Chapter 6

Multiresolution

6.1 The Idea of Multiresolution

Our main approach to wavelets is through 2-channel filter banks. Everything develops from the
filter coefficients. All constructions are concrete and highly explicit. Choose good coefficients
and you get good wavelets. The heart of the theory is to see how conditions on the numbers
h(k) and c(k) and d(k) determine properties of ¢(¢) and w(f) —the scaling function and the
basic wavelet. Then the problem is to design filters that achieve those properties.

By iterating the filter bank, Section 6.2 reaches the dilation equation for ¢(t) and the wavelet
equation for w(r). Sections 6.3 and 6.4 study those equations in the time domain and frequency
domain. Conditions O and A lead to orthogonality and approximation accuracy. The Daubechies
wavelets are “optimal” with respect to those two properties. But these orthogonal wavelets are
not and cannot be symmetric (except for Haar). Also the transition from passband to stopband
is not sharp. So the design problem is still open. Better wavelets remain to be constructed.

This opening section aims for an overview that brings out the key ideas. Before the con-
struction using discrete time, we describe what is wanted in continuous time. The goal is a de-
composition of the whole function space into subspaces. That implies a decomposition of each
function — there is a piece of f(t) in each subspace. Those pieces (or projections) give finer
and finer details of f(¢). The signal is “resolved” at scales At = 1,1/2, ..., (1 /2)4.

For audio signals, these scales are essentially octaves. They represent higher and higher fre-
quencies. For images and indeed for all signals, the simultaneous appearance of multiple scales
is known as multiresolution,

Multiresolution will be described first for subspaces V; and W;. The scaling spaces V; are
increasing. The wavelet space W; is the difference between V; and Vit1. The sum of V; and
W; is V1. Then these extra conditions involving dilation to 2¢ and translation to ¢ — & define
a genuine multlresolunon

If f(t) is in V,. thcn f(r) and f(2t) and all f(r - k) and f(2t k) are in Vj+l

In the end, one wavelet generates a whole basns The funct:ons w(24' t— k) come by dtlatlon and
translation (all j and all k). There are six steps toward this goal, and we take them one at a time:

1. Anincreasing sequence of subspaces V; (complete in L2)
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2. The wavelet subspace W; that gives V; + W; =V,

3. The dilation requirement from £(¢) in V; to f(2f) in V;4,

4. The basis ¢ (¢t — k) for Vp and w(t — k) for W

5. The basis ¢(2/¢ — k) for V; and w(2/t ~ k) for W;

6. The basis of all wavelets w(2/t — k) for the whole space L2,

A shortcut to multiresolution. Before those six steps, may 1 mention one shortcut step that
starts with the filter coefficients (k). That step is to solve the dilation equation for the scaling
function ¢(t): :

The first requirements on the coefficients are 3 k(k) = 1 and ¥ (=1)* h(k) = 0. The full
requirement is Condition E in Section 7.2. When this is satisfied, ¢(¢) can be computed, Then
[(;6'(2»f t — k)} is a basis for V;. These spaces are automatically increasing and complete and shift-
invariant and connected by dilation. Thus multiresolution is achieved.

A Scale of Subspaces

Each V; is contained in the next subspace V;,;. A function in one subspace is in all the higher
{finer) subspaces:

WCViC---CV;CVigC---

Afunction f(¢) in the whole space has a piece in each subspace. Those pieces contain more and
more of the full information in f(¢). The piece in V; is f, 7{t). One requirement on the sequence
of subspaces is complereness:

filey = £ as j— 00.
The first example will not have the dilation feature required for multiresolution:

Example 6.1. V; contains all trigonometric polynomials of degree < j.

Certainly V; is contained in V;,. The spaces are growing. (Since Daubechies uses - j where we
use j, her subspaces are decreasing. Most authors now use an increasing sequence, for simpler
numbering.) The piece of f(#) in V; is the partial sum f;(¢) of its Fourier series:

Fi) =" cxe™ is the piece in V;.
Ikl=j
This is the projection of f(t) onto V;. The exponentials e’ are orthogonal, so the energy in
f5(t) is the sum of [ci[* over low frequencies |k| < j. The energy in f(¢) ~ Sfi(t) is the sum
over high frequencies |k| > j. This approaches zero as j — co. Therefore the sequence V;iis
complete in the whole 2 -periodic space L2.

Now we identify the second family of subspaces. W; contains the new information
Afi(1) = fi41(t) — f;(1). This is the “detail” at level j. From the viewpoint of individual
functions,

L4
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With orthogonality of each piece f;(¢) to the next detail A f;(z), these subspaces are orthogonal.
But we emphasize now that orthogonality is not essential.

A nonorthogonal example comes directly from any nonorthogonal basis bo(¢), &1(¢), ... .
The piece f;(¢) includes all the terms through b;(t):

Sumupto j : fiy=Thabr)  isin Y
Next term : Afi(ty =cjbj(t)  isin W;,

The pattern is not lost, just the orthogonality. The new space V; is still the “direct sum’ of V;
and W;, which intersect only at the zero vector. The angle between subspaces can be less than
90°, as long as every f_,+1 in V1+1 has exactly one splmmg into fJ + Af,

v nw {0} and v, +w ,+. (6.6)

This nonorthogonal snuatnon appllcs to btortkogonai ﬁlters and wavclcts (Section 6.5). There
W; is orthogonal to a different subspace V . The extra freedom can be put to good use.

Vis1 Vi+1

Figure 6.1: An orthogonal sum and a direct sum. Both written V; W, = V;,, and both allowed.

The Dilatlon Requirement

So far we have an increasing and complete scale of spaces. Each V; is contained in the next
V;41. For multiresolution, the crucial word scale carries an additional meaning. V. consists
of all rescaled functions in V;:

Dilation: f(f)isinV; <<= f@QnisinV.

The graph of f(2r) changes twice as fast as the graph of f(¢). On a map, the scale is doubled.
A13,000,000:1 the state of Utah fills a page. At6,000,000:1 its height is a half page. The length
that represents a mile is cut in half. This length is Af or Ax or A,

The example using £(t) = c—;e~/ +. .-+ c;€"* does not meet this rescaling requirement.
The highest frequency only increases by one, between V; and V;. ;. But when ¢ is changed to 2r,
the highest frequency becomes 2 j. The frequencies must double. The new space V. is required
to contain all those new frequencies. To satisfy the scaling requirement, the partial sums go an
octave at a time. The sum for f; should stop at frequency 2/ instead of j. Then A f; contains all
frequencies between 27 and 2/40:

Multiresolution example : i) 3 cie’™ for k| <2/
Nextdetail :  Af;j(t) = Y ™ for 2/ < k| < 2/,
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This is a genuine multiresolution, in which V; and W, have roughly the same dimension. It is
the Littlewood-Paley decomposition of a Fourier series, into octaves instead of single terms.

This is a chief part of the mathematical background. To fit the requirements precisely, when
J (@) is defined on the whole line —00 < ¢ < 00, we should use all frequencies w and not just
integers:

l -~ s
(1) = — w)e' ™ dw.
fi®) 27 yen fw)e'der
Now the spaces V,; go down the scale toward j = —cc, as well as up the scale. The continuous

frequency w can be halved as well as doubled. The basis functions become sinc functions, by
the sampling theorem. Continuous frequency but discrete basis, as is normal for L2. And the
nested spaces include j < O:

e CVaCWC TV C Vi C e (6.7)

In addition to completeness as j — 00, we require emptiness as j & —oo:

n V; ={0} and U V; = whole space. (6.8)

Emptiness means that (| f;(£)[| = 0as j - —co. Completeness still means that filty = F@)
as j — 00. The detail Af; = f;4) — f; belongs to W; and we still have

ViDWi= Vi - ©69)

This can be an orthogonal sum, with Af; orthogonal to f;. It must be a direct sum, with
V; "\ W; = {0}. The reconstruction of f(¢) from its details A S can start at j = O as before, or
it can start at j = —o0:

FO = @&+ AL o fIO=D AfQ).
0 -0

The sum of subspaces can start at j = 0 or j = —o0. When the sum stops at J > 0, we have
the subspace V4, :

J J
V!+l = Vg + Z W,- or VJ'+1 = Z Wj.
j=0 j=—o0

The left sum includes the scaling functions in Vg. The sum on the right involves only the wave-
lets. That form includes all the very large time scales Az = 2~/ as j — —o0,

In practice we use the first sum. Our calculations begin at some unit scale. The scaling func-
tions at j = 0 and the wavelets with j > O are the basis. 1 suppose the scaling functions at level
J = J and the wavelets with j > J are another basis.

The Translation Requirement and the Basis

Instead of rescaling f(r), we now shift its graph. This is transiation, and it leads to the funda-
mental requirement of time-invariance in signal processing. The subspaces are shift-invariant:

If fi(D)isin Vj then so are all its translates f;(t — k).
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Suppose f(¢) is in Vo. Then f(2¢) isin Vy and so is f(2¢ — k). By induction, f(2/¢) isin V;
and sois f(2/t — k). Dilation and translation are now built in.

With translation we are committed to working on the whole line —oc < ¢ < 0, or to pe-
riodicity. A particular f(r) may have compact support, but the whole space V; (all functions
together) is shift-invariant, For finite intervals, the requirements have to be (and can be) ad-
justed. Dilation and translation operate freely on the whole line, and can be studied by Fourier
transform.

The final requirement for multiresolution concerns a basis for each space V;. If we choose
one function ¢(2) in Vo, Its translates ¢ (¢ — k) may be independent. These translates may span
the whole space V. They may even be orthonormal. The starting assumption, to be weakened
later, is that ¥, contains such a function:

There exists (1) so that {¢(1 = k)} is an orthonormal basis for Vy.

When the functions ¢(+ — %) are an orthonormal basis for V,, the rescaled functions
~2¢(2t—k) will be an orthonormal basis for V;. At scaling level j, the basis functions ¢ (271 -k)
are normalized by 2//2, We collect all the requirements in one place:

Multiresolution Analysis

The subspaces V; satisfy requirements 1 to 4:
1. V;CVjy and (V; =1{0} and (JV; = L? (completeness).
2. Scale invariance: f(t) € V; & f(2t) € V; 4.
3. Shift invariance: f(t)y e Vy & f(t —k) € V.
4, Shift-invariant basis: Vg has an orthonormal basis {¢(f — k)].

4. Shifr-invariant basis: Vq has a stable basis (Riesz basis) [¢p(t — k)).

4 and 4’ are interchangeable. A stable basis can be orthogonalized in a shift-invariant way. This
isin Section 6.4, together with the definition: stable = Riesz = uniformly independent. In practice
we choose a convenient basis, orthogonal or not. Then V; has the basis ¢ (f) = 2//2¢(2/t —k):

o

fit) =" appult) isthe piece in V.

k=—00

In the orthogonal case, the energy in this piece is
HAIE= D laul. (6.10)
k=—00

Shift-invariance and scale-invariance are built in through the basis {2//2¢ (2/t — k)}. This basis
combines requirements 2, 3, and 4!

We have at least three ways to constmct or describe a multiresolution:
L]

1. By the spaces V;
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2. By the scaling function ¢ (f)
3. By the coefficients 2i(k) in the dilation equation,

Our next examples use the spaces V; and their bases, Then we move to description 3 and the
dilation equation. Section 6.4 will orthogonalize the basis, The result will be the orthonormal
¢ (¢ — k) that multiresolution originally asks for. What we really need is a good shift-invariant
basis.

It is also possible to allow several scaling functions ¢y, ..., ¢,, when one function (with its
translates) cannot produce the whole space Vq. This occurs in Example 3 below. It corresponds
to “multiwavelets”.

The framework for multiresolution is set by the dilation-translation requirement. Examples
come first. Then we study the dilation equation, and construct wavelets.

AN VANIVA

f(t) in V; fit-D)in V; f(20) in

Figure 6.2: Translation stays in V;. Dilation moves into V. Why is £(2¢) — f{¢) rot in w;?

Examples of Multiresolution

1. Piecewise constant functions. V; contains all functions in L? that are constant on unit in-
tervals n <1 < n + 1. These functions are determined by their values f(n) at all integer times
{f=n

S () = f(integer part of ).

The function f(2¢) in V; is then constant on half-intervals. The functions in V; are constant
on intervals of length 2/, The spaces are increasing, V; C Vi1, because any function that
is constant on intervals of length 2~/ is automatically constant on intervals of half that length.
These are dyadic intervals, starting at a dyadic number r = n/2/ and ending at ¢ = (n + 1)/2/.

These spaces are shift-invariant— the translate of a piecewise constant function is still piece-
wise constant. The step from j to j + 1 rescales time by 2 and produces V4. What about a
basis? The simplest choice is the box function:

1 for0<t<l1

d(f) = { 0 otherwise is orthogonal to its translates ¢(r — k).

Every function in V; is a combination of boxes f(f) = Y f(n)¢(t — n). So requirement 4 is
satisfied by the box function ¢(1).

2. Continnous piecewise linear functions. The functions f(f) are now linear between each
pair of values f(n} and f(n + 1). Notice again the shift-invariance and the scale-invariance;

Shift:  If f(t) is piecewise linear, so is f(f — k).
Scale: If f(t)is line?.r on unit intervals, then f(2¢) is linear on half-intervals.

The spaces are right for multicesolution, Is there a shift-invariant basis?
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The basis function that comes to mind is the hat function H(t), equal toone at ¢z = 1,
and linear between its values H(r) = 6(n — 1). The translates H(r — k) generate all piece-
wise linear functions on unit intervals, Any function f(f) in Vy can be expressed as
Y fin— 1YH({ — n). However H(t) is not orthogonal to the neighboring hat H(f — 1). The
product H{t)H{t — 1) is positive on the one interval 1 < ¢ < 2 where the hats overlap. Its
integral (the inner product of the hats) is not zero.

‘We must work harder to find an orthogonal basis, and the eventual ¢ (¢) will not have compact
support. Or else we keep this non-orthogonal basis.

