Chapter 5

Orthogonal Filter Banks

5.1 Paraunitary Matrices

For an orthogonal matrix, the inverse is the transpose. When the matrix is 2 by 2, this imposes a
tremendous constraint. Suppose we choose just one entry of the matrix, in the upper left corner.
Our choice should not exceed 1 in absolute value, and we call it cos 0:

H=| < T

The other entries are almost completely determined by this choice. Below cos 8 we need sin 0
or —sin#8, to make the first column a unit vector. The second column must be a unit vector
orthogonal to the first one, and we select

cosf -—sind
- |: sin@ cos @ ] ’ G.1)
H rotates every plane vector x by 8. The length is preserved. ||Hx|| = ||x||.

This is not the only orthogonal matrix that starts with cos8. We could multiply the second
column or the second row by —1. Then the rotation matrix in (5.1) becomes a reflection ma-
trix; its determinant changes to —1. If these are complex matrices, we could multiply any col-
umn and any row by numbers on the unit circle |z| = 1. This yields every unitary 2 by 2 ma-
trix. Essentially, one entry determines the whole matrix. The inverse is the conjugate transpose:
H'= ﬁr.

An analysis bank is represented by an infinite matrix (in the time domain). But in the fre-
quency domain or z-domain, the matrix is 2 by 2 (from M = 2 channels and M = 2 phases).
This matrix depends on a parameter @ or z. Therefore we siretch the definition from unitary to
paraunitary:

Definition 5.1 The matrix H(z) is para

CH (e I forall w. & (5.2)
This extends toall z # 0 by FI(Z) =HT(z‘1) Then a p;}aunitary matrix has
H ¢ OWH(z) =H@) Hiz) =1 forallz. (5.3)

When the coefficients h(k) are complex, they are conjugated in H().
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The matrix H need not be 2 by 2. If itis 1 by 1, then |[H(e/“}| = 1. The corresponding filter
is allpass. The best allpass examples are ratios of polynomials coming from IIR filters — since
only trivial polynomials z~* can have |H(e/*)) = 1.

If H(z) is M x M, it could come from an M-channel filter bank. It might be the polyphase
matrix H ,(z) or the modulation matrix H, (z) (divided by +/2). We will show that the filter bank
is orthogonal if these matrices are paraunitary. That is the important connection for this book.

Equation (5.2) gives the inverse matrix by transposing and conjugating the original. The
synthesis bank comes by “reversing” the analysis bank. Note that for a square matrix, H(z) is
paraunitary when H~'(z) and H" (z) and H(z)are paraunitary. And notice especially what equa-
tion (5.3) says about the determinants of these matrices:

(det H(D) (detH(z)) = 1. (5.4)

The determinants are 1 by 1 allpass!

Theorem 5.1  {fasquare paraunitary matrix H(7) is FIR (= polynomial), then its determinant
must be a delay:
det H(z) = +z77. (5.5)

The determinant of H,(z) is also a delay for any bi-orthogonal filter bank. Orthogonality re-
quires more; the polyphase matrix Hp,(z) must be paraunitary.

If H(z) is rectangular, say M by r, then H@H() = s still possible. The identity matrix is
now r by r (and necessarily r < M, since the rank cannot exceed M), The matrix is still called
paraunitary. There is no inverse matrix H~'(z) in the rectangular case, but H(z) is a left-inverse.
We hope and expect that H(z) can be completed to a square paraunitary matrix, by adding M —r
more columns. In the applications, we are starting with r filters and creating M — r additional
filters — while preserving orthogonality.

When fl(z)H (z) = dI with d > 0, we could still use the word paraunitary. The chief exam-
ple is the modulation matrix, which has 4 = 2. Some authors keep this flexibility.

Our chief interest is in the case M = 2. A 2 by 2 paraunitary matrix is essentially determined
by one entry. For a paraunitary polyphase matrix, the even phase Hog(z) of the lowpass filter
essentially determines the whole orthogonal filter bank. For filter banks with four taps, there are
two free parameters — which can be ¢(0) and ¢(2). The design problem is greatly reduced when
the filter bank is orthogonal and its polyphase matrix is paraunitary.

2 by 2 Paraunitary Examples

The first example is H(z) = I. It corresponds to a “lazy filter bank™ without filters. The poly-
phase matrix is H, = I when the filters are Ho(z) = 1 and H;(z) = z~!. The bank just splits
the input vector x into odd and even phases, without filtering it.

The next paraunitary matrix is H(z) = 3[] _]]. This is still constant. It is the polyphase
matrix of the Haar average-difference filter bank. We move on to more interesting examples.

Suppose Ry, .. ., Ry are constant rotation matrices as in equation (5.1). The rotation angles
are B, ..., 6. If we multiply those matrices, we get a single rotation through the total angle
2. But if we introduce a diagonal matrix A(z) = diag (1, z7!) between those rotations, we
get something much more general and important:

H(z) =R A@2) R A@---Ry A(Z) Ro. (5.6)
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This matrix is paraunitary, because it is the product of paraunitary factors. Its determinant is z™!
(the product of determinants). The filter bank can be realized as a lattice structure involving !
delays. Section 4.5 proved that this is the most general 2 by 2 paraunitary matrix of degree I.
The only subtle point is the meaning of the word “degree.” Here are two small examples to make
that point, both with Ry = R, = I. Then H(z) is A(z)R; A(z). The only difference is in Ry:

IR - R R C R
mo = [P ][] ]l ]

Both have determinant z=2. Both have degree { = 2! But the power z~2, which appears in
the first, does not appear in the second. The correct definition of degree 15 the Smith-McMillan
degree — the minimum number of delays required to realize the system. For paraunitary systems,
but not for all systems, the degree is revealed by the determinant.

H(z)

For lowpass-highpass filters with four taps, the even and odd phases have two terms each. If
H(2) is paraunitary, it fits the general form (5.6) with { = 1. There are two parameters 8 and 8,
to be chosen. Again we have two design parameters, for 4-tap orthogonal filters, but this time
they are angles,

This chapter constructs a family of maxflat filters. Then Chapter 6 shows that these filters
give the Daubechies wavelets. We mention the connection now, so you will attach importance to
maxflat filters. They don’t have a sharp transition band — they don’t have the quickest transition
from passband to stopband —but they produce the most vanishing momeants.

Problem Set 5.1

1. Suppose H(z) = B(0) + h(1)z" + --- + R(N)z™¥ is paraunitary with N > 0. Show that
R(O)TR(N) = zero matrix. Deduce that (0) and A(N) are both singular matrices.

2. Multiply out H(z) = R| A(z)R, for angles 8, and 6. If this is a polyphase matrix, what filter
coefficients d(k) come from the even and odd phases in the lower row of H{(z)? If that is a
highpass filter, with D = 0 at @ = 0 (which is z = I}, show that 8; + 8y = —F + nr. (Haar
has 6y = —% and 6, = 0)

3. Complete this polynomial matrix to have det H(z) = 1. Is it paraunitary?

142! ¢ ]

H(z)= [

4. When can a row be the first row of a paraunitary mairix?

5. Show that H = I—2vv7 is a unitary matrix, where v"v = 1. Compute H~' and the determinant
of H. Construct an example.

6. Show that H = F — w7 4+ z7'w¢7 is a paraunitary matrix for a unit-norm vector v. Compute
its inverse and determinant. The factorization of H ,(z) using these Householder matrices is
in [V].
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5.2 Orthonormal Filter Banks

This section brings together the requirements for an orthonormal filter bank, We will see those
requirements in the time domain and the polyphase domain and the modulation domain. These
requirements are conditions on the filter coefficients c{k) and d(k). Then equation (5.19} indi-
cates a simple choice of the d’s coming from the ¢’s. If the lowpass filter meets the orthogonality
requirements, it is easy to construct a highpass filter to go with it.

The discussion is in terms of a 2-channel FIR filter bank, M = 2. But the conditions extend
immediately to any M. The polyphase matrix and the modulation matrix must be paraunitary.
In the M-channel case, the lowpass filter does not immediately determine the M — 1 remaining
filters (which are bandpass). There is some freedom in their construction, and we come back in
Chapter 9 to M > 2.

c lepqtey ' R
input x —|: :|— output X = x
p lz—t2 o

Figure 5.1: An orthogonal filter bank has synthesis bank = transpose of analysis bank,

Figure 5.1 shows the structure of an orthogonal filter bank, We intend to achieve ¥ = x, with
synthesis filters CT and D7 that are time-reversals of the analysis filters:

C = 7 and ) =c(-n 5.7
D = D7 and d(n) =di-n) (5.8)

As it stands, € and D are anticausal. At the end we make them causal by N delays. The output
T(n) is equally delayed; it is x(n — N). But the algebra is easiest for C7 and D7 with no delays.
This special structure imposes special conditions on the ¢'s and d's for perfect reconstruction.
We will call the requirements Condition O (for orthogonality). This section finds four equivalent
forms: Condition O on the infinite matrix, on the lowpass coefficients, and on the polyphase and
modulation matrices H,, and H,,. We loock first at the infinite matrices in the time domain,

Time Domain: Condition O and the Alternating Flip

The key matrix in the time domain is H,. It represents the direct form of the analysis bank, with
downsampling. The lowpass part L = (] 2)C comes above the highpass part B = (] 2)D. We
display this infinite matrix for filters of length four:

