Chapter 8

Finite Length Signals

8.1 Circular Convolution and the DFT

Our signals have so far had infinite length. We expected x(n) and £(z) to be defined forever —
for all integers n and all real numbers ¢. The data streams for audio signals are so long that this
model is very reasonable. Other applications (like image processing) have data streams of a
definite length L. Then the finiteness of the signal x(0), . .., x(L — 1) must be taken into account.

The immediate problem is filtering a finite signal. The computation of 3_ k(k) x(n — k) may
ask for x(—1) which is not defined. The purpose of extension is to define it. The difficulty is not
in the middle of the signal (unless the filter is IIR). The problem is near the ends. One possibility
i8 to change to a one-sided boundary filter. The end values of x are processed without crossing
the boundary. The other possibility is to extend the signal beyond the boundary,

We concentrate first on extending the signal, to define x(n) for every . Filtering this exten-
sion is equivalent to one particular set of boundary filters. Section 8.5 discusses boundary filters
in general.

A finite-length filter bank uses L inputs to produce L outputs. An L by L matrix must be
present. It is conceptually easiest to extend to an infinite signal, followed by ordinary time-
invariant filtering. The question is how to extend, and there are many possibilities:

1. Extend by zeros (zero-padding) (not studied)
2. Extend by periodicity (wraparound) (this section)
3. Extend by reflection (symmetric extension) (next section).

These three methods are applied in Figure 8.1. You notice immediately a very important point:

Zero-padding and wraparound generally introduce a jump in the function.
Reflection generally introduces a jump in the first derivative.

Section 10.1 shows the three methods applied to a filtered image. The sky at the top is de-
graded by zero-padding. Wraparound is better but a thin error layer is visible, Symmetric ex-
tension is the best,

264 Chapter 8 Finite Length Signals

zero - padding wraparound symmetric exlension

Figure 8.1: Three extension methods: zero-padding, wraparound, reflection.

W4=W8=l
2 3
1+W4+W4+ 4—0
1+ W, + w! =0
8 e 4 8.—.

Figure 8.2 The fourth roots of I and the eighth roots of 1. They add to zero.

We do not pursue zero-padding in the text. It chops off the infinite Toeplitz matrix H, with no
adjustment at the boundary. Wraparound is good if the original problem is genuinely periodic
or close to it. The filter matrix becomes a circulant. All indices are interpreted “modulo L.
The kth diagonal of the matrix contains k(k), and it wraps around to continue as the (¢ — L)th
diagonal.

All circulant matrices are diagonalized by the DFT. Therefore multiplications and inversions
are very fast, Convolution A # x is still multiplication of transforms H ()X (z) (with z% = 1).
In frequency this is the component-by-component multiplication ﬁ(k)’.?(k). The inverse matrix
exists if all E(k) # 0, and it is also a circulant,

These circulant matrices are so simple and useful that we take time out to explain them (and
also the DFT). Together they are a perfect match. Circulants have constant diagonals in the time
domain. They are built out of (circular) shift matrices. The transform to frequency domain is
executed at high speed by the Fast Fourier Transform, and we will put the FFT in a matrix form.
The Fourier matrix is a product of very sparse matrices.

The next section returns to the critical question of symmetric extension. Do we want period
2(L — 1) or 2L? The answer depends on the length of the signal and the length of the filter! We
hope those details will be useful.

Note 1 Other extensions are possible and interesting. Zero-padding could change to constant-
padding (almost as simple and more accurate). A more careful extension could have constant
slope. Section 8.5 shows how to fit a polynomial and extrapolate. In all cases we only need
to provide the filter with a few values (at most N values) beyond the endpoints 0 and L — 1.
Symmetric extension finds those values entirely by data addressing, without extra computations.

When it helps the understanding, we are free to assume that the periodic signals exist at all

8.1 Circular Convolution and the DFT 265

times —o0 < n < co. The essential problem is to implement a filter bank on a finite length sig-
nal, without expanding that length. Circular extension allows a probable jump at the endpoints.

Properties of the Circular Shift

The building blocks for time-invariant filters are the shift matrices S and $~'. All components
of a vector are delayed one step (by §) and advanced one step (by S7'). The building blocks
for circulants (cyclic filters) are cyclic shifts. Every component is delayed by S, except the last
component which comes around to be the first component.

The 4 by 4 delay takes components 0, 1, 2, 3 forward into positions 1, 2, 3, 4 — except that 4
becomes 0. Algebraically, we work “modulo 4”. Intuitively, our problem has period 4, so that
x(4) is the same as x(0). Here is §4 multiplying the vector x:

0 0 0 1 x(0) x(3)
1 0 0 0 x) | | x©

Sax=1 4 1 0 0 x2) | T | x (8.1
0O 0 1 0 x(3) x(2)

S4 is a cyclic permutation marrix. It has the same rows as I, in a different order. Those rows
are mutually orthogonal and they are unit vectors — so S; is an orthogonal matrix. The shift
matrices have very special properties:

I. The inverse equals the transpose. The Lth power of Sy is /.

2. The eigenvatues of §; are the L roots of 1 in the complex plane (on the unit circle in Figure
8.2). They are the powers of the number W = ¢*"!/L, They are also the powers of W =
W-) = o2/l

. . . , . , = =
It is convenient to list the eigenvalues in the clockwise order 1|, W, W, ..., because

W' = ¢~ */L fits into the Discrete Fourier Transform.

3. Corresponding to A = W is the eigenvectorx = (1, Wk, W2, . .). These eigenvectors
are the columns of the L by L Fourier matrix = DFT matrix = Fy. The entries of F; are
Wk = e2mink/L This matrix diagonalizes the shift (and all circulants):

F{'S.FL =Dy =diag(1, W, W, ... ®#.2)

We can quickly establish Properties 1-3, using S, as the example to work with:

times Sy = is SIS.t =1r

==
O o0 O
— o oo
00D -

An advance times a delay is the identity. This is true and useful on the whole line, with times
—00 < n < 00. Itis true here on the circle. The times are 0, ..., L —1, and they repeat. On an
infinite half-line, $1S, = I'is true but $,.ST = I'is not true! An advance ST will wipe out the
first component x(0), and a delay S, cannot bring it back. Real boundaries are distinctly harder
than periodic boundaries.

266 Chapter 8 Finite Length Signals

The fourth power of S, is the identity matrix. When we shift forward four times, the cycle
completes — we come back to the start. Always (S;)% = I. Here are Sy, 83, §2 = Sy !, and
Si=rI:

00 01 00190 0100 10 00
1 0 00 00 01 00190 01900
01 ¢ 0} 100 0] 00 01 6 0190
0010 0100 1 000 00 01

Properties 2 and 3 are about eigenvalues and eigenvectors. To find the eigenvalues, we nor-
mally solve det(S — L) = 0. For the L by L shift matrix, this determinant (see Problem 1)
yields the equation ' = 1. The eigenvalues are roots of unity, in agreement with the fact that
st=1

0 1
The determinant of 1 - 0 g is A-1.

0 0 1 —A

The four eigenvalues are 1, —i, —1, {. Those fourth roots of 1 are equally spaced around the unit
circle, at angles 37". %, 47"‘ %, In general the Lth roots are at multiples of the angle -zf-- Going
clockwise around the circle, we have the L powers of W = e~2"/% in Figure 8.2.

For the circular shift, we can announce the eigenvectors at the same time, The eigenvector
for A = lisjustx = (1, 1, ..., 1). The shift leaves it unchanged: Sx = 1x. The second
eigenvalue W has eigenvector x = (1, W, W2, ..., WZ1). Shifting brings W!~! = W~ 1o
the top:

1 wL-E
w 1
Circular shift of W2l W | = wolx =W
W.E.—l wi.—Z

Thus Sx = Wx as required. Similarly the kth eigenvalue A = W—* = W has the eigenvector
x= (1, WE W WDk Here is Sx = A

1 WDk
wt 1 —

Circular shift of | w2 is wk =W =Wx

We are making liberal use of the fact that W = 1. Now summarize;

Diagonalization of § by F, The eigenvectors of the shift § are the columns of the Fourier
matrix F. The matrix F~'SF is diagonal:

FISF=D and SF=FD and S=FDF. 3.3

D is the diagonal matrix of eigenvalues 1, W, W, ... For L = 4 these matrices are displayed

8.1 Circular Convolution and the DFT 267
in the multiplication S4F4 = FaDy, whose columns are Sx = Ax:
0001 1111 1111 o
1000 AN LI CO I B BT A L & .
0100 1 §2 ¢¢ ¢ | — 1 2 4 i 8.4
0010 | L A 1368 8° 7
S F = F D

The columns of F are orthogonal eigenvectors of S, with length /L.

Why are the eigenvectors orthogonal? The answer from linear algebra is: every real matrix
with the property S§7 = 878 has orthogonal eigenvectors. These are the “normal matrices.” In
our case S§7 =S§7S =1

A second answer is to verify orthogonality directly. The eigenvectors of S (the columns of
F) are complex even though S is real. Permutations like S generally have complex eigenvalues
and eigenvectors. Take the inner product:

1
w£
f{x£=[l WX] w2 | =l+z+2+ -+ =0.

Here z = Wk W¢. The sum is (1 — z%)/(1 — z). This is zero because zL' = 1 (remember that
WL = 1). So the eigenvectors of § are orthogonal to each other: FF = LI. We are ready to
move forward to circulants, via the DFT.

Discrete Fourier Transform and Circulants

An ordinary filter H is a combination of powers of the (infinite) shift matrix S. A circular filter
H;isa combmatlon of powcrs (wnh N« L) of the ﬁmte shlft matrix S, :

Ordmary ﬁlr.cr H E"" h(k)S" Clrcular ﬁlter H,, = Z,._o h(n)(SL)“

Hisa Toeplltz matrix and H Lisa cm:ufant matn.t Mulupllcauon by H is convo]uuon Mul-
tiplication by Hy is circular convolution,

For L = 4, the four powers of S4 were displayed earlier. They combine into a typical 4 x 4
circulant matrix Hy = (O + k(1)Sq + h(2)S2 + h(3)S;:

RO RG) KD k()

| r) ro)y RO RO

He=1 p m() ROy KO @.5)
h3) QY B hO)

Notice how the diagonals wrap around. We still have h(r) along diagonal n. In this circular
world 3 is the same as —1, so k(3) is also on diagonal —1. With periodicity we work medulo L.
Two numbers are the same (m = n mod L) whenm — n is a multiple of L,

Usually N is much smaller than L. We have a band of nonzeros below the diagonal, wrap-
ping around to the upper right corner (as in §). Otherwise H is zero. We give the properties of

268 Chapter8 Finite Length Signals

H and then the applications. The powers of S all have the same eigenvectors as S, so the key
to a circulant is its eigenvectors and eigenvalues.

Diagonalization of H; by F;. The eigenvectors of H; are the columns of the Fourier ma-
trix F;. The eigenvalues appear in the discrete Fourier transform (£(0), A(1), k(2),...) of the
coefficients (2(0), h(_l). h(2D),...):

Fi'H.F = H; = diag(h(0). k1), ..., R(L - 1)). (8.6)

Proof. Every time we multiply x = (1, W*, W2 ..) by the shift matrix S, we get one more
powerof A = W*. A combination of powers 8" produces the same combination of powers W

Hyx= (i h(n)S")x = (i h(n)W*")x =Bk, (8.7
0 0

The eigenvalues of H,, are exactly the components ff(k) of the DFT:

The eigenvalue for xo=(1,1,...) is AO)+AD+-..-= F(O)
The eigenvalue for x, = (1, W¥,..) is A(O) + A(DW + .- = Filk).

