Chapter 7

Wavelet Theory

This chapter follows through on important questions about scaling functions and wavelets. We
study their smoothness, their inner products, their accuracy of approximation, and the number
of vanishing moments. Even more basic are the existence and the construction of ¢(r). Does
the dilation equation have a solution ¢(¢f) with finite energy? Does the cascade algorithm con-
verge to this solution? We answer those questions in terms of the filter coefficients A(%) (and the
answers are not always yes).

Our overall aim is understanding, with a minimum of technical details, We point immedi-
ately to two fundamental operators in wavelet theory. They both have a double shift between
rows coming from (| 2):

M=(22H and T=(]2)2HHT. (7.1)

Apart from its extra factor 2, M is completely familiar: filter by H and then downsample. This
is the decimated lowpass analysis filter, with coefficients £(k) adding to 1. In the time domain,
those are on the diagonals of H.

The symmetric product HH' is also a Toeplitz matrix. Its entries are the coefficients in
| H ()[?. The rows are double-shifted by (J 2). In frequency, downsampling produces an alias-
ing term from modulation by =

MF)@) = H(®) £(2) + HE +m) (% + 1)
TNH@) = 1HEP f$) + HE +m)P £(2 +m)

The properties of M and T hold the answers to our questions. Iterating the lowpass filter, with
subsampling, involves powers of matrices. The convergence depends on the eigenvalues. That
will be the message in this chapter: Watch rhe eigenvalues.

The “transition operator” or “transfer operator” T turns out to be simpler than M — because
|H(w)]* = 0and HHT is symmetric positive definite. T enters when we compute inner products
and energies (L? norms). After { iterations of M in the cascade algorithm, starting from ¢© (1)
and reaching ¢¥)(r), the inner products are

(1.2)

aV k) = f ® oD eV + k) dr. (7.3)

The key point will be that T#*(k) gives the inner products @@ (k). The powers of T (and
therefore the eigenvalues of T) decide whether the cascade algorithi converges, when we use
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the L? energy norm. The properties of M give pointwise answers, and the properties of T give
mean square answers,

We can summarize in a few lines approximately what those answers are:

1. Combinations of ¢(¢ — k) can exactly produce the polynomials 1,¢, ..., 7! if M has

eigenvalues 1,2, ..., (})’™" ; Thaseigenvalues 1, 1,..., (4)*7".
2. The wavelets are orthogonal to 1, ..., tP~! so they have p vanishing moments. The func-

tions ¢t — k) give pth order approximation from the space V;.
3. The cascade algorithm converges to ¢{¢) in L? if the other eigenvalues of T satisfy [A| < 1.

4. ¢(t) and w(r) have 5 derivatives in L? if the other eigenvalues of T satisfy |A| < 4~%.

In 1, the special eigenvalues (powers of %) give a new form of Condition A,. It is equivalent to
p zeros at 7, from a factor (1 + 271 in H(z).

In 3, the requirement |A| < 1 on the other eigenvalues will be called Condition E. This
is new to the book. It gives convergence of the cascade algorithm to a Riesz basis {¢(t — £)).
Condition E is the key to iteration of filters, and thus to wavelets.

In 4, the smoothness s is very likely not an integer (but we work with integers for simplicity).
_ The number 5,4, of derivatives of ¢ (¢) is never greater than the number p of vanishing moments.
The smoothness of ¢(¢) is important in image processing, and p is more important,

This chapter begins with the accuracy of approximation. That has the most direct answer.
The approximation order is p when the frequency response H(w) has a pth order zero at @ =
®. Zeros at w are the heart of wavelet theory! This multiple zero is produced by the factor
(14 e~*)? that appears throughout the design of filters, T is associated with | H ()|? for which
the order of the zero becomes 2 p. This is reflected in the 2p special eigenvalues of T,

Sections 7.2-7.3 analyze the cascade algorithm ¢“¥P(r) = 3 2h(k) ¢ (2¢ — k). Section
7.4 explains splines and spline wavelets. Section 7.5 introduces multiwavelets,

We note here the MATLAS commands to construct M and 7 from the vector k:

function M = downh)

n = length(®); M = zerosin,n); for i = 1:n., for j = 1:n,

if (0 <2 *i-3) &(2*1i-3)<=n) M(i,j) =2 *~ k(2 * i - 9);
end

end, end

autocor = conv(h, fliplr(i)): T = down(autocor)

7.1 Accuracy of Approximation

In applications of wavelets, a function f(¢) is projected onto a scaling space V;. This index j
gives the time scale At = 27/ in the calculation. The scaling functions are 2//2¢:(2/¢) and its
translates by & At. Those represent one basis for the space V;. The projection f;(r) is the piece
of f(¢) in that subspace, so it is a combination of those basis functions:

Foreach j, fi(t)= Y au2/2¢(2/t - k). (7.4)

k=—-x
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This is all at level j. In contrast, wavelets come from splitting functions into several scales,
Mudltiresolution combines the details at levels zero through j — 1 and the coarse average at level

zero. For subspaces thisis V; = Vo @ Wo @ - - - @ W;_1. Except for Vq, the basis functions
are now wavelets:

[0 =3 andt—ky+Y baw k) + Y bu2Pw@ -k +-- (15
k k k

In practice, the level j is determined by balancing aecuracy with cost. In other words, we
balance distortion with rate. The cost and the bit rate are approximately doubled between one
level and the next-— there are twice as many basis functions and twice as many coefficients. This
section will estimate the improvement in accuracy (the drop in distortion).

The accuracy depends partly on the filter bank coefficients and partly on f(#). A smooth
function and a smooth signal will be easier to approximate and send. Part of our goal is to sep-
arate the two contributions o the error (the distortion), one part from the properties of h(k) and
the other from the properties of f(z). We choose k(k). The application presents us with f(¢).
A typical form of the error estimate will involve the pth derivative of f(¢):

1) = ;0N = CAan? | F2m). (7.6)

The constant C and the exponent p depend on our choice of k(k). That determines ¢(¢) and
the subspaces. The step from Az = 277 to Az = 2-U*D divides the error by about 27. Thus
the number p is critical, when we reach the level at which this “asymptotic™ error estimate is
accurate. Usually the constant C is less critical, but for wavelets it is an order of magnitude
larger than for splines.

The smoothness or roughness of f(z) may be outside our control. This contributes to the
error through the norm || f*P)(¢}|| of the pth derivative. The global error estimate (7.6) can be
made focal, if there are regions where f(P)(¢) is small and also regions of sudden change. The
error will be small in one region and large in the other — unless we increase j in the region of
sudden change. Then we have an adaptive mesh.

A major advantage of wavelets over Fourier methods is this possibility of local refinement.
This is the multigrid idea for finite differences, and it is a key virtue of finite elements. Adaptivity
holds also for wavelets — mesh refinement is relatively convenient. (The refinement is usually
by factors of 2. Irregular meshes are anathema to Fourier.) We add the word “relatively” because
adaptivity has an overhead that practitioners have come to respect.

The error estimate (7.6) is completely typical of numerical analysis, It appears in finite el-
ements, where Ar becomes the element size [SF]. It appears in difference methods for initial-
value problems (p = 1 for Euler’s method, p = 2 for centered leapfrog, p = 4 for Runge-Kuita,
etc.). The form of (7.6) is already set by the basic problem of numerical integration:

| (An':  rectangle rule
f fydr — Z aft)y~{ (An?: midpointor trapezoid rule (1.7)
0 (An*:  Simpson’snule. ..

The exponent is p, the scale length is At, and the symbol = hides a constant € and a factor
I£¢ (). All these examples, which extend to other numerical approximations too, have the
same form because they are based on the same idea.

That key idea is: Watch the polynomials. The rectangular rule is exact for f(¢) = constant.
The midpoint rule is exact for f(f) =linear. Simpson’s rule is exact for £ () = cubic polynomial.
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The exponent p is the degree of the first polynomial that gives an error. Locally, every smooth
function looks like a polynomial. This is the essential idea of the Taylor series (and of calculus!).
The lowest degree term C(A¢)? £PX(r) in the error will dominate. We determine the order of
accuracy p by computing with polynomials.

An important point is developed at the end of this section. In digital signal processing, the
input is not a function f(r). It is a discrete vector x(n). This vector can come from sampling
f(£). But if you use the sampled values as the coefficients a;; that enter the filter bank, you are
doing violence to the projection. The theory requires a preprocessing step, to transform sam-
pled values to wavelet coefficients. Then postprocessing converts coefficients back to function
values. These two steps can be approximated; they should not be ignored.

Note, The constant C is much smaller for splines than for other well-known scaling functions.
Compare these asymptotic constants for p =2,3,...,%:

Splines 6.07 003 002 002 002 002 002 0.03
Daubechies 0.22 030 056 13 38 13.0 490 2160

The leading error term is C(A1)? fP(t)/ p! with these constants [SwPi,Unser]. This error is
f(t) minus its projection onto V; as Ar = 27/ => 0. The growth in the Daubechies constants
means roughiy that approximation at scale j is only as close as splines at the coarser scale j = 1
(half the resolution and a fraction of the work). There is a price after all for the irregularity of
#(t) = D,,(1), even though it can reproduce polynomials and achieve the exponent in (Az)”.

Determination of the Accuracy p

Before developing the thecry, we compute the number p. The approximation is by translates of
(1) and w(t), which can be difficult and intricate functions, The computation of p always goes
back to the lowpass coefficients h(k). We can determine p from the k(k), or from H(w). What
we cannot do, and wish to avoid, is the exact projection in continuous time based on ¢(t).

The test for accuracy p is Condition A,. We recognize it in the time domain, the frequency
domain, and now also in the eigenvalue domain.

Theorem 7.1  The accuracy is p if the lowpass filter coefficients h(k) satisfy these three equiv-
alent forms of Condition Ap:

N
1. p sum rules on the coefficients: Z (=D"n'hn) =0for j=0,1,....p— L.
n=0

2 prerosarm: H(w) = (%)p Hwyand H(z) = (%)"Q(a).
3. peigenvalues 1, %, . (%)p_l of the matrix M = ({ 2Y2H = {2h(2i - j}}:
MY = (1Yo for j=0,1,...,p—1 (1.8)

Proof. The equivalence of 1 and 2 is straightforward. Substituting @ =  in the frequency
response yields the alternating sum of coefficients:

> h(n)e™™ = h(0) — B(1) + h(2) — - - (7.9)
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Therefore H = 0 at @ = 7 when the first sum rule holds. For the next rule, when j = |, the
derivative of h(n)e " brings down a factor —in:

D k(n)(—in)e " = —i(OR(0) — 1h(1) +2h(2) — .. 2. (7.10)

Then H' = O at w = = is equivalent to the second sum rule. A similar reasonin g applies for
higher order zeros and higher sum rules. A p-fold zero at x is equivalent to p sum rules. The
notation has assumed an FIR filter but it could be 1IR. We turn now to statement 3 about eigen-
values, and we start with examples.

Suppose H(w) is the pth power of (1 + ¢~*®). It has p zeros at . The other factor in

this H{w) is simply ¢ = 1. In that particular case alf the eigenvalues are powers of % These

examples for p = 2, 3, 4 come from double shifts of 1, 2, 1 and 1,3,3,1and 1,4, 6,4, 1:

1 ¢ 0 o

m '[1 0] my =1 ; g {l) m=1|% 4 10

L 0 13 0 0 1
l=l’% A= ’%’% l=l'%!i'%

The N by N matrix m has entries 2k(2i — j) for i, J=0,..., N—1. Weuse the letter m, because
this is a ssbmatrix of M. The eigenvalues of m are also eigenvalues of the infinite matrix M, with
the eigenvectors extended in both directions by zeros. The submatrix m is called m(0) in Section
6.3. The other N by N submatrix is m(1) = 2k(2i — J)fori, j=1,..., N. This matrix m(1)
also has the special eigenvalues (3)*.

To establish that m has these eigenvalues, we increase the number of “zeros at 7" one step
at a time. At each step, we watch the eigenvectors and eigenvalues. It will be very convenient
to work in the z-domain, where each additional zero at z = —1 {which is @ = ) comes from
another factor (-'*2#-'). The new eigenvalues of m, when H(z) has that extra factor, are half the
old eigenvalues. There is also one new eigenvalue at A = 1. Theorem 7.2 describes the new
eigenvalues, and its proof completes Theorem 7.1.

Theorem 7.2 When H(z) is multiplied by ('—"'24-_-'), Myew is One size larger;

(a) The eigenvalues dpey are %)Lold‘ There is an extra eigenvalue Jppy = 1.
(b) The eigenvectors xuy are the differences of the eigenvectors X

Xoew (k) = Xou(k) — xog(k — 1) and Xuew(z) = (1 — 27 Xqu(2). (7.11)

The new A = 1 has left eigenvectore, = [ 1 .. 1 ] The right eigenvector for A = 1
gives the values @new (n) of the scaling function at the integers.

Proof. We will write the eigenvalue equation mggx.y = AglaXolg in the z-domain. Then mul-
tiplication by (H-zd) gives the corresponding equation for ... Notice the aliasing term from
(3 2):

mx = x is HQ)X(2) + H(~2)X(—2) = LX (). (7.12)

This is for Xoig. Now give H(z) the extra (142=) and X (z) the factor (1 — z1):

1-z"!

142771
( 2

JH@(1-27)YX @)+(

YHDU+2 X (—2) = -9 X D). (7.13)
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This is the eigenvalue equation MpewXnew = AncwXnew. The eigenvalue is multiplied by % and the
eigenvectors obey (7.11). The whole proof is in (“’2“-1 )(1 — 2) = 3(1 — z72). In the examples
nty, ms, my above, the eigenvectors for A = 1 !

' 3 i, % are in the columns of these matrices:

0o o 1 0o 0 0 1
1
0 1 Lo § 3 1 -3
1 -1 2 i 0 -2 3
-1 P
? g -3 1 -l

Take differences of the eigenvectors 0,1,0,... and 1, —1,0,... in the 2 x 2 matrix. Those
differences 0,1, —1,...and 1, =2, 1, ... are in the second matrix. They are eigenvectors of m3
for A = % and %. The new eigenvector for b = 1 gives the values ¢(1) = ¢(2) = % of the
scaling function for H(z) = (%)3. Section 6.3 explained how the dilation equation at the
integers is exactly m® = @ (with A = 1). In this example ¢(¢) is a spline — linear, quadratic,
and cubic for p = 2,3, 4.

