure identification, authentication or generation of keys on unclonable
hardware tokens. Side-channel attacks, on the other hand, have been successfully used
to break various cryptographic devices. However, publications on the topic are dealing
almost exclusively with the attacks on cryptographic algorithms, e. g. DES and AES.
Although, PUF attacks based on machine learning have been published, there are no
surveys regarding side-channels, yet.

This thesis is meant to fill this gap and provide an analysis and demonstration of
side-channel attacks against PUFs. The theoretic possibility of such attacks is discussed
and rated with respect to feasibility. Furthermore, the electromagnetic emissions of an
RO-PUF prototype were measured and analysed. Also, a proof-of-concept implemen-
tation is presented, which enables the extraction of a 64 bit secret key of the RO-PUF
prototype, based on the gathered measurement data. Additionally, the measurements
are used to evaluate the viability of the theoretical attack scenarios. Finally, counter-
measures helping to prevent such side-channel attacks against PUFs are suggested.
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Zusammenfassung

Physical Unclonable Functions (PUFs) bieten, als neuartige Technologie, sichere Iden-
tifikation, Authentifizierung und Erzeugung von Schlüsseln auf einem nicht nachbild-
barem physikalischem Medium. Andererseits wurden Seitenkanalattacken erfolgreich
genutzt, um verschiedenartige kryptographische Geräte anzugreifen. Jedoch konzentri-
erten sich Veröffentlichungen zu diesem Thema fast ausschließlich auf Verschlüsselungsal-
gorithmen, wie z. B. DES und AES. Obwohl es veröffentlichte Angriffe auf PUFs gibt,
welche sich Methoden des maschinellen Lernens zunutze machen, sind keine Studien
im Bezug auf Seitenkanäle bekannt.

Ziel dieser Arbeit ist es, durch eine Analyse und Durchführung von Seitenkanalat-
tacken auf PUFs, diese Lücke zu füllen. Dazu wurden die theoretischen Möglichkeiten
dieser Attacken erörtert und auf ihre Durchführbarkeit hin beurteilt. Weiterhin wur-
den die elektromagnetischen Abstrahlungen eines RO-PUF Prototyps gemessen und
analysiert. Darauf basierend wurde eine Attacke implementiert, die es ermöglicht einen
64 Bit langen geheimen Schlüssel aus den zu Grunde liegenden Messungen zu gewinnen.
Zusätzlich wurde die Machbarkeit der zuvor vorgeschlagenen theoretischen Attacken,
anhand der vorliegenden Messdaten, evaluiert. Abgeschlossen wird die Arbeit mit
Vorschlägen für Gegenmaßnahmen, die helfen sollen, Seitenkanalattacken gegen PUFs
zu verhindern.
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1. Introduction

In today’s world a lot of security mechanisms rely on hardware tokens, e. g. smartcards,

as a secure way of authentication or key storage. However, it is possible to clone

those tokens by extracting secrets, for example, with invasive attacks. This is possible,

because secrets, like a cryptographic key, have to be stored in some kind of memory,

which can be read by an attacker. Therefore, new ways of secure key storage have to

be investigated.

Physical Unclonable Functions (PUFs) are a relatively new approach of achieving

secure identification, authentication or generation of cryptographic keys. Given a chal-

lenge as input, a PUF yields a response which is unique to the instance of the PUF.

Every entity has a different behaviour, which is determined during production and

not manipulatable by the manufacturer. As the name suggests, they are physically

unclonable, which is contrary to traditional practices implementing secure operations

in software or easily replicable hardware. Furthermore, PUFs are very hard to charac-

terise, which impedes simulating their behaviour in software.

Using this kind of technology makes it possible to create unclonable hardware tokens,

which have a unique identity bound to the hardware and can be securely authenticated

in the field. Since PUFs can be used to generate cryptographic keys, they can also be

used instead of complex and expensive secure storage systems for storage of private

keys. Instead of having to keep a private key stored in external secure memory, it can

be generated by a PUF on demand and discarded after use. Hence the key only exists

during the cryptographic operations, which restricts the attack surface for an adversary

immensely.

Recent research deals not only with the improvement of currently known PUFs [13]

or the discovery of new types, but also with proofs of the assumed security properties.

Among the latter were attacks based on machine learning, in order to characterise the

behaviour of a PUF [16] and information theoretical proofs that there’s no significant

leakage of secret bits in data used for the operation of the PUF [23].

This thesis gives an analysis of side-channels, like power consumption or electro-

magnetic emissions during operation of the PUF, which an attacker could use to gain

knowledge of concealed data of the PUF. For our analysis we used a Ring-Oscillator

PUF (RO-PUF) [20] implemented on a Field Programmable Gate Array (FPGA) .

However the attacks may also be generalised for other types of PUFs, because they

target properties, which are present in most implementations of PUFs.
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1. Introduction

In Chapter 2 some background information on PUFs and the different types thereof

as well as a short overview on side-channels is given. Further, related work concerning

current attacks and analysis of weaknesses of PUFs are presented in Chapter 3. The

afore mentioned PUF prototype that was used for this analysis is described in depth in

Chapter 4. In Chapter 5, the theoretical attacks are proposed. The implementation of

one those attacks is detailed in Chapter 6. Chapter 7 evaluates every of the previously

suggested theoretical attacks regarding feasibility, based on measurements conducted

with the prototype. Next to that, the effectiveness of the actual implemented attack is

analysed. Chapter 8 concludes the thesis.

2



2. Background

This chapter introduces Physical Unclonable Functions (PUFs), their functional prin-

ciples and applications. Furthermore side-channels and attacks related to them will be

described.

2.1. Physical Unclonable Functions

A Physical Unclonable Function is defined as physical structure which delivers a re-

sponse when challenged, as displayed in Figure 2.1. These responses can be easily

generated by challenging the structure. Because PUFs are hard to characterise, it is

highly improbable to repeat the behaviour of a PUF for any given challenge. Further-

more, the characteristics of the PUF, which are different for each instance built, cannot

be controlled even by the manufacturer. This fact implicates that PUFs are physically

unclonable.

2.1.1. Types of PUFs

There are different physical properties, which can be exploited to implement a PUF.

Optical PUFs

Doping a transparent material with light scattering particles is one example of a man-

ufacturing process which cannot be fully controlled. The particles may move in unpre-

dictable ways while the surrounding material is curing. When directing a laser beam

at the material, which was suggested in [14], the randomly positioned particles will

scatter the light resulting in a unique speckle pattern. Different challenges would be

represented by aiming the laser beam at the material in different angles.

challenge
physical
structure

response

Figure 2.1.: Basic principle of a PUF
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2. Background

Coating PUFs

The basic principle of randomly placed particles in a curing material can also be applied

to electrical based PUFs. In [21], Tuyls et al. presented this approach, known as the

Coating PUF. A Coating PUF is built as the top layer of an Integrated Circuit (IC) by

applying circuit paths, laid out in a comb shape, on top of the given IC. These will be

encased by a material, which is randomly doped with dielectric particles of different size

and dielectric strength. Each pair of circuit paths now forms a capacitor with random

capacitance, which again is highly improbable to be controllable by the manufacturer.

Furthermore, placing the PUF on the top of the initial IC yields protection against

invasive attacks for the underlying circuits. Hence if an attacker tries to disassemble

or remove the cover of the device in any way, the PUF will lose its original response

behaviour and therefore its secret.

Silicon PUFs

In contrary to the above mentioned PUFs, which utilise randomness explicitly in-

troduced during the manufacturing process, Silicon PUFs take advantage of intrinsic

randomness.

One example of this intrinsic randomness is the behaviour of the bistable latching

circuitry in Static Random Access Memory (SRAM) as mentioned in [5]. Each of these

SRAM cells starts in the same state on power-up with high probability, yet different

SRAM cells behave randomly and independently from each other due to variations in

the manufacturing process.

Another example of intrinsic randomness are the geometric properties of conducting

paths on ICs. Independent of the manufacturing technology of semiconductors, there

are always inevitable variations in the width of conducting paths. This results in

differences in signal propagation delays, which again are random and not manipulatable

by the manufacturer. One can take advantage of these differences by e. g. implementing

two symmetrical digital delay lines, which get triggered simultaneously. Because of the

above mentioned variations the outcome, i. e. at which end the transition occurs first,

is different between multiple ICs. This is the working principle of the so called Arbiter

PUF [12], where a digital arbiter indicates which of both signals was the fastest and

therefore produces a one-bit result.

Another example for a silicon PUF is the Ring-Oscillator PUF (RO-PUF) [20]. Al-

though exploiting the same variations as the Arbiter PUF, the working principle is

different. As the name suggests, a lot of identical ring oscillators are implemented on

an IC and get excited by a signal at the same time. Due to said variations during pro-

duction, the ring oscillators resonate in different frequencies, although they are built

identical. A pair of oscillators can be compared by counting falling and rising edges for

each and comparing the result. Further details on RO-PUFs are given in Chapter 4,

where the RO-PUF prototype used for this thesis is described.

4



2.1. Physical Unclonable Functions

2.1.2. Responses of PUFs

All of the above mentioned types of PUFs share the property of having a noisy response.

This is due to environmental influences affecting the physical system in question. A

higher temperature will result in extension of the material and hence in a different

behaviour of the PUF. Another influence on the characteristics of a PUF may be

ageing processes of the involved materials resulting in diversifying responses during

longer periods of time. For the PUFs based on electrical circuits, variations in supply

voltage also induce major noise in responses.

Being sensitive to all those inevitable environmental factors causes the responses of

PUFs to be useless for applications that cannot cope with a certain level of errors.