[ e(@) ¢2) (1) ¢(0)
ce(3y ¢(2) (1) 0

]“ d3) d@2) d) 4 : (5.9)
d3) d@) 41 d0)

The shifts by 2 were created by downsampling, which removed the odd-numbered rows.
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With orthogonality, the synthesis filters are to be time-reversals of the analysis filters. The
infinite synthesis matrix contains the transposes of (| 2)C and (| 2)D. Those transposes are
C7(12) and D7 (1 2), since upsampling is the transpose of downsampling:

c(3) d(3)
(2) d(2)
_IyT 1 e 3 d(1} d@3)
H =[LT B7]=| Co () d0) 42 .10}
e(l) - d(1)
] 0 - d©) - |

The shifts by 2 in the columns are created by upsampling, which removes every other column.
We require ¥ = x. This means that H' H, = I. The matrix H, is required to be an orthogo-
nal matrix. Its columns are orthonormal and so are its rows: H.H! = I. We can express this
Condition O in matrix form, and in block form, and in coefficient form,

Condition O  An orthogonal filter bank comes from an orthogonal matrix:

H/H =I1and HH =1 (5.11)
In block form this means that
L
[L" BT [B] =L"L+B'B=1I (5.12)
and L LLT LBT I 0
T Tl —
[B][L B]_[BLT BB'-"]‘[o I]. (5.13)
For the coefficients ¢(k) and d(k), equation (5.13) becomes orthogenality to double shifts:
LLT =I: Y e(ne(n —2k) = 6(k) (5.14)
LB" =0: Semdin—-20)=0 (5.15)
BBT =I: Y d(m)d(n —2k) = §(k). (5.16)

Because of (5.14)~(5.16), we refer to Condition O as double-shift orthogonality. Its equivalent
in the frequency domain is presented below. This double-shift orthogonality immediately rules
out odd length filters! If the length is N + 1 = 5, a shift by 4 gives an inner product that cannot
be zero:

(€(0}, (1), ¢(2), ¢(3),¢(4)) - (0,0,0,0,¢(0)) = e(0)e(d) # 0.

N cannot be even (the filter length cannot be odd) because % double shifts would give a shift by
N — and the inner product ¢{(0)c{N) is not zero. So N is odd. The degree 2N of the halfband
product filter P is 2, 6, 10, . .. The clearest examples have N = 3 and 2N = 6.

Example. Condition O in (5.14) imposes two constraints on four coefficients:
O +e(1’ +e(* +e(3* =1 and c(0)c(2) +e(1)e(3) = 0. (5.17

Equation (5.16) is an identical condition on the @'s, from BBT = [. Equation (5.15) is the or-
thogonality of the rows of L to the rows of B. Those are the fundamental design constraints on
an orthogonal filter bank.
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The conditions on the ¢’s and d's are independent, but something good happens. If the ¢’s
satisfy equation (5.14), it is easy to choose the d'’s. We display a choice of d’s that automatically
gives orthogonality:

c(3) @ e(l)  ¢(0)
c(3)  ¢(2) c(l) e

]— ~c(0) ¢(1) -—¢(2) ¢(3) . (5.18)
—-@® (1) —@ 3

This is the alternating flip. The ¢’s are reversed in order and alternated in sign, to produce thed’s.
We start with lowpass coefficients ¢(0}, ..., ¢(N), where ¥ is odd. The highpass coefficients
are il R i

(5.19)

The essential point can be checked infi trix (5.18). If the top rows are or-
thogonal to each other, then all rows are orthogonal. The zero dot products in LB” are:

(~DfeV - B,

0
0.

—¢(3)e(0) + ¢(2)e(1) — ¢(1e(2) + e (0)e(3)

—c(1)e(0) + c(@e(1) (5.20)

(!

Furthermore, the d's are orthonormal within themselves (BBT = I) because the ¢'s are. Equa-
tions (5.17) hold for the d's, when they are constructed by flipping the ¢’s. Minus signs cancel
in d(3)d(1) which is {(—c{0})(—=c(2)).

Cur four-tap example has N = 3. The alternating flip gives LB” = 0 for every odd N.
The top rows of H, in (5.18) are always orthogonal to the bottom rows. Also (5.16) for the d's
follows from (5.14) for the ¢'s. Thus the alternating flip reduces orthogonality to (5.14):

Condition O on the coefficients: Y _ c(n)e(n — 2k) = 6(k).

Polyphase Domain: Condition O and the Alternating Flip

The polyphase form separates (1 2)C and ({ 2)D into even phase and odd phase. In the time
domain, we are rearranging the columns of the matrix H,. All even columns come before the
odd columns. The matrix goes into the 2 by 2 block form of Section 4.4, with time-invariant

filters as the blocks:
th g = [ Ceven Codd
o Deven Dodd )

In the z-domain, we are rearranging the response functions C{z) and D(z):
D ez = Conlz™) + 27 Cotaz ™). (5.21)

Those phase responses are written Hoo(z) and Hy{z) when C(z) is Ho(z). The highpass re-
sponse D{(z) = H;(z) decomposes in the same way. The polyphase matrix is

Hp(z)=[ Coen(?)  Coua(2) ]_[ Ho(@)  Hu(2)

De\ren (Z) D'Jd'd (Z) = HIO(Z) H1| (Z) ) (522)
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Now Condition O translates directly into a requirement on H p(2). A filter bank is orthogonal
when its polyphase matrix is paraunitary:

H} (e /*)H (e’ = I for all  and H,(2)H ,(z) = 1 for all z. (5.23)

The inverse of H,(z) is the synthesis polyphase matrix. The matrix and its inverse can be mul-
tiplied in either order — here is analysis times synthesis:

Ceven(z) Codd(Z) Ceven(z_l) Dmn(z“) — 1 0 (5 24)
Deven(z)  Doad(2) Codd(z™')  Doga(z™") 0 1 | '
On the unit circle, where 77! is Z, row 1 times column 1 becomes
 1Ceuen @I + 1Coaa() = 1 when [z] = 1. (5.25)

This is the essence of Condition O in the polyphase domain,
For the example with four coefficients, it is helpful to multiply out equation (5.25):
(€0 +e(@)z7") (€(0) + e()2) + {e(1) + c(3)z™") (e(1) + ¢(3)z) =
c(0) +¢(2)* +¢(1)? +¢(3)* + [c(0)e(2) + e(DeD (2" +2) = L.

Thus (5.25) is equivalent to the explicit statement (5.17). The sum of squares is 1 and the dot
product e(0Ye(2) + ¢(1)e(3) is zero. .

The other multiplications in (5.24) give answers 1 or O in the same way. All these require-
ments on the s are automatically satisfied by the flip construction! We write that choice dik) =
(—1)*e(N — k) in the z-domain:

D4zt =3 e(N — k-7 = Y etn)(—2)"".
This relation between highpass and lowpass is an alternating flip:
D@) = (-~YC(-z"). (5.26)

The number N is odd. Because of (—z)~, the even and odd phases in C are reversed to odd and
even phases in D. We take N = 3 as typical. An alternating flip of ¢(0), ¢(1), e(2), ¢(3) yields

D) = ¢(3)—c(z” +e()z™? — (0773 (5.27)
= {e® +c)z7) - 27 (@) +e(0)z7?).

With this flip in row 2, the multiplication H ,(z)H7 (z~!) becomes

e +e@)z™ e(1) +e(3)z! cO+e@z  e®+e)z 1_,
e +e(z7' —e(2) — ¢(0)z} e +e@Bz —e@—-c®z |=©

The off-diagonal entries of the product are automatically zero. The alternating flip achieves
LB" = 0 with or without orthogonality. The 2,2 entry of the product is the same as the 1, 1
entry, when [z] = 1. The orthogonality requirement (5.25) makes the 1, 1 entry equal to 1.
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Modulation Domain: Condition O and the Alternating Flip

The function that arises from modulating C(z) is C(—z). The frequency in z = ¢/ changes by
# to produce —z = ¢/@*+_ This modulation takes C(®) to C{w + 7). The frequency response
graph is shifted by .

Our goal is to relate C(z) to C(—~z) and D(z) to D{—z) for an orthogonal filter bank. We
already know Condition O on the coefficients:

(0 +e(1)+c2)*+e3¥ =1 and ¢(0)e2) +c(1)e(3) =
Watch how 1 and 0 appear in |C(z)[*. Stay on the unit circle where 7! = z:
(€0 +ez™! +e(2)z27% +e(3)27%) (O + e(Dz + e(2)2% + c(3)2%) =
1+ [e(0)e(1) + e(1)e(2) + (D] (7! + 2) + c(0)e(3) (27> + ).