The matrix form HF = FH just gives these L equations all at once.

Example 8,1, Choose (0) =4, A(1) =1 and #(2) = 1. Take L = 3:

4 1 1 BO)=4+1+1=6
H= I: 1 4 1] has eigenvalues ?;(l) =4+ W+W' =3
1 1 4 B =4+ W +W' =3,

The eigenvalues are real because H is symmetric. The eigenvectors are orthogonal (of course).
The first eigenvector is (1, 1, 1). The other eigenvectors are (1, e*/?, ¢**/3) and its complex
conjugate. We could change to real eigenvectors (1, cos 3, cos 4F) and (0, sin &, sin
if we wanted to (both with eigenvalue 3). This is the option in the real case of using sines and
cosines, Everywhere weuse W* = land 1 + W + W2 =0,

Example 8.2. Chooseh(0) =4, A(1)=1, (2 =0, k() =1land L = 4:

4 1 0 1 BO)=44+1+0+1=6
|1 4 10 : 1) =442 4+0+i=4
H= 0 1 4 1 has eigenvalues Q) 41?4046 =2
1 0 1 4 h(3)=4+i+0+i%=4.

Again H is symmetric and the eigenvalues are real. Note the eigenvector (1, —1, 1, —1) corre-
sponding to A(2) = 2. The DFT matrix diagonalizes Hp:

For infinite signals y = Hx becomes Y(2) = H(z)X(z)
For length L signals y = Hx becomes ¥ = Hx.

Hx is a matrix-vector multiplication, Hiisa pointwise multiplication,

We now explain the finite Fourier transform ¥ and circular convolution. The vector x has
length L and so does ¥:

8.1 Circular Convolution and the DFT 269

Definition 8.1 The D:screre Founer Transfonn 0f XisX = F Lx Its components are

8.8)
The index »n correspor;ds to time and k corrcsponds to ftﬁ‘equenc; o
DFT[x(n)] = X (k) =%(k) IDFT[x(k)] = IDFT[X (k)] = x(n).
The inverse transform is x = FE].? = $Fx. Its components are
| Lo _
xm) = g”x"(k)ez’””*“. (8.9)

The DFT analyzes the signal into pure frequencies. The IDFT synthesizes it again. The exponent
is —2mink/L in (8.8} and 2mink /L in (8.9), just as the Fourier integral in continuous time has
e~ and ", Do not forget why the complex conjugate gives the inverse! It is because the
columns of F;, = FT are orthogonal. The inner products give a multiple of the identity matrix:

FoFp=LI and FFp=LI and F[=1F,. (8.10)

Dividing by L gives the inverse, like dividing by 2 in continuous time. The transform preserves
energy (apart from this factor L). This is the discrete version of Parseval’s theorem f [x(1)[?dt =
L [1X (@)dw :

Discrete Parseval theorem: |x||> = % %072 (8.11)

Thisis }_ |x(n))* = -}-: Y~ ¥(k)|?. It is based on orthogonality of the columns:

(r,x) = (LF./%, 1F,%) = L(RF) because F Fy = LI

The Circular Convolution Rule

Diagonalization by the Fourier matrix is true for all circulants. Therefore any multiplication Hx
can be done two ways, A direct matrix multiplication is a “circular convolution™. The indirect
way is multiplication by F;l, then the diagonal matrix D, then Fy. This is a transform to the
frequency domain, where H is diagonalized. This convolution rule underlies the whole theory
of filters: convolution in time < multiplication after DFT.

The circular filter y = Hx becomesy = H¥ in frequency. This comes from the diagonaliza-
tion F~'HF = H and the fact that FF = LI:

7=H% is Fy=@EF'HF)Fx whichis y= Hr.

In words, the diagonalization is a change of basis from time to frequency. In the frequency do-
main, the filter multiplies each ¥(k) by (k). We have agreement between a convolution Hx and
a pointwise multiplication Hx:

4 1 1 x(0) 6 x(0)
1 4 1 x(1) transforms to 3 T
1 1 4 x(2) 3 2)

270 Chapter 8 Finite Length Signals

For a specific example take

2 11 _12 2 4
x=| 1 and ¥=| 1 W W 1 (=] 1].
1 1 W w 1 1

Parseval’s identity says that 22 + 12 4+ 12 should be ¢ times 4% + 12 4 12, (6 is } of 18.) The
matrix multiplication Hx and the pointwise HX give

10 6-4 24
y=Hx=| 7 and F=H¥=| 3.1 |=]| 3
? TRk
Again Parseval’s identity checks: 10> + 7% + 72 = 198 is § of 24% + 3% 4 32,
Finally we display Hx as a circular convolution. One way is to extend x periodically. Then
ordinary convolution has periodic output 10, 7, 7 (repeated):

Periodic signal 21 1 2 1 1 2 1 1 1 1
Normal filter 1 1 4 1 1 4 1 1
10 7

Another way is to think of convolution as multiplication H(z)X (z). But in this circular case
z? =1 and z* = z. Therefore H(z) times X (z) is

@+z+2HQ+z+2% 8+6z+72+22 + 74 (ordinary)

10+ 7z + 722 (wraparound).

This is Y{z}. Therefore y = (10, 7, 7). We summarize the essential points;

The circular convolution of & with x = (x(0), x(1), ...)ish ® x = Hx.
All vectors have length L. The transform of y = b & x is¥(k) = ?;(k)f(k).

This convolution rule replaces the matrix multiplication Hx by the pointwise HX. We have
to transform & and x to the Fourier domain! And then transform ¥ back toy. So three DFT’s
and the L multiplications h(k)¥(k) replace one circular convolution — which is multiplication
by H:

47 _ [
h= 1 —h=] 3 N
[1 3 _ 24 10
- ST ¥F=hx= 3 - y= 7
[2] [4] 3 7
x=| 1 {->¥%¥=] 1 a

In the time domain Hx needs about N I multiplications. The N filter coefficients are used L
times each, Compare with three DFT steps, which are exccuted by the Fast Fourier Transform.
Each FFT requires only %L log, L individual steps. Transforming is worthwhile when N >
2log, L.

In matrix notation, F is the product of log, L very sparse matrices, involving only L /2 multi-
plications each. This FFT recursion connects the L-point transform to two copies of the %-point

8.1 Circular Convolution and the DFT 271

transform. It produces a matrix that is salf zero and two very simple matrices around it. Here is
the key to the FFT when L = 1024:

Fat .. i Dsn F.s.n . cw_m
FFT factors : Flm-—[I» —Dspy][Fs1s][odd] (8.12)

Is12 is the identity matrix. Dy, is the diagonal matrix with entries (1, W, ..., W3'). The key is
the two copies of Fs12 (which use W2, the 512th root of 1), The permutation at the end separates
the incoming vector into its even part ({ 2)x = (x(0), x(2), .. .} and its odd part (x(1), x(3), .. .).

This reduction from F; to two copies of Fp;; almost cuts the work in half. We only need
an extra 512 multiplications for D515, plus additions and permutations. The full FFT algorithm
keeps going, recursively. Each Fourier matrix Fs» is replaced by two copies of Fjsg, with di-
agonal matrices D356 and a permutation that starts with (§ 4). Since 1024 is 2'0, it takes only 10
steps to go from Fgyq to F! Maybe we don’t go that far, but we could:

F 04 is the product of 10 matrices with I's and D’s and a permutation.

The 10 = log, L matrices each require 512 = %L nmultiplications for the D's. So the total count
for the FFT is $Llog, L.

This simple idea changes (1024)? muiltiplications for the full Fig24 into 5(1024) multiplica-
tions for its ten sparse factors. That is a savings ratio of 200. Very rarely, perhaps never, has a
single algorithm produced such a revelution as the FET.

Problem Set 8.1

1. Find the determinant of §; — A and the eigenvalues of $,:

det (S4 — Ay = det

—i 0 0 1
1 i i 0

0 1 —i i
0 0 1 —-A
2. Each termin an £, by L determinant has one factor from each row and column, Why are {(—A)¢
and 1% the only possibilities in the determinant of §; — AF? Why not products of — with 1?

3. IfR(DY, ..., A(3) is the first column of the circulant matrix H and g(0), ..., g(3) is the first
column of the circulant matrix G, show that the product GH is a circulant matrix with first
colurn g & A. One approach is to diagonalize H = FHF ' and G = FGF~'.

4, Find the eigenvalues and eigenvectors of

.6~ i
H3= 1 6 -1 and H4=
-1 1 6

5.Ifx = (l‘, 1, 1) then Hyx = (6,6, 6). Find that answer from the convolution rule using
A(OYX(0) and A(DX(1) and R(2)¥(2).

6. Suppose the decimation operator (4 M) is applied to a pericdized signal of length L. How
many independent samples do we get if M divides L? 1T this occurs in each of M channels,
find the total number of subsamples. Why is M required to divide L?

-
= O
- =
S - -

272 Chapter 8 Finite Length Signals

7. Ontheinterval 0 < 7 < 1, draw the four Haar wavelets and the four (periodized) Daubechies
D, wavelets at scale level ' - These are the basis functions for the 4-dimensional space W,.

8. When is a circulant matrix invertible? The entries inits first column are (0}, ..., B(L — 1).
The transform of that column vector is (h(O) h(L — 13). The answer is in the transform
since H becomes a multiplication.

>

9. Write out explicitly the factorization (8.12) for the Fourier matrix F,.

8.2 Symmetric Extension for Symmetric Filters

Now we come to the heart of the finite length problem. A signal of length L will be extended ina
symmetric way. The extended signal is Ex and the filter produces HEx. If the filter is symmetric
(or antisymmetric), then the output HEx will be symmetric (or antisymmetric). Downsampling
yields (1 2)HEx. The extension must be chosen so that this subsample is symmetric. Then
we restrict attention to a piece of that subband signal, of length approximately L /2. (The exact
integer will be crucial.) 'Ihls restriction R yields the outpm fmm that channel

EE TR RN e

R (J' 2)H Ex (' esir 'wafl)(i 2) (ﬁlter)(exrenswu of x)

To repeat: A lmear phase sngnal convolved wn.h a lmcar phase ﬁlter has a linear phase output.
You can see this in the time domain by simple algebra. In the frequency domain, the linear ex-
ponents in the phase add and stay linear. The key question is whether the subsample has linear
phase, and what phase it has. We need to know the poins of symmetry at every step of R(} 2)HEx.

The advantage of symmetric extension is this. We may introduce a corner but we don't in-
troduce a jump. Wraparound creates a jump because generally x(L) does not equal x(0). With
the extension, x(2L) does equal x(0). So you should extend before wraparound.

The Discrete Cosine Transform (DCT) is an example of symmetric extension, But there is
no filter. It extends a block at a time, period. The DFT of the double block has onty cosine terms,
by symmetry. The DCT of Type I is the restriction back to the original block.