Therefore, it is necessary for all types of PUFs to have some sort of error correction,

to assure a constant response for a given challenge.

Another property of responses of PUFs is not being uniformly distributed over the

possible space of responses. This is usually alleviated by the use of universal hashing

after the error correction step to redistribute the responses.

2.1.3. Applications of PUFs

There are two basic modes in which PUFs are being used. Either the PUF at hand is

able to generate a very large quantity of challenge-response pairs or it only yields few

usable challenge-response pairs. This characteristic determines the field of application.

It is possible to built an authentication scheme, described in [14], based on a great

number of challenge-response pairs, which the manufacturer generates and saves to a

secure database. When the device is out in the field and needs to authenticate itself a

challenge gets chosen out of the database and is presented to the PUF. The response

yielded by the PUF is compared to the one stored in the database, to check whether

it was the original PUF. Each challenge-response pair is only used once to prevent

man-in-the-middle attacks. Figure 2.2 outlines this procedure.

If the goal is just a simple identification, it suffices being able to generate just few

different challenge-response pairs. In this scenario the challenge will mostly stay the

same and the response is interpreted as an ID. Another setting, where only a single

challenge is used, is the generation of a cryptographic private key. Without the usage of

a PUF, a private key in an embedded device would be stored in a secure memory. This is

a very expensive approach, because the memory has to be tamper-proof. An example of

a device implementing such a secure tamper-proof memory system is the cryptographic

coprocessor card IBM 4764 [7]. Besides hardware for cryptographic operations and a

random number generator, this device features protective shields, sensors and control

circuitry to protect against physical attacks. The control circuitry must be powered at

all times, using batteries if the device is not in a powered-on machine, and humidity,

temperature and barometric pressure ranges must be strictly maintained according to

the devices specification.

5



2. Background

Safe manufacturer environment

challenge
IC #42

with PUF
response

database

unknown IC
with PUF

matching database entry? IC #42

unknown IC

true

false

Figure 2.2.: Authentication using Physical Unclonable Functions: The manufacturer creates
a database of CRPs in a safe environment. A IC with PUF in the field is authen-
ticated by being challenged with a challenge from the database. If the response
matches the corresponding entry in the database, the IC passes the authentica-
tion.

It is obvious, that the usage of such a device is not just expensive in acquisition,

but also complex during operation. Additionally, all the hardware needed to protect a

device like this cannot be fit into a small, embedded device. However, it is possible not

to store the private key, but to generate it on demand using a PUF. Because a PUF is

hard to characterise, the secret is implicitly stored in a secure way. Furthermore, it is

protected against invasive attacks, because the PUF would get faulty or even destroyed.

This makes the system inherently tamper-proof.

Another field of application for PUFs is using them in protection of brand and

Intellectual Property (IP) . Since it became common for the semiconductor industry to

have shared foundries or outsourcing the production, counterfeiting of devices and IP

is an increasing problem. As already mentioned it is possible to derive cryptographic

key material from PUFs, which in turn can be used to encrypt and decrypt IP and

thereby bind it to a certain FPGA chip. Such an approach using bitstream encryption

was suggested in by Kean [8]. Apart from that, there where also solutions suggested,

where it is the aim to authenticate the hardware platform on which third party IP

runs, using PUFs [19]. An improvement of this approach can be found in [5], where

secret-key material gathered from the PUF is used both for encryption and MAC-based

authentication.

Closely related to IP protection is the topic of remote feature activation, as mentioned

in [6]. This means that a certain feature of the device may be unlocked after the device

6



2.2. Side-Channel Attacks

is already in possession of, an often untrusted, third party. As mentioned above, the

responses of a PUF, from which keys may be derived, is noisy and some kind of error

correction mechanism is needed. Those mechanism also require certain helper data, in

order to restore the correct response from a noisy PUF response. The way that keys get

derived from PUFs implies that both key and helper data are unique for every PUF.

If such helper data is given to a customer to unlock a certain feature of a hardware

with built-in PUF, the customer is only able to unlock it on the given device. An

explanation of the way the key and helper data can be generated is given in Chapter 4.

2.2. Side-Channel Attacks

Side-channel attacks are a form of physical attacks on devices, which use information

gained from the device while it is operating. Every implementation causes additional ef-

fects while in operation, e. g. power consumption or electromagnetic radiation. Putting

information gained by these side-channels in correlation with the supposed activity,

makes it possible to gain information about internally used information. When attack-

ing cryptographic devices the common goal is the acquisition of a secret key.

2.2.1. Timing Attack

Computational systems usually need a different amount of time to perform an operation

for different inputs. This is due to many reasons like branching optimisations, cache

behaviour or simply processor instructions that take different amount of cycles. In

[10], Kocher showed that it is possible to use these timing variations to find fixed

Diffie-Hellman exponents or factor RSA keys.

A simple example is a function, which checks a passphrase character wise from be-

ginning to end and reporting an error as soon as the first mismatch occurs. This kind of

implementation makes it possible for the attacker to gradually approximate her input

to the correct passphrase. By measuring the time it takes the function to report the

error, the attacker is able to conclude how many characters were guessed correctly at

the beginning of the current input.

2.2.2. Power Attack

Another possibility that enables inference of operations executed within a device is

the measurement and analysis of the device’s power consumption. Just like some

operations taking more time than others, they have a different energy usage pattern as

well. This is due to the power consumption characteristics of Complementary Metal

Oxide Semiconductor (CMOS) technology, which is prevalent in today’s digital circuits.

Each time a CMOS gate changes its state, there is measurable power consumption at

the Vdd pin. In the case, where gates are clocked and working synchronously, they all

change at the same time and their power consumption adds up. Approximately 85% of

7



2. Background

Figure 2.3.: Circuit diagram of an inverter

power consumption is caused by the dynamic charge or discharge. As can be seen using

an inverter as an example (Figure 2.3), at the output of each gate there is a parasitic

capacitance, caused by the connected wires and following gates. During a change in

the output, this capacitance is either charged or discharged, leading to a current, which

flows to Vdd or Vss. Further information regarding this topic can be found in [22].

Simple Power Analysis

The basic form of power analysis attacks is the Simple Power Analysis (SPA). After

measuring the supply current during the operation of the attacked devices, the power

traces are inspected visually. Hardly any conditioning takes place beforehand, except

frequency filters or averaging functions in order to eliminate noise.

Using this approach, it is for example possible to see the 16 rounds of DES in the

power traces of a device using this encryption algorithm or break RSA implementations

by observing differences in multiplication and squaring operations [9]. Usually SPA

is used for a first analysis of the device’s operation and to find regions of interest.

Furthermore conditional jumps can be visible because of different power consumption

in the different branches of execution. Hence SPA can be used to break cryptographic

implementations in which branching depends on the data being processed.

Differential Power Analysis

Going one step further from there and using statistical methods for the analysis of

the gathered data, leads to Differential Power Analysis (DPA) [9]. This type of at-

tack makes it feasible to exploit smaller variations in the measurements, which are

potentially overshadowed by measurement errors. An often used approach in DPA is

to record power measurements while letting the attacked device operate on different

inputs. The attacker calculates hypothetical intermediate results for those inputs and

possible values for the secret, he tries to find out. After that, based on a power consump-

tion model of the device, he maps those results to hypothetical power consumptions.

8



2.2. Side-Channel Attacks

Both the actual measurements and the hypothetical results are then correlated. The

hypothetical calculation with the highest correlation to the real measurements is the

one using the correct secret value.

While data collection in SPA is limited to the recording of one or a few power traces,

it is necessary for DPA to record a lot of traces with different inputs.

2.2.3. Electro-Magnetic (EM) Attack

Whenever there is a current, there is also an induced electro-magnetic field with a field

intensity that is directly proportional to the current. Hence the methods for SPA and

DPA can also be used on data, which was gathered by an EM sensor.

However the use of an EM probe yields some advantages over the plain measurement

of power consumption, as demonstrated in [15]. First of all, it is less invasive than power

measurement, where a measuring resistor has to be placed in the circuitry. Furthermore

the data gathered contains more information. This is due to the EM field having a

positive and negative direction depending on the direction of the current, whereas the

data from power measurements are only absolute values. Another advantage of using

an EM probe is the potential of regional measurements, making it possible to analyse

functional groups apart from each other, if they are placed on different regions in the

device.

9





3. Related Work

Apart from fundamental research on PUFs, like finding new types or improving existing

ones, there have been several considerations regarding the security related properties

of PUFs. This chapter will provide an overview of the security concerning work on this

topic.

3.1. Duplication of a PUF

One possible attack scenario for PUFs is the attempt to duplicate a PUF by building an

IC identical to the PUF. Although the manufacturer is not able to produce an identical

copy of a given PUF at will, because of the already described statistical variations in

the manufacturing process, a clone could be obtained by chance. This attack could be

already seen as successful, if the counterfeit PUF yields the correct responses for most

of the challenges and doesn’t even have to be fully identical.

However the inevitable variations are big enough that each PUF can be identified,

even when produced in the same batch or even on the same wafer. This was for

example shown in [12] where inter-chip variation was measured on a single wafer and

across wafers. Hence an attacker would have to produce a huge amount of PUFs and

conduct thorough measurements to obtain two similar PUFs. The complexity for this

undertaking, both economical and computational, is very high and can be considered

as unfeasible.

3.2. Modelling of PUFs

As explained above, it is very hard to directly clone a PUF. Another approach would be

to model the behaviour of a given PUF and simulate it, in order to obtain the correct

answer to a given challenge.

3.2.1. Building a Delay Model

By measuring the delays of all the circuit component, it is possible to create a time-

accurate model of a PUF. This model can then be used to simulate the behaviour of

the original PUF to predict the responses of given challenges.