Now change z to —z. The odd powers z and z3 change sign. When we add, those odd powers
cancel

lC(z)I2+IC( z)l2 IC(w)E_ﬂC(wM)F;z forallz—-ef“’ (5.28)

This is the ha!fband condmon, also called the Nyguist condttwn IC (z)l2 is a halfband filter,

Those filters we can design! In other words, the lowpass analysis filter C(z) is a spectral factor
of a halfband filter,

Condition O on H,,(z). The modulation matrix of an orthogonal filter bank is a paraunitary
matrix times +/2:
H,()H,(z) =21 forall z. (5.29)

On the circle z = ¢/, the modulation matrix is a unitary matrix times +/2:

[ Clw) Clw+m) ][ Clw) D{w) ]=[ 2 0 ]

D) Dw+m || Cetm D@+ 0 2 (5-30)
The 1, 1 entry of this matrix product is [C@))?+|Clw+m)2 =2 by (5.28). The other entries,
when we multiply them out, follow immediately from (5.15) and (5.16). Thus Condition O on
the coefficients is equivalent to Condition O on the modulation matrix H,,. It is also equivalent
to Condition O on H . It is the statement that the analysis bank followed by its transpose gives
perfect reconstruction. We summarize:

Theorem 5.2 For an orthogeonal filter bank the lowpass coefficients must satisfy Condition O
(we give four equivalent forms).

Matrix form L =y cc (1 =1
Coefficient form 3 en)e(n ~ 2k) = (k)
Polyphase form |Ceven(e/“)* + 1Coaa (e} > = 1

Modulation form  [C(@)[? + |C(w +m)[2 =2

By an alternating flip, LB” = 0 and BBT = I follow immediately from the lowpass part
LLT = I. The real problem is the design of the lowpass filter.
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Symmetry Prevents Orthogonality

Itis natural to want two good properties at once. Symmetry is good for the eye, and orthogonality
is good for the algorithm. But the only filters with both properties are averaging filters (Haar
filters) with two coefficients. We are forced to use IIR filters, or M channels, or multifilters with
matrix coefficients (Section 7.5). Extra computation is unavoidable, because the next theorem
rules out a perfect filter.

Theorem 5.3 A symmetric orthogonal FIR filter can only have two nonzero coefficients.

Proof. N is odd for orthogonality. The filter length must be even. With N = 5 a symmetric
filter of length 6 has the form (¢(0), c(1), €(2), €(2}, £(1), ¢(0)). This vector must be orthogonal
to all its double shifts. The inner product with its shift by four must be 2¢(0)e(1) = 0. Therefore
(1) = 0. Then the inner product with its shift by mwo gives 2 ¢(0)e(2) = 0. The only nonzero
coefficient is ¢(0) at both ends of the filter. This completes the proof.

By convention ¢(0) is the first nonzero coefficient. Shift the filter if necessary to achieve
this. The only symmetric orthogonal possibilities are ¢ = (1, 1)/+/2 and (1,0, 0, 1)/+/2 and
(1,0,...,0,1)/+/2. Only the Haar coefficients (1, 1)/+/Z will lead to orthogonal wavelets,
Symmetry really conflicts with orthogonality.

A second proof observes that the odd phase is the flip of the even phase:

(€(0), c(4),¢(2),¢(2), ¢@), ¢(0)) has |Cerven(2) = ICosa(2)I.

Condition O is |Ceven(z) [ + |Coaa(2)[*> = 2. With symmetry this separates into | Ceyea(z)2 = 1
and [Coqa(2)I* = 1. The even phase is an allpass filter ! So is the odd phase. But FIR allpass
filters can only have one nonzero coefficient, which completes the second proof.

A third proof is based on the zeros of C(z). This is in Section 5.4 below.

Problem Set 5.2

1. (a) Show that the alternating flip with odd N gives D(w) = —e'"*C(w + 7).
(b) Then D{w + ) = &/¥°C(w). Verify that C(w)D(®) + C{w + 7)Diw + ) = 0.
(€} Also |C(@)* + |Clw + m){* = 2 implies that {D(w)[> 4 |D(w + 7)) =2

2. For any four coefficients s(0), ..., A(3), verify that

Heen @I + 1 Haa@F = L ({H@P + 1H(=2)?) .

Then Condition O for polyphase equals Condition O for modulation.

3. Find the flaw in this construction of the modulation matrix H,, (z). Start with an arbitrary upper -
left entry C(z). Complete the 2 by 2 matrix to be paraunitary (times +/2). Then the filter bank
is orthogonal.

4. Find d by an alternating flip of ¢ = (e(0), ..., €(5)). Verify equation (5.15) directly to show
that ¢ is double-shift orthogonal to 4.

5. Verify that e = ;L= (1 + /3,3 + v/3,3 — /3, 1 — /3) satisfies Condition O (Daubechies).
6. If two lowpass filters C and H satisfy Condition O, does their product satisfy Condition O?

7. 1f two polyphase matrices H ,(z) and K, (2) satisfy Condition O (they are paraunitary), does
their product satisfy Condition Q?
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8. If two modulation matrices H,(z) and K, () satisfy Condition O, show that H (DK, (2)/2
is also paraunitary. What is the lowpass filter in the product?

9. Why does orthogonality require an alternating flip between the lowpass filter € and the high-
pass filter D? Explain why the paraunitary matrix

Ceven(2) Coaa(2)
Deven(z ) Doga(z)

| Deven(2)1 [Coaa(z)]
1 Doaa(2) [Ceven(2)].

Go further to show that Devey = £272¢ (Rip of Cogq) and Dogg = £z (flip of —C,yeq). This
gives the alternating flip with any even delay z-2¢.

Hp(z) = [

] must have

10. Find Hy(z) and H,(z) and H,(z). Is this paraunitary? Find the PR synthesis filters, What is
Fo(z)?

x(n) |2

A2l 2 X

- -1

1. ForHp(z)=I—-w™ + 27wl withv=1[ 21 1 /3 T, find the four PR filters.

12, Let Hy(z) = R\ A(Z)Ry where 6, = Fand g = —Z. What are the analysis and synthesis
filters? Plot the frequency responses of H;(z).

5.3 Halfband Filters

Out of all the equations in the previous section, we would like to emphasize one. It came at the
end. Tt applied first of all to the lowpass filter C(z), and then by the alternating flip also to D(z).
It was equation (5.28), that the frequency response C(w) = ¥~ c(k)e~ /@ satisfies

|C(@))? + IClw + m)i = 2. (5.31)

The key question is, what does equation (5.31) say about |C{w)|? itself?

We assign the symbol P{w) to this important quantity [C{w)[%. It is the power spectral re-
sponse. Because C{w) multiplies C (@), the filter with this response P(w) is symmetric, It is the
“antocorrelation filter”;

N N N
P@) =Y pwe ™ = (3 clkye ) (Z eke™), (5.32)
-N 0 1]

The function P(w) = |C{w))? is real and nonnegative, It equals its complex conjugate. This
verifies the symmetry p(n) = p(—n) that was expected (with real coefficients),

To repeat: When 3~ ¢(k)e~/* multiplies its conjugate Y e(h)e’’”, we watch forn = k — {
which is { = k - n. The coefficient p(n) is the sum of e(k) times ¢(k — n):

pn) = Zc(k)c(k — n) = autocorrelation of the sequence c(k). (5.33)

Autocorrelation is p = ¢ * ¢7. This is the convolution of ¢ = (c(0), e(1),¢(2),...) with its
time reversal ¢7 = (..., ¢(2), (1), e(@®). Replacing —n by # in (5.33) brings no change in p.



154 Chapter 5 Orthogonal Filter Banks

The reason for the surprising notation ¢7 is that multiplying C{w) by C(@) corresponds ex-
actly to multiplying the infinite filter matrix C by C7:

c(2)
. . . c(1) .
P=CCT = . c(0) (0} . ) (5.34)
c(]) . .
c(2)

P is a symmetric positive definite (or semidefinite) Toeplitz matrix. The transpose of CCT is
CCT. The diagonal p(0) = ¢(®)? + ¢(1)* + ¢(2)* + - - - is certainly positive. Equation (5.31)
says that p(0) = 1, when the matrix € comes from an orthonormal filter bank.

What does equation (5.31) say about the other coefficients p(n)? In a word, it says nothing
about the odd coefficients and it assigns zero to the even coefficients. C is the start of an orthog-
onal filter bank if and only if the autocorrelation filter P is a halfband filter:

PY+ P(—y=2. (5.35)

The even coefficients with n = 2m must be 8(m):

 Halfband filter p(2m) = ¥ c(k)e(k — 2m) = : 1 ifm=0

0 ifm#0 (5.36)

The odd coefficients are not necessarily zero! They cancel automatically in equation (5.35). To
require CCT = I, with odd coefficients zero, would make C an allpass filter. It could only be a
delay. The requirement P(z) 4+ P(—2) = 2 is much weaker than P(z) = 1. Perfect reconstruc-
tion is possible for an FIR filter bank, but essentially impossible for one FIR filter.

The highpass response D(w) leads similarly to the autocorrelation Fi(w) = 1D(w)|*. Then
DDT must also be a normalized halfband filter. That result is automatic with the alternating flip,
which gives Pi{w) = P{w + ). Then p, (2m) = p(2m) = &(m) for the even coefficients. The
odd coefficients change sign, #(z) = P(—z), but the halfband conditicn Py (z) 4 Pi(—2) =2
remains true.

The sum IC(w)|® + |C(w + 7)|% is P(w) + P(w + m). For a halfband filter, this sum is a
constant. The graph of P(w) shows a special symmetry with respect to the halfband frequency
w = 7 ~— hence the name. Notice what happens in downsampling — the even coefficients yield
the identity filter:

(| 2)P =1 when P is normalized halfband. (5.37)

Example 5.1. The symmetric filter with p(0) = 1 and p(1) = p(—1) = % is a halfband filter.
Its response is

Z—l

Pi)=1+ £ and equivalently P(w) =1 + cosw.