3. Discontinuous piecewise linear functions. Now f(2) in V, may have a jump at each mesh-
point ¢ = n. There is a value f(n_) from the left and a value f(n,) from the right. The hat func-
tion is still in the space, but so is the box function! The spaces V; are clearly shift-invariant and
scale-invariant, If f(r) is linear between integers (where it jamps), then f(2¢) is linear between
half-integers (where it jumps).

There are two degrees of freedom at each meshpoint, the values f(n_) and f(n,). Therefore
two scaling functions () and ¢, (¢) are required for a shift-invariant basis. They can both be
supported on the unit interval, and they can be orthogonal:

d1(t) = box function and @,(t) = sloping line = 1 —21.

The union of {¢q{# — &)} and {¢(¢ — k)} is an orthonormal basis — which illustrates the idea
behind “maultiwavelets”. The usual dilation equation for ¢ (1) becomes a vector equation for ¢ (¢)
and ¢{t). The coefficients ¢(k) in that equation are 2 x 2 matrices. The associated filter bank
in Section 7.5 contains “multifilters™.

4, Cubic splines.  V; consists of piecewise cubic polynomials on unit intervals, with f(¢) and
f'(ty and f"(z) continuous. The third derivative f"(f) may jump at the integers t = n, so
the cubics are different in neighboring intervals. We have shift-invariance and scale-invariance,
when V) contains the cubic splines on half-intervals. This is the main point: Approximating
subspaces on regular meshes automatically fit the requirements for multiresolution.

The shortest cubic spline is a B-spline. It consists of different third-degree polynomials on
the four unit intervals within 0 < ¢ < 4. The letter B stands for basis, but not for orthogonal ba-
sis. In complete analogy with the hat function, which is a linear spline, the scaling function ¢{3)
for the cubic splines cannot have compact support if we insist on orthogonality. An orthogonal
basis {¢{¢ — &)} does exist, but it requires Fourier analysis to find it.

The cubic B-spline satisfies a dilation equation with very simple coefficients, proportional to
1,4,6,4, 1. Butthose coefficients do not lead to orthogonal filters, We can stay with these co-
efficients and go to biorthogonal filters (the best plan). Or we can orthogonalize, losing compact
support and reaching a filter with infinitely many coefficients. Section 7.4 develops the theory
of splines.

5. Daubechies functions. The search for orthogonal filter banks leads to the four coefficients
of a “maxflat” lowpass filter. The response C(w) has a double zero at the highest frequency
W=7, Tflis is maximal flatness, with four coefficients and orthogonality:

c(0), e(1), ¢(2), ¢3) =143, 3++/3, 3~ /3, 1 = /3 times 1/4v2.



182 Chapter6 Multiresolution

Their sum is /2. Their sum of squares is unity. They are orthogonal to their double shifts, be-
cause ¢(0)c(2) +e(1)e(3) = 0. From these coefficients Daubechies constructed ¢(#) by solving
the dilation equation

3
@) = Jiz c(k) (2t — k).
k=0

The solution comes in the next section. The zeroth space Vj contains every ¢(t — k). Those
functions are an orthonoral basis, The rescaled functions $(2/t — k) span Vi

This is our best description of the Daubechies spaces V;, to give the dilation equation for
¢(1). In Examples 1-4, we started with the spaces. In Example 5, Daubechies started with
the coefficients and found ¢ (#) — which produces the spaces. Either way, we have the scale-
invariance and shift-invariance of multiresolution analysis.

The Dilation Equation

The space Vy is contained in V. Therefore @(¢) is also in V. It must be a combination of the
basis functions 2'/2¢ (2 —k) for that subspace. The coefficients in the combination will be called
c(k). Bring the factor 21/? = /2 outside:

VIY o) 2t — k).

k

Vo CV; means ¢(r) = 6.11)

This is the dilation equation. Tt is a two-scale equation, involving ¢ and 2z. It is also called a
refinement equation, because it displays ¢ () in the refined space V. That space has the finer
scale At = 1/2, and it contains ¢(t) which has scale Az = 1.

To emphasize: The dilation equation is a direct consequence of Vy C V(. Itis not an extra
requirement! There will be a finite set of coefficients €(0),...,e(N) when () is supported on
{0, N1. In general, ¢{¢) has infinite support and we need infinitely many c(n).

To find ¢(rz), multiply the dilation equation (6.11) by \/f¢(2t —n). Integrate and use orthog-
onality:

V2| @2t —n)dt =) (6.12)

—00

If ¢(2) is the unit box and ¢ (2¢) is the half-box, this gives ¢(0) = +/2/2 and e(1) = /2/2. The
dilation equation for the box function then has coefficients 1 and I;

@) =2+ @2t — 1), (6.13)

From orthogonality of the basis {¢)( — k)} we have double-shift orthogonality of the dilation
coefficients ¢(k). And unit energy in ¢(r) gives a unit vector of ¢’s:

Double-shifi: Zc(k)c(k ~2m) = 8(m). Unit vector: Z le()? =1 {6.14)

For proof, multiply the dilation equations for ¢(t) and ¢(r — m) and integrate. Orthonormality
of the ¢'s yields double-shift orthogonality of the ¢’s:

=]
f ()t —m)dt = Zc(k)c(k —2m) = &(m). (6.15)
— £
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The coefficients (k) go into an orthonormal filter bank! Starting with the spaces V; in a multi-
resolution, the dilation equation has brought us back to filters— where the key matrix is
L = (] 2)C. Double-shift orthogonality becomes LL” = I. The rows of L contain the dou-
ble shifts L,'j = C(2£ - J')

Box example:

1 1 1

"‘=E 11

Daubechies example:

eI 2y 1) c®
Lo 3 @ el) @
- c(3) ()

To end this section, we have to identify the wavelet spaces W;.

The Wavelet Equation

The scaling functions ¢ (2/¢ —k) are orthogonal at each scale separately. But ¢(r) is not orthogo-
nal to ¢(2¢). They are not orthogonal across scales; the level j must be fixed. The function ¢(¢)
in Vp is also in V| (the dilation equation). Orthogonality across scales comes from the wavelet
subspaces W; and their basis functions w(r). We study those now, from three starting-points:

1. The spaces W;. 2. The wavelets w{r). 3. The coefficients d(k).

Use Method 1 if you have the V;. Their differences yield the spaces W;. Use Method 2 if you
can identify the wavelets. Just shift and rescale. Use Method 3 if you have the numbers ¢(%).
The alternating flip yields d(k) = (—1)Y*c(N — k). Then w(t) comes from the wavelet equation
below, and W; contains the combinations of w(2/¢ — k).

The box function gives an example in which all three approaches will work. We construct
Wo and w{t) and the d’s:

1. From the subspaces: Vo contains constant functions on unit intervals, and V; contains
constant functions on half-intervals. The space W, is in V| (therefore constant on half-
intervals). It is orthogonal to Vg, so the integral over each full interval is zero. This fact pro-
duces the complementary subspace Wy, orthogonal to Vj inside Vy:

Wy = { constants on half-intervals with f(n) + f(n+1/2) =0}.

Vo € W does give Vy, Combining egual values at n and n + 1/2 from V, with opposite values
from Wy gives any values f(n) and f(n + 1/2) for V.

2. From the wavelets: The important function in Wy is the up-down square wave:
1 for0<t<}

’ Haar wavelet w(t)={ —1 forl=<r<1
0 otherwise.
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L
2 2

Figure 6.3: Two bases for V|: Halfsize boxes ¢(2¢ — k) or full boxes ¢(r — &) plus up-down
Haar wavelets w{r — k).

This is orthogonal to the box function ¢(¢). Tt is orthogonal to translates of ¢ and also to its own
translates (there is no overlap of w(t) with w(r — 1)). More than that, multiresolution says that
the wavelet w(t) is orthogonal to rescalings of itself and to translates of rescalings:

oo
f w@w(2't — k)dt =0 unless F=k=0
-0 )
The translates of w(¥) span Wy. The translates of w(2/1) span W;. Those wavelet spaces are or-
thogonal because Wo C V; and V; L W;. (Exchange j and O if j is negative.) From orthogonal
spaces we have orthogonal basis functions. Then completeness makes the whole orthonormal
system [2//2w(2/¢ — k)] a basis for L2.

3. From the coefficients ¢(0) = ¢(1) = 1/+/2: The flip construction gives d(0) = 1/+/Z and
d(1) = —1//2. Those coefﬁcm:nts go mto the wavclct equatlon

Waveletequauon w(!)—~/_ z d(k)¢(2r k) (6.16)

This equation produccs rhe wavclct dlreclly from the scalmg functmns—no equation to
solve! The wavelet is w(t) = ¢ (2¢) — ¢(2r — 1). This is a half-box minus a shifted half-box. It
is the up-down square wave, which is Haar’s wavelet.

Our final example, from Daubechies, starts with the four ¢’s. Then the flip construction gives
the four d’s (to normalize, divide again by 44/2):

d(©),d(1),d(2),d(3) = 1 — /3, —(3 = +/3), 3+ /3, (1 + V3).

Their sum is zero. Their sum of squares (normalized) is 1. They are orthogonal to their double
shifts, because the ¢’s are. The wavelet equation gives the Daubechies wavelet w(r), which has
no simple formula, The orthogonality to w(t — k) and $(t — k) is only known indirectly — from
the double-shift orthogonality of the &’s. The structure of multiresolution gives crucial informa-
tion that we cannot find in a table of integrals.

The actual construction of ¢ (r) and w(¢), and the drawing of their graphs, is immediately
ahead.

Example 6.2. (Strang']e but beautiful.) Suppose ¢(¢) is the delta function 5(¢). This is notin L2
but continue anyway. The space Vy contains combinations 3 a(n)8(¢ — n) of delta functions at
the integers. What orlhogonal wavelet w(z) goes with this scaling function 5(¢)?

By scale invariance, V) contains 8(2f—n). The spikes for V) areatt = 0, £1, £1, .. .. Since
Vo holds the delta functions at integers, Wy contains delta functions af the ntidpoinist = n + %
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The integers and the midpoints combine to give Vo €3 Wo = V). The waveler is the delta function
att =1

Similarly, V; contains delta functions at t = n/2/, W; contains delta functions at the mid-
points (n + %),’2**. What is W_,? Its delta functions are at £ = {(n + '5)/2‘l = 2n + 1. These
are odd integers £1, £3, £5, .... The spacing between them is 2 as expected. Then W_; has
delia functions at +2, +6, +10, ... with spacing 4. The union of all W; has delta functions at
all binary points.

The dilation equation for the delta function is §{t) = 28(2t). The only nonzero coefficient
is h(0)y = 1. The filter is the identity. The wavelet equation with only one term is w(t) =
282t - 1) = 6(r — %). This confirms what we found, that W, contains delta functions at all
midpoints between integers. Notice! An odd number of coefficients (one) means that N = 0
(even). The alternating flip must shift by an odd integer, for double-shift orthogonality. So the
nonzero highpass coefficient was d(1) not d(0).

To linger one last second on this trivial great example, the double-shift matrices from the low
and high channels are L = (| 2) and B = (| 2)( delay ).

| 2 = (x{0), x(4), x(8), .....)

|2
x(n) A 12 L. (x{-2}, x(2), X{6), .....)
-1
7 |2 . (x(-1), x(1), X(3), .....}

Figure 6.4: The lazy filter H = [ leads to delta functions.

The Scaling Function is Supported on [0, N]

A remarkable feature of ¢ (z) is that it is zero outside the interval 0 < ¢ < N. This could never
happen to a one-scale difference or differential equation (homogeneous). The solutions would
be combinations of A* and e, and only occasionally zero. The compact support of @ () comes
from the two scales in the dilation equation

N
P(t) = ZZh(k) @2t — k). (6.17)

k=0

Theorem 6.1  The scaling function ¢(t) is supported on the interval [0, N).

Proof. Suppose we know that the support is a finite interval [a, b]. Then ¢ (2¢) is supported on

£, 2], The shifted function ¢ (2¢ — k) is supported on [£4£, &££]. The index k goes from zero

to N, so the right side of the dilation equation is supported between § and i%. Comparing with

the left side,
4

4 M] leadsto =0 and b=N.

[al b] = [Et 2
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How do we know that the support is a finite interval in the first place? From the cascade
algorithm. The box function $©@(¢) is supported on [0, 1]. When this box is substituted into
the right side of the dilation equation, the function ¢{(¢) that comes out has support [0, 1£H]
Then ¢{"(¢) is substituted into the right side and the result @ () is zero outside [0, LNy, The
limiting function ¢ (¢} is certain to be zero outside [0, N¥]. This cascade is studied in thc next
section,

It will be useful to reach the same conclusion based on the Fourier transform (Section 6.4).
That argument can assume less about the filter coefficients. We mention that there are never gaps
where ¢(¢) is Zero on an interval inside [0, N). And if the highpass coefficients k&, (k) run from
k=0tok =N, then the wavelet w(t) = 3 2k (k)¢ (2t — k) has support [0, 2(N + N)). The
last term ¢ (2¢ — N ) is zero after 2¢r — N reaches N.

Problem Set 6.1

1. Explain why the scaling requu'emem that):(:) isin V if and only if f2¢) isin V;4y, can
be restated as f (w)isin V_, if and only if f{2w) is in V,_,. Here V is the space of Fourier
transforms of functions in V;.

2. For the space Vp of piecewise constant functions in Example 1, show that the only shifi-
invariant basis ¢ (+ — k) contains box functions. What is the cotresponding statement about
allpass FIR filters?

3. For piecewise constants, show that f(r) is in L2 if and only if f{n) is in 2.

4. Find 2 by 2 matrices ¢(0) and (1) so that the box function ¢ () and sloping line ¢ (1} = 1=2¢
in Example 3 satisfy

ity {_ é1(21) Q{2 -1)
[ $a(0) ]_0(0)[ $a{(20) ]+c(1)[ $a(2t — 1) ]
5. If f(t)isin Vg and g{#) is in V,, why is it generally false that g(r) — F(s) is in W,?