The 4 x 4 matrix m, comes from H(z) = (%)“. Its eigenvectors in the last three columns
are differences of the columns in the 3 x 3 matrix. The first column, for A = 1, holds the values

% §, ¢ of the cubic spline at the integers. Section 7.4 develops the special properties of splines.

Also of importance are the left eigenvectors. For the special eigenvalues 1, %, %, - -+ those
eigenvectors are “discrete polynomials”. This means that the left eigenvector for A = 2~ * is a

combination of the row vectors eg, €y, .. ., €
eo=[111],e=[01--- N-1],e=[0" 1*... (N - Df].

The all-ones vector satisfies eg = mep, as we have seen before. It is the left eigenvector y, of m
carresponding to A = 1:

21(0)
2m(2) 2h(1) 2h(0)
[111--1] WMB) W(2) ... |[=011---1). (7.14)

This just says that the even sum Y 22(2k) and the odd sum Y_ 2h(2k + 1) are equal to 1. That
comes from adding and subtracting the first sum rule 2(0} — £(1) + --. = 0 and the lowpass
nleaAM+AD+---=1,

When we multiply H(z) by ('ﬂz'—'), the other left eigenvectors of my,, come from the left
eigenvectors of mqq. Where the right eigenvectors take differences of x4, the left eigenvectors
take sures. Summing increases the polynomial degree by 1. In the z-domain, this sum corre-

sponds to multiplication by |+z = E—:

=i =1

Theorem 7.3  The left eigenvector for . = 1 is always ey. The other left eigenvectors in
Yoewaew = AnewVnew COMe from ¥,y by summing and adding Cey:

LS

Yoew(2) =

e Youa(z) + CEp(2). (7.15)



226 Chapter 7 Wavelet Theory

Proof. Left eigenvectors of m are right eigenvectors of m”. We transpose the operations of
{1 2) and multiplication by 2H (z). The transposes are (1 2) and multiplication by 2H (z™!).
The eigenvalue equation m7y” = Ay™ has 22 because of (1 2):

2H(z"YYoa(2?) = AYou(2). (7.16)
Now give H(z™') the extra factor ('%), and divide Y (z) by 1 — z:

1
1-

=¥ =

(l Rk ~Y (). 7.17)

H =1
5 )HEDy
This is Jur:m,',,ymW = ApewYw Which completes the proof. The eigenvalue is multiplied by 1 3 (of
course, since m’ has the same eigenvalues as m). The summation in the left eigenvectors {row
vectors) can be seen in the same three examples m;, m3, my:

|

These left eigenvector matrices are the inverses of the previous right eigenvector matrices! The
left eigenvectors are always biorthogonal to the right eigenvectors. The diagonalization by
S~'MS has the right eigenvectors in the columns of S and the left eigenvectors in the rows of
sl

A=

D
{

Bl b= —
(SO & LU
RS
= W= =

—_—E =

O BIed e

) Al - —

L LY Dl ST
o oi—

The left eigenvector for & = 1 is always e, the row of ones. The other left eigenvectors of
m3 come from minus the sum of the my eigenvectors, plus constant:

[1 1] = [0 =1 =2]+[3 3 3] = [3 } -}]
[t 0] - [0 -1 —1]J+[1 1 1] =1t 0 o]

The vector after the arrow has a minus sign and delay. This is because — — equals —z~' times
the summing operator 1 +z7' + 772 ...

Extension to Infinite Matrices

For the infinite matrix M, these left eigenvectors are nof extended by zeros. The finite eigen-
vector ¢y becomes an infinite all-ones eigenvector. The linear vectore; = [0 1 .- N — 1)
becomes infinite too: e;(n) = n for all n. All “polynomial vectors” e; extend as polynomials.
Then the combination of the e’s that gives the left eigenvector of m also gives the extended left
eigenvector of the infinite M.

The eigenvector [ 2 1 -1 ]of m; extends to a linear left eigenvector of Mj:
0000
[ 3341 ¢ 3100 S Y PURE
2737 73 3 11331 2 T 77 7%
0013
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Being linear, ithas A = 5. The othereigenvector[ 1 0 O ]of ms extends to a “quadratic”
left eigenvector (for A = %) of Ma;

[1 0 0] = [l 1 l]—%[{) 1 2]"'%[0 I 4] =€0“%81+%ez-

The ath component of the eigenvector will be 1 — 3n + 1n%. Now we explain why these left
eigenvectors are important in wavelet theory.

Theorem 7.4 The left eigenvector in y M = (%)"yk gives the combination of scaling func-
tions $(t + n) that equals 1*:

Y nmete+my=1* for k=0,1,...,p—1. (7.18)
Thus the space Vg spanned by {¢(t + n)} contains all polynomials of degree less than p.

Proof. We are to show that the inner product G(¢) = y, ®o(t) = 3 y,(n)¢(t + n) equals a
multiple of t*. Here y; is a left eigenvector of M and @, (f) = MP,(21) solves the dilation
equation. Put those two facts together:

i Poo(t) = 1, Moo (20) = (1)* 3y 9020 (7.19)

The left side is G(¢#) and the right side is (%)*G(ZI). Since those are equal, G(r) is a multiple of
t*. That is what we really wanted to prove. More details are in [HeStSt].

The all-ones eigenvector o says that )~ ®(¢ + #) = 1. This constant function assures at
least p = 1. Since the wavelet is orthogonal to 1, we have [ w(t) dt = 0— the first vanishing
moment, Hopefully there are more, and p > 1.

For M3, itis no surprise that 1 and ¢ can be produced from translates of the hat function. More
important is that 1 and ¢ can be produced from the Daubechies scaling function ¢(t) = D, (1).
This is a typical case in which H (z) has an extra factor § [1+ v+ (1 - ﬁ)z-'] for double-
shift orthogonality. The matrix m is 3 by 3 but only two eigenvalues 1 and % are special (with
their constant and linear left eigenvectors yy and y|):

1443 A=1  yp=011
Ha3-33+3 1443 | has A=  3=03-31-43 —1-3]2
1-43 3-3 A=128 5o 11 00

The sum ) ¢(¢ — #) is identically 1. The combination Y ni(n)¢(t + n) equals a multiple of
t. Thus the Daubechies space Vp contains 1 and . Those are orthogonal to the wavelets in Wy,
This orthogonality f w(t)dt = Oand f r w(r) d¢ = O says that the Daubechies wavelet has two
vanishing moments.

Corollary (7.4  When H(w) has p zeros at 1, the wavelets orthogonal to ¢(t — n) have p
vanishing moments. Those are the synthesis wavelets w(t):

f w(t)dt =0, fw:w(:)d:=0. fwzp-lm(r)dma (7.20)

o 00 —
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Reason: 1,...,¢7"! are combinations of ¢ (z —n). Orthogonality to these polynomials means
p vanishing moments for the wavelets.

Remember that Vj is orthogonal to Wo rather than Wy. Thus it is #(¢), not w(r), that has p
vanishing moments! For an orthogonal example like a Daubechies filter, f’:’g = Wy and w(r) =
w(z). In the biorthogonal case, the analysis wavelet w(¢) has p vanishing moments when the
lowpass synthesis filter has p zeros at 7.

Note. The polynomials 1, ..., t*~! are not actually in the subspace Vp. They are indeed com-
binations of the translates of ¢ (¢). But polynomials have infinite energy, [ (¢/)%dt = oo. If
Vj is defined as a subspace of L?, it cannot contain polynomials,

This point is only formal, not essential. The eigenvectors y have infinitely many nonzero
components, which multiply all translates of ¢(z). This maintains the polynomial for all time.
Figure 7.1 shows how a finite combination maintains the polynomials 1 and ¢ for finite time.
This figure uses the Daubechies scaling function ¢ = D4 which has p = 2.

1,25
1 3
0.75 2
0.5 )
0.25 | | "
A 1 2 3
1 2 3
-0.25 -1

Figure 7.1: A combination of D,(t + n) can exactly reproduce 1 and ¢ on any interval,

Approximation by Functions in V;

In continuous time, vectors and matrices are replaced by functions of ¢. The lowpass filter co-
efficients h(k) have done their part. By iteration they led to ¢(¢). Its translates can reproduce
1, ..., tP~! —and thus all polynomials of degree less than p. Its support interval is [0, N] and
we can estimate its smoothness. The theory in continuous time is now a job for “*harmonic anal-
ysis”.

Harmonic analysis is the study of function spaces and transforms. It takes its name from the
all-important Fourier example, which analyzes f(¢) into a sum of harmonics e/’ The key prob-
lem is fo connect the properties of f(1} with the properties of the transform (especially the size
of the Fourier coefficients). Because sinw? and cos wf and &' have nonlocal support, cancel-
lation is crucial. The size of the Fourier coefficients tells a lot, but not everything. Only in the
energy norm do we have a perfect match:

The energy [ |£(£)|2dt equals the energy - [ | f(w)|* dw.
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In other L? norms, and in other function spaces, the magnitude If(w)l does not completely de-
cide whether f(r) belongs to the space. We need the phase, which is more difficult. The theory
using magnitudes is important. It can never be complete,

For a local wavelet basis, this situation is radically different. The magnitudes are enough!
We can match the space of functions f(¢) to a space of wavelet coefficients &;;. For f(¢) in L?
the coefficients are in the discrete space £°:

afiroras S ss [irora. a.21)
Fk

In the language of harmonic analysis, wavelets are an unconditional basis when p > 1. The
magnitudes [bj;] give sufficient information without phases. For L2, which is always the sim-
plest and clearest, an unconditional basis is a Riesz basis:

Af|Za,,¢(t—n)|2 dr <Y e, 53f|2a,,¢(:-n)|2 dt.

Then the translation invariance of the basis ¢{¢t — n) yields the requirement (Section 6.5) on
A{w) = Y_a(k) ¢*® in the frequency domain;

o0
0<AxAw=) [P+t < B forallw, (7.22)
=00

Exact numbers A and B will come from the components a(k) of the eigenvectora = Ta. So will
a similar inequality for the wavelet basis w ;; (7) and the coefficients bj;.

Approximation by Wavelets: Errors f(t) — f;(t)

The number p of zeros at i tells how many basis functions are needed to approximate f{¢). The
smoother the function, and the higher the order p, the faster the expansion coefficients go to zero
and the fewer we need to keep.

We are touching here on the central problem of transform analysis — 1o find a convenient
basis that yields accurate approximation of the signal with few basis functions. The best basis
depends on the signal (of course). We have to choose a basis for a class of signals. For smooth
signals, the Fourier basis is usually satisfactory. Perhaps the essential message of wavelet theory
can be captured in a sentence:

For piecewise smooth functions, a wavelet basis is better,

These functions may have jumps. They may be smooth and suddenly rough. A wavelet basis,
which is local, can separate those picces. We keep more coefficients in the rough neighborhoods,
by going to a smaller scale 27/, The mesh adapts to £ (1) in a way that Fourier finds difficult,
Here is the fundamental theorem on approximation by scaling functions and/or wavelets.
The space of approximating functions is V;, so the scale is Az = 27/, This space is spanned by
the scaling functions ¢(2/r —k), and it is also spanned by the wavelets w jx(2) at all scales below
J. We may chogse either basis, since multiresolution says that V; = Vo @ Wo@---& W;_,. The
basis is not important at this point, because we are looking for the best function in the space.
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Theorem 7.5  When H(w) has p zeros at &, any f(t) with p derivatives is approximated to
order (At)F = 274P by its projection f;(¢) in Vj:

IF(6) = £ < CANPIFP @]
IF@ — > 2792t — )l < C2PIFP @) (7.23)
k

This follows the expected pattern. For approximation by box functions or Haar wavelets, the
error is of order At because p = 1. Try this piecewise constant approximation on the linear

Sunction f(1) = t. The closest constant on the interval [0, Af] is the halfway choice a; = %.

The error f(t) — fo(t) on this interval is ¢ — — . The maximum error is & at ¢+ = 0. The L?
error is
A2 oqlz At
t—— == (-= dr] - 24
-5 [Arf (-3) W (7.24)

The first derivative £(}(¢) on the right side of (7.23) is just 1. The constant is C = 1 in the
maximum norm. Itis C = 1/2+/3 if we use the L2 norm. The important part is the power of
At. But if a different ¢(¢) gives a much larger constant C, that is important too.

The main point is that the basis {¢ (¢ — k)} can locally produce 1, ..., 1?71, In each interval
we can “essentially” match the start of the Taylor series. The error is the first Taylor series term
we cannot match. This produces (A)? f {P)(¢) in the error bound, A detailed proof would lead
far into approximation theory. The theorem was known earlier in the particular case of splines.
Then it was extended to include finite elements [SF). Those are local basis functions — normally
piecewise polynomials. When the approximation theorem was first proved, nobody was think-
ing of wavelets! Who would use irregular functions to approximate smooth functions? It defies
common sense, but wavelets come from iterations of simple filters. The computations are quick
(if done recursively). The theorem applies because those irregular functions ¢z —k) can exactly
reproduce polynomials.

The requiremem on H{w) is p zeros at ;7. It is interesting to note the corresponding require-
ments on ¢(w) These are the so-called Strang-le conditions:

q&(w) must have Zeros of order p at all frequencnes @ = 2nn n .-,£ 0 :; {1.25)

The connection to zeros of H (w) is through the infinite product ¢(w) n°° H(w/2)). At fre-
quency w = 27, we write n = 2/q with ¢ odd. Then the (j -+ 1)st factor in the infinite product
is HR2rn /27 = Hgm). By periodicity thisis H (7). A pth order zero of H atw = & yields
a pth order zero of ¢ at @ = 25tn. Thus the Strang-Fix condition on ¢(¢) becomes Condition
Ap on H{w).