The DCT of Type IV extends even further, to period 4L instead of 2L. After computing the
DFT of a full period, we always restrict back to L coefficients. (More would be redundant, since
we started with L samples.) Section 8.3 will describe both types of DCT. The present section is
about extension and restriction of ordinary signals, before and after ordinary filtering,

Symmetric Extension and Symmetric Subsamples

One deciston becomes crucial for multirate filter banks. Do we repeat the first and last samples,
or do we not repeat? The results after the sampling operator ({ 2) are very different. We face a
question that does not arise for the DCT. Is the subsampled signal still symmetric? That require-
ment will govern our extension of the input signal. We will take up in order the key decisions
and the reasons behind them:

1. When to repeat the first and last samples (depending on N).
2. Where to start the subsampling (depending on L).

3. How many subsamples to keep from each channel.

8.2 Symmetric Extension for Symmetric Filters 273

The input is a set of L numbers x(0), .. ., x(L —1). The output is to be a total of L samples from
the lowpass and highpass channels. We must choose a method that gives exactly L nonredundant
ouatputs. Then we have a nonexpansive transform (a square matrix).

Repeating (H Extension) or Not Repeating (W Extension)

There are two symmetric ways to extend a signal that starts with x(0). Everything depends on
the choice of x(—1). We may take x(—1) = x(1), and then continue with x(=2) = x(2). The
“point of symmetry” is t = 0. When we do this atbothends, t = 0and ¢ = L — 1, the period is
2L — 2. This is called whole-point symmetry, and it is indicated by the letter W — not in italic.

This W extension corresponds to x{—t) = x(¢) in continuous time. In discrete time, it means
that the number x(0) is not repeated. At the other end, x(L — 1) also appears only once. All other
samples x{n) reappear as x(—n).

The other possibility is to choose x(—1) = x(0). The value at t = O is repeated at t = —1.
The point of symmetry is halfway between, at t = —%. The extension continues with x(—2) =
x(1). Figure 8.3 shows how this half-point symmetry produces a signal that has period 2L. Itis
sometimes referred to as a (2, 2) extension, to indicate the repetition at both ends. The extension
is symmetric about r = —% andt =L— % andt =2L— % This half-point symmetry is indicated
by the non-italic letter H.

wow

H

L]
1
1

Tpatlllnet . _Tientl [1eel .

012345 01234567

Figure 8.3: Whole-point symmetry (W) and half-point symmetry (H). The input has L = 4.
The periodis 2(L — 1) =6 or 2L = 8.

Which extension to choose, W or H? The answer depends on the filter length. The right
choice depends on whether the filter itself is W or H. A symmetric filter with an odd number of
coefficients, say 2(0), (1}, (D), is a W filter. The point of symmetry is the center point 1. A
symmetric filter with an even number of coefficients, say k(0), h(1), h(1), A(0), is an H filter.
Itis symmetric about the half-point % The H filter has repetition, k(1) = A(2), and the W filter
has whole-point symmetry with no repetition of the center coefficient.

The goal is to have a symmetric extension after downsampling, Then restriction step will
succeed. The subsampled signal (| 2)y = (] 2)HEx is always periodic, but it is symmetric only
if we follow the rule:

Use a W (no repeat) extension for a W {(odd length) filter.
Use an H (repeat) extension for an H (even length) filter.

Those rules both give a W extension for HEx. Downsampling preserves symmetry.
A mixture of H and W would give an H extension for y = HEx. Downsampling an H
extension goes wrong! Try it for y(2), y(1), y(0), ¥(0), (1), y(2).

274 Chapter 8 Finite Length Signals

The clearest way to justify this rule is to try to break it. Figure 8.4 shows the filtered out-
puts y == HEx when the extension and filter are of opposite types (one is W, the other is H).
Downsampling y will not produce a symmetric signal. Then the restriction of (] 2)y will fail.
We show only failure here because there are many variations of success still to consider. The
signal length L is going to enter soon (and L = 4 does not show all variations of failure either).

(2) (b)

L] 8

Trartileer DoewtHlaor

012210 01233210

Figure 8.4: H and W do not mix. (a} W extension and H filter (two taps) give H extension.
Downsampling yields 0, 2, 1 repeated. (b) H extension and W filter (three taps) give H exten-
sion. Downsampling yields 0, 2, 3, 1 repeated. These subsamples are not symmetric and re-
striction fails.

Length of Signal and Center of Filter

W extenston will be chosen for W filters (odd length, symmetric or antisymmetric). H extension
will be used for H filters. The next question is where to “center” the filter, and that depends on
the signal length L. The goal is a total of L nonredundant samples from the two channels.

We do not study a (1, 2) or (2, 1) extension, with one endpoint repeated, because the period
1s then odd. This cannot be used with (| 2). For an M-channel filter bank with odd M, new
possibilities appear: W can mix with H. A complete table of admissible extensions is in the
valuable paper by [Brislawn], which has been our guide. Earlier references are [SmEd, KiYalw],

Start with the W extension (no repeat of end values). The filter length is odd, and both anal-
ysis filters (lowpass and highpass) are symmetric. The extended signal Ex has period 2(L — 1).
Figure 8.5 shows L = 4 on the left with an extension of period 6. The filtered values y = HEx
also have period 6. Those y’s display a W extension (no repeats). Downsampling gives a sym-
metric extension. (It has to be (1, 2) because the half-period L — 1 is 0dd.) Then restriction
produces L/2 = 2 independent samples from each channel.

On the right side of Figure 8.5 is an odd-length signal (L. = 5). The filter has odd length
3. S0 a W extension of x leads to a W extension for y, after filtering. There are 5 independent
¥’s. By correct centering (in other words, correct phase) we get %(L + 1) subsamples from the
lowpass channel and %(L — 1) subsamples from the highpass channel. The analysis bank is
nonexpansive, producing L outputs,

In the time domain this analysis bank is expressed by an L x L matrix. Then the synthesis
bank (from biorthogonal filters) is expressed by the inverse matrix.

Now we go to an H extension (with repeat) for an H filter (even length). The extension has
period 2L. The lowpass filter will be symmetric and the highpass filter will be antisymmetric.
For simplicity we use the average — difference pair with coefficients % % and % —%. We still
aim for L nonredundant subband samples.

8.2 Symmetric Extension for Symmetric Filters 275

_ L=5 X(4)
L=4 LK) X(3) g
X(2) x| »
il Troer]
xm X{0}
TeesliTret, o [1,9
_uE y(0} y(2) y(2) y(®) “HE y(0) y(2) y4) y(2) y(O)
y=HEX " y) yi3) y(y=HEX " yq) y3) y® y()
R{ DHEx=y(®) y2) {low channel) R{ 2HEx =y(® y(2) y(®
R{ 2YHEx= y(1) y(3) (high channel) R(2)HEx= y(1} y(@3)

Figure 8.5: W extension and W filter yield y = HEx with a W extension. The samples (} 2)y
are symmetric and the restriction R succeeds.

On the left of Figure 8.6 is the case of even length L = 4 (four solid bullets). The extended
period is 8. The lowpass filter produces y’s and the antisymmetric highpass filter produces 2’s.
(This combination is required for biorthogonality with even length.) Now the centering makes
adifference. We can pet subsamples of the original size from downsampling:

R} 2yHEx = y(0), y(2), y(4) and z(2) (total L = 4)

Or, as we prefer, a change of center gives equal size samples from the two channels:

R (J2)HEx = y(1), y(3)andz(1), 2(3) (total L = 4)
L=4 L=5 I I
a1, et 11 Ih”:
Jow: Y03 WD ¥2) ¥ Y& YOI ¥ KD ¥ YD KD WD YA NE ¥ ¥H KD WD)
high: 0 zim z z® 0 -z -z -2 0z zH zwH wH 0 -z -z -2UH D

Figure 8.6: Even-length H filters with H extension. The filtered and subsampled signals have L
independent samples: L /2 from each channel on the left, (L 4 1)/2 and (L — 1)/2 on the right.

On the right of Figure 8.6 is a signal with odd length L = 5. The lowpass filter gives 6 inde-
pendent y’s. The highpass filter gives 4 independent z's. There will be 3 and 2 good subsamples.
It is natural to keep the same centering for the two channels. We may select y(0), y(2), y(4) and
2(2), z(4). Or selecty(1), ¥(3), y(5) and z(1), z(3). In all cases L independent subsamples are
returned by the analysis bank.

Problem Set 8.2

1. Show that the symmetric extension of f(r) from [0, =] to [—=, 0] gives a function Ef (¢} that
has no sine terms: [7_ Ef(¢) sinks dr = 0. Give a formula for Ef(¢).

2. Extend a function x (f) to have period L (wraparound instead of symmetric extension). Draw
the output from the centered filter A(—1) = (1) = % Rescale to 2¢ (period L/2) and draw
the output v{r).

276 Chapter 8 Finite Length Signals

3. Summarize the reason for choosing H extensions for H filters and W extensions Tor W filters:
We want the filtered valuesy = HEx to be W. If the filtered values are H, why does symmetry
fail for (| 2)y?

4. What is the difference in the z-domain between a W-extended signal and an H-extended sig-
nal? One of the extensions has X (z) = X(z~') and the other doesn’t.

5. Draw the W and H extensions of a signal x of length £, = 6. Apply a four-coefficient filter to
each, and indicate the full period of the filtered signal y. Which yields a satisfactory subsample
G2y

6. Draw the W and H extensions of a signal x of length L = 7. Apply a symmetric 5-coefficient
filter and indicate a full period of the filtered signal v. Which subsamples would you choose?

7. Suppose the decimation operator is ({ 3) instead of (] 2). How many independent samples if
X has length L, with W extension and then with H extension? The main requirement is that
the period (2L or 2L — 2 or even 2L — 1) should be divisible by M: Why?

8 Showthat Ex(r) = 3 % [F{t —2n) + f(2n —)] gives the symmetric extension with period
2 of a function x{r) defined on [0, 1].

8.3 Cosine Bases and the DCT

The Discrete Cosine Transform (DCT) improves on the DFT for the same reason that symmetric
extension improves on periodic extension. The symmetric extension is continuous. The periodic
extension generally has a jump. This section develops the DCT as an extension followed by the
DFT of size 2L followed by a restriction back to length L. There are Jour types of DCT coming
from four types of extension,

We start in continuous time, by extending f(¢) from [0, %] to [—m,). The symmetric ex-
tensionis Ef (£} = f(—¢) on [~m, 0] and then 27 -periodic. This even function Ef(t)isacom-
bination of cosines:

Ef(t)y = Zak cos ki,
0

The discrete analogue is the DCT of Type I or II. There is a choice between W extension and
H extension! We may define x(—1) to equal x(1) or to equal x{0). This chotce doesn’t arise in
continuous time, but the previous section showed its importance in discrete time.

There is another extension in continuous time. It is surprising and very important. We call
it EYY because it leads to the DCT of Type IV. Start again with £(¢) on [0, 7). The extension
1s even across the left endpoint 1 = 0, as before, but it is odd across the ri ght endpoint 1 = 7.
The extended (unfolded) function E'Y £(t) is drawn in Figure 8.7. It has period 47 . Thereis a
Jjump at t = n where the extension is odd. From the left side the graph approaches f(x), from
the right side the graph approaches — f (). This even-odd extension E is remarkably useful.