6. What multiresolution requirements are violated if W; consists of all multiples of cos(2/7)?

6.2 Wavelets from Filters
The previous section reached the dilation equation and the wavelet equation:
S0 =Y Ve —n) and w) =3 VIdm) $Q2t — n). (6.18)

Those equations are the crucial connections between wavelets and filters. Historically, their de-

velopment was separate. Now you have to see them together. The lowpass filter ¢(0), .. ., ¢(N)

determines the scaling function ¢(¢). Then the highpass coefficients produce the wavelets.
Working with ¢(¢) and w(z), we really have three basic jobs:

1. Compute the coefficients in f;(¢) = >_,a;¢j(?) and f(t) = 2 2 ibicw ().
2, Construct ¢{t) by actually solving the dilation equation,

3. Connect the properties of ¢(¢) and w(?) to properties of the ¢’s and d's.
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This section will do part of each job, the recursive part. This shows how multiresolution (for
functions) connects to subband filtering (for vectors). The three parts that we can do immediately
are:

1. Compute a;; and by recursively from a; ., x {and vice versa).
2. Set up a recursion (the cascade algorithm) to construct ¢ (r).
3. Prove orthogonality for ¢, (f) and w ;;(r) from orthogonality of ¢’s and d’s.

Those are the three subsections. Later we have to initialize the recursion in 1, execute and study
the cascade algorithm in 2, and derive other properties in 3.

Wavelet Coefficients by Recursion

Suppose fi(¢) is in V;. It is a combination of the basis functions +/2 ¢(2¢ — k). These functions
$ui(2) are at level 1. Multiresolution splits this level into V| = V5 ® Wy, so fi{f) is also a
combination of the basis functions for Vo and Wa. Those basis functions are ¢g (#) = ¢(r — k)
and wor(#) = w(t — k):

> an Pil(n)

2 aw Po(t) + 3 bog wor (1)
6.19)
= Y an ol —k)+ Y bo w(t — k).

We are computing a change of basis. Given the coefficients ay; (¢) in the V; basis, we want the
coefficients ag; and bgy in the Vo @ W, basis. The same step will apply at every level. It takes
us from the coefficients a;. .« in the basis for V;,y, to the coefficients aj; and bjy in the bases
for V; and W;. This is the recursion that makes the wavelet transform fast.

We will suppose that these bases are orthonormal. Later in this section we prove this prop-
erty (assuming the cascade algorithm uses orthogonal filters and converges). Orthonormality
makes the formulas easy and it makes the inverse easy. Section 6.5 will derive the biorthogonal
recursion, when orthogonality is not assumed.

To find the recursion, shift equation (6.18) by k and setn = £ — 2&:

Dilation equation: $(t —k) =3 ~2e(m) $(2t =2k —n) = I c(€ — 2k) pye(t)

6.20
Wavelet equation: w(t — k) = Zﬁd(nM(Zr —2k—n)y=Y d(€ —2k) 1 (0) (620)

Multiply by f1(z) and integrate with respect to ¢. Since the basis functions are orthonormal, the
integral gives the coefficients of £{¢) in each basis:

=) c(t—2%)a, and by = > de -2k ay. (6.21)

This is the key recursion. It is the action of a filter bank, which inputs ay, and outputs ag, and
boy. But we have to watch indices, because an ordinary convolution would be etk —Oap.
and downsampling would give }_ e(2k — £) ay¢. There is a time reversal between this filter C
and the transpose filter C that appears in the recursion (6.21):

»

c"(n)=c(=n) and d7(n) =d(-n). (6.22)
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Going between levels of a multiresolution is subband filtering with C” and D7 ;

Theorem 6.2 A function Zaﬂ.l ¢ $jr1.e(t) in the space Vi = V; & W, has coefficients
aj and by in the new orrhonorm! bas:s {qb,k(r), w,k(t)]

e = Zc(e ~yajee and by = Zd(e “Wyapme 623)

In vector norarion this is a; = (J, 2) CT a4 and b; = (J, 2) DT a4 The pyramid is

T T T
C .. C .a a _C

LI X J

j*l j i—t i a()
P T

Proof. For j = 0, formula (6.23) is (6.21). The extension to every j comes from the dilation
equation. Againn = £ — 2k:

PRy —ky =213 Voemyp2IH e 2% —m) =) et — 2K pjre(r).  (6:24)

The wavelet equation has d in place of ¢. The inner products of these equations with f(r) give
the recursions (6.23) for the coefficients a;; and b.

Now go in the opposite direction. Change from the basis {¢ ik {0), Wi (:)] back to the basis
[#;11.¢(t)}. Since the bases are orthonormal, the inverse operation is given by the transpose.

Theorem 6.3  aj4 ¢ comes from ajrand b by a symhesrs ﬁi:er bank

Zc(ﬂc E)aﬁ +d(2k f) b,k .555 (6.25)

The inverse pyramid is the fasr inverse wavetet tran.sform

eee a _C ay,,

a, £ a, € .,a J
bn[)/'bl 5 b, -+

Lowpass Iteration and the Cascade Algorithm

We begin the solution of the dilation equation. Our goal is to construct the scaling function ¢ (r).
The only inputs are the filter coefficients €(0), . .., ¢(N). The first solution method we propose
is the cascade algorithm.

Start the cascade with ¢'O(t) = box function on [0, 1]. Iterate the lowpass filter:

V() =Y V2e(n) §PQ2t —n) =) 2h(n) p© 21 ~ n). (6.26)
n R
The algorithm works with functions in continuous time. Those functions are piecewise constant

and the pieces become shorter (their length is 27%). If ) (¢) converges suitably to a limit ¢{(z),
then this limit function solves the dilation equation.
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Notice the two time scales, r and 2¢, which come from the continuous form of downsampling.
In place of (| 2) ¢{n} = ¢(2n), we have (] 2) ¢(t) = ¢(2t). The cascade algorithm is really
iteration with the filter matrix M = (] 2) 2H — as we will see in detail. It is an infinite iteration,
and our final formula for ¢ (¢) will involve an infinite product.

It is easy to associate a continuous-time function x(¢) with a discrete-time vector x(n). The
function takes the value x{(n) over the n*® time interval. That is the intervaln < ¢ < n+1. Thus
the constant vectorx = (..., 1, 1, §,...) produces the constant function x(¢) = 1. The impulse
x=(..,0,1,0,...) produces the standard box function. In general x(t) is piecewise constant:
x()=x(n) ontheinterval n <t <n+ 1.

The iterations start from the box function ¢@ (r). There are two steps in each iteration —
filtering and rescaling. Suppose the filter coefficients are £(0) = 2/3 and A(1) = 1/3. Filtering
the input gives 3¢ (1) + ;6@ (¢ — 1). Then rescaling t to 2z compresses the graph. To maintain
a constant area we multiply the height by 2:

P = 10900+ JoP 2 - 1),

Filtering and rescaling one box produces two half-width boxes of height § and §. That iter-
ation step preserves the area (=1). Now filter and rescale ¢"(¢). The two half-boxes become
four quarter-boxes, from ¢@ (1) = §¢(’)(2r) + 2¢V(2r — 1). The first quarter-box has height
1. That height is multiplied by § at every iteration!

We wish we could say that the iterations ¢ (¢) are converging. Their limit ¢ () would sat-
isfy the dilation equation ¢ (1) = %cp(m‘) + %@(2: — 1}. In some weak sense, this may be true.
In a pointwise sense at ¢ = 0, the functions ¢V (0) diverge because of (4/3). The coefficients
2/3 and 1/3 illustrate the iteration process, but not its convergence.

We want to see that process also by algebra. It is clearest if we ignore the rescaling and just
execute the filtering with coefficients i (k). The heights of the boxes would be % % and then 3,
T 21

5> 5» 5- In the z-domain, this corresponds to

H@)=%+3" and HEH@ =3+57"+372 + 527 (6.27)

The actual time intervals go from length 1 to % to %. The actual graph heights are doubled at
each step, to preserve area. But the essential point is the product H (22)H (2). After three steps,
the iteration will produce H®(z) = H(z)H(z*)H(z). After i steps we have

i—1
HO@) =[] HE). (6.28)

k=0

This product is the z-domain equivalent of iterating the lowpass filter H (z). The values of ¢ (¢)
— the heights of the graph after i iterations — are the coefficients of 2/ H®(z). That factor 2*
accounts for the height-doublings that preserve area, when the time intervals for $(r) become
27 .

You may ask, why not choose the usual averaging filter as a first example? Let me show
you why. The averaging coefficients are A(0) = k(1) = 15 The first step of the iteration, with
coefficients 2A(0) = 2k(1) = 1,is

V() =920 + ¢ - 1.

»
From the box function (1) this produces the same box: ¢V (1) = @ (1).
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The output equals the input. The iteration process converges immediately. We have found
the scaling function! In general ¢(¢) is the limit of the sequence ¢}(¢), when that limit exists
asi — oo. Here ¢ = ¢ and the box function is a “fixed point” of the iteration. When we
filter and rescale ¢ (¢) we get back ¢ (1), because the sum of two half-length boxes is the original
box:

(6.29)

Please notice that we do not square this function, H®(z) is H(z2)H(2):
HO@ =G +4 G+ Y =1+ Lo+ L2 4 L3, (6.30)

After i iterations, H®(z) will have 2° coefficients all equal to 2. After rescaling, this still
corresponds to the box function.
Now use three filter coefficients & = (3, 1, ). The box ¢©@(r) produces three haif-boxes
in
o0 = 100020 + 892 — 1) + 1@ @1 - ).
Then there are seven quarter-boxes in ¢®(¢). Rescaling prevents the support interval from be-
coming long. The limiting interval is 0 < ¢ < 2.

' || - LJﬂ::m L/{:)
1 + + - + t — - + +
1 2 3 1 2 3 1 2

Figure 6.5: The cascade algorithm for }, %, 1 converges to the hat function.

A reasonable guess for the limiting function ¢ (z) is the hat function. This is piecewise linear,
going up to $(1) = 1 and down to ¢(2) = 0. We verify that the hat function is a fixed point of
the iteration. Filtering and rescaling leaves this scaling function ¢(r) unchanged:

o) = o0 + o2 — 1) + Lo —2). (6.31)

Notice how the coefficients §, 1, & are doubled. The hat function is a combination of three nar-
rower hats. For future reference, we note the different properties of these examples:

1. H(z) = ’ z7'isnotzeroatz = —1, corresponding to @ = . The iterations fail to
converge.

2. H(z) = 1 + 1z~ ' iszero at z = —1. The iterations converge. The filter H(z)H(z™'} is
halfband: no even powers except the constant term. The box function is orthogonal to its
translates.
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3. H@z) = { + 27" + {272 is zero (twice) at z = 1. The iterations converge. The filter
H(z)H(z™") is not halfband. It contains the even powers z2 and z-2. The hat function
@(?) is not orthogonal to ¢t — 1).

We must quickly emphasize that a zero at z = —1 (whichis @ =  in the frequency domain)
does not guarantee the convergence of ¢®}(r). But without that zero in the filter response, strong
convergence has no chance.

Similarly, a halfband filter does not guarantee that ¢(?) is orthogonal to its translates. But
without that halfband property of H(z)H(z™"), orthogonality has no chance. Section 7.2 will
further indicate those connections; they are not quite two-way implications:

Convergence of $“2(¢) to ¢(t) needs H = Oatz = —1
Orthogonality of ¢(¢ — k) needs H(z)H{(z™") to be halfband

Orthogonal Functions from Orthogonal Filters

When the filter bank is orthonormal in discrete time, we hope for orthogonal basis functions in
continuous time. All wavelets w(2/1) should be orthogonal to the scalin g functions ¢(r — k).
Furthermore, the wavelets w(2/¢ — k) should be mutually orthogonal and the scaling functions
@{¢ — k) should be mutally orthogonal. Note that ¢(¢) is not orthogonal to ¢ (21).

Theorem 6.4 Assume that the cascade algorithm converges: $(t) — ¢ (1) uniformly in t.
If the coefficients c(k) and d(k) come from an orthonormal filter bank, so they have double-shift
orthogonality, then

1. The scaling functions ¢ (t — n) are orthonormal 10 each other:
o0

S —n)p(t —m)dt = 6(m —n).

-0

2. The scaling functions are orthogonal to the wavelets:

fwﬁb(t ~muwl(t —n)dt =0.

3. The wavelets wj(t) = 2/2w(2/t — k) ar all scales are orthorormal:

f wi{t)wyg () dr = 6(j — J)bk — K).

e ]

Proofof 1: The box functions ¢ (¢ — k) are certainly orthonormal (because nonoverlapping).
We will show that when ¢ (¢ — k) are orthogonal, the next iterates V(@ — &) are also or-
thornormal. Then the limits ¢ (¢ — k) are orthonormal.

The induction"step from 7 to i + 1 assumes that the (s — k) are orthonormal, and sets
l=m—n:



192 Chapter 6 Multiresolution
f¢(i+1)(t _ m)¢(i+l)(r —n)dt

= 2 f (Z c(k)p® (2t — 2m — k) (Z c(k)¢p (2t ~ 2n — k)) dt (6.32)

f O etr¢? @t —2m — 1)) O etk — 2P (2t — 2m — k)) 24t
= Y clkictk —2) = 8() = 8m —n).

The crucial step came in the last line, when we used the orthogonality of the row {e(0) - - -¢(N)]
to its double shifts. These are rows of L = (] 2)C. The orthogonality is in the statement
LL” = I. Equivalently, it is in the statement that |3~ (:(k).e‘""“"l2 is a normalized halfband filter:
no even powers except the constant term 1.

Note the important point! Orthogonality of wavelets came from orthogonality of filters.
When the infinite iterations converge, the limits retain orthogonality. This holds at each scale
level j. In f $(2/t — m)$(2/t — n) dt, we replace 2/t by T. Orthogonality does not hold be-
tween scaling functions at different levels. Certainly, ¢(?) is not orthogonal to all ¢(2¢ — n), or
the dilation equation would require ¢ = 0.