Exact measurement, with the needed accuracy, is a difficult task, though. An attacker

can choose between invasive measurement, where the package of the IC has to be
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removed to insert probes, or non-invasive measurements, like DPA or EM analysis.

Invasive procedures might damage the PUF and therefore yield wrong results, because

the behaviour of the PUF will change. Moreover, the probes themselves might interfere

with the exact measurements of timings, because of capacitive coupling between the

probing equipment and the device to be measured.

Non-invasive techniques have disadvantage of not being able to measure small delay

variations as precisely as invasive methods and therefore not being a valid alternative

for gathering the required data to time-accurate modelling the PUF.

3.2.2. Building a Challenge-Response Model

Considering the drawbacks of exact measurements to be able to simulate the PUF and

calculate an answer for a given challenge, it is a promising approach to characterise the

PUF by characterising the responses. Exhaustively mapping all Challenge Response

Pairs (CRPs) is not a viable option for most types of PUFs, since there is a huge

number of them and measuring all of them is impossible in reasonable time. This can

be seen in the classification of [17], where only for the RO-PUF a full read-out is given

as practically feasible.

A much more promising approach is using machine learning techniques, to learn the

corresponding responses to challenges by only using a small fraction of all possible

CRPs. Lim showed in [12] how the delays in Arbiter PUFs can be modelled by a

Support Vector Machine (SVM) with examples of CRPs. The prediction error rate of

the SVM was below the inter-chip variation, which means that the software model could

not be distinguished from the original PUF. Because of this variants of the Arbiter PUF

were developed in order to be more resilient against machine learning model building

attacks. However, even XOR Arbiter, Lightweight and Feed Forward Arbiter PUFs

were successfully attacked with techniques like logistic regression or evolution strategies

in [16]. Recently model building attacks were improved further in [18], where it was

shown that policy gradients are an even more effective machine learning approach.

3.3. Protocol Attacks

Besides the PUF itself, the protocols using the PUF are susceptible to attacks. If

an attacker is able to break such a protocol, she may also gain knowledge about the

behaviour of the PUF or even secret keys the PUF should conceal.

As mentioned in [4], the most significant variant in this context is the Man-In-The-

Middle (MITM) attack (MITM), in which the attacker intercepts e. g. the communi-

cation between a user and the PUF. Being able to do so leverage the adversary to

impersonate the PUF without other parties noticing it. The impact of this depends on

the usage scenario. If the goal is to prove that one has possession of the PUF or access

to it, it is just part of the protocol and not a real attack.
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3.4. Information Leakage in Helper Data

Since the operation of the PUF depends on helper data, which is stored in insecure

memory and is in a certain amount dependent on the secret data, there might be an

information leakage in helper data.

An often suggested construction for error-correction for PUFs involves the Bose-

Chaudhuri-Hochquenghen (BCH) code. An example would be BCH(255,63,30), where

255 bits are generated by the PUF and 63 bits are the actual key size. The other

192 bits are exposed, from an information theoretical view, as the helper data. In

this example, 30 of the 255 bits can be corrected at most. Because of environmental

variations some PUFs show very high error rates. In an attempt to keep the error

correction simple, it is preferable to reduce the error beforehand. Two examples of

error reduction are the use of repetition coding and a preselection of the bits, that are

less likely to be noisy. Both approaches again need helper data bits, which are stored

publicly and might leak information about the PUF response.

The first attempt in finding an error correcting code, which is information theoret-

ically secure, i. e. whose helper data doesn’t leak any information about the response,

was mentioned in [23] with the suggestion of Index-Based Syndrome (IBS) coding.
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4. The RO-PUF Prototype

The used prototype was implemented on a Xilinx Spartan 3E FPGA and is based on

the work in [2] and [13]. As suggested by [2], it uses code-offset construction [3] for

the helper data algorithm with a construction of BCH codes for error correction and

hashing based on a Toeplitz matrix [11].

In this chapter, a description of the basic functional principle of the RO-PUF is

given. Afterwards, the methods for the needed error correction step and hashing will

be explained.

4.1. Functional Principle

A RO-PUF can be categorized as a Silicon PUF. As mentioned above, Silicon PUFs

utilise intrinsic randomness of ICs, which is caused by variation in the manufacturing

process. In this case signal propagation delays are exploited to yield a response based

on the physical properties of the IC. As the name Ring-Oscillator PUF suggests, there

are a number of identical ring-oscillators layed out across the chip. Although being

identical, there are inevitable differences in their frequencies, because of said physical

variations.

In order to generate one bit for the response, two oscillators are chosen and run for a

specified duration. The positive edges are counted and after the time has elapsed, both

counters are compared. Depending on which counter has the higher value, the result

is either 0 or 1. Figure 4.1 illustrates this approach. The prototype uses 511 ROs to

yield 510 response bits.

4.2. Helper Data Algorithm

Because of environmental influences, like temperature, it cannot be guaranteed, that a

given oscillator pair always behaves the same in comparison. Therefore the application

using it either may be error tolerant, or it is necessary to correct the occurring errors.

In a scenario for generation of private key material, every faulty bit results in a different

key, which is unacceptable. In addition to the noisy nature of PUFs, their responses

are not uniformly distributed. Hence, error correction alone is not sufficient to form a

cryptographically secure key, nor to form the seed for the generation of a key.

To deal with the above mentioned issues, a helper data algorithm implements an

information reconciliation phase followed by a privacy amplification phase. Both need
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Figure 4.2.: Functional schematic of the prototype

helper data to work, which is previously generated once, in a trusted environment,

during enrolment. The data obtained in this phase can then be stored in non-secure

memory, where it is accessible for the reconstruction of the key.

The whole helper data algorithm is capsuled from the application interface, which

can only issue the instructions enrol and reconstruct (Figure 4.2). Usually enrol is only

used by the manufacturer during enrolment and deactivated on deployment.

Being based on offset-code construction [3] the implementation of the helper data al-

gorithm for the prototype requires an error correcting code C, with parameters [n, k, d],

as well as a set H of universal hash functions. The parameter n describes the length

of the code C, whereas k denotes the length of the messages it encodes, both in bits.

The minimum distance of the code words is given by d, thus the code can correct up

to t = bd−12 c bits.
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When issuing enrol a pair of helper data W = (W1,W2) and the key K are generated.

To achieve this, first, a code word Cs out of C is chosen at random. Based on Cs the

first part of the helper data is calculated by W1 = Cs ⊕ R. Also, a hash function

hi gets randomly chosen out of the set H. The key, resulting from enrol, is defined

as K = hi(R), with the index i forming the second part of the helper data W2. An

overview of the enrolment is given in Figure 4.3.

During key reconstruction a noisy response R′ is obtained from the PUF. Using the

helper data W the key K, as generated by enrol, gets restored. As the first step the noise

induced errors have to be corrected. Using W1, a noisy code word can be calculated

with C ′s = W1 ⊕ R′, from which Cs can be obtained by using the decoding algorithm

of C. Analogous to the creation of W1 during enrol, the original R results from R =

W1 ⊕ Cs. Applying the hash function hi, with the index resulting from W2, yields the

key K = hW2(R) again. Figure 4.4 shows a summary of the key reconstruction.

4.2.1. Error Correction

As mentioned above, an error correcting code C is needed. Among the suggestions for

different error correcting codes on FGPA hardware given in [2], a BCH code design

was chosen for the prototype. This decision was based on the strong error correction
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properties of the BCH codes, which requires less input bits are required and hence less

ROs need to be implemented.

The actual code used is BCH(255,37,45). This means that it processes 255 input

bits, generated by the PUF, and yields 37 error free bits, if there are at most 45 errors.

Therefore, the error correcting code is needed to be applied twice, in order to correct

the errors in the 510 bit long input bit string.

4.2.2. Hashing

The code-offset construction for the helper data algorithm requires a function imple-

menting universal hashing. For the prototype, this is provided by hashing based on a

Toeplitz matrix as described in [11]. This so called Toeplitz hashing is an often used

algorithm, when hashing has to be implemented in hardware, because it has the ad-

vantage of being simple to implement and hence not using much space on an FPGA.

Figure 4.5 shows the principle of operation of the hashing as used in the prototype.

The Toeplitz matrix is not directly stored in memory, which would waste a lot of space

on the FPGA, but instead is simulated by a Linear Feedback Shift Register (LFSR) .

During operation, the result of the error correction phase (W1 ⊕ Cs) is shifted to

a gate, one bit per cycle. Every time this bit is 1, the current value of the LFSR

gets XORed onto the value of an accumulator register. The LFSR gets shifted and

the procedure is repeated for the remaining input bits. The initial value of the LFSR

defines the Toeplitz matrix and corresponds to the second part of the helper data W2.

The hashing operation on the prototype processes the first 74 bits, as returned from

the error correction phase, and yields a uniformly distributed, 64 bit long hashed bit

string.
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In the following section several possible approaches to side-channel attacks against the

RO-PUF prototype are discussed. First, possibilities for attacks, which are specific to

RO-PUFs are mentioned. Then, alternatives which also may work for other types of

PUFs are explained. It is hereby assumed, that the design and used algorithms of the

PUFs are known beforehand. The focus is set on EM-based attacks, because of the

mentioned advantages of this method in Chapter 2.2.3.

5.1. Ring Oscillators

Foremost, the core part of the PUF prototype, which consists of oscillators, counters

and comparators, is investigated.