The goal is always to find conditions on H (w) that make qb(m) do what we want. For good
approximation, we require zeros at 7. This same condition improves the smoothness of ¢ (1)
and stabilizes the lowpass filter under iteration. It is an open question how many zeros to ask
for. Enough to stabilize the iterations, but not so many that we overconstrain the lowpass fil-
ter. Designers are often satisfied with two derivatives for ¢(¢), which occurs for p 2 4. Other
designers accept a smaller p.
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Decay of the Wavelet Coefficients

The order p enters in another way, to improve compression. It allows the wavelet coefficients
to do what Fourier coefficients do automatically: they decrease rapidly for a smooth function.
For Fourier, f(#) has to be smooth everywhere. One small jump, and the coefficients decrease
no faster than %. For wavelets, the slow decrease will only apply around the jump. In smooth
regions the coefficients drop off quickly. Multiresolution offers a wavelet basis in which the
coefficients are directly linked to local properties of f(t).

Theorem 7.6  If f(t) has p derivatives, its waveler coefficients decay like 2777;
1bjul = | f fOwp@ | < c27r| O (7.26)

Proof. 'We plan to integrate by parts in f f(#)w (¢} dt. That gives the derivative of f and the
integral of w. (For biorthogonal wavelets replace w by 1.) The first vanishing moment means
that the integral of w(¢) from —co to oo is zero. The indefinite integral has compact support:

t
ll(r)=f w(u)du is nonzero only on [0, N].

§1(t) is bounded, with finite energy. It will be ahat function, when w(r) is Haar’s up-down square
wave. Integrate by parts in (7.26) to produce f’ times a rescaled /;:

by =2 f ® F@OY*hQN - Byd = 027, (71.27)

The factor 2~/ comes because we are integrating w jx (f) instead of w(t):

! ! -k
f w(1)dt = f 2w —kdt =277 f w(w) du.
- -0 —oo

Now repeat this step p times, Each integration by parts brings an extra derivative of f(1)
and an extra integral of w(+) — with its factor 27/, If successive integrals of w(r) are 1, (f)
and 72(r) and finally 7,(r), we end with

o0
ol =277 [ P01, ~ kodi| < c27 | F P,
-
Even when £ () has more derivatives, we cannot continue beyond p. The integral of /,(¢) from
—00 to 0o is not zero! If it were, p integrations by parts would bring us back to f P w(f)dr =
0—but this pth moment of w(r) does not vanish. /,,1(¢) is a nonzero constant when  is large.
Its energy is infinite and (7.26) breaks down for p+ 1. Look again at Haar wavelets with p = 1,
They have a square wave up and a square wave down, at scale 27/, The differences f(1)— f(z —
2/} are of order 27/. Integration gives a direct estimate |b;;| = O(2~) in this particular case.
The general method integrates by parts to get the derivative f'(z) times the hat function f, times
the key factor 27/,

b
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Sample Values vs. Expansion Coefficients

Start with a function x(¢). Its samples x(n) are often the inputs to the filter bank. Is this legal?
No. Itis a wavelet crime. Some can’t imagine doing it, others can’t imagine not doing it. Is this
crime convenient? Yes. We may not know the whole function x(¢), it may not be a combination
of ¢(# — k), and computing the true coefficients in 3~ a()@ (1 — k) may take too long. But the
crime cannot go unnoticed — we have to discuss it.

When the samples x(n) are direct inputs to the filter bank (at unit scale j = 0), youeffectively
assume a particular continuous-time function. The pyramid algorithm (filter and downsample)
acts on the numbers x(n) as if they were expansion coefficients of its underlying function x,(7):

Samples as coefficients: x;(t) =Y x(m)$(t — n). (7.28)

Does x, (1) have the comrect sample values x(n)? This seems a minimum requirement. It holds
when ¢(k) = §(k). Then the only term in (7.28) at ¢ = n is the correct x(n). A centered hat
function has this property but most ¢ (¢} do not. One possible solution is to adjust the coefficients
in )} a(k)¢(t — k) to produce the known samples x(n):

Determine ain (k) from x(n} = ainu(k)$(k — n). (1.29)

This linear system has a constant-diagonal Toeplitz matrix. The n, k entry is ¢ (k — n). We are
inverting an FIR filter that has the response 3 ¢(k)e**“. Then the underlying function that
interpolates the samples x(1) is X, (1) = Y @i (k)P (2 — k).

We believe that generally the samples x(n) should be pre-filtered, before they enter the filter
bank. Solving (7.29) puts the samples through an [IR filter. A different approach yields an FIR
filter, by approximating the “correct” coefficients a (k). Those are inner products of x(¢) with
the analyzing function é(t — k). The pre-filter replaces this integral by a sum:

Replace a(k) = f x@O@ —kydr by ag(k) =Y x(mdn — k). (7.30)

In the Daubechies examples, & = ¢ from orthogonality and the tilde disappears.

The pre-filter that gives a,(k) is normally FIR. Except for sinc wavelets and the duals to
splines, our basis functions have compact support. The ideal function underlying this pre-filter
is xg(¢) = 3 a,(k)p (¢ — k), a sensible choice.

Important: In continuous time, the synthesis x (¢} = 3" a(k)¢(r — k) is consistent with the
analysis a(k) = f x(r)$(r — k) dt. In discrete time those are not consistent. When ¢ changes
to n and the integral changes to a sum, inverse operators do not become inverse matrices (un-
fortunately). But the discrete approximations are exactly correct for polynomials up to order p
orp:

X o
D n'p(n) = f Fo(t)dt for r < p. (7.31)
-0 —0

The right side is the rth derivative of $(w) = [ ¢(ne~*'dt at w = 0, times i”. For the left side

we use Poisson’s summation formula (Chapter 2). This gives the same rth derivative at @ = 0
and at points @ = 2rk:

i nd(ny=> i'$" k).
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But all terms on the right are zero except for k = 0, by the Strang-Fix condition (7.25) on the
function ¢ (¢). Thus the equality (7.31) holds for any ¢ (z) whose translates can reproduce poly-
nomials to degree p. Similarly a,(k) = a(k}, sum equals integral, when x(¢) is a low-degree
polynomial.

Summary. We recommend that the samples x{n) be converted to coefficients a, (k) by (7.30).
Those enter the filter bank, not x(n). The output @(k) can be post-filtered to recover sample
values.

Other pre-filters are also reasonable. [Flandrin] proposed that the underlying x(¢) should be
band-limited. The sampling theorem gives x () as a sum of sinc(t — n)x(n). Projecting this
band-limited x (r) onto Vg gives }_ aw (k)¢ (t — k), and those coefficients ay; can enter the filter
bank.

The samples x(n) could be regarded as averages instead of point valves. Then x(r) is as-
sumed piecewise constant, a combination of box functions B(t — n). Projecting x(¢) onto Vg
gives Y dgpe (k) (¢ — k). The filters can operate on d,.(k).

There is no unique answer to our question of how to process the sample values, We may
choose ayy (k) or a, (k) or api (k) or ag,.(k). We should not send samples automatically through
the filter bank.

Problem Set 7.1

1. Find the accuracy p from the sum rules for these filter coefficients:

@hk=(3 3 i)
{b)h_—'a(l 4 6, 4, 1)
©h=4(1-43 3-43, 3+3 1++3 )=Daubechiesin reverse.
) h= D¢
@r=(35 % 3)
2. Factor the frequency response for filters (a) to (¢) into H (w) = (‘"-m ¥ R(w).
3. Find the eigenvalues of the N by N mairix m for each of the flters (a) to (¢). The number of
taps is ¥ 4 1, cases (b} and (d) are less convenient by hand.

4. Which 5 by 5 matrix m; comes from H(z) = ( —ii_—'}5‘? Find the right eigenvectors for A =
;, _:. i ] ¢ from differences of the eigenvectors of m, in the text, Find directly the eigenvec-

tor ford = 1.

5, Verify that the left eigenvectors given in the text for m, are sums of the left eigenvectors for
m, plus a consiant [¢ ¢ ¢ ¢]. Find the five left eigenvectors of ms.

6. M = () 2)2H transforms f(w) into Mf(w) = H (2 J?(“") +H(2+na) f(% + 7). The
first sum rule is H(x) =0. If f (0) = 0, show lhal M F(0) = 0, and explain what this means
in the time domain.

7. The ﬁrst two sum ru rules are H (J'r) = 0and H'(m) = 0. Suppose that f {0y = f (0) = 0. Show
that M [ Foy = (M Y@y =

8. Ifw() has p vanishing moments, show that its Fourjer transform has a pth order zeroatw = 0.
Then factoring (iew)? from @ gives the transform 7, of the p-fold integral of w(s).

9. Find the, Fourier transform of the Haar wavelet and factor out {w to obtain the transform of
I (¢). Show that [;(r) is a hat function.
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10. The left eigenvector [ 1 0 ] for m, extends to [« 2 1 0 -1 .. ] for
the infinite matrix M,. Write out yM, = % ¥ and circle the 2 by 2 subvector and submatrix in
the middle, Verify that - - - +200-D+¢()+0- ¢{ —1)— - equals ¢, when @) is the
hat function from this filter,

11. How would you COMpUte . (k) so that 3 a,,. (k)¢ (r ~ k) is the projection onto Vo of the
piecewise constant x(¢) with average x{k) over the kth subinterval?

7.2 The Cascade Algorithm for the Dilation Equation

In the theory of wavelets, the two-scale dilation equation ¢(t) = 3 2h(k)p (2t — k) is central.
Its solution is the scaling function, which leads to wavelets. The equation arises in the limit of
the cascade algorithm

¢4y =3 2k (2r — k). (7.32)

This is an iteration (with rescaling) of the lowpass filter, We find a simple proof of the necessary
and sufficient condition on the % (k) for $©)(t) to converge in L2, The cascade normally begins
from $@(r) = box function. Problem 4 finds all other $© (1) that yield convergence to o).
Thas there are two conditions for convergence, one on the filter (this is the important one} and
a condition on ¢© (),

Our method is to compute the inner products a YK)=f ¢O)pO e + k)dt at each step of
the algorithm. The vectors a/+" and a® are connected by a transition matrix T formed from the
h(k). The cascade algorithm for ¢ (f) becomes the power method 2+ = Ta® for the equation
@ = Ta. “Condition E” for convergence is that all eigenvalues of T satisfy |A| < 1 except for a
simple eigenvalue at ) = |,

Recall that A = 1 is an eigenvalue of M = ({ 2)2H by the firse sum rule:

3 2k = > 2y =1.
odd

even k
These even k and odd & appear in separate columns of M. Each column adds to 1. Therefore
A = | is an eigenvalue, and the left eigenvectorise = [1 1 ... ). Thisis necessary for
convergence, pointwise or L?, but far from sufficient. It means that & (@) = 3 hik)e @ has 2
zero at @ = ;1. Other things being equal, every zero at m gives a boost to convergence. This is
a double zero in the nonnegative function P(w) = |H(w)?. The key to L2 convergence is the
matrix T associated with | H (w)[? in the same way that M is associated with & (w):

T=({2)2HH.

When H and H” are infinite Toeplitz matrices, M and T are also infinite. They are block Toeplitz
matrices, with 1 by 2 blocks because of the operator (|2). T is illustrated in equation (7.38)
below. The important action is in the finite matrix at the center. The central submatrix of T has
order 2N — 1.

Tin =2p(2j — k) if |H@)]? = Y ope o, N <k <N,

The columns of T are still even or odd, containing coefficients P(2n) or else p(2n + 1). Those
columns add to 1, since | H{(@)|? has a zero at . The all-ones vector ¢ is still a left eigenvector
for A = 1:

eT=eMH =e¢H" =e. (7.33)
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The crucial question is the significance of the right eigenvector in Ta = a. It gives the inner
products (¢ (1), 9t + k)). Convergence of the cascade algorithm in L? becomes convergence
of the power method a®+1 = Ta®.

We include this convergence proof in the text because the argument is straightforward. Con-
dition E on T also determines [Cohen-Daubechies] whether the translates ¢ (¢ + k) form a Riesz
basis. [Eirola] and [Villemoes] use the same matrix T in a different way, to find the smoothness
of ¢ (1) (next section).

We work with one-dimensional filters, but the analysis is the same in higher dimensions
{Lawton-Lee-Shen]. In a sense our approach completes the convergence analysis of (CDM],
by working with | H (w)|? — the autocorrelation of the filter (or mask). The key is to identify T
and watch its eigenvalues.

Examples of Divergence and Weak Convergence

Example 7.1. The coefficients k(k) = 1, 3, —3 have even sum = odd sum = 1. The dilation
equation is
o) =202y + ¢ (2t — 1) — ¢ (2t — 2). (7.34)

This looks innocent, but in a few steps the cascade algorithm is a disaster, The value at¢ = Ois
doubled at every iteration. Each step gives ¢U+1(0) = 2¢(0).

This blowup at a point does not by itself rule out finite energy. The function f(¢) = £~/
also blows up at t = 0, but on the interval [0, 1] its energy is f1~2%d¢t = 3. Therefore this
example is continued below, to prove that the energy in ¢ (z) does become infinite as i — oc.
When the first coefficient in (7.34) is between (1 — +/3) and 1(1 + +/3), which allows the
possibility of blowup at ¢ = 0, the cascade algorithm converges in L2

Example7.2. The coefficients (k) = 1,0, 0, } have even sum = odd sum = £ and also double-
shift orthogonality. All the shifted vectors 0,0, 3,0,0,3,0,...and 0,0,0,0,1,0,0, {, ... are
orthogonal. The expected solution of the dilation equation is a stretched box:

0<t <3
else.

1
&) = ¢(20) + ¢(2t - 3) leadsto ¢(t) = { g

The box area is still one. Two half-boxes still fit into a whole box. But when the cascade algo-
rithm starts with the unit box, it converges only weakly to ¢(2),

‘_‘ #0() P21 ¢
} ' l—‘ - : ! -
1 2 3

1 2 3 1 2 3

Figure 7.2: Three cascade steps @Y+ V(1) = 9@ (20) + 9P (21 — 3).
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The area between O and 3 is one-third filled, more and more densely. At no point in Figure
7.2 do the functions ¢¢(¢) actually equal 1; they always equal O or 1. But the area above every
interval Ar approaches %Ar. This is weak convergence to ¢{1) = %‘ stated for any smooth
function f(1):

3 3
lim f PO f()de = f ifwadr. (7.35)
= Jo 0

The adjective “weak” means that integrals converge, even if functions themselves do not. Fast
oscillations in ¢ (z) are averaged out by the integration.