Proof of 2: Repeat the integration steps above for ¢ times w:
fqb(r —mw(t —n)dt

f O ety V2o —2m — ) (O_dk) VZp2r —2n — b)) dt

= ... =Zc(k)d(k—2i)=0.

Always, { = m — n. The last step uses the orthogonality of the rows of L = (] 2)C to the
rows of B = (] 2)D. Again the double shift is essential. It is false that g/l rows of € and D are
orthogonal.

The matrix form of this double-shift orthogonality is LBT = 0. It comes from the alternating
flip. That choice always produces double-shift orthogonality of d’s to ¢’s, but it does not by itself
make w{?) orthogonal to ¢{r). To reach the end of part 2, we needed part 1 — orthogonality
between the ¢'s.

Proof of 3: The orthogonality of wavelets w () at the same scale level (the same j) is proved
as in parts 1 and 2:

fm wlt —mw(t —n)dt =... = Zd(k)d(k -~ 2y = 8(1) = b(m — n).

=
Again continuous time orthogonality follows from discrete time orthogonality. This is not
DD” =1I. 1tis BBT = I, with double shifts in the rows of B = (| 2)D.

The orthogonality of wavelets at different scale levels (different §) is immediate from the
rules of multiresolution. Suppose j < J. Then W, is orthogonal to V; by part 2. But W; is
contained in V; 1, and therefore in V;. So W; is orthogonal to W, This proves the orthogoenality
theorem.

Final note: It was convenient to start from the box function ¢© (1), which is orthogonal to its
translates. Then an orthogonal filter bank maintains this orthogonality to translates. Cther start-

ing functions will lead to the same fixed point ¢(¢), or at least to a multiple c¢ (¢) — if strong
convergence holds.
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In general, convergence can be “weak” or “strong”. For weak convergence, the functions
&D(¢) can oscillate faster and faster. You would not call this convergence. But the integral of
¢¥)(r) converges to the integral of ¢(¢), on every fixed interval [0, 7']. (Integration controls the
oscillations.) In the convergence that we assumed, ¢ (¢) approaches ¢(¢) at every point.

There is a better starting function ¢ (¢) than the box. The constant value ¢‘®(n) on each
interval n < ¢ < n + 1 can be the correct ¢(n). The values of ¢ are filled in at half-integers
and quarter-integers by the iterations ¢’ () and $®(¢). The graph of ¢ (¢) appears, 2’ points at
atime, We stop when we have enough points for the printer to connect into a continuous graph.

The next section explains how to start with the correct values of ¢(n) at the integers.

Problem Set 6.2

1. For the filter with A(0) = A(1) = % and any ¢™(¢), describe and draw ¢ (1).

2. If H{z}is a polynomial of degree N, what is the degree of H (z2) H(z)? What is the degree of
HO@) = [T HE)?
Rescaling will replace zby 2 172 Afteri steps, the degree is divided by 2. Show that the degree
of H®(z'/?'y approaches N as i — .

3. With coefficients A(0), ..., h(N), the support interval of ¢ (7) grows to [0, N]. What hap-
pens if $*?(r) is a box on [0, 2N]?

4. The unit area of the box is preserved if and only if A(0) + --- + A{N) = 1. Are negative
coefficients allowed?

5. Suppose the filter coefficients k() are £, 0, 0, 3. Starting from the box function, take one step
of the cascade algorithm and draw ¢V (1), Then take a second step and draw ¢ (1). Describe
(1) — on what fraction of the interval [0, 3] does ¢} (¢) = 1?7

6. Suppose the only filter coefficient is B(0) = 1. Starting from the box function ¢@ (¢), draw the
graphs of ¢V (t) and $@(r). In what sense does $% () converge to the delta function §(1)?
To verify the dilation equation 6{z) = 24(2r), muliiply by any smooth f(#) and compare the
integrals of both sides.

7. Suppose ¢V (1) is a stretched box of unit area: ¢V (1) = 1/2 for 0 < ¢ < 2. Draw the graphs
of ¢ () and $@(¢) when A(0) = A(1) = 1/2. On what interval is ¢?(z) nonzero? What is
the limit ¢ (£)?

8. Suppose ¢ (1) is the Haat wavelet with zero area:
dP(=1for 0<t<1/2and ¢V =-1for 172 <t < 1.

With #(0) = A(1) = 1/2, draw the graphs of ¢*(¢) and $@(¢). The sequence ¢*)(¢) con-
verges “weakly” to what multiple c¢ (¢)?

6.3 Computing the Scaling Function by Recursion

The main point of this section can be stated in three sentences. Then you can follow through on
the details, or look ahead for the matrices m(0) and m(1):

The dilation equation gives ¢(0), ¢(1), ... as the eigenvector of a matrix m(0).
Then ¢(t),at ¢ = half-integers comes from multiplying by a matrix m(1).
Then ¢ (#) at every dyadic ¢ comes by recursion. Each step uses m(0) or m(1).
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The scaling function is created recursively. This section gives the rule.
The dilation equation is easiest with only mvo coefficients (N = 1). Then m(0) = 2k(0) and
m(1) = 2h(1) are scalars not matrices. "Ihe two coefﬁmcnt dllauon equamn is

¢(ti -

The solution wnll be zero outsule the mterval 0 < x < 1 Insnde that interval, sett = O to find
¢(0yand z = to find r,é( )

m(0)¢(2x) +m(l)¢(2: - 1) (6.33)

$(0) =m@)¢(0) and ¢ (}) =m(l)(0).

Now setf = § and 3, then § and 3, and onward through all the dyadic points t = n/2'.
Directly from the equation you find

¢()) = mO8(3) ad ¢(7) = mDe(3)
¢(z) = mO(}) ad o(3) = m(De(3)
¢(5) = mOe(z) and ¢(f) = mM(3).

Each new value comes from multiplying a previous value by m(0) or m(1). At each time ¢, the
right side of equation (6.33) has only one nonzero term. Thus tﬁ(%) equals m( l)¢(12) which is
m{(1}m(1)¢(0).

At the next step 4)(%) equals m(0ym(1)m(1)¢(0). The key is in the order of m(0) and m(1).
It is the same order as in the binary expansions % =0.11 and -g— = 0.011. Atany point¢ = n/2¢,
the solutlon qb(r) has I factors

If 1 =0 01101 in base 2 then ¢(£) = m(O)m(])m(l)m(O)m(l)q&(O)

We have now so]ved thc two—coefﬁcnenl dllatlon equauon at all dyadlc pomts

Admittedly, the restriction to two coefficients looks severe. The pattern is correct and impor-
tant, but two numbers m(0) and m(1) are not enough. The only normal case is m(0) = m(1) =
1, when we get the box function. For m(0) = and m) = 3, the first equation becomes
¢ ) = “qb(O) This produces a singularity of ¢(t) at all dyadic points,

We will not pursue that example here, because there is a more valuable application — which
reduces N + 1 coefficients to two. This is the familiar step of reducing a high-order equation
to a low-order system. For differential equations that produces a matrix, as in the system 1’ =
Au. For dilation equations the reduction will produce two matrices m(0) and m(1). The dilation
equation will become a two-coefficient matrix equation. The recursion will not change, except
it has vectors and matrices.

Vector Form of the Dilation Equation
The N + 1 coefficients in the dilation equation are ~/2¢(k) = 2h(k):

hi
o) = ZZh(k)d;(zruk). (6.34)
k=0

OQutside the interval 0 < ¢ < N, we want and expect ¢(¢) = 0. Inside that interval, substitute
t=0,t=1,....,t = N — 1to determine ¢(¢) at the integers. You will see again the crucial
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fact that even k goes with even 2¢ — &, and odd k goes with odd 2¢ — k. (Reason! The sum of k
and 2t — k is even.) The right side of (6.34) leads to an N by N matrix m(0) which is displayed
for N =5:

$(0) h(0) ¢(0)
¢(1) h(2) h(1) RO ¢(1)
¢2) | = 2| A4 k(3 h(2) k(1) Rh(0) $2) | =m(0)P(0). (6.35)
¢(3) h(5) h(4) R(3) h(2) ¢(3)
1 2C) h(5) h(4) $(4)

This is the dilation equation restricted to the integers. It is an eigenvalue problem for m(0). That
matrix has even and odd in separate columns. For a nontrivial solution, this matrix (including
the factor 2) must have A = 1 as an eigenvalue. Assume this is true. Then the values ¢ (n) are in
the eigenvector (which we call ©(0)). That eigenvalue problem for m(0) sets the integer values
$(n), and the recursion starts.

Now look at the vector of half-integer values. Substitute ¢ = 7, £, 3, 3, 7 into the dila-
tion equation. This leads to a closely related matrix m(1). The first row comes from ¢(%) =
2h(1)9(0) + 2R (¢ (1). Notice that 21 is an odd integer, 50 the sum of k and 2t — k is now odd.
The matrix is m(1):

$(1/2) k(1) h(0) $(0)
$(3/2) h(3) h(2) k(1) h(0) ¢(1)
$(5/2) | = 2| k(S B4 BB) k(D) k(D) || ¢ | =mD)O©).  (636)
¢(7/2) h(5) h(4) R(3) || ¢(3)
$(5/2) h(3) | L o4

As expected, the values at half-integers come from the values at integers. A vector <l>(%) comes
from a vector ®(0). In matrix notation (6.35) was an eigenproblem for ®(0) and (6.36) is the
step to P(3):

®0) =m@@©0) and H}) =m(1)P©).

This is exactly like the two-coefficient case! Now m(0) and m(1) are N x N matrices, The
beautiful fact is that the same pattern continues to quarter-integers and beyond.

When ¢ is a quarter-integer, the times 2r — & are half-integers. The values ¢(§). ¢(§), .
come from ¢(3), ¢(3), . ... The dilation equation connects those vectors by the matrix m(0).
Similarly the values :;b(%), ¢ ( %). ... come from multiplying those half-integer values in the vec-
tor ®(3) by the matrix m(1):

2(1) =m@ (1) wd 9(3) =mo().

Exactly as before, the binary expansion of ¢ = n/2 reveals the order of the factors m(0) and
m(1) -—as they multiply the initial eigenvector ®(0) of values at the integers. We describe the
recursion and then prove it is correct.

Theorem 6.5  The vector form of the dilation equation is

g

D) =m(D D(2t) + m(l) (2t - 1). (6.37)
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The vector () is zero outside the interval 0 < ¢ < 1. Its components are the N slices ¢(¢),
¢t +1), ¢(t+2), ... of the scaling function. Substituting ¢ = 0, the values ¢(n) at the integer

timest =0,1,..., N - | are in the eigenvector of m(0) with A = 1:
(Fixed point) ®0) = mHP0). (6.38)
The vector ®(2) of values at the dyadic pointsz, t-+1, ..., ¢+ N —1 comes from i multiplications
by m(0) and m(1). Here ¢t = n/2' < 1 with n odd:
(1)

p@+1)

Ift = % = 0.011 then ®(¢) = = m(0)m(Dm{1)Yd(0). (6.39)

¢(I+J’V—l)

The scalar equation of high order is reduced to a vector equation of low order. It is just a recur-
sion, in which the 0-1 digit # tells whether to use m(0) or m(1):

Vector recursion: Ottt ..)=m) P HuL ...). (6.40)

The vector ©(2¢) ts nonzero on the half-interval 0 < ¢t < ]5 The other vector ©(2¢t — 1)
is nonzero for % <t < 1. These two vectors of compressed slices are multiplied by #(0) and
m(1). To identify those particular matrices as correct, one way is to substitute ¢ into the dilation
equation and watch the numbers 2t — k. As ¢ crosses %, those numbers cross an integer — they
go from one slice to the next. At that moment m(0) is exchanged for m(1).

The matrix m(0) has the same “double-shift” between rows that we saw earlier in filter
banks. The earlier matrix was L = (| 2)C, with entries L;; = ¢(2i — j). Now this matrix L
appears in the dilation equation! It is multiplied by the extra factor /2 to become M. Its entries
are 2h(2i — j):

h(D)
_ _ B2 k(1) k()
M=VIL = 2 K@) h(3) k@) k(1) RO) (641)

We now show that the dilation equation has an even more compact form @, () = M® . (21)
These are infinite vectors and matrices. The nonzero part will be exactly the two-term form of
the dilation equation.

Dilation Equation in Infinite Vector Form &,(t) = M®,(2t)

$t— 1) $Qr -1

This form is o) = M d(2) for — oo < t < 00(6.42)

P+ 1 2+ 1)

Restricted to the interval 0 < ¢ < 1, onlyrows 0, 1,..., N — 1 of ®,,(2) are nonzero. Those N
slices of ¢ (r} form the vector ®{#) with N components. The dilation equation (6.42) reduces to
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the vector form (6.37):
_ | mO®@2n) for0<t<i |_
$(t) = [ m()b2r — 1) for ,5 <1< i l_ mO)O2) +m(1)d (2 — 1).

The matrices m{0) and m(1) are N by N sections of the infinite matrix M. Ford, j =0,1, ...,
N-—-1 the matrix entries are

2h(2:—;) and m(l),', MU 1_2h(2;—;+1)

Proof. The vcnﬁcallon is in three steps, first for M and then m(0) and then m(1). I hope the
intuition is already in place, to see the sum Y 2k(k)¢ (2t — k) as M®(21t) or S2LO(21) or 2()
DHD(2t). We now follow each step:

(Verify M) Row zero of @o(t) = MP(21) isp(t) =2 Y hk)p (2t — k).
Rowoneis ¢t + 1) =23 h(k)d (2t + 2 — k). The double shift works.

(Verify m(0)) Restrictto0 < ¢ < § and keep only rows 0, 1,..., N — 1.
Since ¢ (2t — 1) = 0 and ¢(2¢ + N} = 0 we only need columns 0 to N — 1 of the infinite
matrix M. This N by N section is m(0).

