Chapter 2

Filters

This chapter comes between the Haar example of Chapter 1 and the full development of filter
banks (leading to wavelets). We decided to collect other definitions that belong to this circle of
ideas. Here is an indication of our plan:

Basic filters: 1deal filters and then FIR filter design

Basic tools: Fourier methods and functional analysis

Bases and frames: A matrix T has a two-sided or only a one-sided inverse
Integral transforms: windows in time-frequency, wavelets in time-scale,

Signal processing is an enormous subject. The input signal can arrive in many forms: continuouns
time, discrete time, finite time. It can be processed in many ways. Our greatest interest is a signal
x(n) in discrete time that is processed by a linear time-invariant operator. If the input is shifted
in time then the output is equally shifted. These operators are Jilters — the fundamental actors
in signal processing.

Filters can be expressed in three domains: 1, ®, z. In each domain the filter is a multiplica-
tion:

{n):  Multiplication by a Toeplitz matrix with h(n) on the nth diagonal.
(@) Multiplication by the frequency response H(ei®) = S h(n)e—ion,
(z):  Multiplication by the transfer function H(z) = 3 h(m)z ™.

We want to explain these three forms and the connections between them. If we emphasize the
matrix form more than usual, it is because that form is less well known. We believe that the
matrix formulation must become familiar, as the teaching and practice of signal processing rely
increasingly on computer systems like MATLAB.

Qur goal is to understand filters, through impulse responses and frequency responses and
transfer functions. If you know signal processing as in the Oppenheim-Schafer text, go past the
first sections. If you are learning the whole subject from scratch, these sections can help. Do not
hesitate to use this chapter for reference, as you reach Chapter 4 and the heart of the book.

We begin with signals.
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21 Signals, Samples, and Time-invariance

A discrete-time signal is a sequence of numbers. The sequence could be finite or infinite. Most
signals in this book are doubly infinite; the index n goes from —oo to +00. Time has no start
and no finish. The signals look like

x(—1)
x(()

x(1)
x(2)

x=0(..,x_1, X0, X1, X2,...) or x=

Those components are real or complex numbers (usually real). One particular signal is of tre-
mendous value. It is the unit impulse x = 6:

§=(..,0,0,1,0,0,...) hascomponents &)= { ‘1}: " ig @.1)

The continuous-titne analogue is the “delta function” 5(r) — also called a Dirac impulse. In one

case n is an integer, in the other ¢ is a real number. The standard notations are n € Z and f € R.

Together with the special vector & goes the delayed impulse $8, where the unit component

appears one sample later at n = 1. The whole vector is shifted by one time step. The symbol S
stands for the shift or delay that has this effect on the vector §:

0, n#l

$6=(...0,0,0,1,0,...) hascomponents 6(;:——1)== L nel

Itis worth ernphasizing that a shift 1o the right (a delay) produces the minus sign in the expression
n — 1. It is the same in continuous time. The graph of f{¢), when it is shifted one unit to the
tight, is the graph of f(r — 1). The delayed function at ¢ = 1 equals the original function at
t=0

When the components are shifted to the left, the impulse comes sooner (at n = —1). This
shift is an advance instead of a delay. The symbol is 8!, The operator “S inverse” has an effect
opposite to S:

0, n#E-1

$716=(..,0,1,0,0,0,...) has components 6(n+1)=l A

Ofcourse S™'S6 = 6. The impulse is delayed by $ and then advanced by S~'. Also S§~16 = .
The operator $! is a “two-sided inverse” of S.

The vector & could be defined, and Dirac’s delta function should be defined, by what hap-
pens for inner products. The inner product (dot product) with any vector x(n) or any continuous
function x{t) picks out x(0):

Ko=) x(mbm) =x0) and (x(),8()) = f % X8 dt = x(0).

The number x(0) is a sample of the function x(¢). Many discrete signals come from sampling
continuous signals. This analog to digital (A/D) conversion is a centra) part of communications
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technology. We sketch two continous-time signals x(¢), a step and an exponential, and their

discrete-time samples x{rn).

-3-2~1 01 2 3 n -3-2-1 01 2 3 n

A

Unit Step One-sided exponential

The samples of cos w! are of special importance. The continuous signal has frequency w
(often normalized as f = 3-). Everything depends on the sampling period T and the sampling
rate f; = % The sampling may be fast enough to catch the oscillations in cos wt, or it may be
too slow. We may catch the oscillations in cos e, or miss some. The borderline is the Nyquist
rate. The sampling rate is exactly the Nyquist rate when f; = 2 f and -]l,e = 2 and 0T = 7.
This is the rate (two samples per oscillation) in the first figure. Those samples have the fastest
oscillation that a discrete vector can achieve: x(n) = (—1)".

To repeat: The Nyquist rate gives the highest possible frequency @T = 7.

W WA WY /)

Sampled at Nyquist rate Twice the Nyquist rate Slower than Nyquist rate

The second sampling rate is faster than Nyguist. So the digital frequency wT is less than 7.
In this figure, the sampling frequency f; is twice the Nyquist rate four samples (four bullets)
per oscillation. The sampled signal is x(n) = cosnT = cos &F. Therefore the samples are
1,6,-1,0,1,0,.

The l.hll‘d samplmg rate is slower than Nyquist. The sample after cos O is cos 2%. The sam-
plingrateis 5 2 of the Nyquist rate ( %3"‘-) At this slow rate, the samples are the same 1,0,-1,
0,1,0,. as in the second ﬁgure' We cannot tell whether the true frequency of the continuous
signal is @ (as drawn with solid line) or a slower frequency % (as drawn by dotted line). This is
aliasing. The slow frequency § is an alias for the true frequency o, because the discrete samples
at this rate will be exactly the same.

An extreme case of slow sampling is when wT = 2x. All the samples are cosanT =
cos 2w n = 1. Every sample is at the top of the wave. The digital frequency 27 looks identical
to frequency zero (which is the alias of 2m).

When the continuous signal is a combination of many frequencies w (or f = #£), the largest
ONE (yyy SeLS the Nyquist rate 2 f,,,,, . The comesponding Nyquist period T has wpe T = 7. As
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long as the sampling period is smaller than this T, the sampling rate is faster than the Nyquist
rate. Then there is no aliasing (by a lower frequency than the true frequency). The continuous
signal x(1) can be recovered from its samples x(n). The Shannon sampling formula, to achieve
that recovery, is in Section 2.2.

impuises and Delays in Three Domains

Impulses are the building blocks for all signals. Delays are the building blocks for all filters. We
will present signals and filters in three ways — with time variable », and frequency variable ,
and complex variable Z.

Signal in the time domain x(n) = (...,x(—1),x(0), x(1}),..)
Signal in the frequency domain ~ X(e/°) = 3 x(n)e™/*" (standard)

X(w) = Y x(n)e™'" (reduced)
Signal in the z-domain X = Y x(m)z™".

The standard notation and reduced notation were compared in Section 1.1. We use both! Some-
times the standard notation is clearer; it allows direct replacement of ¢/ by z. Sometimes the
reduced notation is simpler, as in Y (w) = H(w)X (w).

The impulse § = (...,0,0,1,0,0,...) becomes the constant function “1” in the frequency
domain and z-domain. The only nonzero component &(0) = 1 is in the constant term. The
delayed impulse y = (...,0,0,0,1,0,...) looks more interesting. In the other domains this
y) = 6(n — ) isY(e/) =e™* and Y(2)=2z".

Note that y(1) = 1 multiplies the negative power of z, by the signal processing convention.
If the impulse is advanced instead of delayed, the nonzero occurs at n = —1. The transform is
z instead of z~}. This signal is no longer causal. The advance operator S~ is not a causal filter.

Now we deﬁne ﬁltcrs in general and study delays in pamcular

LA dxgaal ﬁlter isa combmauon H=) h(n )S" of delays S and advances S -1

The filter is completely determmed by ns coefﬁcrents k(n) When ths sequencc is ﬁmte we
have an “FIR filter”. When k(r) = 0 for negative n, we have a “causal filter”. Our greatest
interest is in causal FIR filters like
1 3. 3443 3-43 1—-+/3
H= +8‘/_1 + 8‘/_5 + 8‘/-32 + 8‘/—53 (Daubechies Dy filter).
Suppose this filter acts on the impulse 8. The output is a combination of & and its delays S8
and $26 and §&:

—— 1+4/3 3++/3 3-V3 1-3
T T8 8 8

,0,..))
This is the “lmpulse response " Itis equal lo lhc vector h of ﬁlter coefﬁcnents
The mpulse response (causa] and FIR) is h (k(O), h(l), .. k(N))

You see why H Zh(n)S" actmg on 6 produccs thIS output k Each term A(n)S" produces
one response k() at time n,
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As displayed, the filter is FIR and causal with N + 1 “taps”. The filter length is even when
N is odd! Some authors end at (N ~ 1), so the length is N — but then the power z=™ -1 enters
into a large number of formulas. We prefer to have sums from 0 to N, and scaling functions and
wavelets on the interval 0 < ¢ < N, and z~¥ in all those formulas. The Daubechies filter has
length 4 becanse N = 3.

The delay S takesx = (..., x(0),x(1),...)intoy = (..., x(—1),x(0),...). Every linear
operator like S is represented by a matrix. Since x andy = Sx have infinitely many components,
the shift matrix § has infinitely many rows and columns. This causal operator becomes a lower
triangular matrix:

0o 0 0 0 x(—1) x(=2)

Sy = 1 0 0 0O x(() _| =x=D
- 01 0 0 x(1) T x0)
0 01 0 x(2) x(1)

The only nonzero coefficient for this filter is k(1) = 1. This coefficient goes along diagonal one.
In general k(n) goes on diagonal n.

What does the delay do in the z-domain? The input X (z) and output ¥ (z) are
X@y=-+x@+x(Dz'+.-- and Y@= -+x0z"" +x()z7 2 +...

The delay has multiplied X (z) by 2! to produce Y(z). This transfer function 7! is exactly the
z-transform of the vector (..., 0, 1,0, 0, .. .) of filter coefficients. The pattern is always Y (z) =
H(z)X(z). Here is the special result for this particular filter, a delay H = §:

X (¢/®) is multiplied by e /¢ and X(z) is multiplied by z™'.

Time-invariant Filters

Our filters H are linear. This means in particular that “zero in produces zero out”. If x = 0 then
necessarily y = 0. The output from 2x is 2Hx. The output from x + z is Hx + Hz. This has an
important consequence: H is represented by a matrix.

Our filters are also time-invariant (meaning shift-invariant). This leads to a special constant-
diagonal property of the matrix:

H(Sx) = 5(Hx) : A shift of the input produces a shift of the output.
Each column of H is a delay of the previous column.
Each diagonal of H is constant and the ath diagonal contains k().

Those are different statements of time-invariance. They imply that H is a combination of shift
operators: Every filter has the form H = }_ h(n)S". The filter H = I + 45+ 35 has coefficients
h = (1, 4,3). These are the entries down every column of the Toeplitz matrix.
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* 1 0 0 0 - row 0
« 4 1 0 0 . row |
H= . 3 4 1 0 .,
« 0O 3 4 1 \\
B L] » » \\x _ 1
~  diagonal number
column O 1 2 1 0

Toeplitz matrix = censtant-diagonal matrix with entries H;; = h¢i — j).

The numbers 1, 4, 3 also appear in every row — but the order is reversed. This is a causal
FIR filter. It is time-invariant, because HS or SH (they are the same!) is S + 45? + 383, All
columns and all diagonals shift down by one, from the delay.

The difference between the row number / and the column number j is the diagonal num-
ber k = § — j. The entries of H depend only on k. This is a constant-diagonal matrix and a
convolution matrix and a Toeplitz matrix,

Matrix Multiplication and Vector Convolution

The jth column of H is $’h. We can compute Hx as a combination Y. x(j)(S!h) of those col-
umns. We can also compute 3 h(k)(S*x). Best to see the nth component Hx{(r):

2 x(Dhn= ) = 3 h(kx(n — k).
i k
t )
nth component of delayed & nth component of delayed x

The equality comes by changing j to n — k. The sums are over all integers, 5o the change is
allowed. The finite sum to j = N would not equal the sum to k¥ = N, unless % has period N.
{Then the N by N mairix H would be a circulant matrix. This “wraparound™ is the easiest way
to deal with finite length signals, but not generally the best way.)

In both formulas for Hx(n), the indices add to n. The zeroth component is tow zero of H
times x;
¥(0) = Hx(0) = h(Nx(—-N)+ - - + B(D)x(— 1) + B{0)x (D). 2.2)

Each pair of indices on the right adds to zero— which is the index on the left. The numbers
h(N), ..., h(0) are like a moving window that multiplies x. The nth component of the output
kas indices adding to n:

Hx(n) = h(N)x(n — NY+ - + h(1)x(n — 1) + B({O)x(n). 2.3
This is the pattern that produces convolution:

 The output vector is Hx = h xx = convolution of h with x.



42 Chapter 2  Filters

Convolution Rule Indices automatically add when they are the exponents in a polynomial.
Multiply H{z) X (z) and their coefficients undergo a convolution:

H(@)X(2) = BO) + ANz + -+ BNZ™¥)( - x(=1)z +2(0) +x(1)z™" +--).

The coefficient of 2% is R(O)x(0) + A(1)x(—1) +--- + R(N)x(—N). This is Hx(0).
The coefficient of 27" in the product H(z)X (z) is the ath component of Hx. Multiplying
polynomials means collecting terms with the same exponent. This is convolution.

Example 2.1. The filter matrix has A(0) = 1, k(1) = 4, and k(2) = 3. Suppose the input has
x(0) = 1 and x(1) = 1. Then we multiply polynomials or we take convolution of vectors:

L

1
1 M+4z7" 43270 +z7") = 14577147772 43273
1

(1,4,3) = (1, 1) (1,5,7.3).

I P
A fa] b

3
3 1

At z = 1 this is 8 times 2 equals 16, At z = —1 we check 0 times 0 equals 0.

Example 2.2. Multiplying two filter matrices (Toeplitz matrices) is also a convolution. The
product FH 1s another time-invariant filter, and its coefficients are in f * k. This is just like
multiplying polynomials, with the shift S in place of the complex variable z~':

FH=( + SY+45+35% =1+ 55 + 782 + 385,

Note again that the order is not important: FH = HF. This will change when there are sampling
operators (1. 2) and (1 2) between the filters.

Example 2.3. The convolution of (1,a,a?, ...) with (1, b, b2,.. ) is

bz +227 2+ W +ar +a%7 24y = L+ @+ b + (@ +ab+ b2 2 +

The power z~2 in the product comes from z° times z2, and from z~! times z~!, and from
272 times z°. The sum of exponents is —2, to give 772 in the answer. This is the pattern for the
indices k and # — k. Their sum is always n, to give y(n) in the convolution.

The Inverse of a Time-invariant H
The filter H is invertible if and only if

H{w) # 0 for all frequencies

H(z) #0 forall |z] = [e/®] = 1. 24

Then H™' is also a constant-diagonal matrix. Its frequency response is 1/ H (w).