5.1.1. Oscillators

All implemented oscillators get excited by a stimulus and start to oscillate with their

respective frequencies. This oscillation itself causes EM emissions. Being able to detect

the frequency of every single oscillator results in a full model of the PUF. Given a

challenge, i. e. a list of which pairs of oscillators are compared in which order, it is

trivial to simulate the comparison and the following phases of the key generation,

given the obtained model.

Apart from EM emissions generated by the oscillation, an oscillator would show

a difference in power consumption dependent on his frequency. Since the oscillators

consist of NOT-gates, there will be more switching activity on higher frequencies, which

in turn results in a higher power consumption. The possibility to measure the power

consumption for each oscillator in sufficiently high accuracy results in the same full

model of the PUF as mentioned above.

However both approaches suffer in terms of feasibility. Depending on the implemen-

tation, there may be more than two oscillators active at the same time, which results

in high interference while trying to measure a single oscillator. Additionally, a close

proximity between the oscillators increases such effects. Another problem is that the

emissions of the oscillators are very low, which makes it hard to find the correct position

for the EM probe to measure single oscillators.
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5.1.2. Counters

In addition to the power consumption of the oscillators themselves being directly pro-

portional to their frequency, the power consumption of the counters relates to the fre-

quency of the oscillator being monitored. Every operation that increments the counter

results in power consumption. The higher the frequency of the monitored oscillator,

the more incrementation steps of the counter are executed.

Knowing the count of both counters, at the time of the comparison step, means

knowing the result of the comparison as well. Hence, it is possible to measure the

noisy response of a PUF for a given challenge. To obtain the key, it is still necessary

to compute the error-correction and hashing steps afterwards. This is less powerful

than the full model, which the previous attack scenario would yield, because the result

is restricted to the current challenge. If it is desired to get a model for more than

one challenge, measurements for every challenge in question had to be conducted.

Although, it might be possible to get a full model with fewer measured challenges by

carefully selecting them to infer relations between oscillators.

As with the measurement of the oscillators above, the increments of a counter can

hardly be measured, because it is just a small single operation. However there are

just two positions of the counters that have to be found, compared to over a thousand

positions of oscillators. Given that it is possible to find the position of those and

measure with a sufficiently high accuracy, this approach seems to be more practical

than the measurement of every single oscillator.

5.1.3. Comparator

In contrast to the attacks suggested so far, where a time period has to be monitored,

stands the attack of the comparator. The comparator only gets used on known points in

time. That is because the time span for which the oscillations are counted is constant.

That means, that after the first point in time a peak caused by the comparator is

found, it is easy to find the remaining comparator peaks as well. Different comparison

operations should show a different power consumption pattern. This may result from

leakage current, when toggling the output or different switching operations during the

comparison, depending on the implementation of the comparator. An investigation of

those peaks may directly result in the noisy response of the PUF for a given challenge,

which is basically the same result obtained as by attacking the counters as mentioned

above.

5.2. Error Correction

Regarding the error correction mechanism, this analysis is restricted to the helper

data algorithm used in the prototype, which was already explained in Chapter 4.2.

Furthermore, only the reconstruction of the key is considered, because an attacker
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does not have access to the PUF during initial generation of the key, in a realistic

scenario.

As Figure 4.4 showed, there are two XOR operations involved, independent of the

used error correction algorithm. The attacker has no influence on the noisy PUF

response R′, but can manipulate the helper data W1 at will, because it is stored in

unsecured memory. Also, it is not possible to directly influence the corrected code

word Cs, because it is the result of the error correction algorithm. However, there is an

indirect influence of Cs due to the fact, that the input of the error correction algorithm

is the result of R′ ⊕W1, with W1 being under the control of the attacker.

Power consumption of XOR-gates can be modelled with the hamming weight assump-

tion, which is e. g. mentioned in [15]. Since power consumption depends on switching

activity, it can be estimated, that the power consumption will be lower when fewer

bits have to be switched. Looking at an XOR operation, there are no bits switched,

if the inputs are identical and all bits get switched, if one input is the complement to

the other. All this can be summed up in the hamming weight of the output, because,

regarding an XOR operation, the hamming distance of the inputs equals the hamming

weight of the output.

When attacking such a XOR operation, one of the inputs should be fixed and the

other variable. Measurements of power consumption or EM emission could be con-

ducted for every possible value of the variable input. After that, it is possible to com-

pare the traces at the point in time, where the XOR operation was executed. Given the

above mentioned power consumption model, the variable input of the XOR-gate was

identical to the fixed input, when the lowest power consumption was measured. Hence

it is possible to obtain the value of one operand by brute-forcing all possible values of

the other input.

In the scenario of the actual prototype, there is the choice between two XOR opera-

tions to attack, i. e. W1 ⊕R′ or W1 ⊕Cs. Due to the fact, that W1 is fully controllable

by the attacker, the operands R′ and Cs would be the respective targets. However R′

is afflicted with noise and hence not fixed, which makes it unsuitable as a target for the

attack. During a normal run of the helper data algorithm Cs is always fixed, because it

is the result of the error correcting function, which eliminates possible noise. Choosing

Cs as the target value leaves the attacker with two problems. The first problem is that

a brute-force attack may not be feasible or too costly, because of the large number

of measurements that have to be conducted. The second barrier is that Cs can not

be reconstructed any more, given that W1 may take every possible value. Because Cs

results out of error correcting W1⊕R′, it gets indirectly influenced by W1. Choosing a

value for W1 other than the original one can be seen as additional noise to that in R′.

Thus the error correction algorithm may result in a different code word than Cs, if the

hamming distance of the chosen value and the original value of W1 gets too big.

However, both problems can be alleviated by the same measure. By only brute-

forcing a certain amount of bits at one time and keeping the others at the original
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value of W1, it is possible to reduce the complexity of trying all possible values as

well as keeping Cs fixed. The aim is not testing every value in the possible number

range, but to get measurements for every value of every single bit. Keeping everything

fixed and toggling just single bits might however not yield a notable change in the

side-channel. That is why it is proposed to divide the n bits in groups of x bits, with

x being, for example, 4. Instead of conducting 2n measurements, it gets reduced to

just n
x2x, with x being considerably smaller than n. Choosing a small value for x also

implies staying below the error correction threshold. After taking those measurements,

the measurements of the single groups are compared against each other, with the one

containing the lowest power consumption being the candidate for that group. The

combination of all of those candidates then yields the candidate for the whole bit

string and hence the most probable value for Cs.

5.3. Hashing

As mentioned in Chapter 4.2.2, the hashing implementation of the prototype relies

on Toeplitz hashing. To understand the idea behind the attack, it is important to

remember, that each of the input bits from W1 ⊕Cs is getting shifted to the gate, one

bit per cycle. The gate will then cause a XOR operation of the current value of the

LFSR and an accumulator register, depending on the value of the input bit.

The branching at the gate allows to execute a side-channel attack, because the XOR

operation with the value of the LFSR and the output register only occurs when the

input bit is 1. In the other case, no operation is executed at all, apart from the LFSR-

shift, which is executed in both cases. Hence, there is a great difference in power

consumption dependent on the input bits. This way the attacker gains knowledge of

the value of the error corrected PUF response and only needs to calculate the hash

himself, with the knowledge of W2, to get the key.

5.4. Summary

As seen above the suggested attacks vary in difficulty and prospect of a successful

attack as well as the target PUF they can be conducted on. Attacking RO-PUFs by

trying to measure the different frequencies of every single oscillator would have a great

impact, because it results in a full model of the PUF. However a successful attack

is hardly feasible, because of the many oscillators that have to be characterised and

brought in the right order. The attack on the counters offers better prospects, because

the attacker only has to monitor two counters, which lowers the effort compared to

measuring every single oscillator. The last attack on the RO-PUF, comparing the peaks

of the comparator in measurement traces, should be the easiest one to conduct, because

clear peaks can be expected in comparison to the previous mentioned approaches.
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Attack Prospect Target PUF

Oscillators −− RO-PUF
Counters − RO-PUF

Comparator + RO-PUF
Error correction with different helper data ++ generic

Toeplitz hashing ++ generic

Table 5.1.: Overview of suggested side-channel attacks

The other suggested attacks are not targeting specifics of the RO-PUF and hence

are generic attacks, also suitable for other types of PUFs. Clear peaks in measurement

traces can be expected from both, attacking the XOR of the error correction and the

toeplitz hashing, which makes both approaches promising.

23





6. Implementation

In this chapter the proceeding while implementing a side-channel attack for the FPGA

PUF prototype is discussed. The description will emphasise on the hashing phase for

which the attack was successfully implemented.

6.1. Measurement Setup

As mentioned above, an EM probe (Langer ICR HH 150) was used for obtaining the

measurements in connection with a Langer PA 303 amplifier. Traces were recorded

at a rather high sample rate of 20 GS/s with a LeCroy wavePro 715Zi oscilloscope.

The prototype itself was implemented on a Digilent Nexys2 board hosting a Xilinx

Spartan3E-1200 FPGA, running at 50 MHz. Figure 6.1 shows a photo of the measure-

ment setup, with the EM probe being aligned over the FPGA IC.

6.2. Software

6.2.1. Measurement

For controlling the PUF prototype, i. e. issuing enrol and reconstruct commands, a

program written in C was used. The used prototype does not read its helper data

from external insecure memory, but receives them as parameters of the reconstruct

function. This makes it easy to log the generated helper data from enrolment, as well

as to manipulate helper data for every run of reconstruct. Because this software also

decides when to execute which command on the prototype, it is also used for controlling

the oscilloscope and storing the traces. This simplifies tasks like saving traces with

different used helper data to different folders or different file naming conventions. For

the interface between the computer and the FPGA a serial RS-232 connection was

used, because a USB connection induced too much noise. Measurement data is stored

in binary files as concatenated unsigned 8 bit integers without any headers.