(Verify m(1)) Restrictto 3 <¢ < 1and keep only rows0,1,..., N — 1.
Since ¢(2t — 2) = 0and ¢(2¢ + N — 1) = 0 we only need columns
—1,0,...,N —2of M. This N by N section is m(1).

The change from m(() to m(1) comes as ¢ crosses ‘5, because the nonzero entries in $y(2t)
appear one component earlier.

We now go back to the eigenvalue problem ®(0) = m(0)®(0). Condition A; leads to the
eigenvalue A = 1, and guarantees a solution.

The Fixed Point Equation ®(0) = m(0)®(0)

The rows of m(0) have a double shift. The columns have entirely even indices or entirely odd
indices. The 5 by 5 matrix (N = 5) shows this pattern:

h(0)
2y K1) RO
m@© = 2| k@ k3) B2) ) hO)
h(sy k&) h(3) h(Q)
h(5) B4

The key requirement on the coefficients k(n) is Condition A: The frequency response H{w)
hasazeroatw =7
BO -RD+AD—----=0.

Combined with £(0) + (1) + A(2) + - - - = |, this means that every column of m{0) and m(1)
and M addsto 1.

Theorem 6.6  Condition A; guarantees that & = | is an eigenvalue of M and m(0) and m(1).

h{0) = h(1) + h(2) —

o .
3O (1) + )+ - | ields2 ) hmy=2) hn)=1.

even n odd n
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Any matrix with unit column sums has A = 1 as an eigenvalue. Therefore ¢ (0) = m(D)P(0)
can be solved to give the scaling function at integer times ®(0) = (¢(0), &), ..., (N =17,

Proof. Adding the two equations gives the even part. Subtracting gives the odd part. These
are the column sums of the matrix m(0), all equal to 1. A matrix with unit column sums has a
left eigenvector of ones, em(0) = e, because the multiplication just adds up each column:

[T 1 o 1])mO® = [1 1 - 1]

This means that m(0) — I is not invertible, and 2 = 1 is an eigenvalue. The left eigenvector is e.
The right eigenvector is(¢(0), (1), ..., ¢(N — 1)):

(m(0) — 1)®(0) = 0 which means ®(0) = m(0)P(0).

The fundamental fact is that a square matrix and its transpose have the same determinant and
same rank and same eigenvalues.

The columns of m(1) and M also add to 1, producing the eigenvalue A = 1. Small point! We
can safely normalize the eigenvector ®(0) by 3~ ¢(n) = 1. This is the “unit area” requirement
that we impose on the function $'”(¢) at the start of the iterations. Then the scaling function has
f#()de = 1 at the end.

Corollary  The sum 3~ $(t + k) is identically 1.
Proof.  Multiply the vector dilation equation ®(t) = m(0) ®(2t) + m(1) &2t — 1) on the
left by e. Use the fact thate m(0) = e and e m(1) = e:

eP)=e P2+ eDd2t-1).

This is a dilation equation for e ®(¢) and its solution is the box function! Thus ¢ ®(t)=1.The
“periodized scaling function” ) ¢(z + k) is identically one.

Example 6.3. The coefficients 2h{k) = % 1, 1 lead to the hat function, The 2 by 2 eigenvalue
problem for m(0) gives the corect values of ¢(0) and ¢(1):

[ 0][¢(0) _[¢(0)] gives PO =0

1 ¢y |7 | o #(1}=1.
The sum of all hat functions ¢ (¢ -+#) is identically one. Notice that the first row of the eigenvalue
equation is always 2k(0)¢(0) = ¢(0). Then ¢(0) is zero, apart from the exceptional case #(0) =
'5 which occurs for the box function. This means that the scaling function ¢(¢) is zero up to and
including 1 = 0. The box function starts with a jump at ¢ = 0, because h(0) = 1.

e D —

Example 6.4. The Daubechies coefficients have 8k(k) = 14++/3, 34++/3, 3~ 3,and 1 —4/3.
Dividing by 4 we have 2k(k), the numbers that enter m(0):

1 1443 0 0 ¢(0) $(0)
2 3-V3 3443 1+43 (1) = o) |.
0 1-v3 3-.43 ?(2) $(2)
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The eigenvector gives ¢ (0), ¢(1), and ¢(2):

PO=0 sM=3(1+v3) @ =4(1-v3).

We now know the Daubechies scaling function ¢(¢) at the integers. The only nonzeros in
the fixed-point eigenvector ® are ¢(1) and ¢(2). From these valuesat 7 = 1 and ¢ = 2, the
recursion produces ¢ (t) at any dyadic point.

Practical conclusion Every ¢(n/2') comes via m(0) and m(1).

Theoretical conclusion Those dyadic values have a uniform bound if and only if all products
of m(0) and m(1) in all orders have a uniform upper bound. When this holds, the dilation equa-
tion has a bounded solution ¢(f) for all .

We can propose sufficient conditions so that all products of m(0) and m(1) have a uniform bound,
We can also propose necessary conditions. It is not known how to verify the necessary and suf-
ficient condition (Section 7.3).

Derivatives of the Dilation Equation

While working in the time domain, we might as well take the derivative of ¢(t). The result is
highly interesting and not fully understood. Part of the problem is that the derivative ¢' (1) may
not exist.

The plan is to differentiate each term in the dilation equation for ¢ (r):

) = 4) k(e —k).

This is another dilation equation, with every coefficient doubled. The equation ®(f) = M P(2r)
has led to ¢'(r) = 2M®P'(2r). At = 0 this yields the fixed-point equation ¢'(0) = 2M P (0).
The eigenvector ®'(0) contains the derivatives ¢'(n) at the integers 1 = n,

To solve ®'(0) = M$’(0), we have a new requirement. The number A = % must also be an
eigenvalue of M. Again this applies to the N x N matrices m(0) and n(1). This new requirement
on the entries is stated as Condition A; in the following theorem,

Theorem 6.7  The matrices M and m(0) and m(1) have eigenvalues I and % if and only if the
filter coefficients satisfy Condition Ay which includes A, :
N N
Condition Ay : 3 (~1y'h(k)=0 and Y (~1)*kh(k) =0.
0 0
The eigenvector for A = 1 is ©(0), containing the values ¢(0), ..., (N ~ ). The eigenvecior
forxk = % is ®'(0), containing the derivatives ¢'(0), ..., ¢'(N - 1),

In this case H{(w) has a double zero at @ = m. This beautiful pattern extends onward to
Condition A,. The matrices have eigenvalues A = 1,4, ..., ()" if and only if the filter
coefficients satisfy p sum rules:

F
Condition Ay : ) (~1)*k™h(k) =0 form=0,...,p—1.
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The eigenvector for A = ('5)'" contains values of the m™ derivative of ¢(7) at the integers. For-
mally, $U(0) = 2"M & (0) comes from differentiating the dilation equation m times at the
integers. We mention the frequency demain equivalent:

Condition Ap: The frequency response H (w) has a zero of order patw = 7.

We will see this again! And we also begin to uncover the crucial role of the left eigenvectors
(which are row vectors). Those tell how to produce polynomials from combinations of the trans-
lates ¢ (¢t — k). Under Condition A, these low order polynomials 1, ¢, ..., tP~1 are in the low-
pass space Vy. They are the keys to approximation of a function f(¢) by functions in V.

The letters A, indicate “approximation of order p.” The theorem above, with its extension
from 2 to p, is absolutely basic to the algebra of downsampled filters. These eigenvalues and
eigenvectors control everything in Chapter 7.

You will see that the derivative ¢'(?) is often one-sided. Derivatives of ¢(¢) may not exist
in the usval sense. This subject still contains some mysteries.

Example 6.5. The hat function coefficients 2h(k) = 1, 1, 1 satisfy Condition A,:

First sum rule: I-1+1=

Second sum rule: 0(3) -1 +2(4) =0.
Therefore m(0) will have eigenvalues 1 and 1:

2h(0) 0 0
0 = = .
™0 [ 28(2)  2h(1) ] [ 1
The eigenvector for A = 1 has components 0 and 1. They agree with ¢(0) and ¢ (1), the hat
function at the integers. The eigenvector for A = % has components 1 and ~1. They are ¢/ (0)
and ¢f,_(l), the slopes ¢'(¢) of the hat function in the two intervals. These are derivatives from
the right-at the points ¢t = 0 and r = 1. The slopes on the left side of those points are different
because the hat function has corners.
The matrix m(1) must also have eigenvalues 1 and -‘2-:
2R(1) 2R(O 1
m(1) = (1) © _ .
2h(2) 0
The eigenvector for A = 1 has components 1 and 0. Those agree with the hat function at the
shifted points + = 1 and t = 2. The eigenvector for A = % has components 1 and —1. Those
agree with the slopes of the hat function from the left at t = 1 and ¢ = 2. Remember that m(()
is involved at the start of an interval and m(1) is involved at the end of an interval.

Condition Aj; is not satisfied for the hat function. There is no eigenvalue 3 = %. The hat
function has no second derivatives at the integers.

[T S g

[RIE S B

Problem Set 6.3

1. If the filter H (2} is halfband, show that the eigenvector in m(0)® = & is an 1mpulse &(n).
What are the values of ¢ (¢) at the integers?
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2. If ¢ () and ¢,(¢) satisfy dilation equations, does their product P(#) = ¢ (¢)¢2(r) satisfy a
dilation equation?

3. Show that the convolution ¢ (1) * ¢ {¢) does satisfy a dilation equation with coefficients from
h| * hg.

4. Find a specific function f(¢) that does not satisfy any dilation equation.

6.4 Infinite Product Formula

The scaling function ¢ (t) comes from the dilation equation

N
oty = 2 Bl$Qt—k).
k=0
Thus ¢ (¢} is the fixed point, or fixed function, when we iterate with H and rescale. In the time
domain, the matrix that filters and rescales is M = (] 2)2H. Now we intend to find the Fourier
transform g(w) in the frequency domain. Just as the time-domain solution involved products of
m{0) and m(1), the frequency-demain solution will involve an infinite product of H (w)’s.

It is quite remarkable that two-scale equations received so little attention for so long. His-
torically, # and 2¢ were not often seen in the same equation. They began to appear prominently
for fractals, which are self-similar. Now, multiple scales seem to be everywhere. We meet them
in this book through multirate filters — with two scales. Then the iteration leads to all scales.

If the 2’s were removed, the dilation equation would be an ordinary difference equation.
The coefficients are constant, so we look for pure exponential solutions e*“. When you make
that substitution, you are effectively taking the Fourier transform of the equation. The trans-
form turns difference equations and differential equations (and dilation equations) into algebraic
equations. We do that now for the two-scale cquation, and we watch how 2t leads to w/2,

The drfanon equation becomes a(a}) H(%) ¢v( ). This leads recursively to an infinite
product for ¢(w) This transform must be a sin¢ ﬁmcnon when (0} = h(1) = 1/2 — because
the time-domain solution ¢ (¢} is a box function. That sinc function must be orthogonal to its
modulations by e, because the box function is orthogonal to its translates ¢t — k). We
have to study orthogonality and also approximation, which is controlled by “zeres at 7. These
properties are now studied in the frequency domain.

1. Condition O for orlhogonahty

!

iH(w)F + IH(w + ;r)|2 = 1 in the frequency domain
2 2 h(k)k(k 22)

6(£) in the time domain

]

This is double-shlfl orthogonahty of lhe lowpass ﬁlter coefﬁc:ems It connects to orthogonality
of the scaling functions ¢{z — k). We use the word “connects” rather than “implies,” because a
further condition is eventually needed to insure orthogonality in the limit of the iteration. The
step from discrete time to continuous time seldom goes wrong, but it can.

This orthogonality will appear in Theorem 6.10 as a neat statement about the Fourier trans-
forms of ¢ and w:

M |pw+2am) =1 and Y Flw + 2mm) B+ Znm) =0
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The other side of the theory s about approximation. This imposes a very different condition on
the k(k) and the polynomial H(@) = ¥_ h(k)e~*e,

14

2. Condition Ay: H(w) = (——)" 0(@).

This factor (l + e""”)p means that H(w) has a zero of order p at = m. We will prove that
this puts the polynomials 1, ¢,...,¢”~! in the scaling subspace V. They are combinations of
¢(t — n) and they are orthogonal to w(z — n). In the frequency domain, there is again a neat
statement about the Fourier transforms of ¢ and w:

ahas azero of order p ateveryw =2an,n % 0
iv has a zero of order p at zero frequency.

The wavelet coefficients of a smooth function f(z) = 2 bpwji(r) decrease faster when
p is larger. The estimate is |by| = O (27/7). This is valuable for compression. This section
does the frequency-domain algebra, to solve the dilation equation and to explain Condition O
and Condition A .

Transform and Solution of the Dilation Equation

To transform the dilation equation, multiply by e~**. Integrate with respect to #:

o . N o .
p@ye"dr = 2 Zh(k) f (2t — ke~ dt.,
-0 k= -0
The left side is a(w). In the integral on the right, set 4 = 2r — k and ¢ = (u + k)/2:
a0 =}
P2t —k)e™ 241 = f P)e D2 gy = grieki2 g @) (6.43)
—T —0oQ

Instead of ¢ and 2¢, the transform involves @ and w/2. The dilation equation becomes

#@) = (Lhwe ") 3(3) = 1($)$(3). (644

This is the result of filtering and rescaling. Filtering multiplies g(w) by H(w). Rescaling
changes w to w/2. The scaling function (which is unique up to a constant multiple C — this
is still to be proved) comes out unchanged

Now iterate this equation. It connecls w to w{ 2 and thereforc it connects w/2 to w/4:

¢ = HE)[H(E@)®)].

After N iterations, this becomes

-

$@)=H($) H($) - H () B(3).