Invertibility 1s the first of many properties that become infinitely simpler by transforming
convolution to H{(w)X (w). The inverse of multiplication is division! We recover X (w) from
Y(w)/H (). The requirement is H({w) % 0.
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To emphasize: If we know a frequency wy for which H(wp) = O, then we know an input
x for which Hx = 0. That input has the pure frequency wq. It is the vector with components
x(n) = ¢~ The pure frequency is selectively killed by H (wp) = 0. Then H{wo) X (wp) = 0
and H! fails.

A moving average with equal weights h{(0) = k(1) = % is not invertible. The frequency
response H{w) = %(1 + e~/) is zero at @ = &, The vector with components x(n) = ¢~/ =
(—=1)" is exactly the vector that has Hx = @. By changing to two unequal weights the system
becomes invertible.

Example 2.4. Suppose h(0) = 1 and k(1) = —fS. The frequency response is H{w) = 1 —
Be~'¢. If we select B smaller than one, then 1 # B¢, Thus H(w) # 0. The matrix # has 1
on the main diagonal and — 8 on the diagonal below. To invert in the frequency domain, divide
by H(w). To invert in the time domain, practice with a 4 by 4 matrix:

1 -1 1
-8 1 g g B 1

This suggests the correct diagonals 1, 8, 82, ... for the infinite matrix H™'. If His I — BS, its
inverse I + 85 + 8282 + - .- has the frequency response 1/H (w):

1

T =1t Be ' + (Be™ Y 4 (BeT) .-

The most important of all infinite series (the geometric series) gives us this inverse: ﬁ =
1+ 8+ 8%+ - --. The sum is restricted to |#] < 1. Otherwise the series diverges.

Example 2.5. What if 8 is larger than 17 For a finite matrix we don’t notice the difference. The

4 by 4 inverse above is still cotrect. But the infinite series has to be written in powers of 1 /8. The

inverse matrix changes from causal to anticausal. Look first at the frequency response 1/ H (w):
1 eim eiw eiico e3ico

Se . (e La =Tg T g T g T 2.6)

1~ pBe (e*/B) —1 B B B

This involves positive powers. We have advances instead of delays in the inverse,

The difference between [#] < 1 and |8] = 1 is the difference between a zero inside the unit
circle and a zero outside that circle. H{z) = 1 — Sz7! has its only zero at z = 8. Here is the
general rule for inverses of causal FIR systems:

No inverse when a zero is on the unit circle : I + S has no inverse.
Causal inverse when all zeros are inside the unit circle: 1 — 8z has |8] < 1.

Anticausal inverse when all zeros are ourside [z) = 1: 1 — Bz7" has 8| > 1.

A zero on the unit circle gives a particular frequency ey at which H = 0, Then 1/ H breaks
down and the system has no inverse.
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11.

12.

13.

14.

15.
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Problem Set 2.1

. What matrix reprcscnts the inverse shift ¥ = $'x? In the z-domain, the input is X(z) =

«+x(0) + x(1)z7! + - and the output is ¥(z) = ___. The advance §-’ multiplies the
z-lransform by . .

. Express the filter H = §+S~' with coefficients A{(—1) = tand (1) = 1 in all three domains.

Write the matrix H with two nonzero diagonals. Write the transfer function H(z) with two
terms. Write the frequency response H(e’*) or H(w), and check that this is the transform of
the impulse response b = H 6.

. Show that H=5+S"" is not invertible in three ways. Find a nonzero input x such that Hx = 0.

Find a frequency e that has response H{e/*) = 0. Find a number with |z} = 1 such that
H(z)=

. What are the mairix H and coefficient vector & for the 3-term moving average Hx(n) =

3(Jn:(m) +x(n — 1} +x(n — 2))? This is not invertible. Find two vectors x for which Hx = 0
Find two numbers with jz| = 1 such that H (z} = 0. Find two frequencies such that H (w) =

- Express this 3-term moving average in the form H = 3~ k(n)S". What is N7 Find the output

¥ when the input has x(0) = x{1) = 1. In the z-domain what are X (z) and ¥ (z), and how
are they related?

. For matrices show that $§~! = . What is the corresponding statement in the z-domain, about

the transfer functions of § and $~'7

. Multiply the matrix § by itself. The product H = §2 corresponds to what coefficient vector &

and what transfer function H(z)?

. Every filter 3~ #(n)}S" commutes with a delay: ¥ A(n)$™! is HS and also SH. Why does

every filter commute with every other filter?

. If the continuous-time signal is x (1) = cost, what is the period T that gives sampling exactly

at the Nyquist rate? What samples x(nT) do you get at this rate? What samples do you get
from x{r) = sint?

If the sampling period is T = 1 and the continuous signal is x(1}) = /5, describe the
discrete signal x(n). Is it periodic? Find two other frequencies w such that x(1) = ' would
give the same samples.

If the signal x(¢) has bandwidth 3 Khz, then the sampling rate smust be at least ___ to avoid
aliasing.

Note that the sampling period is generally normalized to T = 1. Then the largest digital fre-
quency is @ = . Our graphs of H(w) do not extend beyond .

Why is the downsampling operator (J 2)x(n) = x(2r) not time-invariant? Give an example
with (| 2) 8x # S(] 2)x,

When are these filters invertible? Which has a causal inverse? Which has an FIR inverse?
Which is allpass with | H (¢/*)] = 17

Hz = (—az"Wl-8hH

Hyz) = 1487 ' +8%2 2 +827%+

H{z) = @-g/a-8")

Hi(z) = 1-pz'+z?
Determme the range of a and 8 for which the LTI system with impulse response hi(n) =
l PR ; 0 is stable. Find the output y(n) when x(n) = (—1)".

Determine the 1mpu|sc response for the cascade of the two LTI systems having impulse re-
sponses k() = (1) u(n) and hy(n) = (4)" u(n) using the convolution formula h(n) =
Eh.(k)hz(n — k). Here 1(n) is the unit-step sequence.
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16. Let H, be a system that throws away odd-indexed samples: y(n) = x(2n). Is H, linear and
time-invariant? H is the downsampling block and its operation is discussed in Chapter 3.

x(n/2), evenn

0, odd n
Is H; alinear time-invariant system? H, is the upsampling block and its operation is discussed
in Chapter 3,

18. Which cascade of downsampling and upsampling is time-invarant and what is its impulse re-
sponse?

17. Suppose H; inserts an extra zero between samples of the input: y(») = I

) 4

x(n) —» M

H =  um

k4

xn) —= H Hy = y(n)

19, Give two examples of LTI systems, two examples of linear time-varying systems, and two
examples of nonlinear systems.

2.2 Ideal Filters, Shannon Sampling, Sinc Wavelets

The word filter suggests that H selects a band of frequencies. It rejects another band. For w in
the passband, the frequency response is near to H(w) = 1. For w in the stopband, the response
is near to H(w) = 0. Any realizable non-ideal filter has a transition band in between, where
Hiw) changes from pass to stop (from near 1 to near 0).

Figure 2.1: Ideal lowpass filter and best mean-square approximation with 20 terms.

We begin with an ideal filter, which has no transition band. Its responses are exactly H(w) =
1and H(w) = 0. This is often called a brick wail filter, because of the step function in its
graph. The response from an ideal lowpass filter is shown in Figure 2.1, This is a halfband filter,
with sharp cutoff at w = 5. The response H{w) = Y h(k)e~** is 2x-periodic, and the ideal
response is zero in the high frequency band from % to 7:

X . z
Hdeal lowpass  H(w) =Y h(k)e™** = | (1]’ Oclol <3 eX)
-0

. Z=lw <

What filter coefficients k(%) produce this response? Multiply the equation for H(w) by e'™ and
imegrate from —w to =

f " H@e™ do = f " ( 3 h(k)e™ )™ do. 2.8)

- = h=—00
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On the right side, there is an integral of e~*“¢/" for each k. The great property of complex
exponentials is that this integral is zero except when k = n:

. gin—be ™
f =ik inw g [ ] =0 if k#n (2.9)
— in—k))_,

The function in brackets is periodic. It has the same value at —z and . After substituting those
limits, the definite integral is zero. The complex exponentials are orthogonal.

Now equation (2.8) has only one term on the right, from ¥ = n. Integrating this constant
from —m to m gives the result 2wk (n). This equals the left side:

n
f H{w)e'™ dw = 2rh(n). (2.10)
—_
The brick wall filter has H(w) = 1 on the part |w| < Z:
§ inw I 2
2:;&(n)=f " dp = ["‘ ] = 2 sinZ2, @.11)
x in " n 2

2

The coefficients in the ideal lowpass filter are samples of a sinc function:

. 1 n=0
sin Z2 2 =
hin) = ={ -, nodd (2.12)
wn 0, neven,nz#0,
The halfband cutoff has produced a halfband filtet! The coefficient £(0) = % is the “DC term”
= average value of H{(w). All other even-numbered coefficients are hin) = 0. When H(w) is
antisymmetric around the halfband frequency w = ,, the filter is always halfband.
For odd n, the numbers k(n) alternate sign and decay slowly:

1 1 1
D =k(-1)=——, A3 =h{-3N=—, BOY=bh(-5=—-——,...
(1) =h(-1) - (3) =h(-3 3 (5) = h(-5) 57
The series that adds up to the brick wall (= square wave = ideal lowpass response) is
1 P + g—iw e + g i3w eiSw + e~
H(w)—§~ - + 3 - = +--e (2.13)

At w = 7, the only nonzero term is halfway down the brick wall: H (%) = 1. Most important
is the behavior close to this jump at = 7, as shown in Figure 2.1 and below. Suppose we chop
off the series after N terms:

The ripple at w = 3 gets narrower as N — oo but its height approaches a
constant (about 0.09). This is the Gibbs phenomenon.

$

]
>

Magnitude Response

o
]

o

al [T} o4

L33 03
Normalized Frequency
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This Gibbs phenomenon can be a disaster numerically. The ripple represents emror. It is ex-
pensive to take a large number of terms and impossible to take all terms. A finite N gives the best
approximation in the mean square sense —but the tall ripple remains. This “sidelobe” shows up
as an echo in audio filtering and as a ghost in image processing. Practical design turns toward
equiripple filters, which have many ripples of equal height, This design minimizes the maxi-
mum ripple height instead of the total ripple energy.

Note however that equiripple filters do not behave well in iteration. They do not lead to good
wavelets.

Minimax filter design is implemented by the Parks-McClellan algorithm, which computes
best approximations to ideal filters. Those filters have a passband, a stopband, and a “don’1 care”
transition band. The ripple heights (maximum errors) decay exponentially with the filter length
N. If the acceptable error is specified, there is a formula for N (see eguiripple in the Glossary).
An alternative is eigenfilter design. For many problems this allows a simple mean square calcu-
lation, but without the big sidelobe from the Gibbs phenomenon,

Historical note. 1t is surprising to read the original paper by Gibbs. He completely missed the
Gibbs phenomenon. His correction published later was even shorter —about three important
lines. This correction must have the highest signal to noise ratio in the history of science.

Fourier’s Series by J. Willard Gibbs [Narure, vol. L1X, p. 200, December 29, 1898.)

... Let us write £, (x) for the sum of the first a terms of the series
sinx — 1sin2x + 1 sin3x — 1 sindx + etc.

As nt increases without limit, the curve defined by y = 2 £, (x) approaches a limiting form, which
may be thus described. Let a point move from the origin in a straight line at an angle of 45° with
the axis of X to the point (7, 7), thence vertically in a straight line to the point (7, —), thence
obliquely in a straight line to the point (3, 7). The broken line thus described (continued indefi-
nitely forwards and backwards} is the limiting form of the curve as the number of terms increases
indefinitely. . ..

Correction {in Nature, vol. LIX, p. 606, April 27, 1899.]

I should like to correct a careless error which I made in describing the limiting form of the family
of curves represented in the equation

y =2{sinx — }sin2x ... & Lsinnx) (2.14)

as a zigzag line consisting of alternate inclined and vertical portions, The inclined portions were
correctly given, but the vertical portions, which are bisected by the axis of X, extend beyond the
points where they meet the inclined portions, their total lengths being expressed by four times the
definite integral j;f ’%du‘ ... But this limiting form of the graphs of the functions expressed by
the sum is different from the graph of the function expressed by the limit of that sum,

Ithink this distinction important, for (with exception of what relates to my unfortunate blunder
described above) whatever differences of opinion have been expressed on this subject seem due,
for the most part, to the fact that some writers have had in mind the lintir of the graphs, and others
the graph of the limst of the sum.

The Gibbs phenomenon means that convergence to a brick wall is not uniform, as N in-
creases. The coefficients i{n) approach zero but the sum of absolute values 1 + % + % + ..
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is infinite. These are multiplied by +sinnw, so the actual series for H () does not blow up.
But the slow 1/n decay prevents uniform convergence and allows the large sidelobe. This rip-
ple always appears in the Fourier series near a jump discontinuity.

Ideal Filter with Downsampling

In the time domain, &(n) is on the nrh diagonal of the filter matrix H. Writing a and & in place
of h(1} = h(—1) and A(3} = h(-3), three rows are

-0 0 b 0 a 05 a O b 0
H= v 0 b 0 a4 05 a 0 b O
<o 0 b0 a 05 a 0 &b 0

Those rows are not orthogonal! The dot product of the first two rows is a. Only an allpass filter
has orthonormal rows (and columns). Then |H (@)] = | for all w.

What is fundamental for this book is that the even-numbered rows of H are orthogonal. When
the downsampling operator (| 2) removes half of the rows, this leaves a double shift in the re-
maining rows — the rows of (| 2)H:

0O b 0 a 05 a 0 b 0O ...
(|H = o 0 b 0 a 05 a 0 b 0O ...
e 0 & 0 a 05 a 0 b 0

Orthogonality is not so clear in this time domain. Moving into the frequency domain, the double
shift is a multiplication by ¢~** and row 0 of H is orthogonal to row 2:

T w2
(tow0) - fow 2) = H{w)e 2 H{w)dw = [ de = 0.

- T2

Similarly row 0 is orthogonal to row 4, because the integral of ¢** is zero. This integral is over
the half-period where H(w) = 1. The integral of €' is not zero over this half-period, and row
0 of H is not orthogonal to row 1.

The ideal Highpass Filter

Haar’s lowpass filter has coefficients % and % where the highpass filter has -;- and —%. Those
are clearly orthogonal. Now the ideal lowpass filter has infinitely many coefficients. We want
to construct a highpass filter Hy, so that the rows of (] 2)H; will be orthogonal to the rows of
1 DH.

It is easy to make H(w) orthogonal to the ideal lowpass H (). We set H; = 1 in the inter-
vals where H =

when O0<|wl <5

) 0
The ideal H;(w) can be [ I when Z<|w|<m,

Shifted by =, the ideal H{w) produces H;(w). In the time domain, that shift by = reverses the
signs of the odd-numbered components (because h(k) changes to h(k)e™*™):

1 1 1
h|(0)=5, h()=kh(-D=+—, L) =h(-3)=——, ...
b4 3
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Figure 2.2: Ideal magnitude frequency responses: low |H (w}| and high | (w)).

The graphs of |H(w)| and |H{w)| are in Figure 2.2. We explain below why absolute values
suddenly appeared. Whatever the phase, orthogonality is sure because of no overlap.