Note that this shifted box @(2) is not orthogonal to its translates. Furthermore, its energy
[ @)y dr is 5 instead of 1. Those facts seem surprising, because at every step ¢ (1) has unit
energy and is orthogonal to all other ¢**(¢ -+ k). This illustrates the weakness of convergence —
inner products of ¢¢(r) with fixed f(t) converge but inner products with ¢® (¢ + k) do not
converge to [ ¢(1)¢(s + k) dr.

Our inner product and energy formulas will involve T. This matrix always has A = 1 as an
eigenvalue, because of the zero at 7. Explosive failure as in Example 1 is associated with an
eigenvalue that has |A| > 1. Weak convergence as in Example 2 is associated with a repeated
A = 1 and/or other eigenvalues with [A] = 1 (with a full set of eigenvectors). Total success
occurs when all other eigenvalues of T have |A| < 1; this will be Condition E. The smaller those
other eigenvalues, the smoother the function ¢(r).

The Inner Product Formula

The energy in a real function ¢ (¢) (its L? norm) is its inner product with itself. We also want its
inner product with its translates ¢ (¢ + k). This inner product is a(k):

fe <]
ak) = PP +k)ydt, —o0 <k < o0, (71.36)
-0
Note that a(k) = a(—k). The number a(0) is the energy {|¢{{2. When @(1) is zero outside the
interval 0 < ¢ < N, the inner products a(k) are all zero for [k} = N. The translated ¢ (¢t + N)
does not overlap ¢{(r). Only the 2¥ — 1 central components of a can be nonzero.

The cascade algorithm starts each step with $’(¢). Suppose we know the inner products
a (k) between that function and its translates. Iteration produces a new function ¢, and
we want the new inner products @+ (k). The new function is a combination 3~ 2h(k)¢® (21 —
k), with t rescaled to 2t. The new inner products depend on the old ones, and on the numbers
h(k). We now find the formula that the inner products obey.

Lemma. To find the vector a“*! of inner products, multiply a® by the Toeplitz matrix 2HHT
(which gives 4N — 1 components} and downsample:

Ta® =a"*" = (| 2)2HH a®, (7.37)
Example 7.1 (continued) With 2h(k) = 2, 1, —1, the numbers along the diagonals of the sym-

metric matrix 2HH" are $(2, 1, —1) x (-1, 1,2) = 1(=2, 1,6, 1, =2). This comes from con-
volution and also from matrix multiplication: 2HH7 is



7.2 The Cascade Algorithm for the Dilation Equation 237

(l 2) removes the odd-numbered rows to leave double shifts in T;

-
.6 -2
T=j -2 1 6 1 =2 . (738)
21 6
-2

All columns of T add to 11 At the first cascade step, the box function ¢ (¢) has inner products
a® = (...,0,1,0,...). The Lemma says that the inner products of ¢{!}(¢) with its translates
are

- LT LT
0
-2 -1
a=Ta®=1| 6 |=
-2 -1
L 0

Since N = 2 for this filter H, all inner products are zero for }k| = 2. We only need the center
submatrix of order 2N — 1 = 3, and we iterate again:

1 =2 0 -1 -7
a®=11 6 1 3 |=1| 16 |. (7.39)
-2 1 -1 -7

Clearly the numbers are growing. The cascade algorithm is diverging. T has an eigenvalue larger
than 1. Itis 3, and this filter is a disaster in iteration.

Example 7.2 (continued) With coefficients 2h(k) = 1,0, 0, 1, the matrix 2HHT has rows con-
taining %(1, 0,0,2,0,0, 1). Downsampling removes every other row to leave double shifts in
T.Since N=3and 2N — 1 =5, we look only at T's:

0 1
2 0 0 1
Ts=3| 0 0 2 0 ©
1 0 0 2
1 0

Again all columns add to 1. Starting again with the box function ¢@(¢), its inner products are
a® = (0,0, 1,0, 0). Multiplying by Ts produces this same vector &V = a®. Therefore ¢ (¢)
is also orthogonal to its translates.

That conclusion is no surprise. The k() have double-shift orthogonality. The center column
of T agrees with the identity matrix. At every stepa® = .

Still there is weak trouble. The reason is that T's has a repeated eigenvalue at A = 1. Its
other cigenvalues are —1, —%, % A second eigenvector for A = 1 is %(I, 2,3,2, 1), Those are
the actual inner products of the stretched ¢y, on the interval 0 < ¢ < 3. The inner products

a®) = § do not approach the inner products of ¢, . The cascade algorithm does not converge
in L? to this stretched box.
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Example 7.3. (Convergence to the hat function) With coefficients (k) = -;- 1, -;— the matrix
2HHT has entries 1(1,4, 6,4, 1). Downsampling leaves Toy_; = Ts:

. (7.40)

e
I
I
F=—SF N
bt (O s
LR S ]

has ;L=l,%.

P -

This example is successful but not orthogonal. Each multiplication of © — 0.1,0) by T4
gives the inner products at the next cascade step:

1 10 1
a=116 aP =1L a4 e @ =11 g (7.41)
1 10 1

We jumped to the limit a*? because it is the eigenvector of T; for A = 1,

l | ]M” 'JJJ_'{:@ V\:ﬂf)
i ' ' > ' ' - + ' >
1 2 3 1 2 3 1 2 3

Figure 7.3: Three cascade steps ¢+ (#) = 189020 + 692 - 1) + 16921 - 2),

The limit vector ™ = ¢ contains the inner products of the hat function with its translates.
The ¢ (z) in Figure 7.3 are converging to ¢*(¢) = hat function, and the inner products a® (k)
are converging to a*(k) = 1, g, 3. We are seeing the power method in operation, for the
functions and also for the vectors. The hat function is the steady-state fixed point of the operator

in the cascade. The vector a is the steady-state eigenvector of T with A = 1.

Proof of the Lemma  To show that the inner products are a®+ = Ta® it is very conve-
nient to compute all @+ (k) at once. Thus we work with vectors:

¢O@ - 1) o —1)
POy =| ¢V and &() =| o) ) (7.42)

¢+ 1) ¢ +1)

The next vector in the cascade is ®+(r) = (4 2)2H®(21). The rescaling to 2¢ is accounted
for by (J 2). This is the way to a vector-based calculation:

g = fm ¢(a‘+l)(r) ¢,{:‘+I)(r) dr

=)

i (7.43)
= f (2 Zh(k)q;(n(z; — D] 1L 2)2HOD (20)) dt.
-0
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Bring the operator ({ 2)2H outside the integral. Change variables in the kth term to u = 27 — k.
That kth term of the integral becomes {with du = 2dt)

f ® R ) DD (u + b)du = h(k)S*a®, (7.44)
-0

The k-step shift S~ allowed us to write @ (i + k) as S™*® (). Then the integration with
respect to u produced a'?. Now sum equation (7.44) on k to reach the matrix §_ h(k)$™*, which
is HT as the Lemma requires:

a®*h = (| 2)2HH ¢’ = Ta®. (7.45)

Corollary  The inner producis a(k) of the scaling function ¢{t) with ¢ (¢t -+k) are in the eigen-
vector of T corresponding toh = 1;

a=7Ta. (7.46)

This assumes that the scaling function exists in L2, which we will prove. To reacha = Ta,
repeat the calculation above without the superscripts.

The power method ¥ = T'a® converges when T has a non-repeated eigenvalue A = 1
and all other eigenvalues have |x| < 1. This “Condition E” gives a’ — a. (Note! All vec-
tors are normalized by Y a(k) = 1.) Convergence for the functions ¢ (¢) is still to prove, but
convergence for their inner products a* is easier — just linear algebra.

Theorem 7.7  The infinite matrix T = (1 2)2HHT and its submatrix Tay_, always have \ =
1 as an eigenvalue. The power iteration a®* = Ta') converges to the eigenvector a = Ta if
and only if Tyy -1 satisfies

Condition E; Ton_; has all |A| < | except for a simple eigenvaiue ). = 1.

Proof. Suppose the starting a'® is expanded as a combinationa +c,v; +¢3v3+- - - of eigenvec-
tors of Tay—y. Every time we multiply by that matrix, each v; is multiplied by the comespond-
ing &;. Since JA;| < 1 by Condition E, those components get smaller. In the limit as { — oo,
the powers T'a® converge to the eigenvector a — whose coefficient stays at 1 (because it has
A=1).

This proof only works if T»y_; has a full set of eigenvectors, to expand a'®@. To cover all
cases we use the Jordan form of Tox_y. Ithas A = 1 alone ina 1 x 1 block. All other blocks
have |A| < 1 and their powers approach zero.

Convergence of the Cascade Algorithm in L2

The convergence proof will be easy if we know that the dilation equation @ (1) = 3 2A(k)¢ (2 —
k) has a finite energy solution. We now prove that ¢'”(t) converges to this scaling function ¢ ().
Properly speaking, we must also show the existence of ¢ (¢} itself. This existence step is logically
fitst but it will come later for simplicity.

Theorem 7.8  Assume that ¢(t) is in L2, The cascade sequence ¢“¥(1) converges to ¢(1) if
and only if T satisfies Condition E. Then

116% — @l = NPP(1* =2 < $D, ¢ > + [1¢]1* = a*¥(0) — 269(0) + a(0) (147)
convergesto a(0) — 2a(0) + a(0) = 0,
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Proof. The numbers a)(0) and a(0) are the energies ||¢(£)]|? and [l (£)))2:
f ¢V + 0)dt =a®(0) and f S OP( + 0)dt = a(0).

We know already that a'*) converges to @. This was the preceding theorem. Equation (7.47) also
contains the inner product of $)(2) with ¢(z). This is the zeroth component 5(0) of a new
vector of inner products (k) = [ ¢O ()¢ (¢ + k) dt.

Our main calculation found each vector a“+" from the previous a®. The rule was to multi-
ply by T. Condition E gave convergence toa. In the same way, we now show that 37+ — Tp®.
Then the vectors b converge (this is the power method again) to the same eigenvectora. There-
fore —2b)(0) in (7.47) converges to —2a(0), which completes the proof that [|¢¥) — ¢|[2 con-
verges to zero.

For the new calculation 5™+ = T$ it is again convenient to work with vectors:

. o ¢t —1) L
b(,.H) = q&(H'I)(I) @) dt = f ¢,(1+I)(t)¢;(t) dt.
-0 ¢t +1) -

Substitute the cascade formula for ¢+ (r) and the dilation equation for ®(z):
&0
BitD = f [2D " Btk)e Qs - )] (L2228 20)) de. (7.48)
e 5

This matches equation (7.43) when & is replaced by ©. Change variables in the kth term to
# = 2t — k, and that term matches (7.44) — with & replaced by b. Then sum on & to match
equation (7.45). These same steps give the new answer, with a changed to b:

Y = ( 22HHT Y = Tp®, (7.49)

The normalization 3~ 6 (k) = 1 is still true, because [ ¢©(t) ¥ ¢ (¢ + k) dr = fo¥dt =1.
So the power method starting from 5 converges to the same vector & (not b1). By equation
(7.47) the sequence (1) converges to ¢ (¢).

The converse is also straightforward [Strang3). Convergence of the functions #® to ¢ im-
plies convergence of their inner products ¢ to a. Thus the power method always goes to the
same limiting vector ¢. Condition E must hold.

Existence of the Scaling Function

This is not a book about proofs. But the dilation equation is so fundamental that we must be sure
it has a solution. Formally the infinite product [T H(w/2/) yields the Fourier transform E(w)‘
The real question is when this product converges strongly to a finite energy solution, and the
answer to that question is Condition E,

We base existence of ¢(¢) on our calculation of inner products, which is the key to this sec-
tion. The space L? is complete, so when we prove that the energies ¢ — gt ]|2 approach
zero, there 1s guaranteed to exist a limit function ¢ (z) in 1.2,
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Theorem 7.9  If Condition E holds then |¢™ — ¢ ||2 approaches zero as m,n — 00,
Therefore the sequence $O(t), 90)(1), ... converges to a limit $(1) in L2,

Proof. The energy [0 — ¢ | is [¢) — 26, ¢®) + ¢ |>. The first and third
terms are @™ (0) and ¢ (0), both approaching the limit2(0). We must show that the inner prod-
uct {¢, o) also approaches a(0).

Suppose m = i + n with fixed i > 0. The same inner product calcuiation, following the
pattern (7.43)—~(7.44)~(7.45) and multiplying by T at each step, yields

(¢(m)’ ¢(n)} = Tﬂ{¢(l‘}‘ ¢(0]) — Tﬂc(f}(O)‘ (7.50)

The vector ¢ contains the inner products ¢ (k) = [ ¢ ()¢ @ (¢ + k) dr. For each fixed i,
the power method T"c") approaches a. The limit of (7.50) is a(0) as desired. But the difficulty
(sincei = m —n is arbitrary) is that this convergence must hold uniformly for all starting vectors
¢, We know two facts about the components ¢! (k). They are uniformly bounded and they add
to 1:

@@ < 6P 1¢®) < |« = C .51
> Pk = f T 490 T + by dt = f ¢ dr=1. (7.52)
% -0 B

Condition E and the Jordan form J of T give uniform convergence ¢ — a:

peesrsre= o - [V p][L ][] o

The left eigenvectore = [1 1 ... 1]isinrow 1, and & in column 1 is the right eigenvec-
tor. These eigenvector matrices S and S~ are fixed, and the block B has eigenvalues |A| < 1.
Therefore B” — 0 and we have uniform convergence to aec = a 3_ ¢(k) = a. Equation (7.50)
approaches a(0) as m and n get large, completing the proof that [|¢* — ¢ |2 - 0.

Remark 1 The convergence of the cascade algorithm can be interpreted in the frequency do-
main, which is illuminating. The convergence of $*2(¢) to ¢(r) becomes convergence of the
infinite product to ¢{w):

PO (w) = []'[ H(wjzf)]é“(“)(w;z‘) convergesin L2 to $(w) = [ | H(w/2).

Remark 2 For filters with double-shift orthogonality, there is no danger that T has an eigen-
valve with |A] > 1. The norm of T is sup(|H{w)[* + |H{w + 7)|?) and this is 1. Condition E
reduces to the Cohen-Lawton condition that A = 1 is a simple eigenvalue of T. Then {¢{t + &)}
is an orthonormal basis anda = 6.