Notice that E'Y £ (¢) involves cosines of period 47 (they are cos £). But it requires only half
of those cosines, because the even frequencies £ = 2k have zero coefficients. These even fre-
quencies yield cos kz, which is an even function around 7 = x. The extension is an odd function
around t = 7, so the integral of cos k¢ times E™ £(¢) over a period is zero. We are left with the
odd frequencies £ = 2k -+ 1 and the basis functions cos & = cos {k + 1} r:

=

(8.13)

8.3 Cosine Bases and the DCT 277

E f(t) ENf)

pE

R N R e

RN

Figure 8.7: The symmetric extension E £ (¢) is continuous with period 2. The even-odd exten-
sion EWY £(1) is discontinuous with period 4,

Discrete Extension and the DCT-lI

The function f(¢) on [0, =] is now replaced by a vector (x(0), ..., x(L — 1)). We will extend
that vector and apply the DFT (the Fourier matrix Fy.) of doubled length 2L. The whole-sample
W extension is not satisfactory. By symmetry it creates x(—n) = x(n), extending the definition
to |n| < L — 1. This is 2L — 1 samples, and we do not want an odd number. It is better to use
the half-sample H extension, which repeats x(0) as x(—=1). The point of symmetry is —%, but
this inconvenience is smail. The symmetric H extension has period 2L, and we call it E'':

E%(-my=x(n—-1) for n=1,...,L. (8.14)

The Fourier expansion of Elx uses an ordinary DFT of length 2L. That has 2L basis func-
tions indexed by frequency k. The nth component of the kth basis vector is normally ¢27#"/2L
But we shift n ton + % in order to move the point of symmetry. The shifted signal is even around
zero, and can be expressed by L cosines. The shift brings out a factor ¢/*/2L | and the expansion
of the 2L-periodic signal is

el S wk(n+ 1
E'(m) = > ™ 3(k)cos % (8.15)
k=0

Orthogonality of the exponentials leads to orthogoenality of the cosines (not trivial to see). The
modulation factors e'*/2 of absolute value 1 just multiply the separate basis functions (indexed
by k).

The L x L DCT-II matrix in this cosine expansion has entries

2 wk(n+3)
CM(k, n) = b(k),[= cos -2/,
(k, m) = blk)yf 7 cos ——
The square root of % is included to make the rows of C! into unit vectors. So is the factor

| yVZ ifk=0
b(k)-{ 1 ifk=1,...,L -1

This is the familiar factor for the zero frequency k = 0 when the cosine stays at 1.
The key points about C™ are its orthogonality and fast execution, Those are proved by the
factorization (8.18) below. They follow from the connection to the DFT (and therefore the FFT).

278 Chapter 8 Finite Length Signals

Even—-0dd Extension and the DCT-IV

The even-odd extension E™ was applied to £(r) in continuous time. Its discrete analogue leads
to the DCT matrix of Type IV. This is the L by L matrix E'Y, with remarkable properties.

Again the original signal has L components x(z). This is extended evenly across n = —%.
with H symmetry, to a signal with 2L components. Then comes an antisymmetric H extension
to 4L components. Figure 8.8 shows the basic period of 4L, which repeats.

X *
X L 3
X []
' | |
X1 e) |
| ' |
—t—t - —
| ') Dy
-L -1, 0 L—1], X 1 X 3L-1
I | '
1 | X ¢ X
X X
X X
Figure 8.8: x'V(n) is even across # = —7 and odd across n = [~ §. Here L = 4,

The basis functions for E'V £(z) in continuous time were cos(k + 1)t. Those came from odd
frequencies £ = 2k + 1 and from period 45. The basis functions in discrete time have peried 4L
and the same odd frequencies £ = 2&+-1. There is also the shift from » to n + % which moves the

point of symmetry to zero and the point of antisymmetry to L. Then the basis functions appear
in the L x L DCT-IV matrix

F+ L 1
CVik,n) = \/% cos MJI_Lﬂl (8.16)

Notice the good properties of this matrix. It is symmetric. It needs no b(k) to insert +/2 into
a zero-frequency term. Its columns are the even-odd basis vectors, and Figure 8.9 shows the first
four vectors in the C basis of length £ = 32. The DCT matrix also has orthogonaliry and fast
execution, because of its direct link to the DFT matrix of order 2L — which we now explain.

Matrix Factorizations and Orthogonality: DCT-II and DCT-IV

By shightly adapting Wickerhauser’s very neat exposition [W, pp. 90-96], we can achieve three
useful purposes at the same time:

1. Include the discrete sine transforms: DST-II and DST-IV
2. Prove the orthogonality of all four transforms:; DCT and DST, Il and IV

3. Show explicitly how these four transforms connect by
extremely sparse matrices to the DFT matrix Fo; .

8.3 Cosine Bases and the DCT 279

[.
U

Mol le ol
R T

Figure 8.9: The first four basis functions of the DCT-LV, for M = 32.

These results come directly from two matrix factorizations, which we will display but not prove.
A MATLAB exercise verifies their correctness for each L. You will notice that the DCT-IV and
DST-IV formulas are cleaner, except for the multiplier e~/ from the shift by 3. Type Il must
assign 1/ ~/2 to the zero frequency DC term. Here are the formulas that prove everything.

v
Factorization IV: ¢ "/“R'FyR = [C —fs“'] (8.17)

=T c!
Fuactorization II: P Fy O = [s] (8.18)

All matrices on the left are square and orthogonal of size 2L. Then each block on the right is
square and orthogonal of size L. The sine and cosine transforms preserve length (discrete Par-
seval identity as for the DFT). Note that R is only transposed while P is also conjugated.

It remains to display the sparse matrices, with at most two entries in each column and row.
J is the reverse identity, with 1’s on the antidiagonal. The combination of I and J gives the Gray
ordering in (8.21). The matrices R and P clearly have orthogonal columns, and the division by
/2 yields unit vectors:

-1 1 -
w w
R= L Wil WL—] Wi
ﬁ WL _w.L
w? -w?
W -W .
_ \/i 0 -
w W
P—L wi-t wi-1 0 0= 1 [I ’]
T2 0 iv2 |’ “2ld T
WL—l _WL—]
0 W -w]

280 Chapter 8 Finite Length Signais

Summary: We now have two discrete cosine transforms, II and IV. There are two further
types, I and 11, from W extensions. Those are definitely less useful. If we omit the +/2/L nor-
malization for simplicity, the DCT-II and DCT-IV transform a length L input signal into vectors
X"and X™V:

L-1 1
XU = b)Y x(n) cosgiz)—lﬂ (8.19)
n=0
Lo 1 1
XY@ = Y x(m) cos (”+2)£k+2)”. (8.20)
r=0

Malvar describes the DCT-II as better for transform coding. The DCT-FV is good for spectrum
estimation and adaptive filtering. For us the key point is the efficiency of the algorithms.

Several implementations are possible and we describe them briefly, for even L. First we
connect each DCT to the DFT. Then we connect DCT-II to DCTIV,

DCT-1l via DFT. The trick is in this reordering of x(n) (the Gray order):
yn)y=x@2n) and y(L —n— D =x2n+1) for n = o1,..., % - 1. (8.21)
Now take the DFT of y(r). The DCT-II coefficients are

) = 00 XX Refpity) — sin X
X" (k) =cos 5L Re[¥(k)] — sin 5T Im[¥(k)]. (8.22)

The numbers X"(k) and X"(— k) come from a plane rotation by 2L, Each step (permutation,

DFT, rotation) preserves vector length. Again, an orthogonal matrix.

DCT-IV via DFT. The same reordering and modulation will create % complex numbers
e(n) = (¢(2n) +ix(L — 1 — 2m)) ¢ H+DA/L, (8.23)

Now follows the half-length DFT. The kth output is multiplied by e=*%/L_ Then the real and
imaginary parts of these -'2= complex numbers give the DCT-IV coefficients X' (k).
Since codes are available, we imitate the simplified block form of Malvar:

Re Re
DFT

x(n) — —(?- L2 —(?— X (k)

Im Wg'' Wi, Im

The algebra behind this algorithm is expressed in two lines, which require superthuman patience.
The first line separates even and odd components x(n):

5-1 1 1
XV = g [x(Zn) cos 22+ z)ék +3)7

+x(L —1-2n)cos (L—l—2n+%)(k+%)n’:l‘
L

8.3 Cosine Bases and the DCT 281

Replace cosines by exponentials and x's by ¢’s. Then separate into the real and imaginary parts
of an £-point DFT times a modulation, for a fast DCT-IV:

L1

XT(2k) - Re -Hm!Lr —dimkn/L
XV(L~1=-2¢) = —Im ¢ ;0(")8] (8.24)

DCT-1I via DCT-IV. Finally we show that X" of length L is immediately available from a
DCT-II and a DCTIV of length % Recursively, this produces X% from a sequence of DCT-
IV’s — whose fast computation was just given. The reduction of X® comes by rewriting (8.19)
in the form II plus IV:

5-1 1
X"(k) = bik) E [x(n)} +x(L — 1 —n)]cos _(n -;/Zz)kn'
- (8.25)
g1 1 '
+) [x(n) —x(L — 1 —n)]cos (r+3)6 232(;24- i
n=0

This recursion to a shorter DCT-II and DCT-IV was known early. It requires only human
patience to verify. When a fast DCT-IV was not available, the connection was useless. Now the
DCT-1V algorithm gives a unified approach to the two most important versions of the discrete
cosine transform.

In closing we emphasize two points. First, orthogonality of the DCT coines from extension
followed by DFT followed by restriction. Second, there are still blocking effects from the limited
smoothness. Symmetric extension is a big improvement on periodicity. The next section shows
how to smooth the basis functions much more.

Problem Set 8.3

1. Find the DCT.I1 and DCT-TV transforms of the signalsx = (1, 1, I, D andx = (1, -1, 1, -~1).
2. Find the DCT-II and DCT-IV transforms of the signals ¥ = (1,0,0,0) and x = (0, 1, 0, (.
3. Show that the Gray reordering y(r) in equation (8.21} transforms (8.19) into

a(4n + 1k

L=1
n -
2P (k) = b(k) ;y(n)oos T

4. Write out explicitly the 2 x 2 and 3 x 3 DCT-1I matrices and show that they are orthogonal.

5. The DCT-IV matrix has entri¢s Ci, = cos[F(k + $)(n + 3)). Write down this symmetric
L x L matrix for L = 2 and 3. Verify that columns 0 and 1 are orthogonal.

6. Execule this MATLAB verification of (8.17-8.18), connecting the DCT-DST-DFT:
L=16; i=eyel(l): k=(0:L-1); n=k’;

detiv=sgqrt(2/L)*cos{(k+1/2)*(n+1/2)*pi/L}; ® orthogonal dctiv matrix
detiissqrt(2/L) *cos (k*(n+1/2) *pi/L};

detii(l, :)=sqre{l/2)*detii{l, :); % orthogonal detii matrix
dit=sqrti{l/{2*L)}*fft{eye(2*L}); % orthogonal dft matrix
Q=sqrt(l/2)*[i;i(L:-1:1,:)3; % 0 matrix

W=exp (sqrt{-1}*pi/ (2*L)}; Wb=conj (W); % W=2L-th root of one

cuc Chapter 8 Finite Length Signals

pl=diag{[sgrt(2)*W.” {1:L-1)]): % P matrix
p2=diag((Wb." {1:L-1)1);

P=sqrt(1/2)*[pl;zeros(l,L); [zeros(L-1,1) p2(L-1:-1:1,:3)1;
=P *dft*Q; % dft to detii mapping

ri=diag{Wwh." (0:L-1})); r2=diag(W." {L:L});

R=sgrt{l/2)*(rl;r2({L:-1:1,:3]; % R matrix
z=exp (-sgre{-1)*pi/ (4¥L)); % z=conjugate of 4L-th root of one
d=real {z*conj (R) * *dfL*R); % dft to dctiv

% conj(x’} gives x* without conjugate!
max {max{abs{c-detii))} % peak error, should be VERY small
max (max (abs (d-dctiv))} % peak error, should be VERY small

8.4 Smooth Local Cosine Bases

To “localize” a cosine, just multiply it by a real window function g(¢). Windowing is the central
idea of the Short Time Fourier Transform (STFT). When we use e~ rather than cosines, this
is the representation pioneered by Gabor:

[na]
The windowed transform of £(t) is F(w,a) = f F0g@ — a)e " dt. (8.26)
-0
Note the two variables w = oscillation frequency and a = window position, We have a time-
Jfrequency plane, in the same way thatk and j for the wavelet w (271 — k) place us on a time-scale
plane. With all frequencies e and all positions a, we expect redundancy in F(w, a) and cannot
expect orthogonality. Nevertheless £(2) can be recovered:

The inverse windowed transform is f{t) = C, f F{w,a)g(t — a)e'dt da.