We note that | H (w)| + | Hy ()| = 1. This is not the identity that really matters. It is the sum
of squares that applies not only in this case but in all orthogonal filter banks:

|H@P + |Hw+m)? =1 (2.15)

For the Haar example this is the identity cos? %-Hin2 % = 1. Theideal case is deceptive because
1= 1% and 0 = 0. The orthogonality requirement (2.15) will be established in Section 5.2.

The Alternating Flip (with Odd Shift)

There is an unusual point about the step from H to H,. In the time domain this usually comes
from three operations on the coefficients k(n): reverse the order, alternate the signs, and shift by
I{orany odd N). This takes the lowpass coefficients k(n) into an orthogonal highpass sequence:

Alternating flip  hi(n) = (-1)"R(N —n). (2.16)

For a finite sequence A(0), h(1), ..., h(N) —assuming N is odd! — you immediately see the
flip in the next figure and the orthogonality between rows:

low ROY R e RN =1 AN
high h(N) —h(N-1 ... k1) —h(0)

Important: There is also orthogonality of double shifts, as in

shiftlowby2  h(2) hQ3) o R(N-1)  h(N)
high BNY —-h(N=1) - & —h(2)

k(2)h(N) cancels —h(NYh(2). This happens for all double shifts. It does not usually happen for
single shifts! A single shift of Haar to 0, ']i' % is not orthogonal to the highpass %, - %. 0. Double
shifts are all we care about, because it is double-shifted rows in (| 2)H that are orthogonal — and
now the highpass rows in (] 2)H,; complete the filter bank,

The alternating flip is the key to orthogonality. In the frequency domain it has three steps:
Multiply by €' to shift, take complex conjugates to flip, shift by n to alternate signs:

Hiw)=¢e"“H(w+n). 2.1
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Theorem 2.1  The alternating flip makes the rows of (| 2)H orthogonal to the rows of
(1 )H,.

This was verified by eye, in the low and high rows above. You can verify it again for the
ideal filters with infinitely many &’s:

rowQofH ... b 0 a 05 a O b 0
rowQofHy, -.- 0 b 0 =g 05 —-—a 0 -b

In the frequency domain we will see orthogonality in another form:

H(w)H (@) + Hw+ 7)) Hi(w+ 7) = Hw)e' H{w + 7)) + Hw + 1) “" H(w) = 0.
(2.18)
All great, but for the ideal filters there is a very strange point. There was no odd shift! From
the brick wall H(w) on [—%, F), we shifted by 7 to build the highpass brick wall. The wall is
real, so conjugation has no effect. Still there should have been a phase shift from ¢ and there
wasn’t.

Apparently row 0 of H is orthogonalto [-6 0 —a 5 —a 0 — b O -..] withour the
shift. This unusual point occurs because H,(w) does not overlap H (w). We can give H,(w) any
phase we desire. It was natural to make it real. Tt is more consistent to include the phase shift
',

This oddity (actually it is a lack of oddity) will reappear below for ideal wavelets. The sinc
wavelets should have a shift in time, from the phase factor ¢/ — but generally they are taken
from the unshifted Hy. Before turning to scaling functions and wavelets, we include a short
discussion of the Sampling Theorem — to recover a band-limited function x (1) from its samples.
This famous theorem appears everywhere, so we focus on a particular aspect involving () 2).

Shannon (Down-)Sampling Theorem

Our main theme for filter banks is perfect reconstruction of all signals., With two filters this will
be achieved in spite of downsampling. The Sampling Theorem restricts the input to a subspace
of band-limited signals. Then one downsampled output is enough to recover the input.
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The signal lies in the lower halfband |w| < 5 no higher frequencies are allowed. In an ideal
filter bank, nothing comes out of the highpass channel. Full information must be in (| 2)Hx. For
a half-range of input frequencies, we only need a half-range of output samples.

Suppose the output (1 2)x is an impulse 6 = (...,0,1,0, . ..). What wasx? A first sugges-
tion is x = 6, since (] 2)§ is equal to 6. But this is wrong — because 6 is not band-limited. The
impulse has all frequencies in equal amounts,

The correct input to yield (| 2)x = 8 has a halfband of frequencies in equal amounts. The
graph of X () is a square wave:

2 for 0<|w <%

0 for % <lol<m 2.19)

X{w) = I
Downsampling doubles every frequency, so (| 2)x has a full band of frequencies in equal
amounts. It equals 6 as required.
What signal x has the transform X (@) = square wave? The inverse transform is

1 (" . 1% 2

x(n) = — X(@)e™ dw= — f " doy = — sin E. (2.20)
2 J o4 TJ g nr 2

The input before downsampling has been recovered as the sinc vector:

in 8%
Xsine () = —=%  with the convention X nc(0) = 1. (2.21)
7

Downsampling gives 8 because if n is even then sin 2 = 0.
The recovery problem is now solved when (] 2)x is 6. The band-limited input was xgp.. But
every output is a combination of impulses at different times:

(U2x=(...x0.x(2),...)=---+ x5+ x(2)S6+ - --

Delaying the input by 2 delays (] 2)x by 1. This leads us to the correct input:

Downsampling Theorem The halfband signal that produces (J 2)x = (..., x(0),x(2),...)

18

x(n) = <+ + ¥(0)Xine (M) + X 2)gipc(n — ) +--- = Zx(%)M
s (n—20%

For even n all terms are zero, except 2k = n which yields x{n). The input signal x is halfband
because X4 and its shifts are halfband.
By changing 2% to k we would get the ordinary Shannon Sampling Theorem.

Sinc Wavelets (Shannon Wavelets)

In the Haar example, the lowpass H is the averaging filter (coefficients § and 1). By iteration
we reached a continuous-time box function. That function satisfies the dilation equation with
coefficients 1 and 1. The box is the “scaling function,” and there is a corresponding up-down
Haar wavelet.

Now H is the ideal lowpass filter. Jts scaling function is the sinc function $(t) = “i;f‘ - Since

the ideal filter is IR, the steps in our discussion will go a little more steeply. After this page, our
main theme is FIR filter banks.
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Section 6.4 has an infinite product formula for the Fourier transform of p(¢):

[~
- w
b =] H(E) . 2.22)
j=!
In the ideal case, every factor H(w/27) is one for {w| < 7. The Jth factor is zero for 27~z <
leo] < 2/7. The infinite product gives a box function for $(w), stretching from —x to . (Note
that H (w) is 2mr-pericdic, but the infinite product ¢(w) is not.} The inverse transform @ (1) of
this box is a sinc function:

The ideal scaling function is ¢ (1) = & [ & dw = snar
The wavelet w(t) = 3 2k (k)¢ (2t — k) comes from one application of the highpass filter
(with downsampling) to ¢ (¢). In the frequency domain this is

o oy | 1 form < |w| < 2n
Ww) = H, (E) ¢('2_) - l 0  otherwise, 2.23)
The ideal filter bank cuts the frequency band in half. The upper half of the band goes through
the highpass filter (discrete time). In continuous time it is a combination of wavelets. The lower
half of the frequency band goes through the lowpass filter (discrete time). In continuous time this
half is a combination of scaling functions ¢ — ready to be split again into wavelets and scaling
functions at the next finer scale. We have an octave decomposition = logarithmic decomposition
= “constant-Q decomposition” of the line of frequencies:
a A A
) w wi(2w)

-
0 4 2n 4

Note 1 Meyer smoothed out this ideal picture to produce band-limited wavelets with fast decay
(IIR of course). The key is to keep 3_ |@meyer(2"7w)}2 = 1. This can be done smoothly with
overlap of nearest neighbors only [D). All band-limited wavelets have two bumps (+ w) like the
Shannon and Meyer wavelets.

Problem Set 2.2

L. Show that the inverse transform of @ in (2.23) is the sinc wavelet wit) = 2sinc(2s) — sinc(t).

2. Find the shifted sinc wavelet by inverse transform when the factor ¢/ is included in Hy(w).
This is the odd shift that we normally need for orthogonality of w to ¢.

3. What are the coefficients &(n) for the ideal quarterband filter, with H(w) = 1 on (% 31
What scaling function ¢(ew) comes from the infinite product formuta? Is ¢(¢) orthogonal to
its translates?

4. (Important) Show that H (w) has halfband symmetry {odd around its value at v = %) when
h(n} is a halfband filter. This means (] 2)h = 6.

5. Let iy p(r) denote an ideal lowpass filter with cutoff frequency w,.
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(a) Compute Hy p(e/?) and normalized h; p (n) such that Hyp(e/) = 1.
(b) The ideal highpass filter &z p (1) can be designed by

l=hip(n); n=0,
—h;p(n); otherwise,

hyp(n) = l

Find Hyp(e/™).
(c) Design a highpass filter with cutoff frequency at 1 — c,, using ki p(n).

6. Let H(z) = (1—2z7"+3272— 3277 4+ 277* — z=%), Compute | H (¢/*}| and the phase response
¢ (w) and the group delay ¢ (w).

7. Let H(z) be an FIR lowpass filter of length (N + 1). Define G{z) = z7% H(z™"), Ga(z) =
H(~z)and G3(z) = z N H(~z7").

(a) What are g,(n), g.(n} and g, (#) in terms of h(n)?

(b) If H(z) is an even-length symmetric filter, what is the symmetry or antisymmetry of
G2}, Ga(z) and Ga(2)?

(c) If zp is a zero of H (z), what are the corresponding zeros of G1(z), Ga(z) and G1(z2)?

(e) Wha are the relations of |H (e/®)}, |G;(e)[, |G2(e/*)|, and |G1(e’*}|?

8. Show that G(z) = H(2)H(z™") is a symmetric filter. What type of filter is G(z) (lowpass,
bandpass, highpass) if H(z) is highpass? What is the (constant) phase of G(z)?

9. We have stated that §, = §; in a halfband filter. Prove this.

2.3 Lowpass and Highpass Filter Design

The previous section dealt with ideal filters (necessarily IIR). This section deals with real FIR
filters — often symmetric or antisymmetric (thus linear phase). We indicate the goals of filter
design and we briefly discuss design methods.

For ideal brick walls, the transition from H (w) = 1 to H(w) = O happens instantly. For FIR
filters this is not possible. It is important to see an actual magnitude response graph (Figure 2.3).
In normal scale, we can observe details in the passband but not in the stopband. In logarithmic
scale (dB scale, plotting 201og,, | H|}, it is the other way around. The stopband details are visible
in dB scale but the passband details are lost.

Before moving to good lowpass filters, we review two very short and rather poor filters. This
gives us a chance to emphasize the four types of linear phase filters — odd and even length, sym-
metric and antisymmetric.

Example 2.6. The impulse response is & = (3, 1}. The frequency response is

eiw;‘Z + e—im;’Z

H@) = H{1 +e7) = ( -

)e““"'2 = (cos c—;-)e*“"ﬂ. (2.24)
In that Jast form you see the magnitude | H (w)| = cos 7 and the phase ¢(w) = —%. The mag-
nitude is cos 0 = 1 at zero frequency —this is a lowpass filter. The magnitude drops to zero at
@ = 7. The phase ¢{(w) is the angle —w/2 in the polar form re'®. This phase function —% is
linear in w. The noninteger 1/2 reflects the fact that the coefficients in & are symmetric about
the “1/2" position.
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|H¢H| in normal scale |H()| in dB scale, f= ©/2¢
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Figure 2.3: Magnitude response of a lowpass filter in normal and dB scale.

We will compute the phase ¢(w) for other filters before analyzing its significance. Here we
only mention: linear phase is a desirable property.

Example 2.7. By cascading the previous example we square its matrix H and we square its
frequency response. The new filter coefficients are in

2

0.5 0.25
05 05 050 025
0 05 05 =] 025 050 025 |=Hoew

The new impulse response is (%, %, %) It is the convolution of (%, %) with itself. Cascading fil-
ters means convolution of impulse responses (time domain). In the frequency domain we mul-
tiply responses H(w):

Hoew(®) = [Hog(@)? = §(1 + ) = (cos? Z)e™". (2.25)

This squares the magnitude and doubles the phase. The new phase —¢ is still linear. It corre-
sponds to a time shift of 1. The impulse response is a unit delay of a symmetric k. H,., is a shift
(= delay) times a symmetric matrix.

Every FIR matrix can be made causal, by sufficiently many delays. A symmetric matrix (not
causal) corresponds to phase = zero because H (w) is real:

Hym(w) = 36’ + § + 7' = 1(1 + cosw). (2.26)

Was this cascade desirable? Neither H or ey, is very impressive. The frequency responses
are far from ideal. Hpew () has better attenuation in the stopband, because the cosine is squared.
But it 15 also smaller in the passband — farther away from the ideal H = 1.

By alternating signs in the lowpass coefficients they become highpass: k) = (0.5, —0.5)
and &y * b = (0.25, —0.50, 0.25). These are still linear phase. The aiternation of signs is a
phase shift (a modulation) by &r. The first is antisymmetric but the second is still symmetric,
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It is useful to tabulate the four types of linear phase filters with real coefficients. N can be
odd or even. The coefficients can satisfy

h(n) = h(N — n) for symmetric, k(rn) = —h(N — n) for antisymmetric.

The linear phase ¢(w) = =--wN/2 and the (real) amplitude response Hr(w) are seen in
H (e/*} = ce /N2 Hp(w). The table shows that with odd N, symmetry guarantees a zero at
w = 7 and antisymmetry guarantees a zero at @ = 0. The responses Hg(w) in the table have
factors cos § and sin 5. Remember that the filter length (number of taps) is N + 1. Here ¢ = 1
for symmetric and ¢ = j for antisymmetric filters.

Type 1 Type 2 Type 3 Type 4
even N = 2K odd N =2K +1 even N =2K odd N =2K +1
symmetric symmetric antisymmetric antisymmetric

K N - .
Hg =34 bacosno | cos T by cosne | sine Y8 ' b, cosnew sin ¢ ¥°¢ b, cos nw
wroaw=x zeros atw = 0, zeroatw =0

Now consider the ideal lowpass filter with cutoff frequency w,. This is a band-limited filter
in the frequency domain, therefore its support in the time domain is infinite. It must be IIR. Its
impulse response isk;(n) = 7 %’,&"1 Since the time-support is infinite, one needs to approx-
imate it by a finite impulse response. The sequence k(r) becomes time-limited, therefore not
band-limited. The magnitude response | H{e/“) | typically has errors 8, and ; in the passband
and stopband (Figure 2.4). Those bands have cutoff frequencies @, and w,.

0.8
0.6
0.4

0z

Figure 2.4: Idealized and typical magnitude responses of a lowpass filter.

Given w,, ws, and N, the errors §, and & cannot both be small. Let W = b/a be the rel-
ative error weighting. Increasing W in the design algorithm will decrease 3, and increase §,,.
Figure 2.4 shows a magnitude response plot for a lowpass filter with length 19 and @, = 0.27
and @; = 0.37. The error weighting W is large (and thus yields a small stopband error).

In the sections below, several methods for the design of FIR digital filters are reviewed.
These are based on windowing, minimax criteria, and weighted least squares.
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Design by Windowing

The simplest way to truncate the ideal response k; is by a rectangular window:

1, Im=N/j2

h(n) = hr(nyw(n) where w(n)=| 0: otherwise.