Condition E holds in this orthogonal case if H(w) $# 0 for |w| < 3 [Mallatl, JiaWang].

Remark3 The same method (7.43)-(7.44)-(7.45) that gives inner products of scaling functions
also gives inner products with wavelets. The highpass operator H, replaces the lowpass H in the
appropriate places:

(@@, w(t + k) = (12)2HH e (7.54)
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(w(e), w(t + k) = (J2)2H H  a (7.55)

These are derived in Section 11.6. We find inner product formulas for any functions that satisfy
two-scale equations.

Remark 4 For “multifilters” the coefficients s(k) are r x r matrices. The dilation equation
determines a vector of r scaling functions. The inner product foWdT@ +kydrisanr x r
matrix ¢(k). The equation Ta = a for a vector of matrices now involves a matrix convolution:

Ta=({22hxaxh, (7.56)

In the frequency domain this matrix transition operator T becomes

TA@) = H()A(S)H(

@
2

«r

)+H(§+R)A(2

+H)H (S + ). (7.57)
The theory develops on the same lines [Cohen-Daubechies-Plonka] to give the existence in L2,
the smoothness, the approximation properties, and the stability of the basis {¢; (¢ + k)}). The
eigenvalues of T are still in control.

Problem Set 7.2

1. If h(k) has double-shift orthogonality {Condition O), show that the central column of T is &.
This is an eigenvector of T for A = 1.

2. Construct the finite matrices T for b = (1,1, ) and k = (¢, §, 1, —¢).

3. Draw the output from one Haar cascade step ¢V (1) = @ (2¢) + @ (2t ~ 1) with
() @ () = unit box on the interval [1, 2]
(b) ¢@{r} = hat function on the interval [0, 2]
(¢} ¢ (1) = hat function on the interval [0, 11.

Two of those ¢ (¢) lead to convergence. Which one doesn’t?

4. Prove that P(f) = 3~ 6Pz —n) equals PO 2r) = T ¢ (21 — ) for any starting function

$® (1) and any coefficients (k) with a zero at 7: even sum = odd sum = 1

It follows that P¥'(z) = PO (2i) will oscillate faster and faster. There is no convergence
unless PO(8) = 3~ ¢V (¢ —n) is identically one. This is the condition on ¢® (1) in the cascade
algorithm.

5. Find the eigenvalues of T in Problem 2 (depending on c).

6. Show that the filter k = [~1 3 3 — 1]/4 does not satisfy Condition E, and T has } = 2.1712.
This bad & is dual to the good spline filter f = {1 3 3 1)/8; their product & * fis Daubechies
maxflat halfband,

7.3 Smoothness of Scaling Functions and Wavelets

The previous section established Condition E for the convergence of the cascade al gorithm. The
eigenvalues of T are required to be less than 1 (except the simple cigenvalue A = 1). The limit
function ¢(¢) is then in L2 — which assures some minimal smoothness, but not much. If the
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eigenvalues of T are less than 47%, apart from the special eigenvalues that are powers of % we
now show that ¢(t) and w(t) have s derivatives.

This conclusion is true whether s is an integer or not. The proof for integers 5 is very direct, so
we include it. The proof for noninteger s needs more space and effort, so we refer for example
to [Villemoes]. These are derivatives in the L2 sense because we work with the matrix T. In
the frequency domain, each derivative is a multiplication by iw. Therefore ¢(¢) in L? has s
derivatives in L2 when

10201 = 5= [ 0P 1B)do i i

This definition allows s to be a fraction (or negative) with no difficulty, Since w(?) is a combi-
nation of $(2¢f — k), we only need to study the smoothness of ¢ (¢).

The basic idea is simple. Each new factor (H%:-'-) in H(z) has four effects:

1. All eigenvalues of T are divided by 4.

2. The old ¢{¢) is convolved with the box function.

3. The old ${(w) is multiplied by (1 — e} /iw.

4. The new ¢ (r) has one more derivative than the old ¢{t).

When we check these facts, our desired result is proved. You might think that the final ¢(z) has
the full p derivatives, because H(z) has p factors of “’2"' . But some of those factors are needed
to get the eigenvalues of T below 1 (always excluding the special eigenvalues 1, 12, L) Ifs
(integer) is less than the number sy, below, there will be s factors still left after this Condition
E is met. Then ¢(t) has s derivatives. The non-special eigenvalues are below 4%,

The word “regularity” has been applied to s and also to p. Those are different numbers (we
will prove s < p). So we avoid that word, and refer to smoothness s and accuracy p. We state
the conclusions for any s5; our proof was for s = integer,

Theorem 7.10  Each new factor 1—’521:'- has the effects 1, 2, 3, 4. Then ¢(t) and w(t) have 5
derivatives in L when the non-special eigenvalues of T have |\| < 47°. The supremum Spa,

when ¢ (t) comes from H(z) = (H—fwi)p Q(2), is

Swax = P — logg |Amax (Tg)| with Tg = (12)200". (7.58)
A short MATLAB code will construct T or T from A and find its eigenvalues. In practice, we
exclude the special A = 1,..., (%)2-"_I directly from the eigenvalues of T, and then s, =

- log, (JAmax (1))

Actually 1, 2, 3 are already proved. The effect on the eigenvalues of T was established in
Section 7.2. Bach eigenvalue is divided by 2 twice, because T comes from H(z)H(z™). So all
eigenvalues of T are divided by 4. Then Ty, also has the special eigenvalues 1 and % The

extra lizz;‘. in H(z) changes the infinite product (o Guew(@):

—iw

Frew (@) = ﬁ (% + lze*jwm) Poia(w) = (

i=l

L) .59
fi7]

The extra “Haar factors” multiply to give the “box factor.” This is the infinite product in Sec-
tion 6.4 that yields the box function B(r). In the time domain ¢ew{#) is the box convolved with
@oia(t). This adds one more derivative for ¢pey.
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Lemma 7.1 The convolution ¢pew(t) = B(f) * doa(t) has s + 1 derivatives if and only if
Pota(t) has s derivatives.

Proof. In frequency we are multiplying Poia{w) by (1- e'“") /. This has magnitude at most
2/|w|. Therefore ¢mw decreases at least one order faster than %m

f [P [Brew (@)} deo < 4 f 1l |Fas@)[ deo.

The factor 4 comes from (2/|w()? times |w|?. The last integral is finite when ¢qyq has s deriva-
tives. So the first integral is finite and ¢y, has s + 1 derivatives. In the time domain, the deriva-
tive of the convolution Pnew(t) = B(2) * Py4(t) is a difference:

d 1 1
Prew(®) = zfo Gotg(f — 5)ds =f0 baa(t — 5)ds = Pog(t) — Poia(t — 1). (7.60)

Again ¢uew has one more derivative than ¢gg. This is true in the pointwise sense as well as the
L? sense. The smoothness increases by one from the extra zero at 7 in the filter.

For completeness we prove the converse, following [Villemoes). If Pnew has 541 derivatives
then certainly ¢/, has s derivatives. From (7.60) this means that Pora(t) — Pt — 1) has s
derivatives. Use this fact N times:

Soia(t) — boia(t = N} = [Poua(t) — Poig(t — D] + [Po1a(t — 1) — Ppgia(t — 2)] + -+

Each difference on the right has s derivatives. So does the difference on the left. But (1) does
not overlap ¢(f — N), so goa(#) by itself must have s derivatives.

Example 7.4. For any s < 1, the box function has s derivatives in L2.

Reason (1 —e “”),'uo| is below and often near = | . The integral | |o|* | 2| de is finite for
5 < but infinite for s = 5. Therefore the value sy, = ; is not actually achieved, which is
typ1cal Normally ¢(#) has .5' derivatives for all 5 < Sy,

We can check formula (7.58). The box filter H(z) = 1_1-_22‘_' has @(z) = 1. Then @ = J and

Tg = (12)2I has Amax = 2. The logarithm of 2 to base 4 is . Formula (7.58) correctly gives
1 1

Smax = 1 — 3

The sph;es of degree P — 1, which come from p — 1 additional convolutions of the box,
have smax = p — 3. This is the largest possible syq ! With p zeros at 7, ¢ (¢) cannot have more
than p — — denvatwes in L2, We will stay with integers to prove that s < p — I, after noting
how the smoothness of splines drops by 3 when we change from L? to pointwise.

Pointwise, the box function has zero smoothness. The hat function has one derivative (only
one-sided, because the slope jumps). The spline of degree p— 1 has p ~ 1 one-sided denvatwes
The general theory says that pointwise smoothness for every function is between $y, — — and
Smax (this is a Sobolev inequality). For splines the pointwise smoothness is at the low end of that
range, whichis p — 1.

Theorem 7.11 U‘ & (1) has s derivatives in L? (integer 5) then s < p. Allowing fractions, sy,
cannot exceed p — - Pointwise, the smoothness cannot exceed p— 1L
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Proof. For ¢(t) in L? we need at least one zero at @ (H(r) = 0 by Chapter 6). For ¢'(f) in
L? we need at least two zeros at 7 {use the Lemma). Continuing, s derivatives in L? (integer s5)
require at least s + 1 zeros at 7. Therefore p > s+ land s < p.

These conclusions are consistent with the sth derivative of the dilation equation:

¢ty =2 2h(k)d (2t - k). (7.61)

The values ¢ (1) at the integers come from the eigenvalue problem ) = 2*M®), We know
that M has eigenvalue 2™° provided s < p. For higher derivatives we cannot even find values
at the integers.

We caution that s < p only means that equation (7.61) might produce an sth derivative in
L. It might not! Splines have the highest smoothness that p allows. Compare splines with other
scaling functions when p = 2. The hat function has smax = % the Daubechies function only has
Smax = 1. It has .55 derivatives in the pointwise sense [Daubechies-Lagarias]. Smoother wave-
lets have been constructed (orthogonal or biorthogonal). The neat fact is that the eigenvalues of
T immediately give Smax.

The Daubechies coefficients are 1+ /3, 3 ++/3, 3 — +/3, 1 — /3 (divided by 8). The prod-
uct H(z)H(z™") has coefficients —1,0, 9, 16, 9, 0, —1 (divided by 16). This halfband property
gives (...,0,1,0,...) in the center column of T:

0o -1 0 c 0
16 9 0 -1 0
Ts=+%| 0 9 16 9% 0 has eigenvalues 1, 3,
0o -1 0 g 16
0 0 0 -1 0

11
38

The eigenvector @ = (0, 0, 1, 0, 0) says that all ¢(r — n) are orthogonal to ¢{z}. The approxi-
mation order is p = 2, since H(w) has a double zero at & and (%)4 is not an eigenvalue of T.
The smoothness index is spax = 2 — 1 = 1 because the largest “other eigenvalue” is the re-
peated ) = 471, The function ¢ (¢) has almost one derivative with finite energy. The integral of
|m|zl$ ()| is not finite, but any smaller power of |w] will make it finite,

The smoothness of Dg, with a triple zero at @, tarns out to be Smax, = 3 — :35—; With ac-
curacy p, the number of Daubechies coefficients is 2p. Eirola computed the smoothness of all
Daubechies functions up to D4g which has p = 20, and also found the asymptotic formula:

P Smax P Swmax Asymptotically

1 05 6 2.388 Smax ¢ 0.2075 p -+ constant
2 1.0 7 2.658

3 1415 8 2914

4 1775 g9 3.161

5 2.0% 10 3.402

Cascade Algorithm in the Frequency Domain

When ¢ is rescaled to 21, the Fourier transform rescales to 4. The shift by & that usually produces
e~ now produces ¢*¢/2, The cascade equation ¢¢+1(#) = 3~ 2h(k)¢ (2 — k) transforms

" PV (w) = (Zh(k)e“’*"’”) 3“"(%) —H (5;’-) 3‘“(%). (7.62)
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The first cascade step multiplies by H (£) and the next step by H (%). Thus $P(w) is
H (%) H (%)™ (2). The output at step  involves H® with { factors:

V() = f 2Y1z0( L) 2 yo 2o
¢ @) [J.:]H(zj)]‘b (2r‘) o @)e (2!‘)' (7.63)
We expect that this i-term product approaches the infinite product
3 T g (2
-~ - . . i) _ ot
dlw) = limit of (w)_l_!H(zj). (7.64)
J'=

The question is: When does this limit exist and how smooth is ¢(1)? Ateach separate frequency
w, the limit exists. That requires only H(0) = 1 and a bound C on the derivative [ H'(w)|. Then
w 2] Cleolf?!
|H(§)l S 14055 = o,
If we take logarithms, to look at a sum instead of a product, that sum converges like > Cle|/2/.
The sum log ()| is less than C|w). Therefore the product [¢ ()| is less than eCl®l,

Such a bound is useless for large w! For ¢() to be a reasonable function, we need ¢(w) to
decay rather than grow as w| — co. Working with the energy [ 1#(@)%dw, there is no doubt
that each iteration @(w) retains finite energy. From step ¢ to i + 1 the energy grows by no more
than

|61 < ATH O] where |12 = max (| H(@)P + |H(w + o). (7.65)

The orthonormal case has || T|| = 1, by Condition O. The energy is the same at every iteration of
the cascade algorithm. For the biorthogonal case we expect | Tl > 1and the bound in (7.65) also
becomes useless. To find the new energy [|¢%+")|2 from 162, we look again at the operator
T — which is absolutely fundamental to the theory of wavelets.

In the time domain, T is a double-shift Toeplitz matrix. That double shift corresponds to pick-
ing out even frequencies 0, 2w, 4w. In the z-domain it comresponds to picking out even powers
of z:

Definition 7.1  The transition operator T in the three domains is:

Tak) = ( 2)2HH a(k)
TAQw) = |H(@PAW)+|H(w+ 7AW + 1)
= even frequencies in 2| H (w)[* A(w)
TA(z%) H@A@QHG )Y+ H-2)A(-2)H(—z")

i

even powers in 2H (2)A(2)H{(z™").

A{w) is the function Y a(k)e~** and A(z) is the function 2 a(k)z™*. In our application, the
a(k) are inner products and A(w) is taken from Section 6.4

a(k)=f¢(r)¢(r+k)dt and  A@) =) |$w+27x0)|.