In the limit as N — 00, we have a formula for the solution q&(cu) Note that /2" is approaching
zero, and $(0) = S #(6)dt is the area under the graph of ¢(r). This equals one. We impose
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the normalization 3(0) = 1 in the frequency domain, just as we required unit area in the time
domain. Then the formal limit of the iteration leads to the famous infinite product for ¢:

(6.45)

We note the minimum requirement for convergence of this or any infinite product: the factors
H(w/2’) must approach 1 as j — co. Thus we need H(0) = 1. By periodicity H(2r) =
H(4m) = 1. Then the equation Slw) = H (%) ¢ (%) has a remarkable consequence. The
Ez!ues $(2m), qbgr), ¢(8m), ... are all equal. If H(m) = 0, those values equal zero because
$@2r) = H{m) ¢p(m). "

This “zero at ”* is a natural requirement on H (w) in order that ¢(w) may decay and ¢{t)
may be a reasonable function.

The infinite product converges for every @ and every H(w). We have an explicit formula
for ¢(w). Whether any function ¢ (¢) has this Fourier transform is another matter! Convergence
follows from a rough bound on H{(w) in terms of C = max | H'(®)|:

|H(w)| = |1 + H(w) = HO)| < 1+ Clo| < .
Then the product #(w) has the same upper bound:
Bt = |H(§)] [H(§)]-- 5 el = ol

This is a wild overestimate of $(«), as almost any example will show,

Box example. The coefficients are #(0) = k(1) = 1. Then H(w) = } (I +¢7®). The
product of the first NV factors contains 2¥ terms. Looked at correctly, those terms are the first 2

powers of e~//2"
H® (@) = EIF (14 e72) (1 + 714 ... (1 + e—iwz'zﬂ)
p
= o5 g iwk/2 {geometric series)
M=
1 e i®

—_ - N

= 2N(1 — g—r’wﬂ") (sum of 27 terms). (6.46)
Now let N — oo. The denominatorhas 1 —e™*® = 1—(1—i#+..-) =i+ .- with = w/2".
The limit of 278 is iw. Therefore the limit of the partial product is the infinite product

-

P = TI (% + %e—"wﬂ’) =1 - e iw. (6.47)

This sinc function is the transform of the box function. The integral of e=*** from 0 to 1 agrees
with $(w). Instead of increasing like e, as allowed by the general estimate, the transform
d(w) actually decreases to zero as w becomes large.

Compare the construction of ¢(f) with a(w). In Section 6.2, we assumed that ¢ (¢) con-
verged uniformly to ¢(#). Then we studied its properties. In this section, the convergence of
the infinite product is theap (for each separate w). What we need is sufficient decay of ¢(w) as
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[w] = oo. Our precise assumption will be continuity of the function A(w) in Theorem 6.10 be-
low. Then we can safely study @(w) in the frequency domain. Note first that for real frequencies,
the growth of qb(w) is at most polynomial:

Theorem 6.8  [p(w)] < £ for complex w and |$(w)| < c(1 + |w!™) for real w.

Brief reason: H (e} is periodic. It has a maximum value 2¥. The equation a(Za)) = H(w) 3(&))
says that ¢ grows by at most 2 when w is doubled. The bound || has this growth rate. A
constant is included to make e(1 + |w|) correct for small |w).

The example H (w) = 3+ 3¢~ is bounded by 1 for real @ and by ¢! for complex w. Then
M = 0. The transform qb(w) of the box function has those same bounds:

for real w

- w w 1
Bl =|#S)| [HE)| s{ £OI/2 ol _ ol for complex w.

Section 6.1 showed that the support interval for ¢(¢) is [0, N]. This can be proved in the
frequency domain too. Qur bounds on ¢(w) show two fundamental facts about ¢ (¢):

Theorem 6.9 Any dilation equation with R(O)+- - -+ R(N} = 1 has a unique and compactly
supported solution ¢(t). This solution may be a distribution.

Compact support comes from |{p(w)| < e, The Paley-Wiener Theorem implies that ¢(¢)
15 supported on the interval [-C, C]. With more care [D, p.176] we could find again the exact
support interval |0, N].

Uniqueness comes from our formula for the solution! The infinite product converges to
q‘r{w), which is continuous because ¢ (¢) has compact support:

50w = ([TH@/2)) $w/2y approsches 3@y = ([ #iw/2)) 3oy,
=1 1

In the IIR case, suitable hypotheses will again give uniqueness (of course not compact support).
At the other extreme, note how the lazy filter with A(0) = 1 leads to ¢(z} = delta function. The
dilation equation $(1) = 2¢ (2t} is solved by ¢ (t) = 5(1):

in frequency: H(w) =1so0 a;(w) =1
Cascade algorithm: ¢(r) = box function on [0, 27 with height 2.
Verify directly: 8(1) = 25(2:)fromff(t)§{r)dr = f(0)= ff(r)5(2f)2dr.

All these methods show that £(0) = 1 produces the best-known distribution ¢ (1) = ().

Orthogonality in the Frequency Domain

The product formula for a(a)) applies with or without Condition O. When that condition holds,
we expect orthogonality of the translates ¢z — k). To establish this orthogonality in the fre-
guency domain, we need to know that the equivalent statement is A{w@) = 1. The function Alm)
enters naturally into this discussion. It is the transform Za(k)e“"" of the vector of inner prond-
ucts of @(1) with ¢(z — &):
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Theorem 6.10  The inner products a(k) are the Fourier coefficients of the 2w -periodic func-
tion A{w):

a(k) = foo (Y —k)dt transformsto  Alw) = Z |$(w + 23m)|2.
The translates ¢ (1 — k) are orthonormal if and only if A{lw) = 1.

Proof. An inner product in the time domain equals an inner product in the frequency domain,
by Parseval’s identity. The inner product in the time domain is between ¢ (¢) and ¢{# — ). The
transforms of these functions are ¢(w) and e"""‘q&(w) Each inner product integrates one func-
tion times the complex conjugate of the othet:

oo - 1 ®
ar= [ 40FT=Ba = [ FoRwedo

0

The last integral split (—o0, 00) into an infinite number of 27 -pieces, using the periodicity of
¢! This integral defines the & Fourier coefficient of A(w). Thus A(w) = I a(k)e'*.

For an FIR filter, ¢(t} = O outside the interval [0, N]. The inner products are a(k) = 0
for |k| = N, because ¢(¢) and ¢(t — k) have no ovetlap. The function A(w) = Y a(k)e'*
is a trigonometric polynomial of degree N, which is not obvious from Y |$(w + 2nn)|2. In
Section 7.3 we will compute a(k) directly from the coefficients i(n). This is always a main
point of the theory, to return every calculation to those numbers k(n).

When the translates are orthonormal, all inner products a(k) are zero except for a(0) = 1.
The function wnh lhosc coefﬁcnents is the constant functlon A(w) =1

We now apply Condmon O in the frcquency domam to deduce lhlS orthogonahty of ¢z —k).
We are repeating in the frequency domain the result of Section 6.2 in the time domain. I believe
this is worthwhile! The arguments in the two domains look quite different. Recall the condition
on the frequency response H{(w) to preduce an orthonormal filter bank:

Condition O: IH’(m)I2 + |H(w + :-'1’)|2 = 1

This function H{«) leads to $ () which leads to A(w). Somehow, Condition O must imply that
A{w) = 1. The steps are typical of computations in the frequency domain.

Theorem 6.11  If A{w) is continuous, Alw) = 1 is equivalent to Condition O.

Proof. We use a very important two-scale identity, proved below:
AQw) = [H@)*Aw)+ |H(w+ 1) A(w + 7). (6.49)

If A(w) = 1, this imfediately gives that |H(0)[2 + |H (@ + 7)|? = 1.
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For the converse, suppose that Condition O holds. The identity says that A(2w) is a weighted
average of A(w) and A(w + ). At the point we where A(2w) reaches its maximum, Alewg)
and A(wg + ) must also reach that maximum. Now repeat the argument at /2, to show that
A(wo/2) shares this same maximum with A(wp). Continuing, the maximum of A{w) is achieved
at /4 and wo /8 and eventually (by continuity) at @ = 0.

By a similar argument, which is due to Tchamitchian, the minimum of A(w) is also attained
at w = 0. Therefore A(w) is constant. We verify below that the constant is one: Alw)=1. It
only remains to prove (6.49).

Thls valuable identity for A(2w) has a nice proof. It uses the dilation equation ¢(2w)

H (w)d)(w) At the points 2« + 27 n, this splits into separate cases for even n and odd n:

$(2w +2rn) = H(w+7an) a(w + n)
H{w) Za“(mi- 2%m) ifn =2k
H+m)dpw+ k+Dx)  ifn=2k+1.

Now square both sides. Sum from —o0 to 0o on n and therefore on k. The sum of squares is our
function A(2ew) in the desired identity;

AQe) = [H@IP Y [+ 270)|" + 1Hw+ PR Y [$0 + 7 + 278)

= |H()? Alw) + |H(w + m) | Alw + 7). (6.50)

The final step is to confirm that A(0) == 1. This comes from our other condition on the
lowpass filter, not yet used in the frequency domain. Condition A, is H(z) = 0. In the time
domain, this first sum rule guaranteed an eigenvalue A = 1 for the matrices M and m(0) and
m(1). The fixed-point equation ¢ (n) = ¢@(n) at the integers could be solved. Condition 4,
1s equally essential in the frequency domain. Here we use it to pin down the value A(0) = 1,

Theorem 6.12  If H(x) = O then $(2n’n) =0 for all n £ 0. Therefore

:_ AQ) =Y Jp@rn| = |go)| =1. (6.51)

Proof. The infinite product for 3(251') = H(n)H(n/2) - - - starts with the factor 5 (7). Imme-
diately this product is zero. For any higher value n > 1, write n = 2/m with odd m. Then the
(j + 1)* factor in the infinite product is zero when @ = 27n:

PQ2nn) = H(m)H(?) H(’;—f) e =0

because H(:mﬂf) = H(mm). By periodicity this is H(7) = 0. The only nonzero term is
[$(0))2. But $(0) = HOYH@0)YH(0) - - - whichis .

Orthogonalization of the Basis

The condition for an orthonormal basis is A(w) = 1. When this is not satisfied, there is an easy
way to make it satisfied. In other words: when the translates ¢ (t — ) are not orthonormal, there
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is an easy way to make them orthonormal. Divide X)) by the given A{w) (or rather, its square
root) to get the new orthogonalized function @ (@):

Forn(@ = $l@)
JAw)
This immediately gives orthogonality of the new basis {@gnn (f — n)]:
|tz Aw)
Agren{e) = Z A ) A

That succeeds if A{w) is never zero. This is the condition for a Riesz basis.

Theorem 6.13  The upper and lower bounds on A{w) are the Riesz constants B and A for the
basis (¢(t — k)} of Vo. Thus A(w) > A > O gives a stable basis, and dividing $(w) by o/ A(w)
gives an orthonormal basis.

When ¢ (1) comes from a dilation equation — this is our normal situation — Condition E in
Chapter 7 gives an equivalent test for a Riesz basis (in terms of eigenvalues). If this test is passed,
the wavelets w; (¢) are a Riesz basis for L*(R).

Proof. To test the linear independence of the functions ¢(r — &), form the matrix A from their
inner products. The entries are A;; = {p(r — i), {1 — j)). That number is a(j — i), and A
is a Toeplitz matrix! It is the matrix TT” in Section 2.5. In the frequency domain it becomes
multiplication by A{w). The upper and lower bounds on A(w) determine whether {¢(z — &)} is
a Riesz basis.

Orthogonalization is always a basic step in linear algebra. There it is done by the Gram-
Schmidt algorithm. We start with independent vectors and produce orthonormal vectors (or
functions). This algorithm is not successful here, because it is not time-invariant. The orthog-
onalized functions will certainly not be translates — when the Gram-Schmidt algorithm works
on functions in a definite order like ¢{¢), ¢{t — 1), ¢t +4-1), . ... To keep a shift-invariant basis,
we needed to orthogonalize all these translates at once. The division by +/A(w) did it.

In matrix language, M, orthMgrth = I. In the improved factorization by Fourier methods, all
rows of Moy come from the zeroth row by double shifts. In other words, Mgy, comes from a
filter.

One problem with dividing by JA(w). This destroys the finite response of the original filter
H. The new filter Hypp is IR, not FIR. The new scaling function ¢onn(#) that corresponds
10 d(w)/~/A@) does not have compact support. Vetterli and Herley noticed that this is not
as bad as it seems. Since ¢(1) is zero outside the interval (0, N], the inner products a(k) =
J ¢()p(t — k) dt are zero for |k| > N. The function A(w) with these Fourier coefficients is a
real non-negative trigonometric polynomial of degree N . Its square root G(w) = Y, glkye e,
by spectral factorization, is also a polynomial of degree N. The frequency response of the new
orthogonalized filter is a ratio of polynomials

H{w)
Glw)’

The input-output equation y(k} = > hogn(k)x(n — k) is an implicit difference equation, from
an autoregressive moving average filter:

Hopp{w) =

N N
y Y glytn—k) = ) kKx@n—k).
0 \]
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The new filter is IIR but it only involves 2N + 2 parameters g(k) and h(k). Therefore it can be
physically realized, and now the basis has been orthogonalized.

Problem Set 6.4

1. Use the identity sin 26 = 2sin@ cos# to show that

w w w 1 sine sin% Sin oo
(COS—)(COS—)"‘(COS—N)=—N o i-" ‘Zm .
2 4 2 2% sin % sin g sin 3%

Cancel sines and let N ~ oo to find a great infinite product:
i w 1 .
Hcos (2_3) = — sinw.

2. The Haar filter has H(w)} = $(1 + &™) = e~"/2 cos 3. Use § in Problem 1 to give a new
proof for the infinite product (6.47) of H (w/27):

(e-l'm;'xt cos %) (e—iwfs cos %) e = (e—iwﬂ% sin %) = :_IEJ (1 — ey,

3. Suppose H(w) = (1 +¢~*)2. Find $(e) and ¢ (1).

4. If H(w) has p zeros at w = m, show that a{w) has p zeros at w = 2wn for each r % 0.

6.5 Biorthogonal Wavelets

This chapter has concentrated on orthogonal wavelets, coming from an orthogonal filter bank.
The synthesis filters are transposes of the analysis filters. One multiresolution is all we need.
The synthesis wavelets are the same, in this self-orthogonal case, as the analysis wavelets, But
from biorthogonal filters we must expect biorthogonal wavelets.