This H {¢/) is the best least squares approximation to H; {e/“). But chopping off the impulse
response manifests as passband and stopband ripples in the frequency response. As the window
size increases, the ripples get closer to the cutoff frequency w,, but these error heights do not
decrease. This is the notorious Gibbs phenomenon. (Section 2.2 showed the magnitude response
for halfband filters, when w, = . The solid line has N = 30, the dotted line has N = 10.) To
design FIR filters with better error characteristics, we can smooth out the window w(n):

Hamming window w(n) = « + (1 — &) cos () n] < ¥

Hanning window ~ w(n) = 1 + 4 cos (&) Inj < 2=t

Kaiser window w(n) = 31o I:ﬁ‘/l - (%)2] Ho(B) Inl<%

The parameter 8 in the Kaiser window controls the attenuation of the lowpass filter. Jp(x) is the
modified Bessel function and practical designs use about 20 terms of

[ 0.50)2% 1
Ig(x)=1+§:[( kf) ] .
k=1 *

Minlmax Criteria (Equiripple Filter)

The filter with the smallest maximum error in passband and stopband is an equiripple filter. The
equal heights of the ripples (and the number of ripples) assure that the error cannot be reduced —
some ripple sizes will go up if others go down. A polynomial of degree N cannot have alternating
signs at alf ripples. The Remez algorithm to equalize the ripples was adapted to filter design by
Parks and McClellan.

Figure 2.5 shows the magnitude response piot of an equiripple lowpass filter. Given a fre-
quency specification in terms of cutoff frequencies (w,, ws), filter length (N + 1) and relative
errors (8, &), the equiripple filter has the smallest maximum error in the frequency interval
0 < @ < m. The design algorithm for equiripple filters is the Remez exchange (McClellan-
Parks) algorithm.

The order (N) of an equiripple filter is estimated by

N~ —~20 logm «/5[52 —13
” 14.6Af

2.27)

where Af = (w; — wp)/27 is the transition band.

Equiripple designs are optimal in important respects — bur not optimal for iteration, The
reason is that they have at most one zero at @ = 7. The sampling operators (J 2) will mix
up the frequency bands that an equiripple filter so carefully separates! The Daubechies filters
g0 1o the other extreme — no ripples at all and maximum flamess at w = n. Then iteration of
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Figure 2.5: Magnitude response of an equiripple filter; normal and dB scales.

(] 2)H is very stable. But Section 5.5 will show that the transition band Aw widens from N~!
for equiripple to N =1 for the maxflat Daubechies filters.

A compromise is certainly possible, constraining the minimax design to have a fixed number
pofzerosatw = m.

Weighted Least Squares (Eigenfilters)

The eigenfilter approach chooses the filter H to minimize a (weighted) integral error
E = f | D(w) = H(ef'**)|2 {weight) dew (2.28)

The integral is over the passband and stopband, not the transition band. D(w) is the desired
frequency response, possibly one and zero in the two bands. The weighting function is optional.
The goal is to express the error as a quadratic form E = AT Ph. The unknown filter coefficients
are in the vector k.

The matrix P is symmetric positive definite because £ > (. If the normalization has the
form A7k = 1 then the minimization is an eigenvalue problem Pk = Aminft in linear algebra:

AT Ph

The minimumof £ = =
k' h

i8 Amin(P).

If the normalization is changed to AT @k = 1, the eigenvalue problem Pk = 1A involves
both matrices. When there are several quadratic constraints A7 @,k = 1, we go beyond an eigen-
value problem — to the Quadratic Constrained Least Squares algorithm. Section 5.4 will apply
this QCLS method to filter design. The applications of eigenfilters (one quadratic constraint) are
very extensive, and we give two examples: lowpass filters and halfband filters.

Lowpass eigenfilter design: A symmetric filter A(n)} = (2L — 1 — n) of length 2L has re-
sponse

2L-1

L1
H(e*y = Z h(n)e~ion = e~foll-1) Zh(n)c(co).
n=0 o
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The last sum is Hea(w) = b c(w) withk = [A(0) --- h(L — 1)]. The vector ¢(w) has com-
ponents 2cos(L — %)m, ..+ 2cos %. In the stopband, from w; to 7, where D = O is the desired
response, the error is

T
Eqop = f H: (0)de = BT f clwew) doh = B Py, h.
The entries of Pyop are known integrals of cosines. In the passband from 0 to w,, we can nor-
malize the desired constant response to be D = k7 ¢(0). Then the passband error involves the
difference between that desired response and the attained response W e(w):

Epss =h’"f0 (€0 — c(@)(E(0) — c(@)) doh = hT Py .

The entries of Py, are known integrals of 4[1 — cos(n + %)w][l — cos(m 4 %)w].

We can weight the errors by E = « Egip+(1 —) Epass. The matrix whose lowest eigenvector
is the best & will be P = atPyop + (1 — @)Ppays. Figure 2.6 shows the magnitude response of a
lowpass filter of length 55 and cutoff frequencies w, = 0.27 and w; = 0.37. Here, the weight
ais 0.5,
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Figure 2.6: Magnitude response plot of a lowpass eigenfilter in normal and dB scale.

Halfband and Mth-band filter design: In many digital systems, a change in the sampling
rate is essential for efficiency in real time. The design of suitable filters for the rate changing
operations is important. When the subsampling is by a factor of M = 2, we are led to halfband
filters. When we keep every Mth sample, we need Mth—band filters. The center coefficient is
h(0) = 1 and all coefficients at multiples of M are zero:

Mth-band: hnM) = b(n) or in other words (| M)h = 6. (2.29)

The filter banks have two channels or M channels. The design begins with a halfband filter
or an Mth-band filter. This is the product filter of Section 4.1, which is factored into analysis
times synthesis. We shift the filters to make them causal, for implementation, But for design we
keep them centered, and simply zere out the coefficients h{(nM) for n # 0. This zeros out the
corresponding rows and columns of the error matrix P in weighted least squares. The optimum
h is the lowest eigenvector of the reduced matrix P4, and this k is Mth-band.
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Design procedure: Given N, M, wp, w;, for an Mth-band filter, find P using the eigenfilter
formulation. Find P,.q by deleting the rows and columns of P that correspond to zero coefficients
in A. Find the eigenvector Aq corresponding to the minimum eigenvalue of Pry. The optimal
impulse response A(n) is obtained from h4(n) by inserting the zero coefficients.
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Figure 2.7: Impulse response and magnitude response of a 4th-band FIR filter.

Figure 2.7 shows the magnitude response of an 4th-band filter with @, = 0.2 and w, =
0.37. Note that w, + &; = 0.57 = % as required for a symmetric 4th-band filter. The length
is 55 (odd length is also required).

Maximally Flat Filter (Maxflat filter): The design of a maxflat filter begins with a maxflat
polynomial H(y). This polynomial of degree 2p — 1 is determined by p conditions at y = 0
andaty = 1:

H®(0) = 8(k) and HY(1) =0 for 0 <k < p.

The pth order zero at y = 1 means that ﬁ(y) = (1 — »)? Q(y). Then the conditions at y = 0
determine Q(y). The details are in Section 5.5, leading to the Daubechies filter by factoring this
halfband filter. Here we highlight a remarkable result: Q(y) consists of the first p terms of the
series for (1 — y)~?. With p = 4, for example, ﬁ(y) = (1 = )1 + 4y + 10y? + 20y%) =
(I-y*a-n-

Those coefficients 1, 4, 10, 20 come from the binomial series for (1—y)™, They also appear
in (1 + y + y? + y*)*. They are binomial numbers. The product () then has three zero
derivatives at y = 0. Its graph is in the figure below.

I
0.8

(1]
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The relations among the variables y and « and z are

1 —cose _ 1—z71\2
y = — = %(Z—z-z h = —z( )
l+%osw l-!-zz“ 2 (2.30)
- = — = 1 -1 =
-y 3 i2+z+27) z( 5 )
The zeros at y = | become zeros atw = mw and at 7 == —1. The flatness at y = 0 becomes flatness

atw = Oand at z = 1. We give the frequency response for the centered halfband Daubechies
filter: S nmnr eI St L DR TER D er hopelp tuan o
1

Itis a binomial exercise to show that H = %"étu.m = £ Tofind H(z), substitute using equations
(2.30). Then shift by z~? to make the filter causal.

Note Another form of this polynomial (which is so important in wavelet theory) is the “Bern-
stein form”

oy _ AN 2p+1 T4 cosewnk sl — coswy 2p+1-k
H(e! )_k;p;]( . ) > ) ( > ) 2.32)

As p increases, H (e/“) approaches the ideal lowpass response (one for cos o > 0 and zero for
cose@ < 0). The p~!/2 width of the transition band is established in Section 5.5, together with
the approximation of the zeros of H(z).

The ideal is infinitely flat. Of course it needs infinitely many coefficients.

Problem Set 2.3
1. Truncate the ideal lowpass filter after three nonzero coefficients. What is this windowed filter
h(n}? Sketch the graph of H(w).

2, Truncate the ideal lowpass filter after 4 terms and 8 terms. Draw the frequency responses H ()
to see the Gibbs phenomenon.

3. Compare the graphs of the ideal brick wall filter truncated after 20 terms (rectangular window)
and the Kaiser window w{n). Choose a suitable Kaiser parameter 8, What are the maximum
emrors in the passband?

4. Use MATLAB to design equiripple halfband filters of length & and 20. Compute the height of
the ripples.

5. What is the frequency response for the maxflat Daubechies filter (2.31) with p = 27 Graph
H () by hand or by computer. What are its symmetries?

6. Graph the maxflat Daubechies filter response (2.31) for p = 8. What are the differences from
the truncated ideal filter and the equiripple filter?

7. Construct a 4-tap lowpass filter that you approve of. What properties have you achieved?

8. Derive the Bernstein form (2.32) of the Daubechies polynomial H {¢/*) from her original form
(2.31).

9. Formulate the eigenfilter design for a highpass filter with cutoff frequency w..

10. Compute &i{n) for the halfband Daubechies filter with p = 5. Verify that H (/) has four zero
derivatives at w = 0 and w = 7.
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2.4 Fourier Analysis

This section might be called “Notes on Fourier Analysis.” The subject is enormous — too large
for our book! We pick out key points that are needed for signal processing and for wavelets.

‘The Fourier transform of a signal x(n) is a function X (w). The signal is in the time domain,
X (w) is in the frequency domain. The time variable # is discrete, the frequency variable » is
continuous. X (w) is 2w -periodic because each exponential e™? is 27 -periodic:

00

X(@)= Y xtn)e™. (2.33)

H==00

Fourier analysis studies the connections between x(n) and X (w) —how the properties of the
signal are reflected in its transform. The inverse Fourier transform recovers x(n):

b 4
x(n) = L X (e dw. (2.34)
27 J_ o
This formula synthesizes x by combining the complex exponentials. To find x(N), mulriply
equation (2.33) by ¢'N® and integrate from —n to . The integral of e~ times ¢*® is zero
except when n = N. That integral is 2, leading to (2.34).
Fourier analysis usually starts with f(t) and computes its coefficients. Signal processing
starts with the coefficients x(n) and transforms to X {(w).

Note about orthogonality. Real vectors are orthogonal (perpendicular) when x - y = 0. Real
functions are orthogonal when f X{w)Y (w)dw = 0. If the vectors or the functions are complex,
there is a small but important change. We take complex conjugates of one vector (say x, in the
physics convention) and of one function X {w). Orthogonality in the complex case means

n
T y= Zmy(n) =0 and (X,Y)= f X{w)Y (w)do =0, (2.35)
-
The integration f e~"“e'¥* dw = 0 does not say that ¢~ is orthogonal to ¢’V®_ It says that
¢'"® is orthogonal to /N (for N # n). Itis this orthogonality that allows the inverse transform
to have the clean and simple formula (2.34).

The discrete analogue of an orthonormal transform is a square matrix with orthonormal
columns. This is an “orthogonal” matrix if real, a “unitary” matrix if complex. For such a matrix
{J, the inverse is again clean and simple. It equals the conjugate transpose T'. This applies to
orthonormal filter banks, when the rows of (] 2)H and (J 2)H, are orthonormal. Their trans-
poses are the columns of Fo(1 2) and F, (4 2) — also orthonormal.

Is there a connection between discrete and continuous orthogonality? If two signals are or-
thogonal (in discrete time), are their transforms orthogonal (in continuous frequency)? The ques-
tion is important and the answer is yes.

This answer follows from the orthogonality of the exponentials ¢ — on which the whole
theory depends. For any x and y, the inner products in the time and frequency domains are equal
up to a factor of 2x: .

00 x -
2 Y x@yin) = f X ()Y (w) do. (2.36)

nN=—00 -
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For proof, substitute )~ x(N)e'¥* for X (w) on the right. Also substitute Yo y(n)e™" for ¥ (w).
Integrate from —x to z. By orthogonality, the only terms with nonzero integrals are those with
N = n. The integral is 27, multiplied by the number x(n)y(n). The left side of (2.36) is the sum
of these nonzero terms.

Special case whenx =y. Now the two vectors are the same. Their transforms are the same.
We are integrating X (w) X (@), which is | X (w)[2, because a + ib times its conjugate @ — ib is
a? + b2, For the same reason x(n)x(n) = |x(n)[2. Withx = y, the energy in the signal (times
2r) equals the energy in the transform:

21 ) lx(m)? = f X (@) de. 237

Example 2.8. Supposex is (1,8, 8%,...). Itsenergy is I + B2 4 8% + ... = 1/(1 — §%). Its
transform is a one-sided sum, in this case a geometric series:

X(w)=Zﬁ"e""“’=1+ﬁe'""+(ﬁe""’)2+...= m
0

Consider the inverse transform from X (@) back to x(n):
1 (7 ine 1 7 e*de
x(n) = Eﬂ—j:xk'(w)e" do = o . 1——,3_8"3'

How do we see that this integral gives the correct signal (1, B, 2, . . .)? The direct way is to write
the integrand as e (1 + B + g2« + ...}, Integration picks out the correct power g".
(If n < O then the integral gives zero.) The indirect way is to substitute z for ', and integrate
Z"/(z — B) around the unit circle:
1 f" P I 1 f 2"(dz/2)
) n 1= Be™ 271 Sy 1= GBJ2)
There is a pole at 7 = B. The residue at this pole is 8”. This is the answer we want. Again the
case n < ( is separate (with two poles) and gives zero.

The actual calculation of such an inversion integral is generally difficuit or impossible, We
seldom need to do it. For a ratio of polynomials it can be done in an emergency by the residue
method of complex integration,

Example 2.9. An allpass filter has | H(w)] = 1 so that ¥ (o)| = | X («)|. The filter conserves
energy. The integral of |¥ (w)|* equals the integral of | X (w)}2, because these functions are the
same:

m

Allpass: f " |¥ (w))*de = f le(w)X(w)lzdw= f (X (@)|*dw.

m -

Therefore the output energy equals the input energy:
20 o0
Dol =3Y" ke o (yl® = (I (2.38)
-0 -0

Please do not think that each ly(n)| = |x(n)|. It is the frequency response that has | H(w)| = 1.
The energy in each frequency band is conserved by an allpass filter, not the energy in each time
band.
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Convergence of the Fourier Series

In defining X (@), we have been assuming that this series converges. Otherwise what meaning
do we give to X (w)? We are touching here on a central problem of mathematical analysis (with
a literature that goes back for centuries). Touching this problem is as much as we can do-— by
identifying three types of convergence, and the signals that produce each type.