We give an example immediately, and ask for more in the problem set.
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Example 7.5. The coefficients 2(k) = §, 1, ] give

H@)=114+2"+e ) and H@=(1+22""4+272.

Suppose ¢@ (1) is the box function, so its inner products are @) = (..., 0, 1,0, ...).
The corresponding A® (w) is the constant function 1. The first step of the cascade algorithm
produces ¢M(z) as three half-boxes with heights 1,1,1. The new energy o2 is
G+1+h= €. This should agree with 2((0) after the action of T:

4 1 0 0 1
Time: Ta® = % 4 6 4 1 = ls 6
o 1 4 0 1

Frequency: A®M(2w) = even frequencies in 2{H ()2 A ()

= even frequencies in § (¥ + 4€'® + 6 + 4o~/ + ¢~%v)

AV(@w) =3 (e +6+e7?)
z-domain:  AM(z?) = even powers in 2H(DAP () H(z™")
= even powers in -:;(z2 +4z4+64+4771 4+ 279
AN =iz +6+z7").

Summary: The main point is to connect L2 convergence of the infinite product for ¢() with
the number p of vanishing moments of the wavelets, and the smoothness s of ¢(¢). Everything
depends on the eigenvalues of the matrix Tay—;:

Cascade convergence requires all |A| < 1 except for asimple A = 1.
Approximation of order p requires eigenvalues A = |, %, %, ciey (12)23’ -1,

Smoothness (s derivatives in L?) requires all other |A| < 475,

Continulty of the Scaling Function

Functions in L2 have finite energy. They may or may not be continuous. Continuity is a “point-
wise” property, not revealed by inner products and not automatic under Condition E. (Haar sat-
isfies this condition.) We describe now the test for continuity of ¢(r). In borderline cases it is
not always easy to apply, because it involves mwo matrices.

Those matrices are m(0) and m(1). Remember from Section 6.3 that these are N x N sub-
matrices of the double-shift lowpass matrix M = (] 2)2H. The columns of m(() and m(1) add
tol, Ife = [1 ... 1] is the all-ones row vector then em(0) = e and em{1) = e. The dilation
equatien in vector form is on the interval [0, 1):

B(t) =m0) B2 +m(1) B2t - 1). (7.66)

The vector ®(t) = [¢ (1) $(t+1) - -]7 stacks the N slices of ¢ {¢). Because equation (7.66) has
only two coefficients, it gives a simple recursion (Section 6.3). The firstdigit ¢ inz = .fy5285 - - -
tells whether we use m(0) or m(1):

D) =m@) P(nt ). (1.67)



248 Chapter 7 Wavelet Theory
The next 0-1 digit ¢, tells whether the next step uses m(0) or m(1):

D) = m{t))m(ty) D130 ). (7.68)

The matrices 7(0) and m(1) can come in any order (determined by the digits in ). A nearby
point 7 will begin with the same digits. At some later point the digits will differ. If
T =16ThTy--- then

&) — ©(T) =m@t))mp) B( 0ty ) — ®(T3T4-- ). (7.69)

To prove continuity is to show that ®(r) is close to ®(T') when the neighbors ¢ and T share
many digits A1 - - - 1x. This will be true if the product of m’s in every order is small. Actually
we work with matrices of order N — 1, after removing A = 1.

Theorem 7.12  The scaling function ¢ (1) is continuous if all products of my_,(0) and
my_1 (1} approach zero as the number of factors increases.

The matrices m(Q) and m(1) have the eigenvalue 1, with the all-ones left eigenvector e. All
products of the m’s will have this eigenvalue and eigenvector. They won’t go to zero! But in
equation (7.69) these products multiply a vector that is orthogonal to e:

e ®(t) =1 implies that e ®(taty--) — B(T37T4-- N=1-1=0. (7.70)

Restricted to vectors orthogonal to e, m(0) becomes my_1(0) and m(1) becomes my_1(1). If
long products of these matrices are small, then (7.69) says that & () is close to @®(T). This means
that 4 (¢) is continuous.

Continuity requires longer and longer products of A = my_;(0) and B = my_((1) to ap-
proach zero. This may be easy to test, or hard. Any eigenvalue with |A] > | guarantees failure.
To have | All < 1 and |[B]| < 1 guarantees success. But the right norm can be very difficult to
find. The problem is the possibility of small eigenvalues and dangerous products:

e 1 _| e 0 , [ 1+€ o
A—[O 0] and B-I:l 0] give AB_[ 0 0].

The powers A" and B” go to zero. But ABABAB - - - blows up because 1 + ¢ > 1.
Problem 2 shows how to compute my_; from my. We cannot show how to test all products
inall orders. [Heil-Colella) and many others discuss this problem but it has no complete solution.

Smoothness of Binary Filters

A striking example of the difference between pointwise smoothness and derivatives in L2 is the
fillerh = [—1 2 6 2 —1}/8. Its scaling function is infinite at all dyadic points, Pointwise, ¢ (2} is
afailure. The matrix M = ({ 2)2H has a double eigenvalue at A = 1, with only one ei genvector.
The powers of M are therefore unbounded. But the eigenvalues of T— its MATLAB construction
in Section 6.5 is followed by eig(T) —are 2 = 1, 3, {. §,0.5428, . . .. The smoothness of ¢ () is
Smax = —10g(.5428)/log4 = .44. Thus ¢(7) and w(t) have 0.44 derivatives with finite energy,
in spite of the fact that ¢(¢) blows up on a dense set!
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The maxflat Daubechies filters of length 4p — 1 have 2p zeros at 7. Their scaling functions
interpolate at the integers because Dyp is halfband: ¢(n) = &(n) is the eigenvector of M for
A=1. We expect hlgh smoothness for q’:(t) because of a]l thc Zeros:

| 2p 0246 1eadsto sm _ 05 15 244 31?

We were also mterested in Lhe smoothness of the new bmary ﬁlters (dual to these symmetric
Daubechies halfband filters). A new 9/7 pair was constructed by lifting in Section 6.5. There
we also balanced its zeros to 10/6 by moving 14z~ between analysis and synthesis. (This just
changes smax by 1.} The new filters were

R9=[10 —8 16 46 16 —8 0 1]/64 with2 zeros and Smax = 0.59

B13=[-10 18 —16 —63 144 348 ...]/512 with 4 zeros and  Spax = 1.138.

Compare with the standard symmetric biorthogonal FBI 9/7 pair, which has 16 nonzero coeffi-
cients. Two digits are inadequate but here they are:

KFBI = [0.03 —0.02 —0.08 0.27 0.60 ---) and fFBI = [-0.05 — 0.03 0.30 0.56 ---].

These have Spox = 1.4 in analysis and 2.1 in synthesis. The FBI pair has higher coding gain
and 4/4 zeros but no interpolating property. It gives higher PSNR and lower error on Lena and
Barbara. But the perceptual quality of the new pair seems sharper (to our eyes). The analysis
function gnew(f) is more peaked and the synthesis @new(?) is smoother. Our latest test on the

“hoats” image at 0.32 bpp was a tie in objective measures (PSNR, MSE, Max error}, but we see
more in the new image (Figure 7.4). The cable at the upper right is lost by the standard 9/7 pair,
and the ship name PICARDY becomes unreadable. You see that the reality of filter comparison
is not totally precise!

1

Figure 7.4: Original of boats and two compeling 9/7 reconstructions.
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Problem Set 7.3

1. Suppose eA = e. If x is a vector perpendicular to e, show that Ax is perpendicular to . (af
ex = ( prove that e(Ax) = 0.)

2. Supposc eA = e. Show that multiplying S~'AS by blocks gives

Ty Oy ay_ | by Inay o Ony | | Av Ba
en_1 1 [ JY d —en-| 1 On_y 1 ’
The first N — | columns of S are perpendicular 1o e. The matrix Ay_; = ay. 1 —bdy_1en_y
is the restriction of 4 to those vectors. Compute this restriction my _( (0) for the matrix m(0)
from the hat coefficients §, 1, 1.
3. For the ransform ¢(w) = (1 -7y /i2¢? of the hat function show that | [w|¥ |p(w)[? dw <
o if and only if 5 < 5.

4. Find by hand the mattix T and its eigenvalues and s,,,, stating from the filiers & = .41
andk=(},1. 1)

5. Find by MATLAB the matrix T and its eigenvalues and sy, for the Dy filter” that has A «hT =
(‘*z . ) Q(2) = halfband of degree 10.

6. Show from their lengths that & and f and p = h « £ cannot all be symmetric halfband.

7. Dualtof = [—1 0 9 16 9 0 — 11/32 is another halfband but unsymmetric filter h* =
{1 02316 —9 0 1)/32. Verify that p* = f « k* is halfband to give PR. This is our first
unsymmetric product filter. What is the system delay I7 What is Ape (T%) coming from A*?
Why is ¢"(r) interpolating (equal to & at the integers)? How smooth is it?

8. Explain why the smoothness of the delta function is sma = —4.

7.4 Splines and Semiorthogonal Wavelets

Splines are piecewise polynomials, with a smooth fit between the pieces. They are older than
wavelets. The “two-scale equation” or dilation equation was at first not particularly noticed.
Now we will see that the numbers i(k) are binomial coefficients, directly from Pascal’s triangle.

For a cubic splme the coefficients are 1, 4, 6, 4, | divided by 16. The transfer function is
H(z) = ( + z“) /16. All four zeros are at z = —1. The filter is lowpass, the spline is as
smooth as possible, and it has the highest accuracy p = 4 that is possible with N = 4. Almost
every formula in this book comes out neatly and explicitly for splines.

One application of splines is to interpolation, when data points need to be connected by a
smooth curve. To put one high-degree polynomial through all the points is very unwise. A small
movement of a single point produces an extreme change in the polynomial (which oscillates vi-
olently between the interpolation points). It is much better to use short pieces of low-degree
polynomials — often cubic splines.

A cubic spline has degree 3, for any number of interpolation points. It has fwe confinuous
derivatives, at the points where two different cubics meet. Thus ¢, (¢) and @, (¢) and ¢/ (1) on
one side of the meeting point agree with ¢_(¢) and ¢’ (¢) and ¢” (£} on the other side. When
t = O is the meeting point, only the coefficient of > can change. The curve locks smooth and
its coefficients are easy to find from the data points — but not trivial. There is a system of linear
equations to solve, because all data points influence all coefficients. To say this in another way,
the spline that matches the data values 0,0, 1,0, 0, .. . is not zero in the intervals between those
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values, It decays exponentially as || — oo but this “cardinal spline” does not give the best basis

for computations.

The good function is the “B-spline” with compact support. It is our scaling function ¢ (¢).
This function matches the data values 0, £, £, £, 0, at the integers. It has unit area [ ¢()dt = 1
and a smooth fit (two derivatives). The spline is nonzero on four intervals (Figure 7.5). Outside

this range ¢(¢) is identically zero.

LG b,® \ 4,0
0 1 2 3

Figure 7.5: The spline ¢y_(f) of degree N — 1 is the convolution of N box functions. It is
supported on [0, N]. Its filter H(z) = ('—"gi)” hasazerooforderp = Natz = ~1.

| =
u>
L
L d
| — ]

1

A note on interpolation at the integers ¢+ = n. To match a set of values f{n), we look for
a combination of B-splines. The equations are }_ F (k)¢ (n — k) = f(n). This is a constant-
diagonal (Toeplitz) system, with -;-. %, % on the diagonals coming from ¢(n). To compute F (k)
we are inverting an FIR filter, and the inverse is ITR {a recursive filter). This explains why all
F (k) are nonzero when we interpolate an impulse f(n) = 8(n). It is like Shannon’s Sampling
Theorem, with cardinal splines instead of sinc functions. In fact the splines converge to %’-’- as
p=N— o0

One major advantage: Splines do not require equally spaced data points. At the limit of un-
equal spacing, pairs of nodes come together. The spline becomes a finite element with one con-
tinuous derivative. The cubic finite element with values 0, 1, 0, and slopes 0, 0, 0, is nenzero
only on fwo intervals around the center point. A second cubic element interpolates 0, 0, 0, with
slopes 0, 1, 0. This short support (Figure 7.7) makes finite elements very popular in solving
differential equations — much more popular than splines.

When there are two data values {function and slope) at the mesh points, each input x(n) to
the corresponding filter is a pair of numbers. We have a multifilter and it leads to multiwavelets.
Everything is FIR. The values and slopes give the cubic in between. Multiwavelets are devel-
oped in the next section — we now return to the cubic spline ¢ (¢).

Splines from Box Functions

Before two-scale equations, there was a direct approach to splines. This is still the fastest way.
The cubic B-spline is the convolution of four box functions:

¢ty = (B » B * B » B)(2). (.71)

The results from each convolution step are in Figure 7.5. These are linear splines ¢, (¢), quadratic
splines ¢2(t), and cubic splines ¢3(t). They are in the continuity classes C°, C!, and C?, since
they have 0, 1, and 2 continuous derivatives. The box function is ¢y(t). The convolution of N
box functions has degree N — 1 in each piece, with N —2 continuous derivatives between pieces,
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We want to show that the fourth derivative of a cubic spline is a sequence of delta functions.
The coefficients of these delta functions are 1, —4, 6, —4, 1. These are the jumps in the third
derivative, and this binomial pattern applies for every N. The first derivative of the hat function
has jumps 1, -2, 1.

To take the fourth derivative of a cubic spline, or the Nth derivative of a convolution of N
box functions, we can work in time or frequency. We do both. First is the pleasant computation
of aN_g {w) from convolving N box functions:

- -~ 1\~ ;
Fr-1@) = Go@)¥ = (=) (-, (1.72)

The box function has @o(w) = fol e~w'dt = L (1 — 7). Convolution in ¢ is multiplication in
w, s0 the convolution of N box functions has transform [¢hy(ew)]V.

Theorem 7.13  The convolution of N boxes is a piecewise polynomial ¢y_1(t) of degree
N — 1. The jumps in the (N — 1)st derivativeatt = 0,1, ..., N are the alternating binomial

coefficients (—1) (‘T )

Proof in the frequency domain: Each derivative multiplies the transform by iw. The Nth
derivative cancels the denominator in $N_1 () and has transform (1 —e~*?)¥ This is the trans-
form of a sequence of delta functions at the points t = 0, 1, ..., N. Since the Nth derivative is
zero between those points, the spline fﬁy-l (£) must be a piecewise polynomial of degree N — 1,

The fourth derivative of ¢1(¢) has transform {1 — e~**)*. So the third derivative has Jjumps
1, ~4,6, -4, 1.