In the z-domain, P(z) + P(—2z) = 2. The odd powers cancel and there is no z2 term. In the w-
domain 1 + cosw + 1 — cosw = 2. The odd frequency cancels. Notice that P(w) = 1 + cosw
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is never negative! It does reach zero at the highest frequency w = =, corresponding to z = —1.
When P{w) touches zero, its spectral factor C(w) must also touch zero — since P = |C. This
leads us to C(w) = (1 + e~*)//2:

P =IC)’=(1+e7)(1+¢“)/2=1+ cosw. (5.38)

These coefficients ¢(0) = ¢(1) = 1/ +/2 come from the familiar averaging filter. The division
by +/2 gives an orthonormal filter. Figure 5.2 shows the lowpass halfband filter P with response
1+ cosaw. Added to P{w + m} it gives the constant 2,

| P(w)]

e

|C(co)|

045

0.2r

o 005 0 C1§ 02 025 03 035 04 045 05

Figure 5.2: The orthonormal filier C{w) has P{w) = |C(w) |*. The normalized frequency 0.5 is
w=".

The requirement P(w) > 0 is crucial. Otherwise we could not factor P(w) into [C(w)>.
The halfband filter with coefficients p(—1) = p(0) = p(1) = 1 could never be |C{w)}Z. Tts
response P{w) = e’ + 1 + ™ is negative at @ = .

Example 5.2. The Daubechies 4-tap filter picks out C(w) from P = |C{? when
P(w) = (1 +cosw)* (I ~  cosw). (5.39)

Note the double zero at w = 7, coming from (1 + cos w)?. If we keep only that factor, this P(w)
would be the square of the previous example. Its factor would be the square of the previous C(w),
namely 1 + ¢~ + 1e=%%, Those coefficients , 1, § are important — they will lead to the kar
function, when we study wavelets. But P(w) = (1 + cos w)” does not by itself yield a halfband
filter, so the lowpass C with coefficients % 1, -;— cannot go into an orthogonal filter bank. The

hat function is not orthogonal to its translates.

To repeat: (1 + cos w)” includes the term cos? w. This produces an even frequency cos 2.
In the z-domain we are squaring 1 + § (z~' + z), which produces the even power z=2. This is
not halfband! Daubechies’ extra factor 1 — %cos @ must be included, to cancel the 2w term in
P(w) and the z? term in P(z). We will have orthogonality, thanks to that factor.

To see that P(e) is halfband, multiply it out. The cos 2w term is missing:

P(w) = (1+2cosw +cos’w) (1 — §cosw) = 1 + 3 cosw — § cos® w.
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In the z-domain, the z? term is missing. Its coefficient p(2) is zero:
Py=—%P+ Fe+1+ &z - k2 (5.40)

We know that P(w) = 0 because 1 — %cosw > 0. Therefore it can be factored into |C(w)|?
{spectral factorization). This is not a trivial calculation. It is made easier by the fact that we
already know the factor for 1 + cos w, from the first example. This leaves only the linear piece
Qw)=1—3coswor @z) = 1 — 1 (z7' +z). We factor Q in three steps:

-7+ = GO +b1)27) GO +b(12) (5.41)

1=58(0Y +b(1)> and —%=>50)() (5.42)

Solving the quadratic equations gives 5(0) = (1 + +/3)/v/8 and b(1) = (1 — 3)/+/8. The
solutions are real because 1 — % cos w is safely positive,

Another approach, basically the same, is to multiply (5.41) by z to get an ordinary quadratic.
The quadratic formula gives its roots as 2 & +/3. Since Q = 0 at these roots, we have

BO)+b(1) 2+ V3 =0. (5.43)

The previous solution is correct because 1 +3+ (1— \/5)(2— \/3)" = {0, This is the minimum
phase solution, from the root 2 — /3 inside the unit circle. There is another solution from 2 +
/3, in which b(0) and »(1) are exchanged. This is maximum phase. Two more solutions come
from reversing signs to —&(0) and —&(1), We are seeing the limited number of possible spectral
factors in | C(w))?. The general rule for higher degree polynomials and longer filters is the same:

Minimum phase:  Choose roots of z¥ P(z) that are on or inside |z] = 1.

Maximum phase:  Choose roots of z¥ P(z) that are on or outside |z| = 1.

Mixed phase is also possible, choosing some roots inside and some outside. That can bring us
to linear phase. We will show how linear phase factors of the Daubechies polynomials lead to
biorthogonal filter banks which are among the current favorites.

Completion of Example. We factored 1 — } cosw and 1 + cos &. Multiply to obtain

€@ = ﬁ (1+ 3‘1)2 ((1 + ﬁ) +(1- \/E)z") (5.44)
Y I S S|

Those are the four coefficients ¢(0),...,c(3) of the famous Daubechies filier D,4. In our
present normalization, they are divided by /32 = 4+/2. In other normalizations they are divided
by 4. Remember their two key properties;

1. The halfband fiiter has P(z} + P(—z) = 2. The factor C(z) goes into an orthonormal
filter bank. D(z) comes from C(z) by an alternating flip.

2. The response C(z) has a double zero at z = —1. In frequency, C{w) has a double zero at
w = . The response is flat at & because of (1 4 cos w)?.

The double zero at w =  will produce two vanishing moments for the Daubechies wavelets in
Chapter 6.
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0 0.1 02 0.3 04 05

Figure 5.3: A halfband filter P () and its mirror image P(w -+ x). Their sum is constant.

Figure 5.3 shows a graph of [C{w){*, so you can see the halfband property that produces
orthogonality. The highpass response in that figure is |C(w + 7)|2, which equals | D(w)|%. The
sum of the two is constant, so there is no amplitude distortion. The flatness gives great accuracy
near @ = 0 and @ = & (not so great in the middle). The filter bank gives perfect reconstruction.

Problem Set 5.3

1. Solve equations (5.42) for x = b(0)2. Confirm the factorization.
2. What is the 2 by 2 polyphase matrix H #{(2) from the Daubechies € (z) and the allematipg flip?

3. Whatis the 2 by 2 modulation matrix H., () for that four-tap Daubechics example? Verify that
H.H, =21

4. If a linear phase halfband filter satisfies G(z) + G (—2) =z, what is the relation between /
and N? Can G(z) be an antisymmetric?

5.4 Spectral Factorization

In an orthonormal filter bank, C(z) = +/2H(z) isa speciral factor of a symmetric halfband filter
P(2). The factorization is P(z) = C(z~")C(z) and the halfband property is P(z)+ P(~z) = 2.
In frequency, P(w) = |C(w)|* achieves the orthogonality condition |C (w)(* + |C(w+m)|? = 2.
In the reverse direction, P(z) is the autocorrelation of C (z). This intimate relation of spectral
factor C(z) and its autocorrelation P(z) is fundamental throughout signal processing.

Two questions arise immediately:

1. (Theory) Can every polynomial with P(w) > 0 be factored into |C(w)??
2. (Practice) How is this spectral factorization actually done?

The answer to Question 1 is yes. This is the Féjer-Riesz Theorem. The answer to Question 2 is
not s0 quick. There are many competing algorithms for spectral factorization. Short filters offer
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no serious difficulty, but with 100 or even 50 coefficients the weaker algorithms become slow
and/or unreliable. When C(w) is only approximate, the reconstruction is not perfect.
The trigonometric polynomials P (w) and C{w) are both of degree N:

2

N N
Zp(n)e—fum = |C(el‘w)|2 = |Zc(n)e—mw )
—N Q

P(z) has symmetric coefficients p(n) = p(—n). There are N + 1 independent coefficients in
P and the same number in C. They are linked by quadratic equations, when we solve P(w) =
IC{(w@)|®. Those equations are solvable if and only if P(w)} = O for all @.

As an aside, note that matrix spectral factorization is also possible where P(w) is symmet-
ric positive definite. Both 1 and 2, theory and practice, are nontrivial. The Riccati equation is
involved.

We indicate four factorization methods. Three are actually used; Method C is for conversa-
tion only. The first method begins by finding the zeros of a polynomial (by a goed algorithm!).
This proves that spectral factorization is possible, by doing it.

Method A (zeros of a polynomial). With real symmetric coefficients p(n), we have P(z) =
P(1/z). If ziisaroot, sois 1 /z;. When z; is inside the unit circle, 1/z; is outside. The roots z;on
the unit circle must have even multiplicity, by the crucial assumption that P(w) > 0. Therefore
the polynomial zV P(z) of degree 2N, with leading coefficient p(N) £ 0, must have these 2N

factors:
N—M

M
N P(2) =p(N)]_[(z—z;)(z— zl) [FRE —z;)". (5.45)
i=1 =l
This contains the key point, but we know more. Real coefficients ensure that the complex con-
jugate Z is a root when z is a root. The complex roots off the unit circle actually come four at a
time: z; and Z; inside, 1/z; and 1/Z; outside. The complex roots on the circle also come four at
atime: z; twice and Z; twice. Real roots on the circle come two at a time (even multiplicity).
Now construct C(z) by taking all the roots z; (including Z;) inside the circle, and also take
one out of every double root z; on the circle:

M N—M
MC@ = e T -2) [] (z-25). (5.46)
=1 1

j=
This is the “minimum phase spectral factor.” It has no roots outside the circle. The coefficients

of C(z) are still real, because the complex roots are automatically in conjugate pairs: Z; and Z;
came with z; and z;.