As with all infinite series, a few terms have nothing to do with convergence. By changing
a finite number of inputs x(n) we certainly change the transform — but we do not alter conver-
gence or divergence. It is the behavior of x(n) for large n that is crucial. Here are three types of
convergence:

1. Uniform convergence with 3_ [x(n)| < oo
2. Strong convergence (in L?) with ¥~ |x(n))® < o0

3. Weak convergence allowing polynomial growth in x{n).

1. Uniform convergence Suppose the magnitudes |x(n)| have a finite sum. These are also the
magnitudes of x(n)e™*"“, because [e~*?| = 1. Those terms have different phases, which may
produce cancellation when we add them. When 3 |x(n)| converges, we don’t need that help.
The series of magnitudes converges “absolutely,” and the series }_ x(n)e™""* converges “uni-
formly.” Then the sum X (w) is a continuous finction — with no jumps.

In the example with x = (1, 8, 8%,...) we imposed |8] < 1. That produced uniform con-
vergence. The transform X (w) = 1/ {1 — Be™**) is a continuous function. But not all continu-
ous functions have }_ [x(n)] < oc.

In the brick wall filter, the odd coefficients have magnitude |A(n)] = ;‘; The sum of magni-
tudes does not converge. The terms # do not go to zero quickly enough. The sum H{a) =
S h(n)e~" does not converge uniformly. And, in fact, H (@) is a step function (or square
wave) with a jump.

2. Convergence in energy (L? convergence) Suppose the squared magnitudes |x(r)|? have a
finite sum. By squaring, small terms become much smaller. Convergence is easier to achieve. If
the sum of |x{n)| is finite, the sum of squares is certainly finite. Then the Fourier series converges
in L2. This “squared” test is passed by the Fourier series for a step function:

|h(n)] = ;—n has Z lR(m))? = Z # = convergent series.
Comparing the sums of 1/n and 1/n? is like comparing the integrals of 1/x and 1/x2, One in-
tegral is log x, which becomes large as x — oo. The area under 1/x2 stays finite as x — co.

When the squared magnitudes [x(n)|? have a finite sum, the squared magnitude | X ()[? has
a finite integral. They are equal apart from 27. Then X () is a function in the Hilbert space
denoted by L?, just as x(n) is a vector in the Hilbert space denoted by £2. These spaces contain
all functions and vectors with finite energy: the square of the L* norm or the €2 norm is the
energy.

Functions in Hilbert space may have jumps. Those jumps have no energy (no contribution to
the integral). The derivative of a jump is a Dirac delta function. Its coefficients are all ¥(n) = 2_lx'
and its energy is infinite, so this function is outside the space L.

But the delta function is included in the third type of convergence.
f
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3. Weak convergence (to a distribution) Distributions F () are defined by their inner products
with smooth functions G (). For f F(w)G (w) dw, use integration by parts. We integrate F(w),
which needs it, and we differentiate G (), which can take it. The indefinite integral of the delta
function F(w) = §(w) is the unit step K (w). The definite integral of 8(w)G (@) is the number
GO):

fﬂ $(w)C(w)dw = [H(@)G(w)]", —f H(@)G' (w)dw = G(r) — fﬂ G'(wydw = G(0).
- —ir 0

This defines §(w). It is a distribution, a derivative of a true function. Still it has Fourier coeffi-
cients that are easy to find, with G(w) = ¢*;
T

1 : 1
= — 5 N ey = —— . ].
x(n) B {w)e @ e 1

All frequencies are present in the same amount. The Fourier series is

1 &
$w) = — ', 2.
(@) = 5 ";m (2.39)
On the left is a distribution. On the right is a divergent series. The terms don’t even approach
zero. But in a weak sense those terms cancel each other to produce zero, away from the spike at
e = () where they reinforce.
Weak convergence is based on the same idea of testing inner products with smooth G (w).
The series converges weakly, say at w = 0

T n
G(0) = [ 3G do= 511; X,}( f_ _€"Gw) dw)e“"". (2.40)
You see the Fourier coefficients of G{(w) on the right side, adding to G(0).

Numerically, this weak convergence is not so great. Figure 2.8 shows the sum of 41 terms,
In a pointwise sense, and in area, those side lobes will not shrink to zero! In the L, sense, the
energy is growing with every term. But in a weak sense, this sum is approaching 5(w). As the
number of terms increases, the oscillations become faster {not smaller). Multiplied by a smooth
G(w), the main central lobe picks out G(0) and the integral over the oscillations approaches
ZETO.

Question: What is the weak limit of pure oscillations ¢*® as p — co?

Answer: The limit is the zero function. The inner products f ¢"°G(w) dw approach zero. Os-
cillations converge weakly to their average value.

Question. Does the series §'(w) = £ 3~ n ™ for the derivative of a Dirac function also con-
verge weakly? The Fourier coefficients are growing with n.

Answer: Yes. Integrate again by parts. The integral of §'(w)G (w) is ~G'(0).

The Gibbs phenomenon is just the integral of 3" &7 The integral of 8(w) is a step func-
tion. The integral of ¢/ introduces ;:-, so there is L% convergence to the step (but not vniform
convergence). With integration, the area under the side lobes become crucial. The area shows
as a height in the Gibbs figure (the integral of the delta function is a step). This undesirable os-
cillation of Fourier series at a jump (an edge in image processing) has brought forward localized
bases like wavelets,
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Figere 2.8: The Fourier series % 3> e converges weakly 0 §(aw). Its integral shows the
Gibbs phenomenon {nonuniform convergence).

It is significant that the same Gibbs difficulty in shock calculations has been handled very
differently. The finite difference schemes are made non-oscillatory by nonlinear terms. The
nonlinearity is active where it is needed. It is inactive where the solution s smooth, Morel’s
book [Mo] gtves a strong impetus to this nonlinear idea for image processing.

For iteration of the filter ki = (%, 0,0, %), we will see weak convergence in Chapter 7. The
cascade algorithm (= lowpass iteration) produces functions that oscillate between 1 and 0 on the
interval [0, 3]. They have no limit in L2. The weak limit of the oscillations is a stretched box
¢(t) with constant value %

Good filters give L? convergence (and usually uniform convergence) when iterated. The
necessary and sufficient Condition E is in Section 7.2. But a “‘good filter” in the classical sense,
with small errors in the passband and stopband, may fail in iteration!

The requirement for success in iteration is flatness of the response H(w). The number of
zeros at w = 7 is absolutely critical. This is the new property that has become important, It
makes the iteration process strong and not weak, regular and not oscillatory. It must be built in
or iterations will oscillate — as happened with highly regarded filters,

Polsson’s Summation Formula

The Fourier coefficients of the Dirac delta function on [—s, 7] are all ﬁ By periodicity, the
Dirac delta becomes a Dirac comb. There is an impulse at every multiple of 2;r. The Fourier
series for this periodic train of delta functions is

Y So—2mky=— Y e (2.41)
2n £
=—00 R=—00
The left side is a sum of impulses. The right side is its Fourier series, converging weakly as
above, The formula is often seen with r instead of w, because Fourier analysis usually starts
with continuous time. Then the frequencies are discrete. In signal processing it is the other way
around.
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Equation (2.41) is a short statement of the Poisson formula, but it involves weak conver-
gence. The terms don’t approach zero. To see ordinary convergence we take inner products
with any smooth function G(w). With integrals over the whole line, we ask G(w) to decay as
{w} — oo. The inner product with delta functions gives point values G(2mk). The inner prod-
uct on the right gives point values G {n) of the Fourier transform. The formula says that the two
sums are equal;

. R . 1 e o0 -
Poisson’s Summation Formula =~ 5 GQmk)= ) G(n). (2.42)

k=—0o0 n=—0

This is a remarkable formula. It relates the samples of G to the samples of its transform G. We
can change the spacing of one set of samples to any T > 0, provided the other set of samples is
spaced at %

Smoothness of X (w) and Decay of x(n)

The regularity of a function is partly revealed in its Fourier coefficients. When X (w) is contin-
uous, its Fourier coefficients x(n) approach zero. But the coefficients can approach zero when
X (w) is not continuous; the step function is an example. There is a gap between x(n) — 0 and
Y Ix(n)| < 0o, which is at the heart of Fourier analysis:

Z Je(n}| < o0 e continuous X{w) = x{n) - O.

One virtue of wavelets is that such gaps can be closed. Instead of necessary conditions for
smoothness, and then sufficient conditions for smoothness, we can find necessary and sufficient
conditions. These are conditions on the wavelet coefficients x{n), for the function X (@) to have
specified regularity. X (w) lies in a specified function space when x(n) lies in a cormresponding
vector space [DeLu]. The function norm and vector norm are equivalent— as for X (@) in L2
and x(n) in €2 by Parseval’s formula.

Fourier coefficients give partial information from the magnitudes |x(n}|. Each extra order
of smoothness in X (w) is reflected in one extra order of decay in ix{n)|.

Theorem 2.2 Suppose X (w) has s continuous derivatives. Then n® |x(n)} — Qas |n| — oc.

When s = 0 this is the Riemann-Lebesgue Lemma. The Fourier coefficients approach zero (we
really only need f | X (w}|dew to be finite). For integers s = 1, 2, 3, ... we look at the Fourier co-
efficients of the derivative X“)(w). Those coefficients are (in)°x(n). They approach zero {again
by Riemann-Lebesgue) when X ) (w) is continuous. This is the theorem.

In compression of a signal, this decay of coefficients is crucial. Small coefficients are re-
moved (partly or completely). For a Fourier basis, the smoothness of an image determines the
decay of coefficients. For a wavelet basis, it is the piecewise smoothness that matters. Wavelets
are well adapted to piecewise smooth functions (with edges). Wavelets are local where Fourier
waves are global.

The theorem was stated for integers s = 0, 1, 2, ... but fractions can be allowed. This is
important for a satisfactory theory, because functions like X () = |w|!/? are more than contin-
uous (s = 0) and less than differentiable (s = 1). The in-between smoothness is measured by
the Hdlder exponent. The function X (w) belongs to the space C*, 0 < 5 < 1, if it satisfies the
Halder condition

|X(w2) — X(@n)| < constant |@s ~ @)’ .
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The square root function |w|'/? belongs to C'/2. Similarly |w|* belongs to C*. Fors > 1 we
would take [s] derivatives first. The Holder exponent of that derivative is the fractional part
s — [s]. Then the Fourier coefficients decay to order s at least: #°|x(n)} — C.

The Fourier basis antomatically takes advantage of high regularity, The wavelet basis takes
Jull advantage of a high s, only if it is designed to do so. The lowpass filter must have more than
s zeros at . Haar wavelet expansion does not converge faster as the function gets smoother,
Therefore Haar compression is poor.

For biorthogonal wavelets, the analyzing filter Hy governs the decay of coefficients. The
synthesizing filter Fo governs the smoothness of the output. We would like both to have many
zeros at w! When forced to choose, whether to put zeros into Hy or Fy, the preference often goes
to Fo — then the synthesis basis functions will be smooth.

We emphasize one more point. In the L2 norm, where “mean square” replaces “maximum,”
the Fourier coefficients exactly reflect the smoothness. The coefficients are in £2 precisely when
the function is in L2. The energy is the same for both, by Parseval’s identity. This equality ex-
tends to the sth derivative X (@), whether s is an integer or not:

f " XD @) dw = 27 3 |rxey|*. (2.43)

-

When s is not an integer, we define this derivative X (w) by its coefficients (in)’x(n). The
equation above is just Parseval itself, for the derivative. Wavelet theory is greatly simplified by
working in the Hilbert spaces of functions with s derivatives in L2, rather than the Holder spaces
C? of functions with s continuous derivatives.

The number p of zeros at 7 is crucial in both cases. For L? spaces we will find in Chapter 7
the exact smoothness of ¢(¢) and w(z).

Heisenberg'’s Uncertainty Principle

The underlying property of wavelets is that they are pretty well localized in both time and fre-
quency. The functions ¢/ are perfectly localized at « but they extend over all time. Wavelets
are not at a single frequency, or even a finite range, but they are limited to finite time. As we
rescale, the frequency goes up by 2/ and the time interval goes down by 27. This suggests that
the product of frequency interval and time interval is a stable quantity. The Heisenberg Uncer-
tainty Principle makes those definitions precise, and gives a lower bound for the product.

We emphasize that the wavelet can only be “pretty well localized.” It cannot have finite sup-
port in both ¢ and w. (A famous theorem.} Instead of the support length we use the variances

o? =f 2lfO1dt and G2 = --f | f()) do. (2.44)
oo 27 -0
We are no longer working with periedic functions, so f and @ extend from —oo to 00.

Theorem 2.3 (Heisenberg)  If[| 1| = | then the product oG is at least §.

The lower bound '5 is attained by the Gaussian function f(¥) = e~ Its transform ﬁm} 1s also
a Gaussian. These have infinite support! But they are as local as possible, measured by o and 3.
We can rescale time by ¢ and frequency by %, we can shift to 7 — £y, and we can modulate by ¢,
The variances o> and G2 would be computed around 2, and wq, and the bound 1 is still reached.
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This led Gabor to use Gaussians in constructing “time-frequency atoms.” But numerically, finite
support in time is better.

Proof of the Heisenberg Principle. Thekeyisthato = |l¢f(t)(land5 = || Fi || The principle
applies to pairs of operators, like position P and momentum @, that have the property QP —PQ =
I. When this property holds, the proof comes directly from the Schwarz inequality:

L= |fIF =, @P-PQ)f) <2 1QfK IPfY =250 (2.45)
In our case P is multiplication by r and @ is differentiation:

d
@P-POYf(1) = %(ff(f)) - td—{ =1f(t) asrequired.

Problem 4 develops this proof directly from the definitions of o and 5.

Problem Set 2.4

1. Add the terms % i ¢ _This is a partial sum of the Fourier series for §(w). At what « does
it come down to ze;g, at the end of the main lobe in Figure 2.87 Where is the end of the first
side lobe?

2. Describe a continuous function X (w) whose coefficients have infinite sum ¥_ [x(n}| = oo.

3, What is Poisson’s summation formula for the Gaussian G{w) = P

4. Heisenberg’s Uncertainty Principle is 05 > % The Schwarz inequality gives

2

f tf() fydi

< f 1f @R de f 1F @R,

ldentify the right side as 032, Integrate by parts on the left side to get

= . fO*1 % f£(r)?
f_mr[f(r)f(:)]dr=r : ]-m_f.wTd"

If the integrated part is zero at oo, and if (| f|| = 1, deduce that oF > % Equality holds

when ££(r) is proportional to f*(s), which leads to Gaussians f(¢) = e,

5. What power of L gives the decay rate for the coefficients x(n) of
4

!. X{(w) = w = discontinuous function at @ = .