The constant C, depends on the window. This STFT is competition for the continuous wavelet
transform. Both are described in Section 2.6.

With discrete frequencies and positions, we have an oscillation (a cosine) inside a modulat-
ing envelope (the window). When the window is a simple box, each block is independent. A
compressed image looks as if it is built of tiles. This blocking effect is reduced by filtering and
by smooth windows, but ringing often persists and the result is not perfect. The DCT was estab-
lished as the JPEG standard in 1992, after six years of work by the Joint Photographic Experts
Group. But the technology continues to move forward.

This whole construction has recently been made sharper, in order to obtain an orthonormal
basis. Specific frequencies and specific windows are chosen, and this is what we want to ex-
plain. The frequencies involve the factor k + % that is responsible for the even-odd symmetry of
the extension E™V and the discrete DCT-IV. Requirements are imposed on the windows to give
orthogonality where one window overlaps its translate. This is not orthogonality of the win-
dows alone or the cosines alone, but orthogonality of their products g, (t) fork = 0, 1, ... and
—00 < 1 < 00

%o)ar(: -m].
[vi

(8.27)

n,n'+ 1]. We have the basis
functions (8.13) of the even-odd extension. They are the continuous analog of the DCT-IV basis.
Moving to smoother windows g(r — n) will reduce the blocking effects at the box edges.

8.4 Smooth Local Cosine Bases 283

A more general form, very useful in applications, allows windows of varying length. The
time line is divided into unequal intervals [#,, ,.1]. There is a window function g,(¢) for each
interval. It equals one on an inner interval, and it drops toward zero as it passes #, and t,41. The
window reaches zero well before £, on the left and ¢, on the right. This function g,(f) over-
laps only its two neighbors g, (t) and g, (¢). We mention immediately one key requirement
for orthogonality of the basis:

D @) =1 (8.28)

The cosines within the window still have the even-odd symmetry associated with DCT-IV.
They are ever when continued across the left end 1, of the window, and they are odd across the
right end 7. This symmetry leads to orthogonality, when the windows have even symmetry
at both ends and satisfy }_ (g, (1))? = 1. The more general form of the basis functions is

1
Znk (1) = ga(t) cOS w. (8.29)
tn+l — I
This reduces to the previous form when #, = n and the window lengths are equal and the win-
dows are translates of one window g(f).

Varying window lengths is an extremely important advantage in speech processing., We at-
tack and hold phonemes for very different lengths of time — and the waveforms in those inter-
vals are very different. We indicate below how the windows lead to an otthogonal basis g,.(¢) in
this nonuniform case also. For simplicity of exposition, we concentrate first on the equal-interval
construction of (8.27), which is important in discrete time too.

This section analyzes cosine windows in continuous time, The next chapter will study co-
sine-modulated filter banks in discrete time.

The Window Functions

Start with a single window g(r) and its translates g(¢t — n). This window function is supported
on an interval [—a, 1 + a] that stretches beyond [0, 1]. If the extension lengthis a < % at both
ends, g(#) will overlap only its nearest neighbors g(+ — 1) and gt + 1).

The window rises from zero at t = —a to one at £ = @. Here is a continuous rise:

{
g(t) = sin [%(1 + E):I for —a<t=<a.

Att = —a this is g(—a) = sin0 = 0. At¢ = a the window reaches g(a) = I. The window
continues with g(¢) = 1 on the inner interval [a, 1 — a]. At the right end g{t) drops to zero in
the same way that it rose. Then the window is symmetric around its center point ¢t = -;-, and the
reflection t — 1 — ¢ leaves it unchanged:

1—1¢
g(t)=sin[-g-(l+-a—)] forl—a=<t=<l+a

We have drawn this g(¢) in Figure 8.10. The overlap with g(¢ — 1) is crucial. The key prop-
erty in that overlap region is

2 2_ a2l Tt Lo | T IAYS
(g(t — 1))? + (2(t)? = sin [4(1 a)]+sm [4 (1+a):|_ 1.

284 Chapter 8 Finite Length Signals

oar

0.8

o4

02

15

Figure 8.10: The window functions g(r) and g(r — 1) for a = 0.25 (left). The basis functions
of the local cosine transform for k = 1, 4 and 7.

This is really (cosine)” + (sine)* = 1. It leads directly to 3" (g(¢ — 1)) = 1 for all time. Away
from the overlap intervals, a single window has unit height and all other windows are at zero.

This particular window can be made smoother. Replace ¢ in its definition by sin %=. The
derivative g'(¢) has a factor cos -’25‘;‘- from the chain rule, and that factor is zero at ¢ = +a. Each
repetition of this step introduces one more continuous derivative in g(¢). (We do not know of
a careful search for an optimal @ and an optimal window.) Allowing for unequat spacings and
varying windows, the requirements at the overlap around ¢ = 1, are

(1P + (@Y =1 and gui(t) = ga Rty — 1) for |t — 5] < ay. (8.30)

In the time-invariant case, with uniform spacing, a fixed window g(¢) is shifted to g, (¢) = g(t —
n). The conditions (8.30) around n = O and #, = O apply at every 1, = n. These are the
conditions that we work with first:

U+ DY+ @)’ =1 and g +1)=g(—1)fort| <a. (8.31)

Local Orthogonal Bases

Suppose the window g(¢) is a box on [0, 1]. The basis functions cos{(k + -'z-)m‘ are orthogonal
within that box. They are even functions around # = 0, where the cosine equals one. They are
odd functions around t = 1, where the cosine of (k + %)ﬂ' equals zero. The main point is that
we can smooth those windows and retain orthogonality. The first author learned the proof from
lectures at MIT by Stéphane Mallat, which will lead to a book on time-frequency resolutions
including wavelets [Mt].

Theorem 8.1 The functions g (2) = g(z~n)cos [(k + 1)m (¢ — n)} are an orthogonat basis
for L*(R).

Proof. The function go(¢) is centered on [0, 1] and extends over [~a, 1 + a]. On the interval
to the left, g_;¢(t) is centered on [—1, 0] and reaches as far right as t = a. The two functions
overlap on the interval [—a, a), where

gok(r) g-1¢(t) = g(1) g(t + Vycos [(k + 1) me] cos[(£+ m(e + 1)]. (8.32)

8.4 Smocth Local Cosine Bases 285

We must show that the integral is zero and “the tails are orthogonal”.
The product g()g(t + 1) = g(t)g(~t) is an even function around ¢ = 0. So is the cosine
of (k + %)m. The second cosine is odd, because the addition formula for cosines gives a sine:

cos[(¢+ 1)x(e + D] = —sin[(€ + L)x¢]sin[{¢ + D=].

The reader notices that the key is in cos(£ + %)n = 0! Then the product (8.32) is odd and its
integral over [—a, a] is zero. This proves orthogonality of any two g,;'s with different n’s.

Now consider got(£)gos(r). Both factors are centered on [0, 1], with different frequencies.
Define the product of cosines Cie(¢) as cos [{k + 3) m¢] cos [(€ + 1) m¢]. Then Cre(r) is even
around ¢ = 0 and also around ¢ = 1. (Odd times odd is even.) The other factor is (g(2))*. At
the left end, the key is that (g(¢()? + (@(—))? = 1:

]

(8(1))* Cre(t) dt fo (B(—))* Crelt) dt + fo (8())) Cre(t) dt

f Cre(£) dt. (8.33)
0

Around the right endpoint we use (g(t))2 +(g¢-D¥ =1:

1+a 1
f (8UN Cre(P) dr = j; Cre(t) dt. (8.34)
1—a -

The center interval {a, 1 —] has g(t) = 1. Again we are integrating Cy(¢), the product of
cosines. Orthogonality of the cosines on [0, 1] gives orthogonality of g(¢) times cosines on the
larger interval. Combme (8 33) and (8. 34) to see that g(r) dlsappcars

l+a

f (8(‘))2 Cre()dr = f Cuel)dt = 36(k —). .

{8.35)

This proves that the local cosines g (t) are orlhogonnl The mtegral on the left can go from
—00 to 0o, since g(r} is zero on the rest of the line. It remains to prove that the local cosines are
a basis for L2(R). How do we express an arbitrary £(7) as a combination of 2 (1)?

The ordinary cosines cos [(k + $} r¢] are an orthogonal basis on [0, 1]. We “fold” the func-
tion f(¢) into this interval, creating A(z):

8@ f()+g(=1)f(—1) on [0, a)
Folding = k() = { f(1) onla,1—a)]
g fe)—g2—-0f2—1) on[l=-a,l]

Within [0, 1] expand k(¢) in the basis cos (k + 1) 7. Those cosines extend k(r) outside [0, 1],
keeping it even around ¢ = 0 and odd around ¢ = 1, These symmetries are built into the defi-
nition of (¢), so there is no change in formula on the larger interval [~a, 1 + a). Multiplying
by g(¢) tuns h(r) = combination of cosines into g(t)a(t) = combination of go(t). Here is
g)h(r).

(8())* £t) + g()g(=1) f(=1) on {—a, a]
gOr® =3 FO on{a, 1 —a)
BO) f()—g®g2—-0f2—1t) on(l~a,1+a)

286 Chapter 8 Finite Length Signals

A similar step takes place on the interval [—1, 0]. Replace ¢ by ¢ + 1 in ali formulas. Then
h_1(t} is defined from f(¢) and expressed as a combination of cosines. Multiplication by the
shifted window gives g{t+1)A_,{(?) as a combination of windowed cosines g_,, while g(£)A(t)
is produced out of gor(t). All we have to check is that on the overlap interval [—a, ¢], the sum
gh() + gt + Dh_((r) adds to f(r). Since g(r + 1) = g{—¢) in the overlap, we have it:

@ON? F(O)+ M= (=) + (@(=D) f(1) — g(—Dglt) f (=) = f (o). (8.36)

Thus every f(¢) is a combination of local cosines. Those are an orthogonal basis. Theorem
proved.

Note that g(z)a(¢) is the even part of f(¢) around ¢ = 0, and g(z + 1)k_;(t) is the odd part.
Equation (8.36) is simply (even part) + (odd part} = f(¢). An early construction by Wilson
alternated cos kx ¢ in one interval with sin ¢ in the next interval. The cosines are even at both
ends, the sines are odd at both ends, and each overlap interval again has even and odd — which
gives orthogonality and reproduces f(t) as above.