6.2.2. Analysis

In order to analyse the recorded measurements, a custom plotting tool was utilized.

This software is coded in Python (>2.5) with PyQt (4.7.3) front end and uses the

libraries numpy (1.4.1) and matplotlib (0.99.3) for calculations and plotting.
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Figure 6.1.: Photo showing the Langer ICR HH 150 probe over the Xilinx Spartan3E-1200
FPGA IC

Apart from this tool, a lot of analysis was done using above named libraries in an

interactive Python shell. This allowed for a fast overview over gathered data, interactive

calculations and prototyping of the proof-of-concept code.

6.3. Evaluation of Measurements

The first step was evaluating where to position the probe for getting meaningful traces.

Therefore the prototype was running reconstruction operations in an infinite loop,

while the position of the EM probe was changed and the results were observed on the

oscilloscope. First of all, it was necessary to to get a clean signal with a good signal to

noise ratio. Those position candidates were narrowed down further, so they showed a

pattern that fitted the model of the reconstruction operation. This pattern should show

periodic peaks for the oscillator/comparator phase, as well periodic behaviour during

hashing at the end. Furthermore, the cycle period of the comparator peaks should

match the known time period, for which the oscillators are running. Additionally the

FPGA was configured for emitting a trigger signal to aid in differentiating the three

phases. An example of such a trace is given in Figure 6.2, where mostly the oscillator

phase with the characteristic comparator peaks can be seen. In order to see the error

correction and hashing phase, it is necessary to zoom in at the very end of the trace.

This magnification is shown in Figure 6.3, where the first three peaks are the last
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Figure 6.2.: Complete trace of the reconstruction operation

comparator peaks. After a trigger, the error correction appears in three peak groups,

followed by a hardly recognisable hashing phase between the last two trigger signals.

6.4. Evaluation of the Hashing Phase

After obtaining a suited placement for the EM probe, the time frame of the hashing

operation was measured relatively to the trigger at the end, which signalised the suc-

cessful reconstruction of a key. In order to get clean traces without much noise, 3.000

measurements of 100.000 samples each were conducted and the traces were aligned

and averaged. The result is given in Figure 6.4, where you can see the hashing occur-

ring between the major spike after 20.000 samples, which appears at the end of error

correction, and the trigger peak after 80.000 samples.

As mentioned in Chapter 5.3, the used hashing implementation is mainly based on

a LFSR and an XOR operation. Since only the power consumption of the XOR is

relevant, the shifting of the LFSR can be seen as additional noise. However, since

the LFSR operations are always the same across all measurements, they remain in the

averaged trace and are not eliminated like the noise. Given that the initial value of the

LFSR is determined by helper data W2, it is possible to set it to a new random value on

every measurement. In this way, the results of the XOR operation are different in every

measurement run and the end result is not the correct key. However, the decisions at

the gate, whether there is a XOR operation or not, stay the same. Hence, operations

which are not relevant for the attack get varied and because of that eliminated in the

averaged trace, while relevant operations are kept constant and are reinforced in an

averaged trace.

The result of the measures above is a cleaner trace with less noise, but it is still

not possible to notice obvious patterns, which allow to draw conclusions about the

input bits coming from the error correction. Although there are obvious spikes, there

are also smaller varying peaks between them and it is not sure which of them contain

information about the input bits. Therefore, it is preferable to know, which of the peaks
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Figure 6.3.: Magnification of the last part of the complete trace. Three trigger signals can
be identified: The first between oscillator phase and error correction phase, the
second between error correction and hashing and the last at the end of hashing.
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Figure 6.4.: Averaged trace of 3000 measurements of the hashing phase preceded by the end
of the error correction phase. A trigger signals the end of the hashing operation.
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are caused by processing input data. So far, noise, varying between measurements, was

eliminated by averaging. Now, the inverse approach is used to obtain a trace, primarily

showing everything, which consumes power regardless of the input bits. However,

it is not possible to directly change those input bits. It is possible to vary helper

data W1, which has an influence on the bits, we want to change. Changing W1 in

a completely random manner has enough impact on the error correction, so that it

corrects to different code words, yielding varying input bits for the hashing phase.

There were 30.000 measurements with randomized W1 conducted and averaged, leaving

a trace that characterises everything apart the influence of the input. Calculating the

difference between the averaged trace without noise and the newly obtained trace, leaves

a trace, where peaks show at which points in time input bits play a role. An example

of those traces is given in Figure 6.5. At face of it there is no gain of information, since

for every peak in the trace to analyse, there is a peak as well in the other two traces.

This would mean every single peak should be of importance. However, it is noticeable,

that every other peak varies in height, although the corresponding peaks of the other

traces do not show this variation. Hence, there is more information contained in these

peaks compared to the others. Another fact, which is assuring that only every other

peak is important for the analysis, is having 148 positive peaks in the trace, whereas

only 74 bits are used for hashing.

An explanation for alternating two types of peaks lies in the way the Toeplitz hashing

is implemented in the prototype. One input bit is processed in two cycles, one for

shifting the LFSR and the other for the XOR operation. Note well, that this is an

implementation detail of the prototype and might be as well implemented together in

one cycle. The interval in samples between the peaks fits the clock rate of 50 MHz of

the used FPGA and confirms that the varying half of the peaks is caused by the XOR

operation.

Comparing the values of the peaks to the error corrected bits from a debugging

log file of the prototype’s operation showed that the higher those peaks are relatively

to each other, the more likely the processed bit was 1. This confirmed the proposed

model of the power consumption regarding the XOR operation. However, all of the

traces obtained showed that the height of the peaks was increasing towards the end

of the hashing operation. Although an explanation for this was not found, there is a

way of compensating this effect to still being able to extract the bit sequence. Since

half of the 148 peaks are almost constant, except for the increasing trend towards the

end, those peaks can be used as a reference. By using the ratio of the information

bearing peaks to the peaks that follow them instead of using the direct peak value, the

influence of the increasing trend is compensated.
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Figure 6.5.: Trace with indication of relevant peaks. The actual trace with randomised W2

(red) is overlayed by the trace with randomised W1 (green) and the differential
trace (bright blue).

6.5. Proof-of-Concept for Attacking the Hashing Phase

A proof-of-concept software was implemented, to present that it is possible to extract

the bits being hashed exclusively by using measurements gathered by normal operation

of the PUF.

Because there are many parameters that need to be adapted for different measure-

ment runs and measurement setups, this proof-of-concept has the form of a wizard.

It aids to tune those parameters step by step and yields the most probable bit string

according to those parameters and the given traces.

The program is called with the path to the measurement traces as a parameter. In

the first step, the traces are read into memory before they get aligned. The alignment

is necessary, because there are always small variations in the traces. Additionally, when

randomising helper data, some operations, like error correction, might need a different

amount of time, hence adding to shifts in the traces. Since every trace features the

trigger peak at the end, the function first tries to find that peak in every trace and

then aligning them according to that peak by prepending or appending zeros to the
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Figure 6.6.: Proof-of-concept step 1: Preview of peak detection. In this case the parameter
for delta was set to 13.5.

traces. After being aligned, the mean of every data point gets calculated, which leaves

one averaged trace.

The next step consists of detecting the distinct peaks in the averaged trace. The

helper function, which accomplishes this, is inspired by the peak detection mechanism

mentioned in [1]. This approach is suited for peak detection in spiky and noisy signals,

where the well-known zero-derivate method to find maxima and minima is not suited.

The problem that is to be solved here, is the automatic detection of the peaks and

valleys, which are obvious for the eye and not maxima and minima in the mathemati-

cally sense. Basically, peaks are defined here as the highest point surrounded by points

that are a certain delta lower. This delta is one of the above mentioned parameters,

which need manual tuning. As an aid for finding the correct value, the wizard shows

a preview of the trace, where the peaks are marked, which were found using the given

delta value. Such a preview window is presented in Figure 6.6. There might be the

possibility of smaller peaks being detected (e.g. at the end of the trace of Figure 6.6),

which will be eliminated in the next step. The main focus of this step should be, that

all relevant peaks are being detected without too much false positives.

The knowledge, that there have to be 148 peaks, which have an equal interval between

them, can be used to find the relevant peaks in the set of already detected peaks. The

wizard already suggests a value, which is the median of the distances between all peaks.

Depending on the number of false positives found, it is already a good estimation of the

actual interval. The value of the interval can also be found by measuring the number

of samples the hashing operation takes and dividing that by 148. The peaks which are

left after applying this method are shown in Figure 6.7.

In the next step, the information bearing peaks have to be weighted to compensate

for overall variations in power consumption during the hashing operation. Hence, like

already described above, every other odd peak is divided by the following even peak.
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Figure 6.7.: Proof-of-concept step 2: Preview of significant peaks. Here, the assumed value
of the interval was set to 400.

Each of the resulting values being below a certain threshold means there is a 0 at that

position in the bit string, every value being above that threshold indicates a 1. Given

enough measurements to eliminate the noise, such a threshold could always be found

manually, when knowing the actual bit string. But because a potential attacker wants

to gain knowledge of this exact string, this trivial method is not an option. Assuming

a balanced number of zeros and ones in the string, the mean of all values is a good

approximation of the threshold. This was confirmed by applying the proof-of-concept

on real measurement data, where the approach of taking the mean as the threshold

only failed with too noisy data. Performance and error rate of the proof-of-concept

code will be discussed in Chapter 7.
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In this chapter the suggested attacks are evaluated based on conducted measurements

of the RO-PUF prototype. Performance and error rates of implemented attacks are

given and the problems are discussed.