2. X{w) = |w| = continvous function with period 2m.

3. X(w) = w? = continuous function with period 2x.

4. X(w) = spline with jump in the third derivative X" (w).

6. Compute the Fourier cocfficients and the energy for

(a) X(w)= - (b} X' (e}
1 - Ee fow
.. . ] O<=w<nrw
(¢) Periodic box function H{w) = | 0 —r=w<d

7. Showthat X (w) = (1— e~} has the same energy asx = (1, 8, #°, . ..). Use asubstitution
in the integral of | X (w)}|*. ’

8. Show that the Heisenberg product o7 is not changed by dilation, modulation, and translation:
() is transformed to 292 £(2/t) and €' F(£) and f(t — 5).

9, Determine the Fourier transform of the signal x(n) = &M, o] < 1.
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2.5 Bases and Frames

Above all, this book is about the choice of a good basis. In reality, that choice governs ev-
erything. Bvery transform is a change to a different basis. The contribution of filter banks and
wavelets (and Fourier transforms and local cosines and wavelet packets) is to offer new bases.
The whole subject has been reopened, by the demands of its applications.

What is a basis and what makes it good? A basis is a sequence of vectors v, v, ... or fune-
tions 1 (£}, v2(t), . .. with the property of unrique representation:

Every vector v or function v(z) in the space can be represented
in one and only one way as v = }_b;v; or v(t) = ) bui(t).

There is exactly one representation of every vector and function. The zero vector and zero func-
tion can only be represented with all b; = 0. The basis functions are linearly independent.

Tt is usual to require convergence in norm, ||v - Zf bivi]] > 0 as N — oo. For L? spaces
this norm is the square root of the energy. Section 1.5 mentions four reasons for that choice.

Thete are two separate properties to be established for any proposed basts: (1) linear inde-
pendence and (2) completeness. Adding extra vectors will destroy independence. Removing
vectors from the basis will kill completeness. Linear independence is automatic for orthonor-
mal vectors. When all angles are 90° and all lengths are unity, there is no chance of degeneracy.
In infinite dimensions we meet the possibility that angles can approach zero without reaching
zero. In that case the basis is unstable. The coefficients b; are out of control. In the good case,
the coefficients satlsfy

A ||vs|2 < zlb,F <B ||v||2 with A > 0. (2.46)

This is the defining property of a Rzesz basw, also known asa srab!e basis or an unconditional
basis. A key assumption in wavelet theory is that the translates ¢ (¢t — n) of the scallng function
are a Riesz basis (for the space V inside L2). We will find the test to be applied to ¢(w) and the
equivalent Condition E on the filter coefficients, to produce a Riesz basis of scaling functions.

Dual Bases and Dual Frames

In a few lines, we can give the main points about bases and frames. These ideas will be developed
below — bases will come first. Here are the key points in a hurry:

Dual bases come from columns v, of T-! androws r, of T: T7'T =1
Dual frames come from columns v} of T+ androwsr, of T: T*T=1.

The difference is that the frame vectors v need not be independent. They can be redundant
{Figure 2.9). We still require the coefficients b; = {r;, v} to satisfy (2.46), but other combinations
of the v} can reconstruct the same v.

T* is only a left-inverse for a frame. It becomes a two-sided inverse for a basis.

In N-dimensional space, frames contain M > N vectors. The matrix Tis M x N, and its
left-inverse T is N x M. The equation TTt = I is not true. For finite dimensions the theory
and examples are particularly clear — our eventuval applications are to infinite dimensions.

Note 1 Change of Basis Suppose T is a bounded linear operator with a bounded inverse. If the
sequence {v,} is a Riesz basis, so is the sequence {T~'v,}. When we expand Ty = ¥ ¢,v, inthe
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Figure 2.9: Good basis, bad basis, good frame, bad frame, all in R2.

original basis and multiply by 7, this gives the expansion v = 3 ca{T"'v,) in the new basis:
A = B = 1. The new Riesz constants A, B come from the original A, B and the norms of T
and T,

The classical transforms of mathematics have a stronger property than invertibility. T is often
a unitary operator. ‘The inverse of T becomes the conjugate transpose 7*. The norms are Tl =
17| = 1. If the original basis is orthonormal so is the new basis: 4 — B = 1. The Fourier
transform and wavelet transform are unitary operators — when we use orthonormal wavelets!
Biorthogonal wavelets lead to non-unitary operators T and to Riesz bases — but not orthonormal,
Fortunately ||T]| and |7~ are in practice surprisingly close to 1.

In finite dimensions, every basis is a Riesz basis. The basis vectors Jor RY are the columns
of an invertible N x N matrix. That matrix is T, 1t is essential to distinguish the change of
coordinates (which uses T) from the new basis (the columns of T~'). The fundamental fact is
T-'T = 1. We use it now, multiplying columns times rows:

N
v=T"Tv = E(column n of T (row n of Thv
n=]
The nth basis vector is v, = column n of T—!

The nth coordinate is b, = (row n of T)v = {r,,, v).

Those three lines give v = 3 b,v,.

Every N x N matrix is a bounded operator. When the inverse exists, it is also bounded.
But infinite matrices can represent unbounded operators, The averaging filter with coefficients
3. 1 is bounded. The inverse filter with coefficients 2, —2, 2, —2, 2, —2, ... is unbounded. The
Riesz requirement, that T and 7! are both bounded, is needed for a stable change of basis. An
orthonormal basis (A = B = 1) has condition number 1. Then the product |7 1T~} is the
condition number of the new basis.

Bases from Filter Banks

The important examples for us are the bases from filter banks (discrete time) and the bases from
wavelets (continuous time). Chapter 1 gave an example of both, The discrete time basis vectors
had only two nonzero components:

T 17 71 rF -7

|
e = DD
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= =




2.5 Bases and Frames 71

This is an orthogonal basis because the vectors are mutually perpendicular. It is an orthonormal
basis when divided by +/2.

The heart of the book is the construction of other (and better) filter banks. The filters will be
longer and they will overlap. Orthogonality will not be automatic and it may not be true. The
bases are the impulse responses of the filters — with a double shift as above. Here is an example
with four nonzero components:

1 1

3 3

3 -3
Ll IS T R S

0 0

0 0

o L e DD,

Those basis vectors are not orthogonal. We are alternating lowpass filters with highpass filters,
but the first and third (lowpass and shifted lowpass) are not orthogonal. Remember that these
vectors are the columns of T~'. In our other language they are the impulse responses from the
synthesis filters. The synthesis filters combine to reconstruct the signal, which is exactly what
the basis vectors do.

In this nonorthogonal case, the inverse is not the transpose. The basis is not self-orthogonal.
It is biorthogonal to a different basis — which we now discuss.

Biorthogonal Bases (Dual Bases)
The basis {r,} is biorthogonal to the basis {v,} if the inner products are

{ri,v;} = 6G4 - j). 247

This is the same property that governs the rows of a matrix T and the columns of 7. It comes
directly from TT~! = I. So when the columns of 7~ are a basis (as above), the rows of T are
the biorthogonal basis —the dual basis.

We transpose T to turn its rows into columns. We transpose T~ !T = I into T*7T* = I. Then
the same idea that gave the basis {»,} from T~ now gives the biorthogonal basis {r,} from the
columns of the transpose matrix T™;

N
v=TT" v = Z(column nof T)(row n of T ")
n=1
The nth dual basis vector is r, = column n of T*

The ath dual coordinate is d, = (row n of T~*)» = (v,,, v).
When T = 7!, the basis is self-dual and v, = r,. We have an orthonormal basis. In general
the rows of T and columns of T~' produce biorthogonal bases — provided always that T and

T~! are bounded. In this case we have one expansion of v coming from T~ 'T = [, and another
expansion from (T-'T)* = I

Theorem 2.4 Ifr, and v, are biorthogonal bases then any v has two expansions:

V=D Cabn =) (ra¥Wn and v=) durn= 3 (vp.¥ira. (2.48)

In other words 3_v,ri =Iandalso Y r,v? =1.
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Example 2.10. The four-tap filters in the example above are biorthogonal to these four-tap
filters (after we divide by 16). Check the inner products:

T 17 10 1T T
-1 -1 0 0
3 0 0
-3 -1 -1
WS N R T I I T N B T
0 0 3 -3
0 0 -1 1

The construction seems magical. We want more like this. Chapters 4 and 5 show how to get
more — and the filters need not have equal length. These are the synthesis filters (in 7-') and
the analysis filters (in the rows of T) of a perfect reconstruction filter bank. The filter bank is
biorthogonal.

The norms of Tand 7!, and therefore the condition number | T]| 7" |, are easily computed
for these bases. The double shift in T means that the transform involves a 2 x 2 matrix function
of w. Maximizing its norm over @ yields ||T|, and maximizing the norm of the 2 x 2 inverse
yields 17y

A small note of caution. The scaling functions and wavelets will come from iterating the
lowpass filter, with rescaling. Not every biorthogonal filter bank leads to biorthogonal bases.
Sometimes the iteration diverges. There is a serious step from L2(Z) in discrete time to L*(R)
in continuous time. The example above fails! Those particular filters with =1 and £3 are only
good when they are not iterated too often.

Wavelet Packets and the Best Basis

In Chapter 1 only the lowpass filter was iterated. It was assumed that lower frequencies contained
more important information than higher frequencies. For many signals this is not true. A wavelet
packet basis allows any dyadic tree structure (Figure 2.10). At each point in the tree we have

Complete tree (Walsh) Wavelet tree (Haar) Wavelet Packet tree
—{ — —
I —
— —] I S e
—{ | p
— S

Figure 2.10: Each wavelet packet iree yields a basis, including Walsh and Haar.

the option to send the signal through the lowpass-highpass filter bank, or not.

One possibility is the logarithmic tree, with lowpass iteration only. Another possibility is
the complete tree, analogous to the Short Time Fourier Transform. Wavelet packets make up
the entire family of bases. Each one is associated with a particular quadtree, because it comes
from splitting into two (or not splitting) at each step. The decision to split or to merge should
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be aimed at achieving minimum distortion D — subject to cost and capacity constraints on the
rate R,

The main point is that a library of wavelet packet bases is a practical possibility [W). For
a given signal and a given point P in the tree, we have the coefficients of the basis functions
we(t) for that point. If we choose to split, that set of functions is replaced by two half-size sets
of functions —created by lowpass and highpass fltering:

N N
Zko(k)wp(Zt —k) and Zhl(k)wp(Zr — k).
k=0

k=0

Together with their time shifts, these are the new basis functions for the points Py and Py in the
tree. At each of those new points we again have the option to split.

A point is at level j in the tree if it is reached after j splittings. The basis functions at the
root (level j = 0) are the shifts ¢ (t — k) of the scaling function.

Haar Functions

] ]

w{t) w(2t) l_l w2t — 1) |_|

O ] {1
Uy

+ then + + then — — then + — then —

Figure 2.11: Haar iterates only the lowpass filter. Walsh iterates both filters.

Example 2.11. When ¢{¢) is the box function, the wavelet w(f) is Haar’s up-down square
wave. The filter coefficients are hy(k) = 1, 1 for lowpass and k(%) = 1, —1 for highpass, all
divided by +/2. We describe three special bases for the functions that are piecewise constant on
intervals of length 2=/, Within [0, 1] this is a space of dimension 27:

L. Box basis: ¢(2't —k) for0 < k < 27,

2. Haar wavelet basis: ¢{t — k) and w(2/t —k)for j < Jand O <k < 2/,

3. Walsh basis: two functions w;_;(27) £ w;_ (2t — 1) from the basis for J ~ 1.
A Walsh basis function takes values | or — 1 over the whole unit interval. It comes from the
complete tree with all branches. A wavelet basis function from the logarithmic tree is zero over
most of [0, 1]. it is nonzero on an interval of length 27/, varying with j. The box basis functions
are nonzero over intervals of fixed length 27

Figure 2.11 shows the four Haar and four Walsh functions (with + or — choices indicated).
The Walsh basis chooses to split every time. The basis functions are like discrete cosines. The
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wavelet basis splits only along one branch. This gives dilation and translation, The box basis
(scaling function basis) never splits. This gives translation only — a row of small boxes.

The frequency of the ordinary cosine is replaced by the number of zero-crossings (sign
changes) of the piecewise constant Walsh function. A typical wavelet packet falls between Haar
and Walsh, It makes the Walsh decisions, + or —, up to certain points P on the tree. At those
points it stops splitting and just rescales. The wavelet packet below could be the best basis for
a signal with no low frequencies.

The wavelet packet bases are given by simple recursions (not by simple formulas). They
inherit the properties of the filter bank — orthogonality or biorthogonality. The Riesz constants
A, B and the condition number B/ A are not necessarily in control as J increases. The condition
number stays bounded for the logarithmic tree wavelet basis [CoDa). The condition number is
unbounded for the general wavelet packet tree.

We emphasize the recursive form of every wavelet packet decomposition. The coefficient
sequence at a point P is treated in exactly the same way as the original sequence x{n) at the
original root of the tree. The packet splits or not. If it splits then the two new branches end in
two new decision points.

On - 1 1
Uu

{only rescaled) (also Altered)

There is a corresponding Fourier packet. Its decision is whether to break the interval in two.
Instead of a fixed length 8 for all DFT blocks, and 8 x 8 for an image, the splitting decision is
made locally — depending on the signal. The “butterfly” in the FFT is like the lowpass-highpass
bank for wavelets. But the FFT admits all frequencies 0, 1, 2, 3, ... where the wavelets are
dyadic and octave-based.

Now we turn from bases to frames, and give up linear independence.

Frames and Frame Bounds

A frame {v7} has one property of a Riesz basis {v,} —every vector or function can be repre-
sentedas 3 ¢,v with control of 3 I, |%. But the requirement of linear independence is dropped.
A frame is associated with “oversampling” or “redundancy.” There are too many vectors for a
basis. We could even repeat the same basis vectors several times — this produces a frame but
not an interesting one. More interesting is a set of functions like {¢/“'}, which are a basis for
L?(0, x] when ¢ = 1 and a tight frame for ¢ < 1 (higher than Nyquist rate). For ¢ = 3 this
frame is a union of two bases {¢/] and {e/™ &/*/2).

The place to start is in finite dimensions. The M rows of a rectangular matrix give a frame
for R¥ — provided the columns are independent.

Tis any M x N matrix with N independent columns.
In general M > N and T~ does not exist.
The left-inverse Tt = (T*T)~' T* does existand TYT = 1.
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Linear algebra [S] says that T*T always has the same rank as T. By assumption of indepen-
dent columns, this rank is N. The N x N matrix T*T with this rank is invertible. The identity
(I*T)"' T*T = I'shows that T+ T = I

This matrix T+ = (T*T)~" 7™ is a left-inverse and a “pseudo-inverse” of T. The columns of
T* and the rows of T are two frames, dual to each other. Thekey is T*T = L

Example 2.12. The three rows ry, r5, r3 of T constitute a frame for R*:

2 0
T=[ -1 V3 :| has independent columns and T'T=[ g 0 ]

-1 -3 6
This example is actually a tight frame, because T*T is a multiple of I. The left-inverse is
(T‘"I’)~l = él"*. This matrix T is 2 x 3. It cannot possibly be a right-inverse of T.