Example 5.3. The 4-tap Daubechies filter in the previous section led to zeros at z; = 2 — +/3
and z;' = 2 4 /3. The other four roots of 23P(z) are at z; = —1 (on the unit circle and again
real). Two of those roots go into the spectral factor (5.46). Thus z>C(z) is a cubic polynomial
with roots 2 — +/3, —1, and —1. It is minimum phase.

Every factorization of P (2) into F(z) H(z) must put some roots into H(z) and the remaining
roots into £(z). The rules for this separation of roots of P(z) are:

e For F and H to be real filters, z and 7 must stay together,

o For F and H to be symmetric filters, z and z~! must stay together.
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o For F to be the transpose of H, z and z™! must go separately. This is the spectral factor-
ization C(z) C(z~") that gives an orthogonal filter bank when P is halfband,

Figure 5.4a shows a partition of the zeros into circles and squares that makes both factors
symmetric. The splitting in Figure 5.4b makes one factor the transpose (coefficients reversed)
of the other factor. 7o achieve both properties at the same time, all zeros of P(z) ~ not just the
zeros on the unit circle — must be of even multiplicity. We now show that this is impossible for a
halfband filter. This gives another proof of Theorem 5.3, that orthogonality conflicts with sym-

metry.

Each factor is symmetric o factor = transpose of D
o I/ Z,
0
io
——}3 —0 0 5
1/z, =
1 Zi o
) 1/ Zi

Figure 5.4: Twelve zeros of a halfband filter separate into analysis ((O) and synthesis ().

Theorem 5.4 A symmetric orthogonal FIR C(2) can only have two nonzero coefficients.

Proof. An FIR filter is symmetric when z¥ C(z) = C(z7"). If z; is a zero of C(z), sois z;".
Then P(z) = C(z~")C(2) has a double root at z;. More precisely, all roots of the polynomial
z¥ P(z) have even multiplicity. This polynomial is a perfect square [R(z)]%.

If the filter is also orthogonal, P{z) must be halfband:

Py =1+ - +r(N)z2"] has only one odd power zV.

The first odd power in R(z) produces (when it multiplies r(0)) an odd power in [R(z)]. The last
even power in R(z) also produces (when it multiplies r(N) z") an odd power in [R(2)]%. But our
halfband filter has only one odd power. We cannot allow any even powers or any odd powers in
the terms - - - indicated by the three dots. The polynomial R(z) has only two terms and P(z) has
three terms. Then C(z) only has two nonzero coefficients,

All symmetric orthogonal FIR filters have C(z) = (1+z7¥)/+/2 with odd N. The halfband
product filter is P(z) = %z"“' +1+4+ %z'”.

Example5.4. For symmetric filters, the roots z; = 2—+/3 and z7! = 24++/3 must stay together
when we factor P(z). The four roots at z = —1 can be split between H(z) and F(z). One sym-
metric splitting is H(z) = (1 + z7"W—1 + 4z7' — 72/242 and F(z) =
(14+2~")/4+/2. There are several symmetric factorizations, but none of them can be orthogonal,
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Now we return to computation of zeros of polynomials. For long filters, a good algorithm
is needed to find the zeros z; and z; of P(z). We quote from the 1994 abstract by Lang and
Frenzel [La,Fr]:

Finding polynomial roots rapidly and accurately is an important problem in many areas of signal
processing. We use Miiller’s method for computing a root of the deflated pelynomial, This esti-
mate is improved by applying Newton’s method to the original polynomial. Furthermore we give
a simple approach to improve the accuracy for spectral factorization when there are double roois
on the unit circle.

Miiller’s methed uses three previous estimates of the root of z¥ P (z) to find the next estimate.
The parabola that interpolates at the three old points has a root at the new point. Since parabolas
can have complex roots, Miiller’s algorithm can find complex roots from a real start -— while
Newton can only move chaotically on the real line.

Newton’s method uses the most recent estimate z;. For real roots, the tangent line at z; to
the graph of z¥ P(z) crosses zero at the new point ;1. This is the outstanding method for solv-
ing nonlinear equations, provided z; is close enough — which is the task of Miiller’s method.
The polynomial 2'%% — 1 was one of the tests (not the only onel}. The code is on ftp from
cmi.rice.edu under directory pub/software.

MATLAB uses an eigenvalue method. Its subroutine roofs is effective up to quite large degree.
The roots of a polynomial z¥ + - - . are the eigenvalues of its N x N companion matrix, which
has 1’s down a diagonal and minus the polynomial coefficients along a row. For example, z° —
272 — 5z ~ 9 is specified by the vectorv = [1 —2 —5 —9). The command M = compan(v)

2 5 9
producesthe matrix M = | 1 0 0 [ withdet(zf — M) = 2> — 222 — 5z — 9. MATLAB
6 1 0

finds the eigenvalues (by the QR method) which are the roots of the polynomial.

The next section mentions how rescaling y to 4y allowed us to compute Daubechies filters of
twice the length achievable without this scaling. The coefficients in P(z) were better controlled.
Linear phase filters with extremely good stopband attenuation have many zeros on or near the
unit circle. These are the hardest zeros to compute.

Method B (solve quadratic equations). We are looking for N + 1 numbers ¢(0), ..., e(N).
The N + 1 equations are of second degree, involving ¢’s times ¢’s. The equations come from
matching powers of €' in C{w)C(w) = Plw):

(ZN: c(k)e"“") (ic(k)e-*’*‘") = ip(n)e-*""’. (5.47)
L] 0 -N

One way to make those equations explicit is in matrix form:

c0) (1) e2) . e(N) c(0) ()]
c(0) (1) ¢(2) . c(1) p
¢(0) (1) e2) 2} |=| p |. (5.48)
c@® (1) : -
<(0) c(N) P(N)

The first equation is ¢(0)* + - - - 4 ¢(N)? = p{(0). This gives the constant term in (5.47). The
second equation gives the e term. The last equation is ¢(0)e(N)e~*N = p(N) e~ N
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Equation (5.48) is not a linear system! It is quadratic, in fact homogeneous of degree 2, It
has a real solution if and only if P(w) = 0 for all w. This is not an easy condition to verify on
the coefficients p(n). If P{w) = 01is not true —in which case our solution methods must fail
—we can add enough to the DC term p(0) to make it true,

For orthogonality, the p(n) come from a halfband filter. The even coefficients p(2), p(4),
... are all zero. But our discussion is not in any way limited to this halfband case. Spectral
factorization applies to all filters with P(w) > 0. It even applies to IIR filters, but those lead to
infinitely many equations.

Example 5.5. The previous section factored P(w) = 1 — 1 (¢7' + ¢*“}. Comparing coeffi-
cients of 1 and ¢~ led us to

c@? +c(1)? = 1 el () () 1
ety = -1 [ 0 c0) ] [ (1) ] = [ - ] - 549
This is our system (5.48) for that particular example with N = 1. Eliminating ¢(1) gave asingle
quadratic equation. The unknown was x = ¢(0)? and the equation was x + % =1ori6x? -
16x 4 1 = 0. For N > 1 we cannot reduce the N 4 1 quadratic equations to a single equation
for ¢(0). An approximate solution by method A, B, C, or D (or another method E} is the best we
can expect.

To use a nonlinear equation solver, write the kth quadratic equation as %CTQ(k)c = p(k).
The symmetric matrix (k) has 1’s along its kth subdiagonal and superdiagonal (and Q(0} = 2.
Here is G(2) with N = 3:

0 0 1 0 c(0)
He® ) e@ ¢ ] ? g g :) 58 =p2). (550
0 1 0 0 c(3)

This is (e (2) + ¢(1)e(3) = p(2) from matching the 74 terms in |C(w)|? = P(w). The
partial derivatives of that left side L(2) are in the gradient vector G(2)c:

AL2)/3c@) = ) 0 01 0 c(0)
AL 3e(l) = ¢(3 o 0o o 1 1
angg,iazEz; = ﬁ&ﬁ agreeswith | g ZEzi
aL)/3e(3) = e(l) 01 0 0 ()

The kth quadratic function is L{k) = %CTQ(k)C, and its gradient is Q(k)e.

The second derivatives are also desired by nonlinear subroutines, and also readily avail-
able. They are in the constant matrix @(k). One successful program using gradients and sec-
ond derivatives has been the Quadratic Constrained Least Squares (QCLS) optimization code
by anonymous ftp from eceserv0.ece.wisc.edu under the directory pub/nguyen/software/QCLS.
We use it in Chapter 9 to design M -band filter banks.

Method C (matrix factorization). Equation (5.48) is an attractive form for the quadratic equa-
tions. But there is a more symmetric form. If you like infinite matrices, you will enjoy this,
Instead of a finite matrix times a vector, it has an infinite constant-diagonal matrix € times its
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transpose:
" ¢(0) ’
c®) () - e(N) ‘W o
s e e(l) - eN) Ny - e(l) -|=pP
c© () - o) (V) |
’ ’ o e(N) -

The columns of P have entries p(—N), ..., p(0), ..., p(N). In this matrix form of |C(w)[? =
P(w), the symmetric matrix P factors into upper triangular CT times lower triangular C. This
is only possible if P is positive semi-definite — which is exactly our condition P(w) > 0.