The proof also yields a fast algorithm. To expand f(r) in the local cosines, we expanded
h(r) and h_,(t) in ordinary cosines on [0, 1] and [—1, 0], So compute those coefficients by, and
b_1¢ by a fast DCT-IV. The same computation on other unit intervals gives all coefficients in
F(®) =)_ buggne(t). We record this fact for the basic interval [0, 1] and the coefficients bg:

oo l
2o = | fU) goe(t)dr = f Rt cos[(k + 3} me]dr. (8.37)
—00]

The local cosine coefficients of f(t) are the ordinary cosine coefficients of the “folded” function
h(t). The normalization by 2 comes from (8.35).

Unequal Spacing and Different Windows

The analysis was simplified above, by assuming all windows to be translates g{t — n) of a basic
window. This is not necessary. The construction allows different windows g, (¢) on intervals of
different lengths. The time variable ¢ — # in the cosines can become (f —) / (t441 —). The
functions g, (¢) still provide an orthonormal basis,

The changes are easy to indicate, and their confirmation is a good exercise. The window
&x(1) in Figure 8.11 extends from f,, — a, to £y + @41 The previous window g,_;(¢#) ends at
i, + ax, and on the overlap interval the requirements are (8.30). The condition a, + @, <
a1 — tx avoids any overlap of g,_(¢) with g,41(¢f). This is the non-uniform equivalent of
2a < 1. Then we have 3" (g,(1))* = 1 as desired.

The local cosine coefficients by of an arbitrary f(¢) are still the ordinary cosine coefficients
of folded functions h,(t):

omieo e [
-0 bl — I tn tagl — I
(8.38)

The latter integral moves to the interval [0, 1] and is quickly computed by the DCT-IV. The
folded function is

e f W)+ g1 () f Qta — 1) on [, t, + a,]

ha(ty =1 f(O on [tx + @u, tast — Ang1]
g} f () — Enr1(1}f Ctayy —1) on [rn+l = dn+1s IrM+l]

8.4 Smooth Local Cosine Bases 287

n+l

ln+l"a o+l ! n+]l+a' +h
Figure 8.11: Window g{¢) and its non-uniform translates at 1, and ¢, ;.

This even-odd folding matches the even-odd property of cos(k + %)n’ . An even-even extension
would fail! (Unless it is alternated with odd-odd.} The construction is neat and efficient, and
must be regarded as strong competition for wavelets. A fully detailed description is given by
Wickerhauser [W]. It has a close relation to wavelets, as we now indicate.

Sinc wavelets and Meyer wavelets The local cosines give a splitting of the time axis. The
sinc wavelets are also local cosines, but on the frequency axis. Remember from Section 2.3 that
the sinc wavelet and its Fourier transform are

sin2at — sinsme

w(E) = B G (2) — ¢(2)
- _ 1 form <|w| <27
ww) = 0 otherwise.

When the wavelet is dilated and shifted to w (2/¢ — k), its Fourier transform is moved to the
interval 2/7 < |@| < 2/*'xw. 1t is modulated by exp {~iwk/2/). The transform becomes a
local cosine, or rather a local exponential. It is not smooth in w because the wavelet w(¢) does
not decay quickly in time.

Note that the order of accuracy is p = oo! The transform is infinitely flat at = 0 and
@ = 7. (The scaling function is a box function in w, the ideal lowpass filter.) This corresponds
to the spectral method in the numerical solution of partial differential equations, which also
achieves p = oo. Finite differences and finite elements have finite p, like FIR filters. An in-
finite value of p can only be achieved by functions ¢ (¢) and w(¢) with infinite support. They
are nonzero on the whole line, but the simplest sinc construction has slow decay.

Smoothing the local cosines (in @) will produce faster decay (in ¢). This leads to the Meyer
wavelets, which are windowed in frequency. The window can have infinite smoothness in w, so
the time decay can be faster than any power of ¢. The orthogonality of the sincs is maintained
by the conditions on the windows. But windowing in time (to get smooth local cosines) is more
practical,

Biorthogonal Local Cosines

Every wavelet construction becomes more general when the orthogonality requirement is lifted.
The same is-true of local cosines. For biorthogonal bases, the sum of squares S(¢f} =
¥ % (g(— n))? of window functions is not necessarily one. Then a dual window is defined by

o

B0 =G

(8.39)

288 Chapter 8 Finite Length Signals
The dual basis functions are the local cosines using the dual window:

Ent(t) = 2(t — n) cos [(k + %);; @ -m)

[Matv] gives a nice discussion of biorthogonality of the dual bases. This follows directly
from orthogonality with window functions gomn(r—n) = g(r—n)//S@) onthe intervai[-1, 1].
The reader sees immediately that the sum of ggnh(t —n)is S@)/S() = 1.

The condition number of the dval bases governs stability. This number is one for an orthonor-
mal basis (using the earlier windows g(t — n)) and greater than one for a biorthogonal basis
(using g{z) and g(1)). The condition number naturally depends on the distance of S(¢) from 1.
Matviyenko shows how to construct windows with Smax(#) < 2S5nin(¢). They give better com-
pression than the orthogonal local cosines, and stability is well in control, He carries out an
approximate optimization of g(t) for the compression of sinusoids cos{wr + «) of arbitrary fre-
quency and phase, and tabulates the resulting windows. The graphs of g(¢) show a double peak
which looks more alarming than it is,

The main point is freedom versus constraints, in the choice of window as in the choice of
wavelets. Freedom gives the possibility of smooth windows. Constraints make those windows
successful. A possible constraint is accuracy: to reproduce exactly a constant function (or all
polynomials of degree less than p). We can further limit the search to functions g(f) =
Y ercos[(k + 3) 7] around r = 0, and ask for maximum smoothness at ¢ = . This leads
to “spline windows.” The real tests of coding gain and compression are still ahead.

Note. The folding operator is defined above by k() = Ff(t). There is also an unfolding
operator. When they use the same window, these operators F and U are ransposes. The plus
sign and minus sign on the first and third lines of /(t) are reversed for the unfolded u(¢) = Uh(s).
When F and U use dual windows g(¢) and g(z), these operators are inverses. When they use
the self-dual windows that have S(¢) = 3" g*(r — n) = 1, the operators are both transposes
and inverses. Therefore they are unitary operators. The families {F,} and {¥/,} which fold and
unfold around ¢ = » (or more generally ¢ = 1,) are the foundation for a full theory of smooth
local cosines.

Jawerth, Liu, and Sweldens point out that in image compression, folding can be seen as a
preprocessing step for JPEG. Tt is a generalized extension. The extension can be even or odd,
symmetric or antisyminetric, and it changes the signal also inside the basic interval. The over-
lapping intervals allow perfect reconstruction — orthogonal or biorthogonal — of the signal.

Problem Set 8.4
1. Why does the linear rise g(r) = 3 {1 + £} in the interval [—a, a] not lead to orthogonality?
The problem is not lack of smoothness.

2. A rise function can be written as g(r) = sin {0 (£)). Here 8(—1) = 0 and 8(1) = Z. Show
that (¢} + 6(—() = § assures (2())* + (g(-1))* = L.

3. Compute a cubic spline 8(¢), increasing from 8(—1) = 0 to #¢1) = Z, that meets the require-
ment in Problem 2.

4, (Thesis project) Experiment with several uniform windows g{(r) and several overlap lengths a
to optimize compression. Compare with the blocking effects from a window box.

8.5 Boundary Filters and Wavelets 289

5. Find the parity (even or 0dd?) of the function sin (k + {) w¢ around the endpoints of [0, 1).
This is the sine-IV basis used in the DST-IV transform.

6. Show that the conditions on the vniform windows g{(f —) can be writien as

g +8=n=1 -4
g) =gl =1 ; =
g(ny=10 elsewhere.

=

1A A
ol ri—

This yields g(¢r) = 1 in [a, 1 — a] where there is no overlap.
7. (a) Draw a linear function f(f) on [0, 1) and its folding h(f) = Ff(1).
(b) Draw a linear function 4(¢) on [0, 1} and its unfolding wu(#} = Uk{r).
8, Explain (8.34) by following the proof of (8.33).

8.5 Boundary Filters and Wavelets

The striking fact about FIR filter banks is that the banded analysis matrix has a banded inverse.
That inverse is the synthesis matrix.

Banded matrices correspond to FIR filters and compactly supported wavelets. The basis
functions have finite length. The matrices may even be orthogonal. The question is how to main-
tain these properties at a boundary, by adding new rows and new functions:

Boundary filters are the “end rows” of an L x L filter matrix Hy .
Boundary scaling functions and wavelets are the “end functions” of a basis.

If we construct boundary filters, the dilation equation yields boundary functions. The reverse
direction also succeeds. The functions have dilation coefficients that go into the filters. All con-
structions are in the time domain, because transform methods have major difficuity at bound-
aries. We begin with boundary filters (completing a matrix) and then create boundary functions
(completing a basis). Those are really equivalent.

The matrices begin with the lowpass Hy and the highpass H;, subsampled. These are infinite
1 x 2 block Toeplitz matrices. The rows have a double shift from (| 2). We interleave the filters
(\ Hp and (1 2)H, to produce 2 x 2 blocks. Then there is an ordinary Toeplitz shift of one
block between rows of Hy:

ho(N) ho(N-1) ... ho(1) ho(0)
| W™ m@-1 . hi(1) hy(0)
b Ro(NY ho(N =1 -« o k() ho(0)
BNy B(N-1) - . B} RO

Chapter 9 will have M filters and () M). Then H}, has M x M blocks.

The synthesis filters have Fo(z) = Hi(~z) and Fy(z) = —Ho(~2). In the orthogonal case,
Fp is the ordinary flip (the transpose) of Hy. Therefore H is the alternating flip. The key point
is that both polyphase matrices, H,(z) in analysis and H;' {2) in synthesis, are polynomial. The
determinant of H,(z) is z~, by the halfband condition on Hy(z)H;(—z) that makes everything
work.

r

290 Chapter8 Finite Length Signals

When signals have finite length L, the infinite matrix H), must change to L x L. We assume
that L > N and probably L > N. Then the “middle” of the matrices is not affected, but the
“ends” will be new. We have te choose those end rows — the boundary filters in the L x L matrix
H. The first question is whether FIR boundary filters can yield H-'H = I.

The answer is yes. The inverse matrix stays banded. Then the problem is to choose among
boundary filters. We will indicate some reasonable choices, but more experiments and experi-
ence are needed. This is a research problem of great interest.

In the orthogonal case, the boundary filters are to preserve H' H = I. The middle filters
(interior filters) have this orthogonal property — the middle is unchanged from H? H, = I in
the infinite case. We have to be sure that the new end rows of H and the new end columns of
H~! have limited length < N and not full length L.

Wavelets have similar difficulties. When ¢(t — n} and w(r — n) fall across the boundary,
they must change. This happens at each scale, and the multiresolution Vp C V; C - - - should be
maintained. The boundary functions are to be combinations of internal functions and boundary
functions at scale 2¢. The shapes are the same at all scales. The coefficients in that boundary
dilaticn equation and boundary wavelet equation give the boundary filters!

Filter Bank Completions

Our goal is an L x L analysis matrix Hy. The synthesis matrix will be its inverse. In the orthog-
onal case, which we emphasize most, this inverse is H7.

H; begins with rows from the infinite filter matrix. For the interior part H;,, we only save
complete rows. Our example will be the Daubechies 4-tap filter with coefficients (a, b, ¢, d) =
(1 + 43,3+ 3,3 — V3,1 — /3)/44/2. For convenience we save only one lowpass and

highpass row:
0 d ¢ b a 0
Hin = [0 —a b — d 0]

These rows are orthonormal, Therefore (H;,)(HT) = I. The task is to add four new orthonormal
rows — the boundary filters — to achieve (H)(HT) = I with square matrices.