The frame vectors are not independent but they span the space. We can recover v from the
columns v}, vy, vy by using inner products {ry, v) and {r,, v} and (rs, v). The recovery is based
onT'T=1I

M
r=TrTv = Z(column n of TH(row n of Ty
n=]

The nth analysis frame vectorisr, =rownof T
The nth coordinate is {r,, v} = (row n of T)v

The nth synthesis frame vector is v} = column » of T+,

In this example the column vector v = [1 1]’ has coordinates {r,, v) = 2and —1 ++3and —1—
~/3. To synthesize v from the three columns of T+, multiply the columns by those coordinates:

2
172 -1 -1 1
6L0 V3 -3 -3 1
The point of the pseudo-inverse T+ (which is one of many left-inverses) is that the sum of squares

of the coordinates is as small as possible. This is the key to frames: control the sum of squares
of coordinates. Now we define a frame in infinite dimensions.

Definition. An analysis frame is a set of vectors ry such that
AlVI® = ) K> = BIVIP forallv. (2.49)

A > 0and B > 0 are the “frame bounds.” A tight frame has A = B.
The frame vectors r,, are not required to be independent. But they span the space! The only
vector v orthogonal to every r, is the zero vector, by (2.49).

The frame operator T transforms v into the sequence of numbers {r,, v). In N dimensions
these are M numbers, with M > N. In infinite dimensions we have infinitely many numbers,
and the key is to recover v from these numbers. The purpose of the frame bounds A and B is to
make T*T and (T*T)~" bounded operators:;

Note carefully that  {v, TTv) = (Tv, Tv} = ) _ J{ra. »)|?. (2.50)
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Inserting into (2.49) gives A||v|? < (v, T*T¥) < B Iv||>. The operator T*7 is bounded by B. Its
inverse is bounded by 1/A. When we choose the tightest A and B, which we might as well do,
the norms of T"T and its inverse are exactly B and 1/A. The frame ratio B/ A is the condition
number of T"T.

The frame bounds ensure that v can be stably recovered from the components {r,, ¥) of Tv.
The recovery operator — the synthesis operator — is the lefi-inverse T+ = (F*7)~! 7%

v=TrTv =" (columnn of T*) {ra,v) = 3 . cov}. 2.51)

The coordinates are ¢, = {r,, v}. The synthesis frame vectors v} are the columns of T+. When
{r.} is a basis, T* is T~' and the dual frames are dual bases.

Example 2.13. The three rows of T are an analysis frame (not tight) for R%;

{1
r=|1 o0 ad TT=|3 9.
L 0 2

Any two rows of T are a basis. The three rows are a frame, The frame bounds are 4 = 2 and
B = 3. Those are the extreme eigenvalues of T"T —easy to find in this example. There are
infinitely many left-inverses of T, and here are three:

0 1 0 g 1 0
[1 -1 0] and [0 1 _1:, and T"=|:

The last one is the best one! 1t is the psendoinverse (T*T)~'T*, You see % and % from inverting

T*T. The columns of T are the dual frame vectors v} and v} and v}.

b= =
o wi—
R L=

Why is T+ best? Because it is the “smallest” left-inverse. We are reconstructing any vectory
in R? from the three components ¢, cz, ¢3 of Tv. In exact arithmetic, the only solutionto Tv = ¢
is v— and every left-inverse will find it. In actual arithmetic, and in actual measurements, there
are errors in ¢, We choose the least-squares solution to Tv = ¢. That comes from the normal
equations T"Tv = T"¢, whose solution is exactly v = T*¢. The synthesis frame reconstructs
the truest v.

Frames are associated with oversampling and redundancy. We meet this in irregular sam-
pling when it is difficult to sample at exactly the right rate. Better 1o sample too often than
too seldom. Oversampling is usvally better than undersampling. The interpolating functions
sinc(s — #,) are a basis for the band-limited space when the sampling rate is exactly right, and
they are a frame when we oversample. They cannot reproduce all functions if we undersample.

For regular sampling at the times #, = nT, the perfect rate is the Nyquist rate in Section 2.2,
It requires two samples per period — the exact band of frequencies is [w| < &/ T. In reality we
often take more measurements than necessary, and reconstruct the signal by least squares.

The least-squares matrix is exactly T"T! This is the matrix in the normal equations, when T
has too many rows (M > N). The coefficient matrix T is M x N and not invertible. But T*T
is invertible exactly when the rows of T are a frame. Instead of T~ the least-squares solution
wes T = (T"DH~'T*,

Note that a pseudoinverse T is defined for all matrices, of arbitrary rank [S]. T is a left-
inverse when the rank is N and the columns of T are independent and the rows of 7 are a frame.
Those are equivalent statements about T in finite dimensions.
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Mallat [Mt) identifies two approaches to the reconstruction of the signal v, If T+ will be
used often, we may compute it explicitly. Its columns are the synthesis frame vectors vi. For
limited use we do not want the inverse of T° T, only the solutions to specific equations with this
coefficient matrix. Just as in linear equations Ax = b, we seldom want A~ and we more often
wantx = A”lb,

The iterative solution of the reconstruction problem for iregular sampling has been studied
by Grochenig. This is an important applicatton. His algorithms are much better than the simplest
iterations.

We mention Kadec's 1 Theorem for L2[0, 1): the exponentials {27/¢+} are a basis if |, — n|
stays below a number L < 1. This is nearly a regular sampling.

In our applications, the “rows” of T are usually functions r,, (r). Then ' maps functions f(r)
in L? to sequences ¢, = {rn, f} in €2. The matrix TT* contains the inner products of those rows
with themselves. It is the “Gram matrix” whose (¢, j) entry is the inner product {r;, r;). The
Riesz bounds A and B come from this matrix. Its norm is B and the norm of its inverse is i-.

Those numbers measure the linear independence of the functions r, (). A case of special
interest is when the rows r,{¢) are translates ¢(r — n) of a single scaling function. Theorem 6.6
will give a formula for A and B in this case, involving $(w).

Summary: The bounds on TT* are the Riesz constants — measuring independence of the rows
of T. The bounds on T* T are the frame bounds. When T is invertible, these ideas are the same —
we have a Riesz basis. When T is not invertible the Riesz lower bound is A = 0.

Question: Could a frame include the zero vector r = 07

Answer: Yes, The inner product (0, f) = 0 would not harm (or help) the frame bounds. A zero
row of T has no effect at all on T*T. And it destroys TT".

Question: Do a lowpass and highpass filter jointly produce a frame?
Answer: Yes, if their frequency responses have [C{w)| + |D(w)| = A = 0.
Question; When would the two filters jointly produce a tight frame?

Answer: When |C(w))* + IJ[Z'(.f.o)I2 = constant. This happens in an orthonormal filter bank. The
frame constant is 2! Subsampling removes the redundancy and reduces that constant to 1. The
tight frame becomes an orthonormal basis.

Construction of Frames

In finite dimensions, any set of vectors that spans RY is a frame. In infinite dimensions, the
frame condition is not so simple. The good constructions start with only one function. We never
want to compute with an infinite set of totally unrelated functions. The natural idea is to create
an infinite family from that one function, in a systematic way.

Two systems are of special importance and they lead to windows and wavelers:

1. Windows come from one window g(t) by modulation and transiation:
gmn(1) = €™ g(t — nT). (2.52)
2. Wavelets come from one wavelet w(t) by dilation and translation:

wi @) = a’?w(a’t — kT). (253)
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The indices m, n, j, and k extend over the set Z of all integers. We have a family g,..(¢) of win-
dows and a family w ; (¢) of wavelets. The numbers Q and T and & are fixed. Those numbers de-
cide whether the family is a frame. Dividing T by 2 gives twice as many functions — increasing
the likelihood of a frame. Dividing 2 by 2 works the same way; so does replacing a by ./a. The
crucial parameter is 7 for the window family and T log a for the wavelet family. When these
parameters are small, we have more functions and more likely a frame.

As T and Q2 and log a approach zero, we begin to lose in efficiency. The ratio B/ A eventually
increases — the frame becomes excessively redundant. (Possibly B/A is a convex function of
2T.) Most of this book is abouta = 2 and T = 1 and special wavelets w(?), leading not only
to a frame but to a basis. Section 8.4 is about 2 = 1 and T = 1 and special windows, again
leading to a basis. Here we are only aiming for frames — much easier,

A point about normalization. The factor a//2 is included in the wavelets to keep the same
norm. Without this factor the norms would go to zero as j — 0. The information to reconstruct
£(#) 1s still available in the inner products with the frame vectors, but the scaling is poor. This
emphasizes that in infinite dimensions, the frame must span the space stably.

Window Frames: Examples and Theorems

Example 2.1.  Suppose g(z) is the unit box function on [0, 1]. For T > 1 the g,,,(¢) are not a
frame. None of the boxes g(tr — nT) overlap the interval [1, T]. Any function f(¢) supported
on this interval has zero inner product with all the windows. These spaced-out windows do not
span L2,

For T = 1 the translated boxes g(t — ») fit tightly. Within each box we have exponentials
'™ For Q = 2 this is an orthonormal basis on the interval [0, 1]. For € < 27 it is a frame.

We see how a basis appears on the “edge” of a family of frames. As soon as  passes 27,
there are not enough exponentials ™% and the frame is lost. (For & = 47 we will completely
miss e/2"') Tn the next example, and often, no basis appears — we go directly from a frame for
small QT to failure for larger QT

Example 2.2. Suppose g(7} is the Gaussian function e~*/2 as in [Gabor]. It produces a frame
if QT < 2x. It does not produce a frame if QT = 27, although this was Gabor’s favorite! At
the edge of the frames, these functions gu,(f) = e ¢=G="/2 4o span the space — but not
stably. The inner products { f, g.u») uniquely determine f (¢}, but the operator 7 T is not bounded
below. The reconstruction formula from those inner products is not numerically stable.

For QT <« 2 the tables in {D, p. 87] show how B/A depends on 2 and 7.

We now state four general results about window frames, without proof. Three are positive,
one is negative. The negative one is famous and comes first:

A. Window frames are impossible with QT > 2. Smooth and decaying window Sframes are
impossible with QT = 2n.

“Smooth and decaying’ in this Balian-Low Theorem [BeHaWa] means that g'(t)yand rg(r)
are in L2(R). The window bases in Section 8.4 escape this restriction by a simple change in their
construction (cosines replace ™). The impossibility for QT > 2x first came from Rieffel.
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B. The dual to a window frame comes from a dual window g(t).

This makes it worthwhile to compute the dual window. One function g(r) gives the whole
dual frame. In many other cases it is too much work to construct (T*T)~!T*, whose columns
contain the dual frame. Instead we solve a linear system for the synthesis coefficients in }_ ¢,r,.

C. Suppose 3 |g(t — nT)|* stays between positive constants for all t. Then there is a positive
threshold § such that Q < S yields a frame [D, p. 82].

This assumes that g(#) has compact support or [¢|*|g(r)] = oc forsomea > 1, *

D. The frame bounds satisfy A < 27| g||/ QT < B.

Wavelet Frames: Examples and Theorems

Example 2.1. The Mexican hat w(t) = (1 —12)e="/2 is the second derivative of the Gaussian.
This wavelet is often used in analyzing vision. It has very rapid decay of both w and 5. For
a = 2 and small T, the tables in [D, p. 77] show that B/A is very near 1. As T increases we
suddenly lose the frame.

Example 2.2. The Merlet wavelet is a modulated Gaussian (complex for real signals):

_ 2
w(t) = e e with @y =7, — = 5.336.
In2

This shift in frequency almost gives f w(t) dt = 0 as required for wavelets. The actual value is
below 1075, and negligible. The phase plot of the wavelet coefficients { J. wi) becomes very
useful [Mt] in locating singularities of f£(7).

Some applications of these two examples use N different wavelets, called voices. This usu-
ally produces a tighter frame; B/A comes near 1. A good way to spread the N voices over an
octave is by fractional dilation of a single wavelet:

we) =w(27%y), €=0,... ,N-1. (2.54)

The negative statement A and positive B in the window rules are reversed for wavelets,

A'. There are wavelet frames (even orthonormal bases) for large values of T log a. The restric-
tion QT < 21 on smooth window frames does not apply to wavelets.

B'. The dual to a wavelet frame does not always come from one dual wavelet.

C. Yy Iﬁ}‘ (a/ @) |2 stays between positive constants for all w, and w(t) is smooth, there is a
positive threshold such that T < Ty yields a frame [D, p. 69].

Y. The frame bounds A and B are related to the waveler constant C by

[+ =]
<B with C=2n f | (w)? d—“’. (2.55)

-0 |ew|

As

2T loga

For a tight frame equality holds. For an orthonormal basis A = B = 1. This constant C will
be crucial for the integral wavelet transform in the next section.
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Problem Set 2.5

1. Find a formula for the Walsh function that comes from the choices — + —. With J = 3 this
function w_,_(¢) is equal to 1 or —{ on gight subintervals of [0, 1].

2. Find a general formula for the Walsh functions at level J = 3, The numbers p, 4, r give the
three decisions +1 or —1.

3. Count how many wavelet packets do not go beyond the level J = 3.
4. InExample 2.13 withT=[1 1 1; 1 & — 1] suppose the vector v is [3 4].

1. What are its three inner producis ¢y, ¢;, ¢; with the rows of T?
2. Verify that 2|lv()? < c} + ¢} + ¢} < 3||v). The frame bounds are A = 2 and B = 3,
3. Verify that ¢\»] + c2v3 + c3¥5 reconstrucis this v,

5. Suppose the frame vectors are ry = [0 2] andry = [I 1]and r; = [2 0]. Compute T*T and
its eigenvalues A and B {(the frame bounds). Also compute T and the dual frame,

6. The bounds for the dual frame (in the columns of T) are % and %. Prove this by showing
that T*(T*)* equals (T*T)~!. The extreme eigenvaluesare_____ and

1 1
I < ol )l < i

7. A tight frame has T*T == AI. Explain why this is equivalent to 3 |{r,. v}|> = A[lv}j>. The
frame bounds A and B are equal. The analysis frame {r,} and synthesis frame (v} } are both
tight.

8. The Mth roots of 1 are the complex numbers with coordinates (oos %. sin %) Show that
these M vectors in R? form a tight frame,
9. Prove that {¢'™} is a tight frame for ¢ < 1 with constant A = 1.

Hint: Change foz" (e~ dt to foz" g(s)e™ ds where g(s) = Ly () up to 5 = 2m¢ (then
zero). The sum of squares of coefficients is (|g(I? because {¢™}is Verify that
IgI? = Llv|? sothat A = 1.

2.6 Time, Frequency, and Scale

This book emphasizes bases more than frames. The synthesis operators are inverses rather than
pseudo-inverses. The analysis bank produces the “right” number of outputs — the data is criti-
cally sampled and not oversampled. We want bases that are convenient for computation (by fast
transform) and well adapted to the signal (for high compression).

This section is different. First it looks at transforms in continuous time and continuous fre-
quency and continuous scale. Reconstruction is by an integral instead of a sum. This allows a
very wide choice of windows and wavelets, in the Short Time Fourier Transform and the Integral
Wavelet Transform. The analysis and synthesis formulas are simple and general. But when we
sample in time and frequency and scale — in order to select a discrete set as a basis or a frame —
the conditions on the windows and wavelets become tighter.