Matrices are decomposed into triangular factors every day. This is the matrix statement of
ordinary Gaussian elimination. The factorization is usually written A = LU. It gives lower tri-
angular times upper triangular. Fortunately, infinite constant-diagonal matrices commute: our
equation is also CC™ = P. The harder problem is to factor infinite matrices in finite time.

Approximate method: take a finite section of P. Keep R rows and columns, where R is
larger (perhaps much larger) than N. This finite piece Py is still symmetric and positive defi-
nite. Therefore Pg can be factored into CrCh, where Cr is lower triangular. That is the Cholesky
factorization of Pg. It is a symmetrized form of A = LU, available because Py is symmetric
positive definite.

The finite matrix Cr does not contain the exact c(k). It is not even true that Cpr has constant
diagonals (although Pg has). The reduction to a finite matrix has chopped the tail ends of the
row-column multiplications, either in C”C or in CCT. But the rows of the computed factor C
do approach the rows of C. The correct (minimum-phase) coefficients ¢(k) appear in the limit
as R — o0,

We demonstrate with P(w) = | —~ % cos w. This Daubechies example was solved exactly
for¢(0) = (1 + +/3)/+/8 = 0.9659 and ¢(1) = (1 — v/3)/+/8 = —0.2588. Take R = 4 and use
chol in MATLAB to factor P4 into CCT:

1 —025
—025 1  —-025
Py = —025 1 —025 and
—025 1
1
—025 09682

C= —02582  0.9661

—0.2588 0.9659

This matrix has ¢(0) and ¢(1) correct to four places in the last row. But with long filters this
methed is very stow.

Method D (Cepsiral method: Take logarithms). The idea is to convert the muitiplication
P(2) = C(z7")C(2) into addition. Formally, log (¥"p(n)2") is easily separated into positive
and negative powers of z. The symmetry p(n) = p(—n) and the positivity P(w) > 0 yield a
logarithm L(z} with coefficients i(r) = H(—n):

og @) = Y10z = (2 + 3 t00z) + (AL 4 3 hme).
—00 1 1
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These are infinite series. The logarithm of a polynomial is not a polynomial. This means that our
finite computations can only be approximate. The easy separation into log C(z™") +log C(z) is
the key advantage of the method.

The sequence I(n) is the complex cepstrum of p(n). The series for L(z) converges in an
annulus |z;| < lz|] < 17|z of the complex plane. Here z; is the largest root of P(z) inside
the unit circle, and 1/z; is the smallest root outside. (The method is in trouble with roots z; on
the circle. Best to remove those first. Otherwise L(z) = log P(z) will be infinite at z; and the
series cannot converge.) The computation of the ¢’s requires an inverse Fourier transform of
log P(z). Then the ¢’s are computed from the I's.

A detailed treatment of the cepstrum {(n) is given by Oppenheim and Schafer [OS]. The con-
stant terms give c(0) = exp %I(O). The next term ¢(1) is interesting because the z ! terms only
involve I(0) and I(1). The recursion forn = 1,2, ... turns out to be

¢(n) = (m)e(0) + == — De(l) + -+ + L(De(n — 1),

We need only N - 1 coefficients K0), ..., (N} in the logarithm to find all ¥ + | coefficients
¢(0), ..., e(N) in the spectral factor. To find those I(n) from the given p(n), we use a large-size
FFT in the z-domain. A typical size is 8, for acceptable accuracy,

This cepstral method does not compute zeros of polynomials. So it doesn’t find symmet-
ric filters. It is a good way to find orthogonal filters. A code is available by anonymous ftp at
eceservl.ece.wisc.edu under directory pub/nguyen/software/CEPSTRAL.

Very eptional comment. Spectral factorization also solves singly infinite constant-diagonal
systems. (This is the genuine Toeplitz problem. Doubly mfinite matrices could be named after
Laurent — but mostly we still say Toeplitz.) The coefficient matrix P, has entries p(i — j) only
fori > 0Qand j = O

p©@ p) p2y - x(0) ()
—p p)y pO) py - x()y [ _ | &)
Pe=be 51 0@ ) p0 - || x@ || 0@ 35D
This corresponds in continuous time ¢ > 0 to a Wiener-Hopf integral equation:
f pls —Hx{t)rdt = b(s) fors = 0, (5.52)
0

P, does not have constant-diagonal factors in P, = LU. Lower triangular times upper destroys
the time-invariant pattern. (Starting at time zero is responsible.} The beautiful Wiener-Hopf idea
is that upper times lower succeeds perfectly:

c@ ey e(2) - c{0)
P, =ClC, = c©@ () - e(l) e (5.53)

e - c(2) e(l}y e

Wiener and Hopf computed this spectral factorization of P, by Method D. One of Norbert
Wiener’s great theorems is that } " [{(n)] < co when ¥ [p(n)| < oo. With no zeros of P(z)
on the unit circle, he could take the logarithm even for IIR filters. The solution is

xp =P by =(CHTECD) b, (5.54)
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The inverses of C, and CI_ are constant-diagonal. So Wiener-Hopf can compute the spectral
factorization P(w) = |C(w)|? and transform back to the time domain.

Finite constant-diagonal matrices don’t have constant-diagonal factors and spectral factor-
ization no longer succeeds. Nevertheless Pyxy = by can be solved quickly by the Levinson
algorithm or a “superfast” algorithm or by preconditioned conjugate gradients [ChSt].

We added these comments because transform methods are so central to signal processing.
This is the whole underpinning of filter theory.

Problem Set 5.4

1. Suppose P(z) has six zeros at z = —1 and four other real zeros at z = o, a~!, b, b~'. Draw
the complex plane and indicate which zeros go into the minimum phase spectral factor C(z).

2. For the same ten zeros, indicate a set of zeros that produces a symmetric (linear phase) € (z).
Also indicate a second possibility.

3. Why must ali roots of P(z) on the unit circle have even multiplicity, to allow P(z) = C(z) x
C(z™") and P(w) = |C(w)|*?

4. The coefficients of the Daubechies polynomials C (z) up to order 12 are tabulated at the end of
this chapter. Find the zeros using roofs in MATLAB or another algorithm. What were the roots
of the halfband polynomial P(z)?

5, Show that P(z) = z"¥C(z2)C(z~") musi be symmetric. If C is lowpass with passband and
stopband cutoff frequencies w, and w, and errors 8, and §,, what are the cutoff frequencies
and the errors of P?

5.5 Maxflat (Daubechies) Filters

This section is about an important family of filters, which will lead to an outstanding family of
wavelets. The same construction yields both. Wavelets come from filters with special properties.
Histerically, their close relation was not immediately seen — now it is the subject of Chapter 6.
The importance of this special construction is in its combination of two key properties:

1. These particular filters (and wavelets) are orthogonal.
2. The frequency responses have maximum flatness at @ = O and v = n.

The lowpass filters will have p = 1,2,3,4, ... zeros at . They have 2p = 2,4,6,8,...
coefficients, so that N = 2p — 1. We use boldface p for the coefficients of P(w) = |C (w)|?
and lightface p to count the zeros of C{w) at @ = m. The highpass coefficients d(k) come
from an alternating flip. The first member of this family was the subject of Chapter 1: ¢(0) =
e(1) = 1/+/2. Note the normalization c(@? + ¢(1)* = 1. These numbers go into a unitary
matrix. Foreach p = 1,2,3,4, .. the filter bank is orthonormal. The product filters have
degree 2N =4p — 2:

14277
2

In the literature on filters, this family is described as maxflar. The coefficients were given by
[Herrmann]. They were already in formulas for interpolation, described below. In the history

p
Po(z) = ( ) Q2p-2(z) will be halfband by special choice of Q.
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of wavelets, we are reproducing the great 1988 discovery by Ingrid Daubechies. The filters are
FIR with 2 p coefficients. The wavelets are supported on the interval [0, N] = [0,2p — 1). As
p increases, the filters are increasingly “regular”™ and the wavelets are increasingly “smooth.”

This section concentrates on filter properties and coefficients. We give a simple derivation
of P(z}, and new facts about its zeros. The next chapters will concentrate on wavelets and the
step into continuous time.

Condition O and Condition A,

Before starting, it is helpful to count the requirements we must impose. There are 2 p numbers to
be chosen. These can be the coefficients ¢(0), . . ., ¢(2p — 1} in the lowpass filter, with frequency
response C(w). They could equally well be the coefficients p(0), ..., p(2p — 1) of the centered
(even) polynomial P{w) = |C(w)|®. The ¢’s come from the p's by spectral factorization, The
nonnegative polynomial P(w) is factored by the methods of the previous section:

2p—1 2p-1

Plw) = Z p(m)e™ equals |C(w)I® = |Z ctye=ol

(5.55)

Our formulas yield the nombers p(n) = p(—n). Except for the first few filters in the family,
there are no simple formulas for ¢{n).