7.1. Attack of Toeplitz Hashing

First, the implemented proof-of-concept attack of the Toeplitz hashing phase is evalu-

ated. Here, the focus is on how accurate the, to be hashed, bit string can be recovered

from the measurement data. It is obvious, that the accuracy of the attack increases

with the accuracy of the gathered data and lack of noise it contains. Since noise can

be reduced by averaging the traces, clean data can be obtained by measuring a large

number of traces. However, gathering a lot of data is time and disk space consuming,

therefore it is preferable to keep the number of measurements to be conducted small.

As already discussed in Chapter 6, an optimising approach that can be taken while

conducting the measurements is randomising the helper data W2. Since it alters the

operations regarding the LFSR, the power consumption for those operations varies as

well and can be cancelled in the traces, like noise, by averaging. This results in a clearer

signal of the operations of interest.

Because the proof-of-concept code only evaluates the positive peaks, it is possible to

get a more distinct trace by cutting the negative values already at the oscilloscope and

using the full available range of values for the positive peaks. This causes the ratio

between peaks to get more pronounced, which is advantageous for the weighing of the

peaks. However, those traces might be more prone to noise, since spikes caused by

noise will also have a higher influence.

A comparison between the suggested approaches regarding error rate can be seen in

Table 7.1. There, it is shown, that all measurement methods should work fine with over

3000 traces. If measurements are restricted to around 1000 traces, the naive approach

is getting less efficient and guesses 5 bits wrong out of the 74 bit string, which is to be

hashed. Compared to that number of errors, measurements can be reduced to around

200, when randomising helper data W2. The only measurement method yielding error

free results for more than 1000 measurements is randomising W2 and additionally

using the whole available range for positive values. However that approach performs

even poorer than the other two alternatives, when noise cannot be faded out enough,

because of an insufficient number of traces. This is caused by noise peaks being scaled
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Number of Traces Normal Randomised W2 Randomised W2 ”fullrange”

3000 1 (1.4%) 0 (0%) 0 (0%)
2000 2 (2.7%) 1 (1.4%) 0 (0%)
1000 5 (6.8%) 1 (1.4%) 0 (0%)
500 6 (8.1%) 3 (4.1%) 1 (1.4%)
200 9 (12.2%) 4 (5.4%) 6 (8.1%)
100 13 (17.6%) 11 (14.9%) 13 (17.6%)
50 18 (24.3%) 13 (17.6%) 21 (28.4%)
20 24 (32.4%) 16 (21.6%) 24 (32.4%)

Table 7.1.: Errors and error rates of the hash attack with different number of measurements

and confused with the actual peaks when trying to find the relevant peaks. Hence, if

there is no possibility to obtain more than 500 traces, just randomising W2 is the most

accurate method. If it is possible to record more measurements, it is advisable to scale

the positive positive part of the traces using the whole value range, because then the

proof-of-concept will most certainly have error free results.

7.2. XOR Attack in Code-Offset Algorithm

As discussed in Chapter 5, the XOR operation after the error correcting step could

be used to attack the error correction phase. However, there is a difference of the

attacked XOR during hashing and the XOR after error correction. In contrast to the

hashing phase, where the varying power consumption was caused by executing an XOR

operation at some points in time and not executing it at other points in time, there is

only the one attacked XOR operation, always being executed, after error correction.

To still be able to attack this operation, the power consumption depending on in-

puts has to be modelled, like with the suggested hamming weight assumption. Traces

obtained from operation of the prototype, however, did not show the behaviour, which

is expected considering the hamming weight model. This is probably because there

are no actual XOR gates in the implementation of the FPGA based prototype, but

the functionality is implemented via look-up tables. Furthermore, comparisons of runs

with different inputs did not result in an alternative power consumption model for the

FPGA prototype. Additionally, there is no single peak representing the XOR of the

error correction, but a group of three peaks. Such post-pulse oscillations can be caused

when a device operates at high clock frequencies, where strong peaks affect also the

following cycles. Figure 7.1 is zoomed in on the first two peaks and shows, that there

are no clear patterns between the chosen extreme cases. Cases where certain patterns

arose, were negated by counterexamples of other bit groups.
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Figure 7.1.: Zoomed view on the first two peaks of the XOR operation during error correction.
The blue line shows the mean of all the traces with unaltered helper data, as a
reference. The single trace, where the first 4 bits of helper data W1 are identical
to the first 4 bits of Cs (which is the other input for the XOR), is displayed in
green. In contrast the red line shows the opposite case, i. e. the first 4 bits of W1

are the inverted first 4 bits of Cs.

Although the attack could not be implemented for the given FPGA prototype, be-

cause of the above mentioned reasons, it is still considered a valid attack for other

implementations. Furthermore, the attack would still be possible for an FPGA-based

RO-PUF, assuming a power model for the XOR operation of look-up tables can be

found. This, however, was out of the scope of this work.

7.3. Attack of the RO-PUF

Like with the attacks of the error correction mechanism, a successful proof-of-concept

of the attacks suggested for the actual RO-PUF part of the prototype was not im-

plemented. This is due to the already discussed bad prospects of those attacks (cf.

Chapter 5), which are now confirmed, in the following, by actual measurements.

7.3.1. Oscillators

Besides high interference between oscillator pairs, the biggest concern, regarding the

feasibility of attacks against the oscillators, was the strength of measurable emissions.

Actual measurements confirmed this concern, as can be seen in the left half of Fig-

ure 6.3. The oscillator phase could only be identified by the comparator peaks, which

occurred with the expected period. During the time, where the oscillators are run-

ning, there is no signal recognisable, which is different to noise. This is illustrated in
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Figure 7.2.: Zoomed view on the interval, when oscillators are running.

Figure 7.2, which shows a magnification of the trace between two comparator peaks.

Without a refined measurement setup and higher measuring sensitivity, this attack

cannot be considered realisable. Even if the emissions of the oscillators can be mea-

sured with sufficient accuracy, there is still the problem of highly probable interferences.

Additionally, this is even getting more complicated, because it is hard to locate every

single oscillator. In the case, where oscillators are located very close to each other,

interferences are also increased.

7.3.2. Counters

Although the attack of the counters seems more likely possible, than the attack on the

oscillators, the power consumption and EM emission of the counters is comparable to

those of the oscillators. This can also be seen in Figure 7.2, where no signal emerges

from the noise. Hence, in regard of practicability, the same conclusion as with the

oscillators applies. However, targeting the counters still means less measurement effort,

because there are only two counters compared to the number of oscillators, which is

almost two orders of magnitude higher. Also, those two counters can be located more

easily compared to the location of every single oscillator, like mentioned above.

7.3.3. Comparator

In contrast to other RO-PUF related attacks, there are clearly visible peaks in the

traces at those points in time, when the comparator operations are supposed to be

executed. Apart from the trigger peaks, they are the only clearly recognisable spikes

in the full trace, given in Figure 6.2.

Similar to the attack of the XOR operation during error correction, it was not possible

to extract a power model for the comparison implemented in look-up tables, given the

scope of this work. However, assuming the knowledge of such a model, the attack of
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the comparison operations is to be considered as a feasible way of obtaining the noisy

response to a given challenge.

7.4. Possible Countermeasures

The proof-of-concept of one suggested theoretical side-channel attack against PUFs

shows, that those attacks are of practical relevance. Hence, it is necessary to reconsider

the designs of the PUFs and their fuzzy extractor operations, like error correction and

hashing, in order to protect them against such attacks. Therefore, this section gives

suggestions for possible countermeasures.

The hashing phase is the most promising attack surface for the prototype in question.

Since the operation of the Toeplitz hashing only executes the XOR operation, when

input bits are set to 1, a detailed power consumption model of the actual XOR operation

is rendered unnecessary. However, it is of great importance to have a hardware efficient

hash function, because the PUF and its surrounding logic should not waste valuable

space on the IC or FPGA. This is why more complicated hash functions are not desired

in practice. Yet, it is necessary to alter this hashing mechanism in order to prevent

information leakage through this side-channel.

One suggestion for concealing the power consumption differences between the cycles

is given in Figure 7.3. The idea is to introduce a second register, on which the XOR op-

eration with the LFSR is executed, whenever the real operation does not get executed.

This is implemented by controlling the fake logic circuit with the inverted bits of the

shift register. Hence, there is a XOR operation executed in every cycle, independent of

the input bits. This alleviates the noticeable deviations in power consumption. Even

if a detailed power consumption model of the XOR operation is known, an attacker

would need to know which circuit is used on which cycle. However, this is equivalent

to the knowledge of the input bits, which are the actual target of the attack. Although

being a valid countermeasure for FPGAs as well as for ASICs, there is the drawback,

that the original Toeplitz hashing logic gets almost doubled.