At the end of the section we relax by using many more functions than necessary. Those are
time-frequency atoms — wavelets or windows or whatever. The search for the best representa-
tion from a big dictionary of atoms is a very active problem.

May we first contrast windows with wavelets? The competition between them is far from
over. Both have the goal of localizing the basis functions. The windowing functions g{¢) achieve
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that by dropping quickly to zero—they can be Gabor windows with the Gaussian factor e~*",
or they can have finite length. The shifted window g{t — s) is localized around time s. The
expansion functions are oscillations inside the window:

Windowed exponentials g, ,(7) = g(r — 5)e™,

These are “time-frequency atoms.” When sampled at discrete times ¢ = n and discrete frequen-
cies @ = 27k, the localized exponentials are g(t —n)e™ ¥, If g(r} is a unit box, these functions
give a basis — but not smooth. When g(¢) is a smooth window we don’t have a basis (Balian-
Low Theorem). The samples are over-complete (a frame) or they are incomplete — depending
on g(¢) and the sampling rate. But Section 8.4 will show how smooth local cosines can give a
very satisfactory basis when the frequencies are shifted to k& + '5

Here we keep all times s and all frequencies . The familiar integral Fourier transform {no
window) is a function of w:

—~ 1 oo .
flw) = v flr)e dr. (2.56)

—00
The windowed Fourier transform is a function of @ and also the position s:

1 [« .
Windowed Transform F(w,s) = T FO) gt — s)e™"ds. (2.57)
-0
This is the Fourier transform of the windowed functions f (¢} g(z — 5) for all 5. Without the
windows, the reconstruction of (1) from f{w) is famous:

fo=1 Ffloedo. (2.58)

-0

With the windows, we recover f(¢) g(t — s) by this integral over ., Equation (2.58) for each s

18
oQ

f@Wgt—15 = f F(w, 5)e'dew. 2.59)

=0

Now multiply both sides by g(t — s) (or gt — s} if complex) and integrate over s:

flH)y= ﬁ f f F(w,s)g(t —s)e' dwods. (2.60)

This is reconstruction from the time-frequency transform F{w, ).

Compare this windowed STFT with wavelets, which begin with one function w(t). The po-
sition variable s still comes from translation to w(z — 5). Now comes the difference. /nstead of
the frequency variable we have a scale variable. Instead of modulating the wavelets we rescale
them. The “time-scale atoms” are translates and dilates of w(¢):

t—s
Wavelet functions 1w, ;(t) = |a}™"w (—)
a
The mother wavelet w(f) is wy o(f) at unit scale a = 1 and position s = 0. The factor |a|~1/2

assures that the rescaled wavelets have equal energy |w,s| = llwl. We normalize so that all
these functions have unit norm ||w, ;| = 1.
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Notice how scaling the time by @ or @/ automatically scales the translation steps by a~! or

a’:
(ajt - k) =uw (aj[t - ka'j])

The mesh length at level j is scaled down by a=/. The “frequency” is scaled up by a’. This
hyperbolic scaling or dyadic scaling or octave scalmg (a = 2}is a prime characteristic of wavelet
analysis.

The integral wavelet transform is an inner product with wavelets, just as the windowed trans-
form was an mner product w:th wmdowed exponcnuals

: Integra! Wavefet Transform Fula,s) = |a:!‘”2 f_oo f(t)w (' ‘)dt (2.61)

The transforrn F is dcﬁ ned on the ume-scate plane Again there are two variables, but the
scale a has replaced the frequency w. The subscript in F,, indicates this change.

The wavelet transform F,,{a, s) is redundant, just as the windowed transform F (w, 5) was
redundant. If we select a good wavelet, it will be enough to know F,, at a discrete set of scales
and positions. That is the construction to implement digitally. Here we reconstruct £(¢) from
its over-complete transform F,(a, 5).

Important: The key 10 scaling is not @ but log a. The natural scale is logarithmic. The differ-
ential is not da but da/a. The frequency window da is proportional to a (this is often called
constant- Q). Convolution with Jw (£) gives a unitary operator, when we integrate with respect
to logarithiic measure da/a:

© d 1
f CaCr 2 =T for convolution C, with —w(i).
0 a a a

This is Calderon’s identity, rediscovered by Grossmann and Morlet. It is proved in Theorem 2.5
below, with a different normalization of the wavelet and wavelet transform (each by |a|~'/2). It
gives the reconstruction formula that inverts (2.61) and recovers f(1):

Reconstruction from Wavelet Transform

fy== f f Futa, s)la| ™ ( )d‘;fs. (2.62)

The constant for windows was C = ||g||>. The constant for wavelets is not [|w||?, which
would be 27 times the integral of |&(%. Instead the constant is C = 2x f |i)2dw/|o|. Effec-
tively, C is finite when the transform of the wavelet is zero at = 0. This means that the integral
of the wavelet is zero. Any smooth decaying function w(¢) is a mother wavelet for the integral
transform provided f w(z)dt =

The Haar wavelet was not the box function. It was the up-down square wave with integral
zero, one box minus another box. Other wavelets will be combinations of scaling functions
@ (2t — k), with coefficients that add to zero. Those coefficients come from the highpass fil-
ter! They will be specially chosen, and ¢ (¢) will be specially chosen, to give a discrete basis. In
the continuous time-scale plane we only require that { w(r)dt = 0.

The reconstruction formula (2.62) comes from the following theorem.

Theorem 2.5  Forany f(t) and g(t) in L2, and C as above,

C f fHgyde = f f Fw(a.s)cw(a_,s)dl‘;—fi”‘-. (2.63)



2.6 Time, Frequency, and Scale 83

With f = g this is a “Parseval formula” in the time-scale plane. The energy in f equals the
energy in its wavelet transform, when the time-scale area is measured correctly.

Ironically, the simplest proof of (2.63) uses the Fourier transform. For each a, the transform
in (2.61) is a convolution of f(¢) with the scaled wavelet |a|~!/?w (=£). The Fourier transform
of this convolution F,, is a multiplication |a)'/? f{(w)#(aw). Similarly, the transform of Gyisa
multiplication (a|'/?g ()i (aw). Then for each a, the integral over s on the right side of (2.63)

becomes -

f Fola,s)Gyla, s)ds = 211'[ |a|_ﬁw)m|ﬁ?(aw)|2dw. (2.64)

- et

Integrate this with respect 1o da/|al”* and reverse the order of integration. The integral over a
gives the predicted constant C, after changing variables to aw. The right side of (2.63) becomes

2 f ¥ FleNzw) f ” [i{aw)|® dadw = 27 C f ” Fl@)7(@) do. (2.65)

This equals the left side of (2.63) and completes the proof.

Suppose g(f) = 8{¢) is the Dirac delta function (not in L?). Then equation (2.63) formally
becomes the reconstruction formula (2.62) at ¢+ = 0. The wavelet transform G, (a, 5) of (1) is
the wavelet |a}™'/2w (—2). This appears in (2.62) when ¢ = 0. By shifting the delta function
we teach the reconstruction formula at all £,

This use of the delta function is more legal and familiar than it seems. The ordinary Fourier
reconstruction in (2.58) is reached the same way. The analogue of (2.63) is Parseval’s equation

f fgnydr =27 f Flo)g@)dw forall £, gin L2, (2.66)

With g(1) = 8(¢) this is the reconstruction f(0) = | f(m) dwatt = 0. A shifted delta function
gives the inversion formula at any other ¢. These integrals are correct at each t when f is smooth.
They are correct in the L? sense for a general function f in L2, Technically, we smooth f by
restricting its transform 1o |w| < €2 and then let 2 — oo,

Note. For real wavelets w(t), when |#]° is an even function, integrate only over a > 0 and
compensate by taking only half of the constant C;

% d
a —»f Dl = L.
0

w

The Wigner-Ville Transform

The time-frequency analysis of a signal goes much further than windows and wavelets. By re-
stricting to the choice of one function g(f) or w(r), we create good algorithms — which is our
principal purpose. By allowing more general transforms, we can hope to get precise information
about the “instantaneous frequency” and “instantaneous spectrum’” of a signal. The windows and
wavelets do a little smearing — not too much, and the time-frequency trace of the signal can be
followed. But Wigner and Ville and many others wanted a sharp trace.

We shall devote just a very short space to this basic topic — the correlation of a signal with
itselt. Everywhere else we are correlating the signal with chosen windows or wavelets. As those
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move and rescale, we identify our signal from the correlations. The self-correlation gives an
energy density that should automatically pick out the position and frequency and scale of the
signal.

We define the Wigner-Ville transform of a finite energy function f(¢):

W, w) = [: f(r + %)f(t - %)e"“‘" dr. 2.67)

Notice especially that W is quadratic in f. We expect W (¢, ) to be an “energy density” ~— like
the square of the window and wavelet transforms, but better. This density has several desirable
properties:

%[W(t.w)dm:lf(r)lz and fW(r,w)dt: |f(w)|2. (2.68)

W(t — T, w — Q) is the transform of ¢’ f(r - T).
W (£, aw) is the transform of 1 £ (£).
W(t, ) determines f(z) up to a constant multiplier [¢| = 1.

The transform goes from one variable to two variables. As with wavelets and windows, most
functions of two variables are not transforms of any f(¢). The transform of fﬂips the variables
to reach W{w, —f). And the Gaussian plays a special role. We get W = ¢~ =% from the unit
Gaussian and we get modulations of W = ¢~#'""~'@’£r¢1 from ) quadratic “chirps.”

What good properties does this transform nor have? First, it is not always positive. Second,
the sum of two Gaussians (modulated and shifted) has a transform with Sfour terms. Two terms
are in the expected positions (73, ) and (T3, §2,), as desired from the Gaussians. Two other
terms are in the wrong positions (77, Qz) and (T3, ). These ghosts are highly oscillatory,

“Analytic signals™ have no negative frequencies: f(w) = 0 for w < {. Restricted to these
signals, the transform is a success. Then W (r, w) earns the name “instantaneous spectrum” of
S (¢). And the instantaneous frequency — the derivative of the phase ¢ (1) —equals the average
= [ @W(t, w)de for alarge class of signals,

Summary: The integral transforms, by windows and wavelets, make minimal demands on the
functions g(¢) and w(t), We can analyze and synthesize (transform and inverse transform) with
extremely general functions. Reality sets in when the transform becomes discrete — the shifts
are multiples of T, the modulations are multiples of €2, the scales are powers of a. The elegant
books by Meyer give an overview of this whole picture.

The rest of this text deals with the discrete transform. We will have very strict conditions on
the wavelets! The scales are powers of a fixed integer ¢ = M, most oftena = M = 2. Extra
conditions are imposed on the wavelet. There are absolute requirements and optional properties,
The requirements make it work, the extra conditions make it work well. The goal is to achieve
these properties with a fast algorithm;:

1. Two-scale or M-scale equation (with special coefficients)
2. Smoothness of the wavelet (optional but desirable)
3. Symmetry or antisymmetry (optional but very desirable)

4. Vanishing moments {one required, more desirable).
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Atomic Decompositions

Whether they are wavelets or sinusoids or cosine packets or Gabor functions, we are approximat-
ing f(z) by “atoms”. A collection of atoms is a “dictionary”. We need a reasonable algorithm
to choose the nearly best M atoms for a given f(r), out of a dictionary of P atoms. A single
basis may be too inflexible, and the algorithm must adapr 10 the signal. Major effort is going
into algorithms not based on one orthonormal basis,

We will only mention three ideas and their developers. The first is matching pursuit (S.
Mallat and Z. Zhang). The M atoms are chosen one at a time. The choice atstep £+ 1 is the atom
that comes closest to the current difference fi(t) = f{t) —c11(t) — - - - — car{?). In practice
matching pursuit takes {(normalized) inner products { fz(t), ¢{#)} and chooses a large one —an
atom ¢41{t) that is highly correlated with fi(f). This is a greedy and sub-optimal selection
process — greedy because each choice is ignorant of the later choices, sub-optimal because we
don’t insist on maximizing {fi(¢), @(1)}. The complexity is O(N In N) at each iteration, for a
signal of length N. The pursuit ends at £ = M. We can then compuie the best combination
of the M choices (this is back-projection). Experimentally the error approaches white noise as
M — oo

A second adaptive method is the best basis algorithm (R. Coifman and V. Wickerhauser).
This begins with a dictionary of bases, often orthonormal. The algorithm chooses the best basis
to represent f(t). For wavelet packets from a family of binary trees, the method is particularly
well adapted. Available software includes the Wavelet Packet Laboratory for Windows (AK Pe-
ters, Wellesley MA 02181-5910). A modification that is optimal in the rate-distortion sense, for
compression, is described in [VK, p. 426).

With orthonormal bases at every step, rates and mean-square distortions of the two branches
are additive. This allows a fast algorithm to choose the packet that is best adapted 1o the partic-
ular signai. The reader understands that an actual implementation leads to many options. The
mean-square £2 norm may be replaced by other norms (losing additivity at each split but gaining
in perceptual guality).

A third method is basis pursuit (D. Donoho). The dictionary is still overcomplete. The
synthesis f(#) = Y_ ci¢;(r) (modelled by f = dc) is underdetermined. Frame theory chooses
¢ to have a small I* norm (sum of c? is minimized, leading to linear equations and generalized
inverses). Basis pursuit chooses ¢ to have a small I' norm (sum of |c;| is minimized, leading
to nonlinear equations and linear programming). This minimizer is generally much sparser —
fewer ¢; are nonzero.

The ! minimizer is also more expensive to compute. In place of the simplex method, inte-
rior point and log barrier algorithms associated with Karmarkar solve a sequence of weighted
I? problems. This can give reasonable success for large dictionaries (P = 10* and N = [0?).
The method can distinguish two nearby bumps in f(r), where matching pursuit will select cne
centered bump that has high correlation. Linear programming pursues the best basis — which de-
pends on the signal f(¢). Donoho also studies “empirical atomic decomposition” for P >> N,
This algorithm strongly controls the number M of atems ¢, (¢) in the approximation, by mini-
mizing || £ (£) — ¥ cigi ()| + AM. The key is in the selection of . = o./ZTog P. Software is
on the web at http://playfair.stanford. edu.

The multiplier ). becomes o J2Z1og N for de-noising with an orthonormal basis. The noise
is assumed Gaussian with standard deviation 0. The recommended solution is soft thresholding
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of the inner products y; = {¢;, f) with threshold A. Each scalar y is shifted toward zero but not
beyond;

Thresholding c.5y = (y —X)4 for y >0 and (y+X)_ for vy <0

Donoho notes that ¢;,r, minimizes 3(y — ¢)? + Alcl. That || is the {! norm again.

Finally we emphasize that the construction of wavelets has not ended. While writing the
book we have learned of directional and transiation-invariant and steerable wavelets. And the
world of atoms is by no means restricted to wavelets!

Problem Set 2.6

1. Find the Wigner-Ville transform W{(t, ) when f(¢) is the Dirac function &(t).
2. Show how W({1, w) can also be expressed by an integral of

Wis b)) = % f )Tf;’ - E:-)f(& + %)e”‘”dm