These 2 p numbers are determined by p conditions for ctthogonality from Condition O, and
p conditions for a flat response from Condition A. More precisely, the requirement is “Condition
Ap” —the subscript indicates the order of flatness atw = & (and w = 0). Here arethe p + p
conditions:

Condition O |C|2 is a normalized halﬂ)and ﬁlter

? p(m =1 and pcz) p(4) > —p(zp 2) (5.56)
Condition A, C{(w) has a zero of order p atw =
C(?r) c (:r) = C“’ ”(n’) 5.5

The equation C(;r) = 0 says that Zc(n)(—l)" = 0, The odd-numbered coefficients have
the same sum as the even-numbered coefficients:

Condition Ay one(n): ) e(ny= Y e(n). (5.58)

addn EVED A

This is the first of the “sum rules.” Altogether we can impose the pth order zero in (5.57) as p
sum rules on the coefficients:

2p—1
Condition Ap one(n): Y (=1)"r*e(n) =0 fork=0,1,...,p—1. (5.59)
n=0

The factor n* comes from the kth derivative of 3 e(n)e™**_ Then (—1)" comes from substitut-
ing @ = 7. The convention for 2% is 1.
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Note on C(0) = v/2: The sum rule (5.58) also applies to the coefficients p(n), because
P{w) = |C(w)|? also vanishes at @ = 7. The odd sum must be 1, since the only nonzero even-
numbered coefficient is p(0) = 1:

2Py = p)=pO) =1. (5.60)
oddr

EYENR

The sum over all z is P(0) = 2. Then P(w) = |C(w)|* yields C(0) = £/2. We always choose
the plus sign for a lowpass filter, so the DC term at w = 0 is not reversed in sign:

> el = CO) = /PO) = V2. (5.61)

alln

The p zeros at w mean that C(w) has a factor {1 + e'i“’)p:

14 e

Condition A, on C(w): C(w) = ( )”R(w). (5.62)
R{e) has degree p — 1, to bring the total degree of C{w) to 2p — 1. You could say that the pth
order flatness is accounted for by (I “+ e““")p. Then the p coefficients in R(w) are chosen to
satisfy the p equations of Condition O.

To repeat: p equations for orthogonality and p equations for flatness. Condition O is ap-
plied to P{w); it must be halfband. Condition A, is applied to C(w); it must have the fac-
tor (1 + e~**)?. This is easily converted to a condition on P(w) = |C(w)|?, when we use
[1+e7]? /2 = (1 + cos w):

(1 + cosw)p.

Condition A, on P(w): P(w) has a factor (5.63)

Formulas for P{us)

We intend to give two formulas for P (w) = |C(w))> The one associated with Ingrid Daubechies
has (1 + cosw)? times a sum of p terms. The formula associated with Yves Meyer gives the
derivative of P(w) as —c(sinw)??~1. Then integration determines ¢ and P(w).

The best starting point is the ordinary polynomial B,(y). This has degree p — 1, with p
coefficients. It is the binomial series for (1 — y)~7, truncated after p terms:

B,(»}=1+py+ &;—Qf +-o-+ (2;_ lz)y"“ =(1-»"7"+0(p". (564
The coefficient of y* is ('} ). The remainder has order y? because this is the first term to be
dropped. The complex zeros of this polynomial B,(y} will be all-important for the Daubechies
filters.

We combine B,(y) with the factor (1 — y)” that has p zeros at y = 1. The variable y on
[0, 1] will correspond to the frequency « on [0, ). The product ﬁ(y) = 2(1 — y)?B,(y) has
exactly the flatness we want at y = 0:

2(1 - y)’Bp(y) = 2(1 = »)P[(1 = )7 + O(¥")} =24+ O(yP). (5.65)
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This is a polynomial of degree 2p — 1. It is the unique polynomial with 2p coefficients that
satisfies p conditions at each endpoint:

;g(y) and its first p — | derivatives are zeroat y = Qand vy = 1, except :';(0) =2

Two more properties follow quickly. First, the derivative has p — 1 zeros at both end points. It
is a polynomial of degree 2p — 2 and with those zeros it must be

P'(yy = —Cy*~H(1 - y)*~! for some C. (5.66)

The second property comes when we add P( yito Pl — ¥). The sum equals 2 at both ends and
is still flat. Its 2 p coefficients are uniquely determined — it must be the constant polynomial 2;

PO)+P(l—y)=2. (5.67)

Aty = 1 this gives P(}) = 1. Figure 5.5 shows how P(y) is odd around its middle value.
This “Hermite interpolating polynomial” drops from 2 to 0 with flatness at the ends. Here are
the polynomials for p =2 and p = 3:

Ba(y) =1+2y and  P(y) =201 -y’ +2y)=2- 6y* +4y*
By(y)=1+3y+6y> and P(y) =2(1—yPBs(y) =2 — 209> + 30y* — 125

e
=]
A
a
g

Figure 5.5: f‘;(y) on the left and P(w) on the right, for p =2 and p = 3.

Now we go from ordinary polynomials in y to trigonometric polynomials in . The degree
staysat 2p — 1. The change thattakes0 < y < linto0 <w <mis

1 —cos 14+ cos
= T‘” and 1—y= —+-2—“’ (5.68)

The polynomial P (¥) becomes our desired P(w). We summarize its properties.

Theorem 5.5 The polynomial 2(1 — y)? B,(y) becomes the halfband response

A {1+cosw PEl fp+k—1N\ /1 —coswnk
P(w)—Z(—z—) Z( ] )(—2—) (5.69)

k=0
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This satisfies Conditions O and Ap. Its Meyer form, by integrating P'(w) and choosing ¢ to give
P(my=0,is P—

2—¢ f (smco)z” e, & (5.70)

Forp=1,2,3the Daubechles and Meycr forms are

Plw)= l4coso=2- [’sinwdo
P@)y= (1+cosw)’(1—jcosw)=2-3 f;" sin® wdo

Py= (1+cosw)(l~3Fcosw+ Fcos?w) =2~ 1 (“sin’ wdw

Most authors emphasize the Daubechies form, with its highly visible factor (1 + cos @)”. That
immediately ensures a pth order zero for the factors at @ = . Spectral factorization is speeded
up, because only a lower-degree polynomial remains. It may not be so clear that (5.69) is a half-
band filter. The even powers like cos? » and cos* @ must disappear and they do. In the explicit
formula for p = 2, multiplication produces P(w) = 1 + %cosw - % cos’ w

The halfband property is P(w) + P(w <+ m) = 2. This addition cancels the odd powers of
cos w, and the even powers are not present (except the constant term 1). This identity follows

immediately from (5.67) because 1 — y = Lo - l=clotn),

P(y)+ P(1 - y) =2 becomes P(w)+ P(w+ ) = 2. (5.71)

The reader recognizes this “Condition O” as |C(w){> + |C(@ + 7)|? = 2.
The halfband property is immediate in the Meyer form, with absolutely no calculations. Re-
place y by (1 — cosw)/2 in (5.606) to find P'(w) dw:

cosm) (l +cosw)p—l sinw

1-
P_I p_ld — d .
-y 1 -y y = -—C( 2 > 2 w. (5.72)

This is —c(1 — cos? w)?~! sinw dw, which is also —c(sin )P~ dew. Its integral is

—cf (1 - cos? co)p_l sinw dew = odd powers of cosw.

The only even frequency is a constant of integration. The filter is halfband.

The flatness condition requires first of all that P(z) = 0. The constant ¢ makes this true.
The derivative P'(w) = —c(sin w)?P~! has a zero of order 2p — 1 at @ = =. Then P itself
has a zero of order 2 p. Its factor C has a zero of order p. Condition A, is satisfied and Meyer’s
formula is confirmed.

Note that P(w) decreases monotonically from P(0) = 2 to P(r) = 0. Its derivative
—c(sin @)2?~1 is everywhere negative between 0 and 7. There are no ripples in Figure 5.5.
Therefore P(w) = 0 for all w, and a factorization into |C{w)|? is assured.

The transition from passband (low frequencies) to stopband (high frequencies) becomes
steeper and sharper as p increases. The slope at the midpoint w = I is —c (sin ¥ )2”_' , which
is —c. We will show that ¢ increases asymptotically like ,/p as p — o0, Thus the transition
band has width of order 1/./p.
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The Halfband Filter P(z)

Now we change from y and  to the complex variable z. This will produce the filter coeffi-
cients in P(z). That polynomial will be halfband and centered. The shifted polynomial Py(z) =
z¥P(z) = z'7??P(z) will be halfband and causal. The change of variables comes from
1=e":

2+z7!

=cosw=1-—2y. (5.73)

Thus y =0and w = 0 givez = 1. Similarly y = 1 and @ = 7 give 7 = —1.

Notice that the midpoints y = % and @ = 5 give z = i There are two 2's for each y, from
z+2z”! =2 —4y. (This is a quadratic equation for z.} One z is inside the unit circle, the other is
1/z outside. This “Joukowski transformation” is also central in fluid flow. The endpoints z = 1
and z = —1 are really double roots of 7 + 27! =2 and z 4+ 77! = 2.