We now meet a new scaling function cﬂf(r). Its translates 5 (¢ — k) will span a new lowpass
space f’wo—differem from Vy. There is also a wavelet @(¢). The translates W — k) span a
complementary highpass space Wo. The sum of those spaces will be Vi, = ¥, + Wo, the next
space in the second multiresolution. To a large extent, the theory is achieved by inserting a tilde
where appropriaté. We want to indicate why this second scale of spaces i;j is needed.

Biorthogonality comes automatically with inverse matrices. The rows of a 2 x 2 matrix and
the columns of its inverse are biorthogonal:

row 1 column column | [ 1 0

row 2 1 2 o 1|
Notice something pleasant. The product in the other order is still . The right-inverse is also the
left-inverse. This order involves columns times rows, which are full matrices:

[cohllmn][mw 1]+[°°l;m“][row 2 ]=1

Those two column-row products are projections, and they add to I. These simple facts about
2 % 2 matrices have important parallels for biorthogonal filters and biorthogonal wavelets,
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Filter banks display those parallels immediately. The analysis bank has filters ({ 2)H, and
(§ 2)H;. Those are rows 1 and 2. The synthesis bank has expanders before filters, Fo (1 2)
and Fy (1 2). Those are columns 1 and 2. In the orthogonal case Fg is H] and Fy is HT. In
the biorthogonal case we don't have transposes but we still have inverses. To understand the
pattern for wavelets, we absolutely must return to multiresolution. One scale of spaces Vy C
V) C --- C V;istoo limited. We need two hierarchies of spaces, V; in synthesis and V, n
analysis.

Tilde Notation Does the tilde go on the analysis functions or the synthesis functions? Both
conventions are equally possible. We hope to agree with other authors! More and more, the
tilde is going on the analysis functions. Then f(z) is expanded in synthesis functions, which
have no tilde. But the coefficients come from the analysis functions and have tildes:

folt) = (e —k)isin Vo, with @ = [F) U —K)dt  (6.52)
) = T X buwpisin L2, with by = [ £() %) dt (6.53)

What does this mean for the filter banks that process the coefficients? Those filters use the letter
H in analysis and F in synthesis. We will stay with H and F (rather than C and D) when dis-
cussing biorthogonal filters. An important result in this section is the Fast Wavelet Transform in
equation (6.70), and its inverse (the biorthogonal IFWT) in Theorem 6.16.

Biorthogonal Multiresolution

This chapter began with orthogonal bases {¢ (¢t — k}} for Vp and (w(r — k)} for Wy. The equation
Vo & Wy = V) started a multiresolution. W; was the orthogonal (!) complement of ¥; inside
Vit Allis well if ¢(¢) and w(t) come from an orthogonal bank of FIR filters. Their translates
are all orthogonal. They span perpendicular spaces and we have an orthogonal multiresolution.

All is not so well if ¢{r) and w(z) fail to have compact support. The filters fail to be FIR.
Often this means that we have asked for too much! Instead of orthogonal bases, we should be
content with stable bases. An outstanding example is the space of piecewise linear functions.
The stable basis consists of the hat function ¢ {f) and its translates. That basis is not orthogonal.

When the basis is not orthogonal, there is no reason to insist that Wy must be orthogonal to
V. If we do, the multiresolution is called semi-orthogonal in Section 7.4, and we have “pre-
wavelets”. But the important property is a stable basis {w(# — k)]. The highpass coefficients
will construct w(t).

Remember the pattern for perfect reconstruction. Cocfﬁcwnts are chosen so that Fy(z) Ho(z)
is haifband. When () is the hat function from Fo(z) = (L7, the other factor Ho(z) needs
five coefficients. This means N = 2 but N = 4. The wavelet has 3-interval support. Then
¢(t — k) and w(t — k) span Vp and Wy, without orthogonality,

The new analysis multiresolution is the point of this section. The coefficients from Hg(z)
go into a different dilation equation, whose solution is the analyzing function ()

i
Analysis Dilation Equation: §(t) = ) _ 2ho(k) (2t — k). (6.54)
o]

The coefficients hp(k) add to 1 as before. The new multiresolution obeys the same conditions as
before; just add a tilde. Vo is spanned by {4)(1‘ — k)}. The space V is spanned by {qb(Z-’r — k).
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They are clearly shift-invariant. The dilation equation (6.54) says that Vo C V). Then also f’} C
V;+1. The highpass coefficients produce the wavelet:

N
Analysis Wavelet Equation: (1) = Z 2h (k)&:(Zt — k). (6.55)
O

This wavelet is supported on [(, £], where 2 = N + N. That sum N + N is the degree of
the product filters Fy(z)Ho(z) and F(z)H;(z). Those are symmetric halfband filters, and in the
hat function example the degree is N + N = 2+4. Then £ = 3is odd. The four functions $(e),
w(t), $(¢), W(r) are graphed in Figure 6.6.

Analysis Scaling Function Synthesis Scaling Function
oA}
0.05
o]
0 0.5 1 1.5 2
Analysis Wavelet Function Synihesis Wavelet Function
005
1]
-0.05
=01
-0.15
0 as 1 15 2 o 1 2 3 4

Figure 6.6: Biorthogonal scaling functions and wavelets from a 5/3 PR filter bank.

Biorthogonality in Continuous Time

Our construction of ¢ (), w(t), g(r), (2) starts with biorthogonal filters. The lowpass analysis
coefficients siy(k} are not double-shift orthogonal to themselves. They are double-shift biorthog-
onal to the lowpass synthesis coefficients f3(k):

2" ho(kMolk + 2n) = 6(n). (6.56)

This means that Fy(z} Hp(z) is halfband. Similarly the highpass filters give F|(z) Hy(z) = half-
band:
23 k), (k +2n) = 8(n). (6.57)
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The other key relation is biorthogonality of highpass to lowpass:

D koG +2m)=0 and Y hi(k)fytk +2n) = 0. (6.58)
The reader knows that all these equations restate perfect reconstruction:
Fo(z) = H\(-2), Fi(2) =—Hy(—2), Folz)Ho(z) is a halfband filter.

Our question is, how does biorthogonality appear in continuous time? The functions ¢({r)
and qb(r) come from i 1teratmg the lowpass filters Fo and Hg (with rescaling!). Start the cascade of
iterations from ¢'@ (1) = $©@(¢) = box function on [0, 1]. Their wranslates have biorthogonality.
The box ¢@(t —k) has no overlap with @ (s —€) when & # . This biorthogonality is preserved
at every iteration step, when we use equation (6.56). This is exactly parallel to the earlier proof
(6.25) that orthogonality is preserved at each iteration. When ¢ (¢) and #9(¢) converge in L?
to the scaling functions ¢(r) and ¢(t) those limit functions inherit the same biorthogonality:

f dlt — )G — £)ydt = 5k — 2). (6.59)

Withi — oc¢ in the cascade algorithm, these limits ¢ (¢) and a(t) solve the synthesis and analysis
dilation equations. Now bring in the wavelet equations;

o0 o0
HOTE) dt = f (X 2motrpe i) (L 2@dr—n)ar.  (660)
—o0 -0

That right side is zero because of (6.58) and (6.59). And biorthogonality extends to the translates
for the same reason:

oo
f ¢(r —kyw(t —€)dt =0 forallkand ¢, (6.61)
Finally the wavelets w and i are biorthogonal from the wavelet equations and (6.57):

=2}
f w(t — k)bt — &) dt = 8(k — £). (6.62)
-0

Allthis is routine, provided the cascade algorithms for ¢{t) and 5(!) both converge in L2, Wave-
let theory gives the requirements in Section 7.2, as tests on eigenvalues of two matrices T and
T. Suppose those tests are passed (not at all automatic!). The basis functions are biorthogonal,
What does this say about the subspaces they span?

Theorem 6.14  Suppose the filter coefficients satisfy (6.56)6.58) and also Condition E (for
L? convergence of the cascade algorithm). Then the synthesis functions ¢ (t — k), w(t — k) are
biorthogonal to the analysis functions 5(! —£), w(t — £) as in (6.59)-(6.62). Each scaling space
is arthogonal to the dual wave!er space

SV LW, and w; LV, (6.63)

Vo and Wy are perpendicular because their bases ¢ (¢ — k) and t(r — k) are perpendicular. When
t is replaced by 2/¢, the zero inner products are still zero. (Change variables back to T = 271.)
So at each scale j we have perpendicular subspaces.
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\ -
Vi s
./

Figure 6.7: V; is perpendicular to ﬁ’j, while V,— is perpendicular to W;,

(6.64)

These are direct sums but generally not orthogonal sums. The subspaces V; and W; have zero
intersection, but they are not perpendicular. lnstead V; is perpendicular to WL‘. All tlle subspaces
W;_1, W;_a, ... are then perpendicular to W;. Similarly all the subspaces W;_,, W,_,, ... are
perpendicular to W;. Therefore we have biorthogonal bases (dual bases):

Corollary  The wavelets wj (1) = 2//2w(2/t—k) and @ 3 (t) = 29252/ 1 —k) are biorthog-
onal bases for L*:

oo
f w0 () dt = 8(j — )k — K). (6.65)

-0

Representing f(f) in a Wavelet Series

If we have a wavelet basis, we have a wavelet series. Any square-integrable (finite energy) func-
tion f(¢) cg'n be expanded in wavelets:

FO=Y3" bipwu®. (6.66)

-0 =00

The synthesis wavelets are used to synthesize the function (of course). But the coefficients 3,—;‘
come from inner products with the analysis wavelets. This is why b has a tilde. Multiply (6.66)
by the analysis wavelet if; x (f) and integrate over ¢, Biorthogonality yields

Bk = f FO B dr. (6.67)

Equations (6.66) and (6.67) are the biorthogonal wavelet transform and its inverse. The trans-
form takes function to coefficients, the inverse transform synthesizes the function. We show be-

low how the coefficients can be computed recursively (or pyramidally). This is the fast wavelet
transform.
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Note that Parseval’s equality between f | £(#)I>ds and 3° 3" |b;c|” is not true. That required
orthogonality - and not biorthogonality. When we square and integrate the series for £(¢), non-
zero inner products come from the products w ¢ (¢)w, ¢ (r). We do have an inequality

afCirora <Y bl <5 [ o a (6.:68)

With B > A > Qthis says we have a stable basis or Riesz basis. This is true for wavelets, subject
to the same Condition E [Cohen-Daubechies].

Fast Biorthogonal Wavelet Transform

The reader knows that in practice the wavelet expansion cannot go all the way back to j = —o0,
We do not use arbitrarily low frequencies {longer and longer wavelets). A more practical expan-
sion starts with ¥, and Vo, at a scale normalized to Az = 1, and goes to V; and V;. where the
finer scale is 27, Enough high-frequency details are included to reproduce an accurate signal.
Thus we work primarily with the subspaces V, = Vo + Wo + - -+ + W,_,. There are two
important bases for V;. One is ¢ (¢) = 2/2¢(27t — k) for —00 < k < 0. These scaling
functions are at level J. The other basis consists of ¢ (¢) from V, and w (@) for0 < j < J,
Since life is recursive, we are interested first of all in J = 1. Then the two ways 10 expand a
signal in V; are the scaling basis (fine scale) or scaling functions plus wavelets (coarse scale):

D29 —ky =) Gt k) + > by wit — k). (6.69)

The key is the pyramid algorithm. This connects &y, to Fo; and by We are using ¢ and w be-
cause t this is synthesis of the signal. But the coefficients come from analysis of the signal, which
uses gb and :

= [ ro5a-ndi= [ 160 Fhote -0t ar
£

For by we use the wavelet equation with k(£ — 2k) instead of the dilation equation with
ho(!; 2k) Thc pyramnd has ﬁltenng and downsamplmg

Fast Wavelet Transformam Zho(f 2k) alg and bm Zh.(£—2k) dig. - (6.70)

This 1ncIudes a time- reversal! 'Ihe same ﬁIters HD and H operate at level i
That change of basis was not orthogonal. Going backwards, the inverse will not be the trans-
pose. The synthesis filters Fg and F must do their part.

Theorem 6.15 Inverse Fast Wavelet Transform: The coefficients @\, in the basis ¢ ¢() can
be computed from & am and bm by time- reversed symhescs ﬁlters

(= Zkfo(f 2k)am + Ekf.(e —2k) bo,, - 6.71)

Proof. Perfect reconstruction operates when (6.70) is substituted into (6.71 ¥

Tie= Yol =2 T ho€ —2m)m + YF(E -2 YoMt —2ma,  (672)
k m k m
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Figure 6.8: The pyramid algorithm from &; back to .

The double-shift biorthogonality in {6.56) and {(6.57) makes this correct. The beauty of this Mal-
lat algorithm (Figure 6.8 goes up and back down) is the way it connects continuous-time mul-
tiresolution to discrete-time filters.

Notice that the whele pyramid operates equally well if £ and F| are exchanged with Hj and
H,. The dual expansion of f(t) is:

f(!):Zijk ﬁjk(t) and bﬂ; =ff(f)w}'k(t)df. 6.73)

All products have a tilde multiplying a non-tilde! This starts with the inverse relation of synthesis
to analysis. Tildes can be exchanged with non-tildes throughout (if we want te do it), We will
select ¢ and w to be effective in synthesis,

We emphasize one final point, often ignored. The coefficients in the expansion of f(¢) are
really different from samples of f(¢). They are inner products, not point values. This distinction
is made in Section 7.1,

Filter Construction by Lifting

Herley and Sweldens have proposed (independently) a systematic way to construct biorthogonal
filter banks. Only one lowpass filter changes at each step. Starting from short filters, he quickly
builds longer ones. In all cases the highpass filters remove aliasing in the standard way: H)(z) =
Fo(—2z) and Fi(z) = — Hp(—z). Then equation (4.9) on Hy and Fy is the remaining condition
for perfect reconstruction. We drop the subscript zero on these lowpass filters, and recall the
condition (4.9) that removes distortion:

F(HZ) — F(=DH(=2) =2z (odd D). (6.74)

Suppose this is satisfied by F and H; the filter bank is PR. Keeping F fixed, what are the other
possible choices for H? The answer is simple and important:

Theorem 6.16  (Lifting) For fixed F(2), the solutions H*(z) t0 (6.74) are

H*@) = HQ) + F(-2S() forany S@). ©.75)

Proof. Substitute H*(z) to show that equation (6.74) is still satisfied. The new terms are
F(2)F(—2)8(z%) — F(—2) F(2)5(z%) = 0. This is in [HerVet] and [Swel].