A slightly different approach is presented in Figure 7.4, where a multiplexer is used

instead of a gate. In the cases, where the input bit is set to 1, the value of the LFSR

is used in the XOR operation. Instead of no XOR operation being executed in case

of a 0 as the input bit, there will also be an operation, but with a predefined static

value. Considering a static value of all bits set to 0, the value of the accumulator

register wont be changed after the XOR operation. This way, the hashing operation

will yield the exact same result as the original approach, with the exception of having a

XOR operation executed in every cycle. Therefore, the information leaked through the

side-channel is not as distinct as compared to the original hashing. Although, it has

to be noted, that since there is no change in output bits during the inserted operation,

it should show a different power consumption behaviour and hence be distinguishable

from the normal XOR operation. However, a change in output bits can be easily
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Figure 7.3.: Toeplitz hashing with additional inverted XOR operation
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Figure 7.4.: Toeplitz hashing with static alternative value

achieved with that approach by choosing the static value as all bits set to 1. The result

of a XOR with this value equals inverting every bit of the input. Taking the hamming

weight assumption as a basis, this does not seem to be an improvement, because the

alternative operation will have a high power consumption every time, if all static bits

are set to 1, and a low power consumption, if all static bits are set to 0. Given that

there is no accurate model known, like in the case of the FPGA-based prototype, it can

be an improvement to the vanilla Toeplitz hashing regarding side-channels. Depending

on the implementation details it could also be more efficient in terms of gates compared

with the approach, where the logic gets doubled. It has to be noted, that setting all

bits of the static value to 1 will not result in the original Toeplitz hash any more. This

is caused by an inversion to be on hand, when the number of zeros in the input string

is odd. However, since the same function is executed during enrolment, where the key

is defined, it will still yield the same key.

Regarding side-channel countermeasures for the error correction phase, it is more

difficult to find a solution without changing the whole proven concept of code-offset

construction [3]. However, since the suggested attack relies on changing groups of bits

in helper data W1, which can be seen as introducing noise, a fine tuning of the error

correction parameters helps making the execution of this attack more difficult. By

minimising the safety margin between actual errors and the maximal number of errors
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that can be correct by the error correction code, the attacker gets limited in the number

of bits in W1, which he is able to change at once. This should be a general goal, because

the use of simpler error correction codes, which only correct fewer errors, is beneficial

in terms of hardware complexity as well.

Looking at the actual measurements and initial considerations, there is practically

less need for countermeasures regarding the attacks on the oscillators and counters of

the RO-PUF. This leaves the comparator as a possible target for side-channel attacks.

As discussed above, a matching power consumption model and further analysis would

make an attack of the comparator feasible. However, the comparator is an intrinsic

part of the design of current RO-PUFs and not avoidable as such. The only obvious

solution would be timed operations, which run in parallel to the comparator, inducing

noise into measurements and therefore concealing the actual power consumption of the

comparator.
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8. Conclusion

The contribution of this thesis is an analysis and demonstration of side-channel attacks

against Physical Unclonable Functions. It hereby fills the gap between other analyses

regarding the security of PUFs. Previous studies were mainly focused on functional

improvements, modelling of PUFs and improvement of error correction mechanism and

hashing, regarding information theoretical security standpoints as well as hardware

complexity. Although side-channels were mentioned in some previous work, analyses

focusing on them were not conducted.

Firstly, attacks against PUFs based on side-channels were developed in theory. Here,

it became obvious, that attacks are possible, which are not only applicable to a specific

kind of PUF, but also appropriate for a range of different types of PUF. This is because,

in most usage scenarios, PUFs need additional logic to be useful. Examples for this

are error correction mechanisms, to cope with the noisy nature of responses generated

by the PUF, and hashing, to pre-process the response in order to make it usable for

cryptographic operations. Hence, not only the PUF itself provides attack surface in

the context of side-channel attacks, but also its ambient logic.

Secondly, the theoretical results were practically evaluated using an FPGA-based

RO-PUF prototype. In order to conduct the necessary measurements, an EM probe

was used, to be able to perform the attacks as non-invasive as possible. The analysis

of different measurements showed the respective feasibility of the theoretical attack

scenarios with standard measurement equipment.

Furthermore, it was possible to develop a proof-of-concept for the most promising

attack, exploiting the design of the so called Toeplitz hashing, which is commonly used

because of its hardware efficiency. With the help of the proof-of-concept code, it is

possible to recover all of the bits in the 74 bit, to be hashed, bit string by analysing

the data of 1000 power traces.

Finally, different approaches for countermeasures against the suggested attacks were

suggested. Although those countermeasures could not be evaluated in terms of their

practical effectiveness, they should nevertheless show, how side-channel based attacks

could be complicated or even avoided.

In conclusion, it is important to state that side-channels have to be considered in

the development and further improvement of PUFs. Given that all security features

that PUF-based technology offers can be lost by leakage through a side-channel, it

is necessary to not only improve hardware complexity or maximise entropy, but also

include countermeasures avoiding leakage in future designs.
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[17] Ulrich Rührmair, Jan Sölter, and Frank Sehnke. On the foundations of physical

unclonable functions. Cryptology ePrint Archive, Report 2009/277, 2009. http:

//eprint.iacr.org/.

[18] Frank Sehnke, Christian Osendorfer, Jan Sölter, Jürgen Schmidhuber, and Ulrich

Rührmair. Policy gradients for cryptanalysis. In Konstantinos I. Diamantaras,

Wlodek Duch, and Lazaros S. Iliadis, editors, ICANN (3), volume 6354 of Lecture

Notes in Computer Science, pages 168–177. Springer, 2010.

[19] Eric Simpson and Patrick Schaumont. Offline hardware/software authentication

for reconfigurable platforms. In Cryptographic Hardware and Embedded Systems -

CHES 2006, pages 311–323. 2006.

[20] G. E. Suh and S. Devadas. Physical unclonable functions for device authentication

and secret key generation. Design Automation Conference, 2007. DAC ’07. 44th

ACM/IEEE, pages 9–14, 2007.

[21] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven, Nynke Verhaegh,
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A. Appendix

A.1. Source Code of Proof-Of-Concept for Attacking the
Hashing Phase

#!/ usr / b in /env python

import os
from optparse import OptionParser
import numpy as np
import matp lo t l i b . pyplot as p l t
from h e l p e r f u n c s import ∗

def g e t s i g p e a k s ( peaks , num of po ints =148 , margin=50, med dist=None ) :
”””
Ex t rac t s r e l e v an t peaks f o r the ana l y s i s out o f p r e v i o u s l y d e t e c t e d
peaks and re turns t h e i r p o s i t i o n s .

Arguments :
peaks −− de t e c t e d maximum peaks as re turned from the

g e t p ea k s he l p e r func t i on
num of po ints −− the number o f po in t s r e l e v an t f o r the ana l y s i s

(number o f po in t s = number o f s e c r e t b i t s ∗ 2)
margin −− s a f e t y margin f o r d e t e c t i on o f r e l e v an t peaks
med dis t −− expec ted approximate d i s t ance between r e l e v an t peaks
”””
i f not med dist :

med dist = np . median ( [ peaks [ i +1][0]− peaks [ i ] [ 0 ]
for i in xrange ( l en ( peaks )−1) ])

t r i g g e r=np . argmax ( [ item [ 1 ] for item in peaks ] )
r e s = [ ]
for i in xrange ( t r i g g e r ,0 , −1) :

i f peaks [ t r i g g e r ] [ 0 ] − peaks [ i ] [ 0 ] >= med dist+margin :
r e s . append ( i )
num of po ints −= 1
break

for i in xrange ( r e s [ 0 ] , 0 , −1):
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i f peaks [ r e s [ −1 ] ] [ 0 ] − peaks [ i ] [ 0 ] >= med dist−margin :
r e s . append ( i )
num of po ints −= 1
i f num of po ints==0:

return r e s [ : : − 1 ]
a s s e r t ” g e t s i g p e a k s f a i l e d ”

def weigh peaks ( peaks , s i g p e a k s ) :
”””
Weights peaks accord ing to the r a t i o between peak to ana lyse
and the f o l l ow i n g unimportant peak .

Arguments :
peaks −− maximum peaks as re turned from the

g e t p ea k s h e l p e r func t i on
s i g p e a k s −− p o s i t i o n s o f r e l e v an t peaks as re turned

by g e t s i g p e a k s
”””
dpeaks=s i g p e a k s [ : : 2 ]
npeaks=s i g p e a k s [ 1 : : 2 ]
return [ f l o a t ( peaks [ dpeaks [ i ] ] [ 1 ] ) / peaks [ npeaks [ i ] ] [ 1 ]

for i in xrange ( l en ( dpeaks ) ) ]

def convert ( values , th r e sho ld =0.9) :
”””
Converts the weigh ted va l u e s to a b inary b i t s t r i n g
accord ing to the g iven t h r e s h o l d .

Arguments :
va l u e s −− l i s t o f va l u e s as re turned from weigh peaks
t h r e s ho l d −− the t h r e s h o l d va lue ,

which dec i de s whether a va lue g e t s
conver ted to 0 or 1

”””
return ’ ’ . j o i n ( [ item<th r e sho ld and ’ 0 ’ or ’ 1 ’

for item in va lue s ] )

i f name ==’ ma in ’ :
pa r s e r =\

OptionParser ( usage=” usage : %prog [ opt ions ] \
path to measurements ” )

par s e r . add opt ion ( ”−d” , ”−−peakde l ta ” ,
des t=” peak de l ta ” ,
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help=” d e l t a f o r peak d e t e c t i o n ” ,
metavar=”PEAKDELTA” ,
type=” i n t ” ,
d e f a u l t =25)

par s e r . add opt ion ( ”−p” , ”−−p r e f i x ” ,
des t=” f i l e p r e f i x ” ,
he lp=” p r e f i x o f the f i l enames o f the measurement” ,
metavar=”PREFIX” ,
d e f a u l t=”0” )

par s e r . add opt ion ( ”− l ” , ”−−pu f l og ” ,
des t=” p u f l o g ” ,
he lp=”path to puf . l og ” ,
metavar=”PUFLOG” ,
d e f a u l t=” puf . l og ” )

par s e r . add opt ion ( ”−s ” , ”−−s ta r t sample ” ,
des t=” s ta r t s amp l e ” ,
he lp=” at which sample to s t a r t in the f i l e s ” ,
metavar=”START” ,
type=” i n t ” ,
d e f a u l t =0)

par s e r . add opt ion ( ”−n” , ”−−numpoints” ,
des t=” num of po ints ” ,
he lp=”how many s i g n i f i c a n t po in t s the re are in hashing ” ,
metavar=”POINTS” ,
type=” i n t ” ,
d e f a u l t =148)

par s e r . add opt ion ( ”−m” , ”−−margin” ,
des t=”margin” ,
he lp=”margin f o r d e t e c t i o n o f s i g n i f i c a n t peaks ” ,
metavar=”MARGIN” ,
type=” i n t ” ,
d e f a u l t =50)

par s e r . add opt ion ( ”− i ” , ”−− i n t e r v a l ” ,
des t=” med dist ” ,
he lp=” i n t e r v a l between s i g n i f i c a n t peaks ” ,
metavar=”INTERVALL” ,
type=” i n t ” ,
d e f a u l t=None )

par s e r . add opt ion ( ”−t ” , ”−−conv thre sho ld ” ,
des t=” conv thre sho ld ” ,
he lp=” thre sho ld to convert weighted va lue s to b i t s ” ,
metavar=”TH” ,
type=” f l o a t ” ,
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d e f a u l t=None )