Proof in the time domain: The derivative of f(z) % g(t)is f'(£) » g(¢f) or equally itis f(¢)
g'(t). The fourth derivative of the cubic ¢ = B * B * B x B has four factors:

d'¢

- (B’ * B' % B' « B(). (7.73)

Each factor B'(t) is 5(t) = 5(t — 1). This is the derivative of the box function, which jumps up

at ¢t = 0 and down at ¢ = 1. The convolution (7.73) becomes
de
ol (-4 — 1) +63(r —2) 48t —3)+ 8¢ — 4. (7.74)

The third derivative has jumps 1, —4, 6, —4, 1 att = 0, 1, 2, 3, 4. Otherwise d*¢/dr* = 0 and
¢(¢) is an ordinary cubic polynomial.

The Coefficients k(n) for Splines

We know that the filter coefficients 1, 1 lead to the box function ¢o(¢). The coefficients 3, 1, 1
lead to the hat function ¢, (r). These numbers appear in the lowpass filter H. We suspect that the
coefficients h(n) = 7'3(1, 4,6,4, 1) lead to the cubic spline ¢;(¢). The pattern for the convolu-

tion of N box functions could be described in two ways:
1. h(n) are the coefficients in the special polynomial H(z) = ('ﬂz-—])N

2. h(n) is the convolution (]5, %) * (%, %) T, (%, %)
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Those two patterns are equivalent. Each multiplication by (”’2‘1'I ) in the z-domain is convolu-
tion by (3, §) in the time domain. The question is, what is the effect on the scaling function?
Apparently it is convolved with the box function,

This suggests a more general pattern. The transfer function F(z)G(z) and the filter coeffi-
cients f(n) » g(n) correspond to the scaling function ¢ (1) * @, (¢). Multiplication of filters gives
convolution of scatmg Sunctions! This is not hard to prove. It applies immediately to the special
case F(z) = ﬂ-—- Convolution with the box function gives the next spline scaling function,
one degree hlgher

Lemma 7.2  The scaling function ¢y (¢) corresponding to H = FG and 10 h(n) = f(n) xg(n)
is the convolution of the scaling functions for F and G:

Bt = ¢,(t) % B, (1) and $,(w) = (1()) (B () . (1.75)
Proof The dilation equations for ¢y and ¢, involve w and w/2:
$r(@) = F(2)3r(2) and Fp(w) = G(L) Fe(¥).

Multiply to get q&;, (w) =H (“’)¢;,( ). This is the dllatmn equation for H. If you like infinite
products, multiply [ Fe/ 2‘) and ]_[ Glw/2') to get on (@) = [1H(w/2).

Example 7.6. If the coefﬁclents in f and g are both 1 3 2, the scaling functions ¢ (f) and ¢, (1)
are the box function. Then & = 1, §, § produces the hat function:

GG = (3 veomse (M) (2) = s

B(t) * B(H) = Box function * Box function =  Hat function.

Every extra factor ('ﬂz_—') means a convolution with the box function. The new ¢ (r) has one
more derivative. For splines, each new ¢y (1) = ¢n_1(t} * B(t) = fol dn-1t — x)dx is one
degree higher. This gives a nice formula for the time derivative:

1
&) = fo By —x)dx = Py () — By € — 1), (1.76)

The spline of degrce N — 1 is the convolution of N box functions, and the corresponding filter
has H(z) = (t+z »w. We can verify in one step that this spline satisfies the correct dilation
equation! Its transform Gy () agrees with H (£ Y-y (¢):

1-— e—iw N i+ e—imﬂ N/l — e—im}Z N
= . 7.77
( fw ) ( 2 ) ( iwf2 ) (.77
We started with ¢(f) and determined h(k). Normally we do the opposite — solve the dilation
egquation for ¢ (¢). Here we have found the dilation equation for a spline:

. X (N
~ o) =2""" (k ) Pn-1(2t = k). (7.78)
0

The lowpass space Vp contains all smooth splines of degree ¥ —1 on unitintervals. The B-splines
are its basis {not orthogonal?). The space V| contains piecewise polynomials on half-intervals,
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and therefore contains Vy. The dilation equation (7.78) expresses ¢y _1 (2) in ¥ as a combination
of basis functions of V). It remains to find the other space Wy which contains the wavelets,

Semmary: H(z) hasazerooforder p = N at z = —1. There are N zeros at w = n. Corre-
spondingly, the polynomials 1, ¢, ¢2, ..., %! are combinations of the splines of degree N — 1.
Those polynomials are all in the lowpass space Vp. The accuracy is p = N. The wavelets will
have N vanishing moments. What are those spline wavelets?

Inner Products and Riesz Bounds

The inner products of splines with their translates give the values of higher splines. The inner

products for the hat function are a = %, -3 3

1 1
a0 = 2[ Pdt=% and a(l) =a(-1) = 2[ ¢t~ de = L.
0 Q
Those numbers agree with the cubic B-spline at ¢ = 1, 2, 3. The formula is:
oo
Spline Inner Products a(k) = f PO dy1 G +EYdr =gy (N +K). (71.79)
-0

The integral is convolving N box functions with N more box functions — and shifting by k. The
2N boxes produce the higher spline ¢,n_;.

The vector a of inner products solves @ = Ta. The operator T comes from the product
H(z)H(z™"), which for splines is (\t)¥ (142)V, This is z/ times the function (L)% that
gives the higher spline ¢on_1(#). In other words, the matrix T for the lower spline is identical
to the matrix M for the higher spline.

The eigenvector of M gives the values of the higher spline at the integers. The same eigen-
vector (of T?) gives the inner products of the lower splines in (7.79). All inner products have
a(k) = 0, because all splines have ¢(#) = 0. The inner products sum to 1. The maximum
value of A(w) = Za(k)e"'*"’ is B = 1, which occurs at @ = 0. It is not hard to show that the
minimum value of A(w) occurs at w = 7:

Amin= Y (=1 1(N + k). (7.80)
Thus the translates ¢y (# — k) form a Riesz basis for V; with bounds Ay, and 1. For the hat
function (N = 2) the lower bound is Amin = —¢ + § — ; = 1. In frequency this means that
=] - 2
1AW =) e +2k)| = ¢+ 2cosw < 1. (1.81)
-0

The basis of hat functions is well conditioned. Of course it is not orthogonal. If we orthogo-
nalize, following the shift-invariant method of Section 6.5, we get the Battle-Lemarié ¢ () and
w(t} — smooth, quickly decaying, infinite support.
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Spline Wavelets

There are several important possibilities for the wavelets. One family is FIR and biorthogonal,
the other is [IR and “semiorthogonal.” Semiorthogonal wavelets are perpendicular to the spline
¢(t), but they are not orthogonal among themselves.

The FIR biorthogonal construction follows the usual rules. We need a halfband product filter
P(z). One factor is (”’;" ¥, to produce the spline. This can be H(z) in the analysis bank,
or (better) it can be F(z) in the synthesis bank. The other bank must contain an extra factor
to make the product halfband. The natural choices for this second filter are ( ‘—“"—2"—_1)2”‘" 0(2),
which brings the product filter back to the standard Daubechies polynomial (where Q(z) has
degree 2p — 2). Weneed 2p > N tohave a zero at 7 = —1. For the smallest p, the second filter
may not satisfy Condition E for a stable basis in L?; more zeros may be needed. The low degree
spline filters and dual filters are the best known:

F(z)= (1) goeswith H(z) = () (=1 +427' —2z7) : seable

F(g) = (5%1)3 goes with H(z) = (%)(—l +4z7' —z7%) : unstable
F(z) = ()" goes with H(z) = (14-)*Q6(z) : stable.
The new book {CR] is a very good reference for biorthogonal FIR filters.

Example 7.7. Hat furction from F(z) = (%)2 gives the 5/3 filter bank.

If the analysis filter has H(z) = 1, the product with F(z} is halfband. The analysis scaling
function 5(:) is the delta function. Its translates §(¢+ — k) are biorthogonal to the hat functions
H{t — k). But the delta function is not acceptable.

If H(z) is given two zeros at , it needs the extra @(z):

1+z™" )2(—1 +4z7! - z‘z) 14277 6T 2 -
2 2 B 8 '

Those coefficients —1, 2, 6, 2, —1 appeared in the Guide to the Book. This is the analysis part of
the biorthogonal 5/3 pair. The synthesis part is the linear spline (the hat). The product P(z) =

F(z)H (2) has four zeros at z = —1. Instead of the orthogonal Dy factors of P(z), the spline
5/3 factorization gives linear phase.

H@ = (

In these biorthogonal examples, one scaling function is a spline. Best if this is synthesis.
The other scaling function is not a spline or a combination of splines or a piecewise polynomial,
The space Vi spanned by &t — k) is different from Vp. This is normal, but spline people expect
to live and work exclusively in spline spaces. They want Vo = !70 =all splines of degree N — 1.
We now achieve this, but an IIR filter appears in the analysis half of the filter bank.

Semiorthogonal Wavelets

Start with a basis {¢(¢ — &)} for Vp. Suppose this basis is not orthogonal. The hat function and
the cubic B-spline are examples of ¢ (¢). We want to find wavelets w(z — k) that are orthogonal
to ¢(¢). Thus we maintain what was true in the fully orthogonal case:

Vol Wy and Vo Wo=V,. (7.82)
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The spaces are orthogonal but the bases within those spaces are not orthogonal.
Multiresolution in the biorthogonal case always has

VoL Wo and Wo L ¥ and Vo + Wo = V; and Vo4 W, = V. (7.83)

Compare with (7.82) to see that Vo = Vo and Wy = Wy. At every scale we will have Vi Lw,
and V; = V; and W; = W;. There is only one multiresolution in the semiorthogonal case, one
family Vo C Vj C Vs, as in the orthogonal case. The difference is that we have two bases for
Vo. the given basis ¢(¢ — k) and the biorthogonal basis 5(: — k). This applies at every scale ;.
The tilde is needed for the dual basis, even if it is not needed for the space.

Semiorthogonality has an important property, directly from (7.83):

Semiorthogonal wavelets w (2/t ~ k) and w(2’t — 1) are perpendicular if j # J.

At the same scale j = J, semiorthogonal wavelets are not generally perpendicular. But because
W; is orthogonal to V; which contains all previous W;..;, W;_,, ..., we are guaranteed that W;
is perpendicular to all wavelets at other scales.

To construct this new wavelet w(t), we need the highpass coefficients J1 (k). In the orthogo-
nal case, they come from fy (k) by an alternating flip. Fi(z) is —z™¥ Fy (—z™!), where 2~ gives
the flip and —z ' makes it alternating, In that orthogonal case, the inner products (¢(£), ¢ (1+k))
are a(k) = &(k). The polynomial A(z) = Y a(k)z™* is identically 1. In the semiorthogonal
case, when {¢(r — k)} is not orthonormal, this inner product polynomial enters the highpass
cocfficients.

The highpass function Fi(z) becomes an alternating flip of Fp(z)A(z). The analysis filters
become IIR. Here is the general rule for semiorthogonality:

Theorem 7.14  Suppose the lowpass Fy(z) leads 10 scaling functions ¢ (¢ — k) whose inner
products are the coefficients in A(2). Then the highpass Fy(2) that yields semiorthogonal wave-
lets w(t — k) is the alternating flip of Fo(2) A(2):

Fi@) = "M R(— ) A(=). (7.84)

Proof. We want { ¢(1)w(t — n)dt = 0 for all n. Use the dilation equation for ¢(¢) and the
wavelet equation for w(z):
f [Z U, k)p 2t — k)] [Z 2,006t — 20 — k)] dt =0. (7.85)

Change the second sum to 3_ 2f, (€ —2n)¢ (2t —£). The inner product of ¢ (2t —k) with ¢ (2t —£)
is a(£ — k). The orthogonality requirement (7.89) becomes

3 fokate — k)fy (£ - 2m) = 0. (7.86)
4 k

The highpass filter is double-shift orthogonal, but not to the lowpass filter. The double-shift or-
thogonality is to the sequence 3_ f, (k)a(£—k) which corresponds to Fy(z) A(z). Therefore F(z)
comes from Fy(z) A(z) by an alternating flip. This completes the proof.

The sequence f5(0). ..., fo(N) gives ascaling function supported on [0, N]. The inner prod-
ucta(N) = [ ¢(1)@¢(t + N)dt = a(—N) is automatically zero. At most, the symmetric poly-
nomial A(z) has terms a(k)z~* and a(k)z* for k < N. Note that A(z) = A {z71). The degree
of Fp(z)A(Z) is at most 2N — 1.
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Example 7.8. The hat function has a(0) = § and a(1) = a(—1) = . Find Fi(2).
The product Fo(z)A(z) is o5 (1 + 227" + 273} (z + 4 + z~'). By alternating flip
—z~3
F@ = —r (1-224+2%) (—z+4-2z7")
= L(1-6z7"+10z2 -6z +27Y).
The highpass coefficients 2f; (k) yield w(z) as drawn in Figure 7.6:
w(t) = £ [$(2) — 642t — 1)+ 1062t — 2) — 662t =)+ d(2t —H].  (1.87)

This is orthogonal to all hat functions ¢ (¢ — k). It is not orthogonal to all w(r — k). But it is
orthogonal to every w (2/¢ — k) for j # 0. That is semiorthogonality.

0. 1 1.5 v.s 3

Figure 7.6: The lincar wavelet w(r) orthogonal to the hat functions ¢{¢ — k).