The change of variable gives 1 — y and y in factored form:

Imy= 1+zosco =(l-;-z)(l+2z") and y = l—;;osw=(1;z)(1—zz")_ (5.74)

Substituting in ¥ (¥), the maxflat filter in the z-domain becomes P(z):

ro=( Y YR e

k=0

This factors into P(z) = C(z)C(z™") when P(w) factors into |C(w)[2. The p zerosat y = 1
and @ = 7 are now 2p zeros at z = —1. Half of them go into C(z). The p — 1 complex zeros
of the other factor B,(y) become 2p — 2 zeros of P(z). Half of those (the p — 1 zeros inside the
circle |z| = 1, if we want minimum phase) also go inte C(z). So the spectral factor C(z) can be
computed in two steps:

1. Find the p — 1 zeros of B,(y) and the p — 1 corresponding z’s with |z| < 1.
2. Include p zeros at z = —1. Then C(z) has these 2p — 1 zeros.
Example. p = 2 leading to Daubechies Dy from By(y) = 1+ 2y, which is %(—z +4—z7h.

The zerois at y = —§. Therefore z+z ' = 4. This quadratic equation has roots z = 24+/3.
Then the 2p ~ 1 roots of C(z) are —1, —1, 2 — /3. The coefficients of D, are approximately
0.4830, 0.8365, 0.2241, and —0.1294:

C2) =al+z7H20-2-+3)27Y)
=[0+VH+ B+ VD + B = VR 24 (1 - VOt VR

Example. p == 70 leading to Daubechies D14 from Byo(y).

From p = 2 to p = 70 is quite a jump! Figure 5.6 displays the 69 zeros of Byy(y). They are
close o a limiting curve in the complex y-plane. The equation [4y(1 — y)| = 1 of that curve is
discussed Below. In the z-plane the limiting curve is moon-shaped, with the beautiful formula
lz—z~!| = 2. It consists of two circles! The roots of the minimum phase factor C(z) are close
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Figure 5.6: The 138 zeros of P(z) and the zeros of B,(y) up to p = 60.

to the inner circle, To those p — 1 = 69 inner zeros we add p = 70 zeros at z = —1. Then the
spectral factor of P(z) has 139 roots, and the constant 8 makes C(1) = V2
14+27'\70 & -
c@ =5 : ) (1 ~27'Z)). (5.76)
1

Same Coefficients in Interpolation

The coefficients in — & + %z~ +z7 + %2~% — {2 * appear in many places. This is a typical
example, with p = 2, of a maxfiat haifband filter. Its factor (1 + 27" yields 2p = 4 zeros
at z = —1. The halfband property means that P is an interpolating filter: Px keeps the even-
numbered coefficients of x = (..., x(0), 0,x(2),0,...). Four zeros at r mean that the four
polynomials 1, ¢, £2, 1> are comrectly interpolated in the odd components:

x=(..,1,0,1,0,1,..) gives Pe=(..,1,1,1,1,1,..0
x={..,0,0,2,0,4,..) gives Pe=(..,0,1,2,3,4,..)
x=(..,004,0,16,...) gives Px=1(..,0,1,4,916,..)
x=¢(..,0,0,8064,..) gives Px=(..,0,1,8,27,64,..)

Expressed differently, f—ﬁ(x(l) +x(-1))— % (x(3) +x(—13)) is fourth-order accurate at the mid-
point £ = 0. This links wavelet theory to recursive subdivision (interpolation to create smooth
curves). Starting with equally-spaced values x(2n), P puts new values at the halfway points
t = n. Then P produces new values at t = 5. The established values do not change. The limit
is a smooth curve through the original values. The monograph {CDM] develops this important
application, with references. The stability of recursive interpolation is controlled by Condition
E applied to P.
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Asymptotics of the Daubechies Filters

Figure 5.6 practically requires us to study the zeros ¥ and Z as p — o0o. The first steps were
taken by [LeKa] and [ShSt). The truncated binomial series B,(y) has degree p — 1. Its p — |
zeros yield 2p — 2 zeros in the z-plane, from Z + Z~! = 2 — 4Y. The main facts proved so far
are:

1. All the zeros have |¥{ < 1 andRe Z > 0.
2. In the y-plane, the zeros are all outside the limiting curve jw| = [4y(1 — )| = 1.
3. In the z-plane, the zeros are all outside the limiting curve |z — z7}| = 2.

4. The zeros are near a uniform distribution along the circle of radivs 1+ log (4mp)/2p
in the w-plane.

5. The far left zerois Z =i — W/ /p —iW?/2p + O(p~¥?) where erf(W) = 1.

Note that if z lies on that moon-shaped limiting curve |z — z™!| = 2, sodoZand 2~ and 777,
The complex roots in the z-plane come four at a time, for finite p and in the limit p = 0o, The
moon consists of two circles of radius ~/2 (Problem ). The outer circle is |z — 1) = /2 with
center at 1. The inner circle is [z + 1| = +/2 with center at —1. The circles meet at z = %+, and
the far left zeros go slowly toward these two points.

Figure 5.6 shows the zeros in the y-plane up to p = 60. Their approach to the limiting curve
is fascinating. The application of long filters, with large p, is still to be developed. It can use the
lattice structure of Section 4.5

Computing the Spectral Factor C(z)

For large p, computing the zeros of B,(y) and the spectral factorization P(z) = C(2)C(z™)
are challenging tasks. They are related but not identical. After we find the zeros, the filter co-
efficients in C(z) are fully determined — but not necessarily in a well-conditioned way. The
direct multiplication of 69 or 139 linear factors is not safe. The cepstral method (Section 5.4} is
competitive because it goes directly to C(z), without the zeros. It is based on splitting log P(z)
into log C(2)+log C(z™'). Our experience with the zeros, using MATLAB and also Lang’s code
from Rice, showed the importance of a simple weighting:

The zeros of B,(y) were comect up to p = 34. The codes fail for p = 35.

With weighted variable 4y, the zeros became correct up to p = 80.

The reason for the breakup at p = 35 is the wide dynamic range of coefficients in B,(y). The
constant term is 1. The highest term yP~! has coefficient
@p-2! _ JICp=D @p-2¥? _ 47 .
(p—Dp-7 2x(p-1) (p-D¥2  [m(p—1) ‘
by Stirling’s formula. The leading term 47! multiplying y?~! suggests that 4y is a better vari-
able than, y. This was strongly confirmed by experiment. The recursion

bpy=1, forp—1:1:1 b(y=bli+1D*Q2p—-i—-1)jdx(p—-1i)
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produces the coefficients in MATLAB order for the command Y = roots (b)/4.

The zeros are needed in a linear phase factorization Po{z) = Hy(z) Fo(z), which does not
come from the cepstral method. In this case all four zeros 2,7, 27", 7' go into the same fac-
tor (two from inside the unit circle, two from outside). One possibility is to put those quartets
alternately in analysis and synthesis, Hp and Fp, to give filters of hearly equal length. Both get
p zeros at @ = m. Anocther possibility is for Hy(z) to be very short, like Haar. Then Fy(2)
comes from an exact division Pp(z)}/ Ho(z). No zeros are needed! Experiment will show which
linear-phase factors give the best compression of signals and images.

Transition Band for Maxflat Filters

‘The equiripple filters from the Remez-Parks-McCleilan algorithm have a sharp transition from
lowpass to highpass. Their transition band has width of order ﬁ Their slope at the midpoint & =
% is of order N. They minimize the maximum error, giving the best pointwise approximation
to 1 in the passband and 0 in the stopband. But they only have one zero (at most) at w = .

The Daubechies filters, with many zeros at 7, have no ripples. P(w) and |C(w)] decrease
monotonically between 0 and x. We now show that the slope at & = Z is much smaller, of order
VN instead of N = 2p — 1,

Theorem 5.6  The maxflat filter has center slope proportional to /N. The transition from
P(w) = 0.98 0 P(w) = 0.02 is over an interval of length 4/+/N.

Proof. The constant ¢ in Meyer’s form is fixed by ¢ f; (sinw)¥dw = 2. This definite integral is
known to be a ratio of Gamma functions (which are factorials I'(n + 1) = n!). We use Stirling’s
formula to estimate the integral:

N

ﬁr‘(%)h‘ﬁ(u)%—'(ie)%: 2me (l—i)T: E

r(4e) = 2¢ N N-—1 N N
The slope of P(w) at w = § is —c = — 7 in Meyer’s form. The transition bandwidth is
therefore O(1/+/N) and we make this more precise. Between I — 5 and § + 2 the drop

in P(w) is the integral of c(sinw)™. Shift by 5 to center the integral, replacing sin(Z — o) by
Cos !

a[./ﬁ c a 92 N 2 o
= Ndw ~ —— - do:\/:f -#'1249. .
drop = ¢ f_ L plosertde = — _0(1 2N) = B (5.78)

Here 8 = w+/N. Thus 95% of the drop in P{w) comes with ¢ = 2 (within two standard de-
viations of the mean, for the normal distribution in statistics). This transition interval has width
Aw = 4/4/N, as the theorem predicts. That rule was found experimentally by Kaiser and Reed
in 1977, at the beginning of the triumph of digital filters,

Problem Set 5.5

1. The halfband filter P(w) = [+ p(r)e~™"® (odd  only) satisfies P(r) = 0. Deduce directly
that P(0) = 2.

2. Find the zeros of By(y) and the Daubechies 6-tap filter Dy,
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3. The definite integral [J' (sin w)" dw equals X224 for odd N. Express this in factorials and

use Stirling's formula o rederive the estimate /27 /N. Then the slope at the center frequency
Lis O(/N).

4. The points z = 1 + +/2¢"® are on the circle |z — 1] = /2. Substitute for z to show that this
circle is one part of our limiting curve:

z—271

2

i+ e
T 1+ 26