( opt ions , args ) = par s e r . p a r s e a r g s ( )
data = None

# read p o s s i b l y p r e v i o u s l y generated average t race
i f l en ( args ) !=1 :

i f os . path . e x i s t s ( ’ . / tmp . dat ’ ) :
data = np . f r o m f i l e ( ’ . / tmp . dat ’ , np . u int8 )

else :
pa r s e r . e r r o r ( ”path to data d i r miss ing ” )

# read in measurements , a l i g n them and
# ca l c u l a t e the mean to e l im ina t e no i se
i f data i s None :

d a t a d i r = args [ 0 ]
data = read a l igned mean ( data d i r ,

opt i ons . f i l e p r e f i x ,
opt i ons . s t a r t s amp l e )

save nparray ( data , ’ . / tmp . dat ’ )

# ex t r a c t important peaks
# ( h i gher than d e l t a compared to v i c i n i t y )
peak de l ta = opt ions . peak de l ta
while peak de l ta !=”” :

p l t . p l o t ( data , ’b− ’ )
peak de l ta=f l o a t ( peak de l ta )
print ” e x t r a c t i n g peaks with d e l t a ” , peak de l ta
peaks , = get peaks ( data , peak de l ta )
p l t . p l o t (∗ ( z ip (∗ peaks ) ) ,

l i n e s t y l e=’None ’ ,
marker=’ o ’ ,
marke r f aceco l o r=’ ye l low ’ ) [ 0 ]

p l t . show ( )
peak de l ta = raw input ( ’new peak de l t a \

( empty to cont inue ) : ’ )

# try to f i nd the peaks s i g n i f i c a n t f o r the hashing
margin , med dist = opt ions . margin , opt ions . med dist
i f not med dist :

med dist = np . median ( [ peaks [ i +1][0]− peaks [ i ] [ 0 ]
for i in xrange ( l en ( peaks )−1) ])
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while margin != ”” and med dist != ”” :
p l t . p l o t ( data , ’b− ’ )
margin , med dist = f l o a t ( margin ) , f l o a t ( med dist )
print ” f i l t e r i n g s i g n i f i c a n t peaks with margin” , \

margin , ”and approx . i n t e r v a l ” , med dist
s i g p e a k s = g e t s i g p e a k s ( peaks ,

opt i ons . num of points ,
margin , med dist )

p l t . p l o t ( [ peaks [ item ] [ 0 ] for item in s i g p e a k s ] ,
[ peaks [ item ] [ 1 ] for item in s i g p e a k s ] , ’ ro ’ )

p l t . show ( )
margin = raw input ( ’new margin ( empty to cont inue ) : ’ )
med dist = raw input ( ’new approx . i n t e r v a l \

( empty to cont inue ) : ’ )

# weigh the peaks to compensate f o r d i f f e r e n t
# power consumption
b i t v a l u e s = weigh peaks ( peaks , s i g p e a k s )

# conver t the weigh ted va l u e s to b i t v a l u e s
# accord ing to a t h r e s h o l d
i f not opt ions . conv thre sho ld :

opt ions . conv thre sho ld = np . mean( b i t v a l u e s )
c a l c b i t s t r = convert ( b i t v a l u e s , opt i ons . conv thre sho ld )
print ” supposed key\ t \ t ” , c a l c b i t s t r

# pr in t a c t ua l b i t s t r i n g , i f debug l o g o f PUF i s g iven
# and c a l c u l a t e number o f e r ro r s
l ogdata = None
i f os . path . e x i s t s ( opt ions . p u f l o g ) :

with open ( opt ions . p u f l o g ) as f :
l ogdata = f . read ( ) . s p l i t ( ’ \n ’ ) [ 2 : ]
print ”key from puf . l og \ t ” , logdata [ 2 ] [ : 7 4 ]

i f l ogdata :
print ” d i f f e r e n c e \ t \ t ” , \

sum( ch1 != ch2
for ch1 , ch2 in z ip ( c a l c b i t s t r , l ogdata [ 2 ] [ : 7 4 ] ) )
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A.2. Source Code of Helper Functions used in the
Proof-Of-Concept

#!/ usr / b in /env python

import os , glob , s t r u c t
import numpy as np

def read a l igned mean ( d i r e c to ry , p r e f i x=’ 0 ’ , s t a r t =0):
”””
Read in measurement t r a c e s out o f the g iven d i r e c t o ry ,
a l i g n them accord ing to a t r i g g e r peak and re turn
an averaged t race .

Arguments :
d i r e c t o r y −− the d i r e c t o r y o f the t races ,

g i ven as a s t r i n g
p r e f i x −− the p r e f i x o f the f i l enames to read in
s t a r t −− s t a r t i n g sample o f from where to s t a r t s earch ing

f o r the t r i g g e r peak
”””
l = [ ]
peak = 0
f i l e s = sor t ed ( g lob . g lob ( os . path . j o i n ( d i r e c to ry , p r e f i x+’ ∗ . dat ’ ) ) )
for i n f i l e in f i l e s :

print ” read ing ” , i n f i l e
x = np . f r o m f i l e ( i n f i l e , np . u int8 )
temp = np . ndarray . t o l i s t ( x )
i f not l :

peak = temp [ s t a r t : ] . index (255)+ s t a r t
l . append ( x )

else :
try :

curpeak = temp [ s t a r t : ] . index (255)+ s t a r t
except :

print ”no peak found in ” , i n f i l e
continue

d i f f = peak−curpeak
i f d i f f <= 0 :

d i f f = −d i f f
l . append ( temp [ d i f f : ] + [ 0 ] ∗ d i f f )

else :
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l . append ( [ 0 ] ∗ d i f f + temp[:− d i f f ] )
i f l en ( l [−1]) == 0 :

print l [−1] , curpeak , d i f f

return np . mean(np . array ( l , np . u int8 ) , a x i s =0)

def get peaks ( a , de l ta , x=None ) :
”””
Returns a t u p l e o f maximum peaks and minimum peaks found in
a t race .

Arguments :
a −− array r ep r e s en t i n g a t race
d e l t a −− d e l t a va lue o f when to recogn i z e a po in t as a peak
x −− a l t e r n a t i v e l a b e l i n g o f a x i s
”””
maxtab = [ ]
mintab = [ ]

i f x i s None :
x = np . arange ( l en ( a ) )

a = np . asar ray ( a )

i f l en ( a ) != l en ( x ) :
sys . e x i t ( ’ Input v e c to r s a and x must have same length ’ )

i f not np . i s s c a l a r ( d e l t a ) :
sys . e x i t ( ’ Input argument d e l t a must be a s c a l a r ’ )

i f d e l t a <= 0 :
sys . e x i t ( ’ Input argument d e l t a must be p o s i t i v e ’ )

mn, mx = np . Inf , −np . I n f
mnpos , mxpos = np .NaN, np .NaN

lookformax = True

for i in np . arange ( l en ( a ) ) :
t h i s = a [ i ]
i f t h i s > mx:

mx = t h i s
mxpos = x [ i ]
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i f t h i s < mn:
mn = t h i s
mnpos = x [ i ]

i f lookformax :
i f t h i s < mx−d e l t a :

maxtab . append ( ( mxpos , mx) )
mn = t h i s
mnpos = x [ i ]
lookformax = False

else :
i f t h i s > mn+d e l t a :

mintab . append ( ( mnpos , mn) )
mx = t h i s
mxpos = x [ i ]
lookformax = True

return maxtab , mintab

def save nparray ( a , fn ) :
”””
Saves a numpy array in a f i l e
( b inary u in t8 wi thout any header ) .

Arguments :
a −− array to be saved to d i s k
fn −− f i l ename fo r the saved array , g i ven as a s t r i n g
”””
with open ( fn , ’w ’ ) as o u t f i l e :

for item in a :
o u t f i l e . wr i t e ( s t r u c t . pack ( ’B ’ , item ) )
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BCH Bose-Chaudhuri-Hochquenghen

CMOS Complementary Metal Oxide Semiconductor

CRP Challenge Response Pair

DPA Differential Power Analysis

EM Electro-Magnetic

FPGA Field Programmable Gate Array

IBS Index-Based Syndrome

IC Integrated Circuit

IP Intellectual Property

LFSR Linear Feedback Shift Register

MITM Man-In-The-Middle

PUF Physical Unclonable Function

RO-PUF Ring-Oscillator PUF

SPA Simple Power Analysis

SRAM Static Random Access Memory

SVM Support Vector Machine
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