Note that with F fixed, the equation is linear in H. We are starting from a particular solution
(right side = 2z7). To this particular H we are adding solutions F(—z)8(z%) to the homoge-
neous equation (right side = zero). Thus the even S(z%) displays the degrees of freedom that
remain when the PR condition is satisfied (Problem 5). That freedom is used in the Daubechies
construction to achieve zeros at z = —1.
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We still want and need zeros at —1, which is @ = . We also need stable bases. ( Section
7.2 will state the stability requirement as Condition E. There is not yet a simple way to decide
which S$(z2) are permitted by this condition. In practice, we construct a potentially useful H¥(z)
and test it for Condition E.) This section will build in other important properties — linear phase,
interpolating scaling functions, binary (dyadic) filter coefficients. Those come at the expense of
higher-order zeros at .

Dual lifting is also useful. In this case we fix the analysis filter H(z). The PR condition
(6.74) becomes lmear in F (z) The hfted solullons are

’- F”('z) F(z) + H(-—z)T(zz) for any T(z) (6.76)

Starting from the Haar ﬁlter ot even from the “Lazy ﬁIter”, we altemate llftmg and dual lifting
to construct high-order biorthogonal filter banks with good properties. All these filters would be
attainable directly from the (second-degree) PR equations. Lifting is a way to solve them as a
sequence of linear equations, with F or H fixed at each step. Then we control more closely the
final result.

Sweldens also emphasizes that lifting yields a faster implementation of the wavelet transform
and its inverse, The Mallat filter tree, which is subband filtering, is climbed in smaller steps. This
is related to a lattice factorization.

Example 6.6. The Lazy filter has H(z) = 1 and F(z) = z7'. There is no true filtering, only
subsampling from (| 2). Section 4.3 displayed block diagrams of this filter bank. Its polyphase
matrix is H, = I.

Suppose we keep H(z) = 1 and apply dual lifting to the synthesis filter:

Froy=77"+T@E. 6.77)

F*(2) can be any halfband filter, with one odd power z~' = z~!. We are allowing § and T to
contain powers of z as well as z~'. This is needed in order to create symmetric filters.

Earlier we centered the product H(z) F(z), multiplying by z'. In this case centering gives
2F*(2) = 1 + 2T (z%). Then D4 comes from T(2) = (—z + 9+ 9z~1 = z2)/16. Every maxflat
halfband filter D,, can be lifted and centered from the Lazy filter. This section will create sym-
metric biorthogonal filters, by lifting H = 1 while F = Ds,,.

Note the scaling functions for this important example. In analysis we have the delta function
3(:‘) = &(¢) from H(z) = 1. This solves the dilation equation §{r) = 28(2r). In synthesis F*
vields an interpolating scaling function, with ¢(n) = 6(n). This is certainly biorthogonal to
the analysis functions!

f SO — n)dt = f P8 — n)dt = dp(n) = 8(n). (6.78)

You can see in another way that ¢(n) = &(n)}, because the values of ¢ at the integers come from
the & = 1 eigenvector of ({ 2)2F*. When the filter is halfband, the center column of the matrix
2F* is the vector &. This is an eigenvector with A = 1. Assuming a stable basis, there are no
other eigenvectors for A = 1 by Condition E. So ¢(n) agrees with &(n).

This interpolating property is highly useful in several applications. But the analysis filter
with H(z) = 1 and 5(:) = §(1) is generally not acceptable. Therefore we now lift H. That
produces a new pair (H*, F*} which seems extremely promising.

¥
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Biorthogonal Filters with Binary Coefficients

A binary coefficient or dyadic coefficient is an integer divided by a power of 2. The maxflat
halfband filters D2,(z) all have binary coefficients. This is clear from the Daubechies formula
(5.75), where the binomial coefficients are integers. Multiplication by a binary number can be
executed entirely by shifts and adds. Roundoff error is eliminated. And on some architectures,
the filter needs less time and less space.

We are therefore highly interested in binary filters. Most factorizations of Dy, —this has
been our route to orthogonal and biorthogonal filters — are not binary. There are zeros at irra-
tional points like z = 2 — /3. But we can certainly move zeros at z = —1 between analysis and
synthesis. This operation we call balancing.

Moving ('ﬂz_—') from F(z) to H(z) maintains binary coefficients and symmetry:

Bacw () = 3lhota(n) + hota(n — D] and fo,(n) = Jfe®) —fron — DI (679

Note £, at the end. We are dividing F(z) by (—'t—) The product FrewHpew equals Fouy Hopu,
so biorthogonality is preserved. The scaling function ¢Mw {t)is %u (1) convolved with the box
function. Therefore it has exactly one more derivative than qu-d(r) (Section 7.3). Similarly
@new (1) from F,.y, has one less derivative than ¢y (f) from F,y4. In a filter bank we avoid the de-
structive factors /2, by putting both of them into synthesis. Our convention below is H(1) = 1
and F(1) = 2.

Our example Al = [11and f7=[{-1 09 16 9 0 - 1]/16is binary. This 1/7 filter bank
has denominator 16. Balancing will produce 2/6 and 3/5, still binary and symmeltric;

h2=[1 1]/2 and 6=[-1 18 81 —1]/8 with1/3zerosatm

h3=(1211/4 and fS=[~1 2 6 2 —1}/4 with 2/2 zeros at 7.

These are very effective short filters, They are probably the best— after reversing the second
pair 10 5/3. In the experiments of Chapters 10 and 11 they are comparable and quite effective.
As factors of the maxflat Ds filter, we have seen them before. An interesting feature of f5is
that its scaling function ¢ (¢} is infinite at all binary points! Section 7.3 confirms that this ¢
nevertheless has finite energy (and even 0.44 derivatives in the energy sense). By removing two
zeros at z = —1 from f7, we have stolen its smoothness. Enough is left to make it good among
short filters (but moved to the analysis side).

For serious compression we need more zeros — which means longer filters. Our previous
route was to factor a long maxflat filter. When one factor is F(z) = (1£2=) the pair is still
binary and symmetric. The scaling function ¢(¢) for this factor is a spline. It has maximum
smoothness for its length (p intervals) coming from a maximum number of zeros at (p zeros).
These are outstanding filters, when we keep enough smoothness in the other factor. Taking out
three zeros from Ds would leave afilter [—1 3 3 —1]/2 which has one zero but negative smooth-
ness— too risky (o iterate. Taking three zeros from Dy is allowed. Now, instead of factoring a
leng filter, we will lift a short filter.

Lifting will not maximize the number of zeros at w (although we like those zeros). Our first
lifting will go from 1/7 to 9/7, and we choose S(z2) in (6.74) to give two zeros at . Here is the
result of lifting H = 1 (all filters are symmetric):

h9=[10 —81646...]/64 and f7=[~-109 16 ---1/16 (2/4 zeros).
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These are binary filters. Balancing the zeros by (6.79) yields 10/6 from 9/7:
B10=[11 —8862...1/128 and f6=[—-118 8 1 —1]/8 (3/3 zeros).

This 10/6 pair gives better compression as 6/10— reversing analysis and synthesis. So does 5/11
from 11/5, after another balancing (or unbalancing!) step:

AI1=[12 —7 0 70 124 ---1/256 and f5 above (4/2 zeros).

Figure 6.9 shows scaling functions a(r) and ¢(z) for analysis and synthesis. You can see how
the zeros affect the smoothness. You cannot easily see which pair is best in compression — that
depends on the image.

Analysis Scaling Function Analysis Scaling Fonction

06 | 0.3
0.25
0.4 02

0.15}
02 a1
o 0.05
aQ
-02 ~0.08

1] 2 4 6 8 o] 1 2 3 4 5
Synthesis Scaling Function Synthesis Scaling Fonction

. 0.3
0.25 0.25
0.2} 0.2
0.15 015
0.1 01

0.05 1 0.05}
o 0
—0.05 _ -0.05

0 2 4 [ 0 2 4 & 8

Figure 6.9: Scaling functions for A%/f7 and h6/f10.

Note 1 The reader might be interested in the construction of these new (1995) binary filters,
The first author found the 9/7 pair in September, but not by lifting. With £7 fixed, he solved
the halfband equation (I 2)}{f7 = k9) = & for the symmetric filter A% with two zeros at .
(The first zero determines the middle coefficient from the others; the second zero is automatic
by symmetry.) When reporting this result for the Wavelet Digest, he learned that Wim Sweldens
had created a whole family of binary symmetric filters earlier in 1995 by lifting. We prepose to
call them “binlets”, Here are the next filters k13 /7 and 134 /f11. All signs indicate that 213/f7
is the right choice:

¥
h13=[-10 18 =16 —63 144 348 .-.]/512 with f7 (4/4 zeros)
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13 =[-3 0220 - 125256 724 256 — 125022 0 ~ 31/1024  with
JIL=Dg=[3 0 —250 150 256 150 0 —25 0 3]/256 (2/6 Zeros).

Extra length gives more zeros and higher compression, up to a point. Then ringing destroys the
image quality. See Sections 10.1 and 11.2 for the artifacts that plague image compression. The
boats in Figure 7.4 offer a visval comparison.

Note 2 [Majani2] emphasizes the importance of a reversible integer implementation. Ineger
inputs are reconstructed exactly. Orthogonal transforms seem not to be reversible (except Haar
for M = 2 channels and Hadamard for certain M > 2). The 2/6 biorthogonal transform with
h2 =[1 1] is reversible and very useful. Lowpass components y,; come first:

Y2 = Xoi + xoiqq and then  yo; 4 = xpiq1 — [¥2i/2) + L(Pa—2 — ynis2)/16].

The inverse also has “even = even + f(odd)" and “odd = odd + gleven)”:

X3 = Y — X1 and then xpipg = yyr + 12 /2] — (Va2 — Yaig2)/16).

Majani has shown that the new binary 9/7 and 13/7 transforms have reversible forms (lossless
in integers). The normalized DCT is not reversible for integer data.

Note 3 The maxflat Daubechies filters with 4 p — 1 coefficients and 2 p zeros are also known as
Deslauriers-Dubuc filters [DesDub, CDM]. They interpolate because they are halfband. They
leave the values x(n) unchanged and produce midpoint values x(n +- %). Section 5.5 confirmed
that all polynomials of degree less than 2p are interpolated exactly. Recursive subdivision start-
ing from x(n) = 6(rn) converges to the scaling function ¢ () by the cascade algorithm!

Problem Set 6.5

'1. Double-shift orthogonality of lowpass filters is 2" ho(k)f,(k + 2n) = &(n). Show that in
frequency this becomes

Hy(w)Fo(w) + Hylw + ) Fp(w + 1) = 1,

Write the same equation in the z-domain.

2. Problem 1 involves a row and column of the modulation matrices Fnand H,,:

Fo(2) Fi(z) ][ Ho(z) Ho(-z)

F,..(z)H...(Z)=[ Fol—-2)  Fi(—2) H@ H(-2 |

Which row-column multiplications correspond to which equations (6.56)-(6.58)7
3. Suppose Hy(w) Fo(w) + Holw + ) Folew + ) = 1 as required. By alternating flip
Hiw =e“Flo+m) and Fi(w) = —e"Hyw + 7).

Show that the other entries of F,,(z)H . (z) = I are then correct.

4. What wavelets come from the biorthogonal filters with Hy = 1, F, = %z +1+ %z"', H =
32— 1+ 1z7!, Fi = —17 Recognize the delia and hat:

$0) =280 and P(1) = 162t + 1) + Q1) + 121 — D).
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Then construct wavelets from () = —%5{2: + 1) + 621 — %5{2: — D and w(t) =
2¢ (2 — 1). Check the biorthogonality conditions

&k) and

f B ()t — k) dt

fw(f)ﬁ(t -k di
fgb(r)ﬁ{r —k)dr

f H(Ow(r — k) dt

0.

5. Lifting from the Haar filters H(z) = 3(1+z"'}and F(z) = 1 +z7", show that all PR solutions
have the form (6.75). The difference D = H* — H must satisfy D(z)F(z) = D(-2)F(-z)
from (6.74). Substitute D{(z) = a + bz~' + cz7? +dz7* + - - - to show that it has the form
F(=2)8(z%).

6. Lifting (H, F)to (H", F) does not change the scaling function ¢(r). Show that the new wave-
letis w*(t) = w(t) — 3 s(k)dp(r — k).

7. The fast wavelet transform is subband filtering of the inner products a;;. = { (1), ::5 ik (1)). The
highpass channel produces b, = (f(#), ()} by (6.70).

i = Eha - Zk)aj.'.[‘f and bjk = Eh[(! - 2&)&_“_]‘;.

Suppose H is lified to H*. Show that the lified a}, are af, = ay + Y s( — k)by. The fast
inverse transform unlifts by —s({! — k) in the same way. Then it inverts the (H, H|) transform
asusual by @, = Y flk — 2Day + 3 f1(k — 2Db .

8. From the input x(n) = a, compute even samples ay = a1 and odd boy = ay 4 —
(aox + aoze1)- Then lift to af, = age + (box-1 + b )/4. Combine to recognize the 5/3 filter
bank, computed more efficiently and in place — no auxiliary memory,

9. Which filter k gives linear interpolation at each step of recursive subdivision? What is ¢(1)?