Those four filters will separate into left end and right end, and into lowpass and highpass.
The square matrix will have the form

r s t 0 0 0
u v o w 0 0 0
Hieqy
0 d ¢ b a 0
H = [Ho 1=1 0 —a b — d 0 (8.40)
night 0 0 0 e f g
o o0 0 x vy |

Notice the freedom that has been removed and the freedom that remains. The boundary filters
are allowed only three coefficients. At first this seems difficult, because the short rows (r, 5, 1)
and (&, v, w) must be orthogonal to (0, d, c) and also (0, —a, b). Fortunately those vectors are
parallel! The product bd + ac is zero, from the key property of the Daubechies coefficients —
that (a, b, ¢, d) is orthogonal to its double shift. The Gram-Schmidt process can easily produce
(r,5,#)and (&, v, w). Similarly we find the two short boundary filters at the right end, which go
in the last two rows of H; .

8.5 Boundary Filters and Wavelets 2N

What freedom remains? We can premultiply the first two rows by any 2 x 2 orthogonal
matrix. We use that freedom to make # + v + w = 0; that boundary filter becomes highpass.
Similarly x + ¥ + z = 0 makes the last row orthogonal to DC inputs (constant inputs), which
therefore go through the lowpass channel. The actual coefficients are

(r,s,1) =(093907, 0.20767, —0.17186)
(u, v, w)=(—0.34372, 0.81326, —0.46954)

(e, . gy =(0.40345, 0.69879, 0.59069)
(x, y, 2) = (0.25535, 0.51155, —0.80690).

In practice the interior matrix Hy, has many more rows (L — 4 rows). These inner rows are not
truncated and remain safely orthogonal. They separate the left end from the right end.

We now show that a similar construction of boundary filters will succeed for other (longer)
interior filters, It is almost simple enough to do by hand. Herley gives a MATLAB code. The
starting point is (Hin)(H%) = I. Remember that Hi, is rectangular. The product (HT)(Hi.) in
the opposite order cannot equal 1. But the discrepancy is all near boundaries:

P O 0
P=I—-(H)H, = 0 0 0 . (8.41)
0 0 Py

This matrix satisfies HipP = Hj, — (Hjn)(H;";)(Hm) = 0. The columns of Py and Py, are

orthogonal to the rows of Hi,. These columns with short vectors (boundary filters) can complete

a full set of orthogonal rows in Hy. The rank of P is necessarily the difference between the

number of columns and rows in Hj,. This is the correct number to complete a square matrix,
For the 2 x 6 example H;, we find 2 6 x 6 matrix P:

1 0 0
0 d*+a® cd-—ab
P 0 cd—ab E+b
- P+e? ab—cd 0
ab—cd a+d*> 0
] 0 1

The double-shift orthogonality ac + bd = O gave the zero blocks. Here P is 3 x 3 but its rank
must be 2. The first two columns (or rows} of P are orthogonal to the rows of Hi,. They give
two left boundary filters. After normalization to unit length, and rotation to make the second
one highpass, they bcoome (r,s,t)and (u, v, w).

Some patience is needed to find the right number of zero columns for H;,. For Dy, one zero
column at each end gave two boundary filters at each end. [HerVet] propose a way to keep this
number even for the Daubechies filters Dy,. We illustrate for D a slightly different approach,
which keeps four rows of Hy, with no zero columns:

f e d ¢ b a
-t —a b - d —-e f
Hin = f e d ¢ b oa 8.42)
—-a b —c d —e f

Thus H;, is 4 x 8 (and 8 —4 is a multiple of 4). Using (H;,}(HT) = I, we find 4 x 4 blocks in P

P=I—(H?;.)(Hm)=[Preac 0] (8.43)

0 Prgy

292 Chapter 8 Finite Length Signals

P has rank 4 and each block has rank 2. We obtain two 4-tap boundary filters at each end. When
H . has more inner filters, for signal lengths L > 8, they start and end with at least four zeros.
This makes all inner filters orthogonal to our boundary filters. The L x L orthogonal analysis
bank is complete.

General case: Biorthogonal filters have (Hin)(Fiy) = I but not (Fip)(H,,) = 1. Apgain these
are rectangular matrices with no truncation of the interior filters. We need boundary filters to
complete square matrices. Here is the key:

P=1—(Fu)(Hy) has (Hi)P =Hi, — HoFiuHin = 0.

The columns of P contain boundary filters that can be included with the columns of Fi,,. Similarly
P(Fiy) = 0. The rows of P contain boundary filters that are included with the rows of H;,.
Finally we biorthogonalize these boundary filters. A useful identity (to put it mildly) is P? = P.

Time-varying Filter Banks: A Remark

Changing from length 4 filters to length 6 will create an internal boundary, at the moment of
change. One way to maintain orthogonality is to use boundary filters just before the change and
Just after. Such a transition has no overlap. A smoother approach is to create transition Jilters
that cross the internal boundary. In this case H;, has filters purely to the left and purely to the
right,

Again (H;,.)(Hf,',) =L NowP=Ff— Hi’,;Hin contains the transition filters. See [HeKoRaVe])
for details of this important construction.

Direct Extrapolation at the Boundary

We briefly mention another approach to boundary filters. It is closer to the usual treatment of
boundary conditions for differential equations. The governing principle is to fit a polynomial to
the data and extend that polynomial. The job of extrapolation is to define functions and signals
beyond the boundary — so the filter can be applied.

Zero-padding and symmetric extension are basic extrapolation methods. Higher degree poly-
nomials give higher degree extrapolation and higher accuracy.

To be consistent with multiresolution, the input x(r} should give two half-length outputs, If
the inputs are coefficients of ¢(2¢ — ») in a function f(¢), the output are coefficients of ¢p(r —
n) and w(t — n) for f(r) at the next scale. In the interior all is normal. Af the boundary we
determine a polynomial F,_,(t) of degree p — 1 that models f(1). Using only the p numbers
x(0), ..., x{(p~1) todetermine the p coefficients in the polynomial gives a square matrix — but
this is dangerous. The preference in [WiAm] is to use more inputs x(0), . .., x(N) and determine
the polynomial coefficients by least squares.

By extending the polynomial we extrapolate the signal. Then filter and downsample as usual.
This corresponds to a splitting of V; into Vo + Wy. It also corresponds to a completion of the
filter matrix near the boundary. For the lowpass Daubechies Dy, new coefficients appear in the
first row of Hy,. The second lowpass row contains the usual 4, ¢, b, a:

0.8924 05174 00129 -0.0085 O 0
-0.1294 02241 0.8365 04830 0 0

8.5 Boundary Filters and Wavelets 293

Orthogonality is lost; accuracy is preserved; highpass coefficients are in [WiAm). Also impor-
tant in differential equations is the fact that boundary conditions can be built into the extrapo-
lation.

There is a third “quick and dirty™ approach that deals entirely with the matrix entries. We
follow [KwTa] by considering a biorthogonal example with attractive coefficients:

_ . S i
-13 3 -1 3 3
T S O < I a3 -3
H=; 1 03 3 -1 | ™ H'=317 13 ;3 . (8.44)
-1 3 -3 1 3 -3 ...
1 -1

The column coefficients 1, 3, 3, 1in H~! come from (14 z~")*. The synthesis scaling function
is a quadratic spline (accuracy p = 3). The row coefficients —1, 3,3, —1 come from
(1 4+ z71(—1 + 427! — z72). This single zero gives 5 = 1. The product filter is the famil-
iar halfband P(z) of degree 6. This is a linear phase choice, not to be iterated too often! We
noted in Section 7.2 that Condition E is violated. The cascade algorithm will not converge for
the filter H.

Nevertheless it is a good example. Suppose the second column shown for H corresponds to
the sample x(0). The first column would normally multiply x(—1), which does not exist. Ex-
trapolation could create x(~1). Equivalently, this external column ¢ = —1, —1 can be folded
into the internal columns by one of these rules:

Zero-padding. Delete the external column ¢.
Constant extrapolation: Add ¢ to the zeroth column (3/4, 3/4),
Linear extrapolation: Add 2¢ to column 0 and —¢ to column 1.
Quadratic extrapolation. Add 3¢, —3¢, ¢ to columns 0, 1, 2.
The key point is that H and H~! both maintain their stacked double-shift form (rows of H and

columns of H™'). The boundary filters based on constant extrapolation x(—1) = x(0), which
adds ¢ to column zero, keep their lowpass and highpass character:

2 3 -1 4 4
2 3 -1 331 1
H =1 -1 .3 3 -1 ad H'=%|1-13 3 . (845)

-1 3 -3 1 3 -3 ...
1 -1

For longer filters the extrapolation rules are similar, but care is needed. There is still much rcom
for experiment and comparison of boundary filters,

Lowpass Cascade and the Boundary Dilation Equation

Scaling functions come from lowpass filters. The lowpass coefficients go into the dilation equa-
tion. This equation is solved for ¢$(¢) by iteration — which means cascade. A good example is
the synthesis filter bank H}! given above, Its interior lowpass columns contain (33 hand
those coefficients lead to the quadratic spline ¢ (¢} on [0, 3]:

() = 6(20) + 302 — 1)+ 32 - 2) + 3o (21 - 3). (8.46)

294 Chapter 8 Finite Length Signals

This spline has an explicit formula, which we mention but do not need. 2¢(r) equals ¢* and
—2¢2 + 6t — 3 and (¢ — 3)? on the intervals [0, 1] and [1, 2] and {2, 3].

The boundary filter (1, 3, §) in the first column of H~! leads to a boundary scaling function
¢ (1). The boundary dilation equation uses those coefficients:

) =620+ 20Q0 + 2621 = 1) for 1320 8.47)

Notice how ¢y, is included with the functions at scale 2¢. Since ¢ (21) and ¢(2¢ — 1) are already
known, this is an “inhomogeneous dilation equation” for the boundary function ¢, (). It can be
solved in at least three ways;

1. By creating a general method for inhomogeneous two-scale equations.
2. By an inspired guess.
3. By iteration, cascading the lowpass filter.

We choose Method 2, because the insight is important. The boundary filter comes from constant
extrapolation, which preserves minimum accuracy p = 1. The constant function will belong to
Vo. In the interior we do have } ,¢(* — n) = 1. Butnearr = 0, the pieces from ¢ (¢ + 1)
and ¢ (¢ + 2) are missing — those functions cross the boundary. It is natural to suspect that the
boundary function ¢,(t) takes their place ~— but only on the right side z > 0:

Inspired guess: ¢p(@) =@t + 1)+t +2) for >0, (8.48)

The support is [0, 2]. We try this function in the boundary dilation equation (8.47). On the right
side it contributes $(2¢ + 1) + ¢(2¢ + 2). On the left side, replace ¢ (¢ + 1) and $(¢ + 2) using
the interior dilation equation (8.46). Compare only for ¢ > 0, so terms involving ¢(2¢ + 3) and
¢ (21 + 4) can be and must be ignored. Equation (8.47) is satisfied!

This function ¢ (1) = Y, o @{t—n) will appear again, as a direct construction in continuous
time. Figure 8.12 shows how it builds f(#) = 1 into V4.

Figure 8.12: Quadratic splines and ¢, (f) add to 1.

Its dilation equation reveals the boundary filter. In that order, ¢ (¢) produces the filter matrix
rather than vice versa.