The IR Half of the Semiorthogonal Filter Bank

The analysis functions Hy(z) and H;{z) must come from the perfect reconstruction condition
H,(2)F,(z) = 2z7t1. We know the modulation matrix F,,(z). Its inverse times 2z gives
H,.(z):

[Fo(z) Fl(z)] _ [FO(Z) —z“z”Fo(—z")A(—z“)]

R(-2 H(-27) Fo(-2) 27 FR () A(™")
[ Ho(z) Ho(—2) ] _ 2zt [z"z” Fp(-zA@EY) "R (- A{-z") ]
Hi(z) Hi(-2) D(2) —FR(-2) Fo(z)

The key is always in the determinant D{(z). For an FIR filter bank, D{(z) is the delay 2~¢. For
these semiorthogonal filters, we don’t geta delay but we do get a remarkable formula:

D). = 2" [R@F/E YA+ R-DR (- A (2]
‘ A7), (7.88)

This is the equation Ta = a for the eigenvector of the transition matrix! The matrix T in the
time domain is (| 2)2FF7 . In the z-domain this is exactly what appears in (7.88); the aliasing
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term with —z comes from (4 2). The determinant D(z} is identified. It is an odd function, and
we take £ = 2N — 1. The analysis filters can be read from the matrix H,,(z):

2R (AT 2Fy (-2)
Ho(z) = ALY and Hi(z) = HA_(z‘T) (7.89)

The division by A (z72) yields IIR filters except in the orthogonal case when A = 1.
Example 7.9. (Hats continued) The modulation matrix from Fy and F; is

_I- . l l + 2Z_] + z«—2 1 —_ 62—] + ]Oz—z _ 6z_3 + z_4
4 24| 1-27" 4272 14627 + 1022+ 6273 27

The determinant is verified o be § (27! + 427> +27%) =234 (z72).

The synthesis coefficients require a division by A (z~2). This has zeros at 22 = 2+ /3. We
can express 1/A (z72) by partial fractions (Problem 7). The power series for these fractions will
have {2 — \/ﬂ" in the coefficients of z”‘jmd 272" That gives the decay rate of the (TIR!) filter
coefficients & (k). The scaling functions ¢(¢ — k) are biorthogonal to the hats.

Summary: Splines open the possibility of maintaining V; L W; in the biorthogonal case,
Then the wavelets are semiorthogonal. The highpass coefficients involve the inner products a(k)
of the scaling functions. The associated polynomial A(z) is called the “Ewler-Frobenius polyno-
mial” in spline theory, but there is no restriction to splines. For every lowpass filter that yields
a scaling function ¢ (r), the theory produces semiorthogonal wavelets.

For splines of degree p — 1, the inner products a(%) are the values at integers of the B-splines
of degree 2p — 1. For all cases, the inner products are in the eigenvector Ta = a.

We emphasize that the special properties of splines are atiracting a lot of attention in signal
processing. They have maximum regularity (and symmetry) with minimum support and com-
plexity. Splines are outstanding in synthesis. They give approximation of high order p with
low constant C in the error C(A¢)*. The dual analysis filter has to be longer, but no construction
will ever be perfect.

Problem Set 7.4

1. Prove that the spline ¢y_ (r) is symmetric about the center point t = N /2.

2. Explain the formula ¢n_ (1) = (T:I-l_]" =D (¥) ¢ —k)y¥-!. Here (1 —k). = max(r—#, 0).
One proof uses the jumps in the (N — 1)st derivative.

3. Take derivatives in Problem 2 to verify ¢y (£) = ¢n—((t) — dp_ i {f — 1).

4. (Challenge) Prove that ¢x (1) = #mq )+ & “},‘" ¢w-1(t — 1). This recursion gives a quick
stable computation of ¢ (¢). Hint: take out a factor to get ¢y (1) = P+ %qﬂm_, -1
Use Problems 2-3,

5. Suppose P(z} = F(z)H (z) is centered halfband. Why is by ()% gy (1) equal to S(n) ats = n?

6. Find the polyphase matrix for k() = § (1,2, 1) and ky(2) = %; (1, —6, 10, ~6, 1). Connect
its determinant to A(z).
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7. Find A and B in the partial fraction expansion

6 B A . B
X24ax+1 T x 423 x4+2+443

Expand the last two fractions in powers of 2‘7‘/5 and 2. Combine into a power series for
6/(x + 4 4+ x~1). The coefficients of x” and x " should be equal.

8. Show that the inner products afk) = f ()t + k)dt for quadratic splines are
a = -llﬁ(l, 26,66, 26, 1). You could verify that this is the eigenvector in Te = @, or eval-

uate the Sth-degree spline at the integers. What is the support interval of the semiorthogonal
quadratic w(t)?

9. For splines show that A(w) = ¥ [@x_1(w+27k)? equals (2 sin 2)™ ¥ (w+2mk) 2V, Verify
A'(7x) = 0. The minimum is at & = 7.

7.5 Multifilters and Multiwavelets

This brief section describes a recent development—to allow the filter coefficients k(k) to be
r x r matrices, Each input sample x(r} is a vector with » components. So is each output X(n).
The bank of multifilters has the same structure as an ordinary filter bank, with the extra freedom
that comes with matrix coefficients.

In continuous time, the dilation equation will have matrix coefficients A(k). The solution
gives r scaling functions ¢(¢#), .. ., ¢.(¢). Then the wavelet equation with highpass matrices
k (k) yields r corresponding wavelets. Properly chosen, all these functions can have symmetry
as well as orthogonality! They and all their translates are orthogonal when the polyphase matrix
(of order 2r) is paraunitary. Multiresolution produces an orthonormal basis of wavelets —the
translates of r functions at all scales —o00 < j < oo:

wir() =272, (27t k), 1=i=<r

In some situations » > 1 is quite reasonable. When sampling a function x(¢), we may also
sample its slope x'(¢). Velocity may be involved as well as displacement. The pair (x(n), x'(n))
is a vector with » = 2. Those samples could go through two separate scalar filter banks, or
through one bank of multifilters. This example already shows, because x'(r) is dimensionally
different from x{¢t), that scaling is important for the r inputs,

The cubic scaling functions in this (x(r), x’(n)) example are “finite elements.” They are
drawn in Figure 7.7, with support [0, 2]. Like splines, these cubics ¢;(f) and ¢(¢t) have linear
phase — but they are not orthogonal to their translates. They have one continuous derivative,
not two. The space of C! cubics has a more local basis (but with r = 2 functions per interval),
while the spline space of C? cubics has one basis function per interval (the B-spline).

Figure 7.7 also displays the wavelets w, (t) and w(#) in the semiorthogonal case. They are
supported on [0, 3]. They and their translates span Wy and are orthogonal to ¢;(t) and ¢(2).
They are piecewise cubic on half-intervals, and they come from a wavelet equation w(t) =
3" 2Ry (k)¢ (2t — k). Those coefficients ky (k) are 2 x 2 matrices!

The finite element spaces Vo of degree 1, 3, 5, 7 are spanned by r = 1, 2, 3, 4 scaling func-
tions. Degree 1 has ¢(¢) = hat function which has C° smoothness (no continuous derivatives).
From the polynomials contained in Vp we know the accuracy p = 2,4, 6, 8. The smoothness
is €%, C1, €%, C* (and the pattern continues). The r semiorthogonal multiwavelets are always
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Figure 7.7: Cubic multiwavelets w, () and w,(r) orthogonal to cubic finite elements ¢, (¢ — k)
and ¢ (¢ — k).

3

supported on [0, 3]. These finite element scaling functions are cousins to the splines — which
have more smoothness but longer support. Here is a piecewise linear construction with even less
smoothness and even shorter support.

Multiwavelet example: “Haar’s Hat” These functions are linear on each interval but not
continuous at the ends. Each piece is a straight line between the end values. That piece is deter-
mined by r = 2 numbers, its average and its slope. Its average goes with the box function ¢, (¢),
its slope goes with ¢,(¢) = 2¢ — 1. Those scaling functions on [0, 1] are combinations of the
same functions on half-intervals:

Box: ¢y(8) = ¢1(26) + (2t — 1) (usual Haar equation)
Slope: () = % [$2(28) + (2t — 1Y — 1 (2) + §1(2t — )] (zero outside [0, 1])
This is a matrix dilation equation. The coefficients are 2 x 2 matrices k(0) and h(1):

(1) ] 10 ][ ¢ (21) [ I o ][ $1 (2t - 1)

= + 7.90
[ $2(0) e 11 ]l #e-D (729
You see the eigenvalues 1 and % that always accompany linear functions in Vy. The accuracy
is p = 2. The support is short! This is a block transform, not overlapping the next pair of

samples — the average and slope on the next interval [1, 2]. We get good accuracy, but the price
"is complete lack of smoothness.

It is an exercise to find the wavelets for Haar’s Hat. They will be linear on half-intervals (and
still discontinuous). Another example of two scaling functions: the real and imaginary parts of
acomplex scaling function. Symmetry with orthogonality is possible [Lena]. We turn to a more
magical construction that combines orthogonality and symmetry and short support and continu-
1ty.

This special construction by Geronimo, Hardin, and Massopust gave a strong impetus to mul-
tiwavelet theory. The functions ¢ (¢) and ¢,(z} in Figure 7.8 were found by a recursive inter-
polation process. The 2 x 2 coefficients ky(k) in their dilation equation came later. So did the
highpass coefficients and the wavelets [StSt1, GHM2]. All these functions have linear phase
and short support and orthogonality. The only earlier example with these properties was Haar's.
Now the accuracy is p = 2, because the scaling functions can reproduce a hat:

O () + ¢1(t — 1) + ¢2(2) = hat function.
The space Vy has an FIR orthogonal basis {¢,(t — k)} joined with {$.(1 — k)}:
folt) =Y aiox b1t — k) + axoe $a(t — k) isin V. (7.91)
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Figure 7.8: GHM scaling functions combine orthogonality of all translates and linear phase.

There is a sericus problem for multifilters and multiwavelets. Everyone in signal processing
asks about it immediately. We have twice as many filters (or r times as many filters) as usual.
One input stream x(n) produces 2r half-length outputs from the analysis bank. This means extra
computation (but shorter filters). It also means that the stream x(n) has to be vectorized — so
r inputs go together. It is not at all satisfactory just to take the original stream in blocks of r
samples. This does violence to the whole idea. The ¢; (¢} are not time shifts of one function,
they are r functions at each time.

The (x(n), x’(n)) example comes naturatly in blocks of two at each time. So does Haar’s
Hat. For other multifilters, one possibility is to repeat (x{(n), cx{(n)) with a suitable scalar c.
What we really want is a discrete form of (7.91). The recent papers [Heller2, XiaG) show how to
convert a single input stream to multi-inputs which give samples of the data at half-intervals (thus
r = 2 samples per interval). These Geronimo-Hardin-Massopust multiwavelets have given the
first experimental results in compression, In competition against Dy wavelets, with the same
accuracy p = 2, the multiwavelets gave better compression and required more computations.

Perfect Reconstruction and Orthogonality and Accuracy

The theory of multiwavelets looks completely familiar up to one point, where everything
changes. The multifilters still have transfer tunctions H{z} = 3_ hk(k)z~*. These are now ma-
trices. The perfect recenstruction conditions are the sarne as before:

Fo(2)Ho(z) + Fi()H (2) 274 (7.92)
Fo()Ho(—2) + Fi(H(—2) = 0. (7.9%)

The big difference is that the anti-aliasing equation (7.93) is no longer satisfied by Fp(z) =
H\(-z) and Fi(z) = —Hy(—z2). The matrices Hy and H| need not commiite! Probably they
don’t. A satisfactory construction methoed for PR (= biorthogonal) multifilters is not yet avail-
able.

For orthogonality the situation is similar. We want the synthesis filters to be the transposes
Folz) = Hi(z""Yand F|(2) = HT(z") of the analysis filters (times a delay to make them
causal). Omitting that delay, the PR conditions (7.92) require the modulation matrix to be pa-
raunitary: H,, (z}Hf:,(z") = 2/, These matrices have order 2r. The first block yields the famous
Condition O:

Ho(HY 7y + Ho(—)H (—27 "y =21 (7.94)
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Suppose this is achieved — it is the hard part. Then in the scalar case, H) is the alternating flip
of Hy. That no longer works. The lowpass and highpass rows

A(N) AIN-1) -.. (1) RO
—h(0y hR(1) - —h{N -1 h(N)

are not orthogonal, if the r x r matrices A(k) do not commute. We need to compute, from scratch,
highpass coefficients & (k) that will complete the paraunitary matrix H,, /+/2.

This completion is possible {StSt1]. If we have r paraunitary rows of length 2r, the factor-
ization in equation (9.49) still exists. The constant matrix @ in that equation is r x 2r, Complete
it to a square constant orthogonal matrix. Then the factors multiply to give a square paraunitary
matrix. Its last » rows contain the highpass coefficients we need.

Finally, we mention the accuracy p. As always, combinations of ¢, (+ — &) must produce the
polynomials 1,¢,..., =1, In the scalar case, H(z)} will have a factor (l + z‘l)p. The matrix
factorization is not so simple [CoDaPl]. Also in the scalar case, M = (] 2)2H has eigenvalues
1, %. R (%)p_l. This is still the correct Condition A when the entries of M are r X r matrices:

h(N) BRN-=-1
M=2|: BN) h(N-1 .. ]

The column sums 2 3 A(2k) and 23" h(2k + 1) were | in the scalar case. They need not be f
in the matrix case. That would be far too restrictive. To achieve p = 1, the sums must have
A = 1 as an eigenvalue with the same left eigenvector. The condition for higher p is recur-
sive [StSt2,HeStSt). In some way the scalar case is understood more deeply, when the theory of
multiwavelets forces us into the matrix case.

Problem Set 7.5

1. (Haar’s Hat} Find wavelets w (¢} and w2 () on [0, 1] that are orthogonal to each other and to
$1(1) = box and ¢(#) = 2r — 1. They will be linear on [0, ] and [}, 1]. Draw graphs of
wy (1) and wa(?).

2. Express the wavelets in Problem 1 as combinations of ¢ (21), ¢ (2¢ — 1), $2(21), $2(2¢ — 1).
Whiat are the highpass matrix coefficients &, (0) and /&, (1)?

3. Display a 4 x 4 block of the analysis bank and verify orthogonality:

_| B0 k() | _| lowpass
block..[ Q) () ]_[ highpass ]

4. Find the matrix dilation equation for the C! cubics ¢4(f) and ¢2(¢) drawn in Figure 7.8. They
are combinations of C' cubics on half-intervals,

5. The Fourier transform gives what product formula to solve the matrix dilation equation ¢ (1) =

S22t — k)?