8.5 Boundary Filters and Wavelets 295

It is helpful also to see the lowpass cascade (Method 3). This means powers of the double-
shift lowpass synthesis matrix:

4 3 1
L=} 1 3 3 1 .
13 3 1 -

Squaring leaves the unit column sums, and produces a guadruple shift.

16 15 13 10 6 3 1
=g 1 3 6 10 12 12 - |.
13 .

The boundary filter affects only the first row. Elsewhere, convolving {,3, 3, { with 1,0, 3,0, 3,
0, 1 gives the interior sequence 1,3, 6, 10, 12, 12, 10, 6, 3, 1. This corresponds to H(z)H (z%)
— which is not [H (2)]?. The cascade includes rescaling. L relates to integer spacing Ar = 1,
while L2 relates to Af = 12 The fact that all column sums are | means that, at convergence,
the scaling functions ¢p(r), ¢(t), ¢(t — 1), ... add to 1. This brings back our formula (8.9) for
@u(t).

It is unusual to solve a dilation equation so explicitly. But convergence of the cascade is not
difficult to establish. Condition E holds for the interior filter. The boundary requires Condition
Ep on a small square matrix in the corner of L. That 2 x 2 matrix has eigenvalues 1 and % and
the cascade converges.

For this example, the powers L' are the slow way to solve the dilation equation. For most
examples L' is the only way. The cascade algorithm is also called the “graphical algorithm,”
because a finite power of L yields an approximate graph of the scaling functions. Then one ap-
plication of the other submatrix B (from the highpass filters) produces the boundary and interior
wavelets.

Basis Completion by Boundary Functions

For adirect construction of boundary functions, suppose ¢{¢) is supported on [0, 3]. Our overall
interval is finite, say [0, 4]. Then we can only shift once, to ¢ (s — 1). All other translates of ¢(z)
cross the boundary and have to be changed. We are looking for four basis functions in Vg and
4 .2/ basts functions in V;. There are three important ways to construct them [CoDaVi]:

1. Periodic Extension: The shifted function ¢ (¢ — 2) is supported on [2, 5). The segment on
[4, 5] is wrapped back to [0, 1]. Similarly, the piece of ¢(r — 3) on [4, 6] is wrapped back to
[0, 2). We are just periodizing the original functions.

This corresponds in the discrete case to circulant matrices. The lowpass analysis filter is a
4 % 4 circulant containing the four filter coefficients. It stretches to 4 x 8 with double shift from
({ 2). The highpass filter, similarly stretched, completes the 8 x 8 block circulant H .

2. Symmetric Extension: This would apply to the linear phase example based on the coeffi-
cients (1, 3, 3, 1). An even-length symmetric filter (H filter) requires an H extension, centered
at half-samples. The detailed discussion is in Section 8.2, Our point here is that the extension is
implicitly creating boundary filters.

296 Chapter 8 Finite Length Signals

Symmetric extension is used for symmetric scaling functions. Those are not self-orthogonal;
we are in the biorthogonal case. Our 1, 3,3, 1 example has an even number of taps, equal in
analysis and synthesis. The scaling function ¢ (z-+1) on[—1, 2} extends outside the basic interval
[0, 4], and is felded back inside by a symmetric extension to the whole line:

FUey =Y [- 8m) + f(8n— D). (8.49)

The terms with n = Qare f(£)+ f(—r1), even across t = 0. The other terms keep this symmetry
and produce the double period 8. Thus any folded function is even with period 8:

fPU=0 = f0 and 0 +8) = o). (8.50)

Figure 8.13 shows an idealized (!) picture of a symmetric ¢(r) extended to the one-period in-

S NN

—4 0 4
Figure 8.13: Symmetric folding of four symmetric scaling functions.

terval [—4,4]. Their restrictions to [0, 4] span the space V; with the correct dimension
4 .2/ = 4. These are the four scaling functlons and there are four comresponding wavelets.
Similarly there will be four synthesis functions qb(t) and wavelets i(t). Furthermore biorthog-
onality is preserved (Problems 1-2).

The original scaling functions ¢ (¢ + n) on the whole line add to the constant function 1, be-
cause the lowpass filter has the required zero at . This good property is preserved by symmetric
extension. Tke Jolded functions still add to 1. Tn our idealized figure the flat middle segments
have helght This piecewise linear ¢(t) comes from a simple filter that cannot be part of an
FIR filter bank (Problems 3-4). In general all the pieces of scaling functions that add to 1t are
folded back into the interval so constants are in Vp.

Even if H(z) has extra zeros at 7, we do not expect V; to give accuracy beyond p = 1.
Symmetric extension (folding) generally produces jumps in the slope at the boundary. We turn
to general methods that can achieve p > 1.

3. Boundary Functions: We need a completion method for the orthogonal case, when sym-
metric extension is unnatural. We also want to maintain the accuracy p of the internal functions.
The following method will apply to all cases, orthogonal or not and linear phase or not. We focus
on completing the lowpass syntkeszs part (the space V; and the filter Fg). A parallel construc-
tion applies to the analysis space Vo and the filter Hp. Then multiresolution makes Wy and Wo
orthogonal to V() and V.

The plan is to start with internal scaling functions supported inside the given interval, and add
new functions at each end. To start, the new ones are linearly independent “boundary pieces.”
We insist on short support and a dilation equation, so that Vp C V. Additional properties lead
to full accuracy. Those short pieces are orthogonalized against the existing scaling function
and wavelets. In the orthogonal case those are the internal ¢ (¢ —n) and w{t —n); in general they

8.5 Boundary Filters and Wavelets 297

are the synthesis functions. The algorithm is just Gram-Schmidt or its biorthogonal extension to
“bi-Gram-Schmidt.”

The key point is that this orthogonalization produces functions supported near the boundary.
Each boundary piece, however chosen, is already orthogonal to all scaling functions that are far
inside the interval. There is no overlap. One source of boundary pieces is the tails of existing
@{r + k) and w(z + k). Numerically this is a poor choice. The tails are very small for longer
wavelets, which leads to severe ill-conditioning,

A better construction [CoDaVi] is to build polynomials up to degree p — 1 into V. On the
whole line we have 3_ ¢ (r — n} = 1. Then the first boundary piece (¢ > 0 only) is

; E,.,oqﬁ(t —n)—- Zmo«b(t—n) 8.51)

This is just a sum of ta:ts Itis orthogonal to all mternal :p(r u) n > 0. Its support is [0, N —1]
because ¢ (#), ¢{t — 1), ... already add to 1 beyond r = N = 1,

The boundary function ¢y (1) satisfies a dilation cquation. Replacing ¢ by 2r gives ¢ (2f) =
1= 3,509 (2t — n). Use this to substitute for 1 in (8.51):

G() = $p(20) +) (92 — 1) — p(t — m)]. (8.52)
r=0
Replace each ¢(f —n) using its ordinary dilation equation. Thus ¢, (t) is a combination of ¢, (2f)
and internal ¢ (2t — n). It belongs to V; and we are on our way.

Higher Accuracy. Suppose the original scaling function ¢ (¢ — n) can reproduce linear func-
tions. The filter has at least two zeros at . The wavelets have two vanishing moments. The
combination 3 ng (t — n) equals a¢ + B; the constants & % 0 and 8 are determined by the filter
coefficients. Our task is to ensure that «er + 8 is in ¥y when we remove all ¢(¢ — n) forn < 0.
In their place goes ¢5(¢) and a second boundary piece ¢y (¢):

Sty =at+p =3 np(t—n) =3 np(t —n). (8.53)
n=0 n=0
The sum over n < 0 shows that the support is [0, N — 1]. This piece need not be orthogonal
to ¢p(¢} or to the internal ¢ (¢ — n). We must orthogonalize it (or biorthogonalize if). Also we
check that ¢, (r) satisfies a dilation equation, so the multiresolution hierarchy Vo ¢ V, is still
secure. Replacing ¢-by 2t in (8.53) gives

$ou(21) =2t + B =Y " nd(2t ~ n). (8.54)

n=0

Divide by 2 and substitute for et in (8.54):
Poo(1) = 3005 (21) + 3B+ D _n[36Qt — 1) — ¢(t —n)]. (8.55)

n=0D

Replace each ¢ (£ --n) using its dilation equation, and replace 3 8 by [188,(2t) + 3" ¢(21 —)],
Then (8.55) guarantees that ¢, () is in the next space V.

It is important to count the functions! With p zeros at &, we are choosing p boundary pieces
ateach end to build the polynomials 1, ..., 1~ into V5. An interval of length L will have L —
2p + 2 internal Daubechies functions. For L = 4 and p = 2 we had ¢(¢) on [0, 3) and ¢ —-1
on [1, 4). We only need 2p — 2 additional functions, but we have 2p.

208 Chapter 8 Finite Length Signals

To make space for 2 p boundary pieces, we throw out the perfectly good ¢(#) at the left end
and the outermost scaling function at the right end. The term with 7 = ¢ moves to the other side
of (8.51). This only means that ¢, {¢) has support [0, N]. A similar replacement at the other end
assures that constant functions are in Vo.

The simplest highpass construction starts with scaling functions ¢(2t — n) that cross the
boundary. Subtract their projections on Vj; to get boundary wavelets [CoDaVi, p. 73]. Together
with the internal wavelets this produces Wy L Vo and Wy C Vi, We indicate the Dy case with
p = 2 and normal Daubechies coefficients (a, b, ¢, d):

X
Fiow = d ¢ b a . (8.56)

The 5 % 10 highpass matrix completes the 10 x 10 synthesis bank.

After orthogonalization, the filter coefficients are computed once and for all by [CoDaVi).
Those boundary filters are available from netlib@ research.att.com with the message
send/stat/data/wavelets.

Problem Set 8.5

1, Verify from (8.49) that folding plus restriction preserves inner products:
4 o
f R 0TS O f HOHOED
0 —

2, If the functions ¢ (¢ —n} and 3(: —n) are biorthogonal on the whole line, verify that their folded
versions are still biorthogonal on the finite interval. This interval is [0, 4] when the folding in
(8.49) has period 8.

3. What symmetric 4-tap filter would produce the piecewise linear ¢(¢) shown in Figure 8.13.
How many zeros at o in H (w)?

4. Show that the filter with iz = (i. ;—, i }) has H(i} = H{—i} = 0. It cannot be part of a PR
filter bank! Why can no synthesis filter make P(z) = F(z)H(z) into a halfband filter with

P+ P(—2) =17

5. Take two rows of (8.44) in Hy, and two columns of the inverse matsix in Fy,, Verify Hi.Fi, =
I3 and compute P = I — F H,, (which is 6 x 6). Determine a set of boundary filters.

6. From the double-shift orthogonality of Daubechies Dy, verify that the zero blocks of P in equa-
tion (8.43) really are zero.

7. Suppose Hy, is K x L and HiHY, = Ix.x. Verify that @ = HI B, and P = I — () satisfy
Q? = Q@ and P* = Pand QHT = H7. O is the projection onto the column space of HY and P
is the projection onto the nullspace of H;,.

8. (MATLAB) Zero-padding removes the first column ¢ of H in the —1, 3, 3, 1 matrix in (8.44).
Find the inverse of the resulting matrix.

9, (MATLAB}) Linear extrapolation adds 2¢ and —¢ to the next columns of Hy, when the first
column ¢ is removed. Find the upper lefi corner of the resulting H[" What are the boundary
dilation equations in analysis and synthesis?

