Chapter 9

M-Channel Filter Banks

9.1 Freedom versus Structure

An M-channel filter bank has very considerable freedom for M > 2. That is true when we re-
guire petfect reconstruction. It is still true when we also require orthogonality. Those properties
can be expressed directly as conditions on the M x M analysis polyphase matrix Hp(z):

1, Perfect reconstruction requires H,(z) to be invertible for all z.
2. The synthesis filters are FIR when the determinant of H,(z) is a delay z~*.
3. The filter bank is orthogonal when H; (zHH(2) =1

In the orthogonal case, each synthesis filter Fj is the transpose (or flip, or time-reversal) of the
analysis filter Hy. Then delays make F; causal.

How to design a good M-band filter bank? For M = 2, orthogonality is already restric-
tive (and effectively prevents linear phase). The PR condition is less strict; linear phase can be
achieved. In both cases the product filters Fo(z) Hp{z) and F)(z) H,{(z) are halfband. Further-
more, one comes from the other by alternating signs. All four filters are created by factoring
one halfband filter.

For M > 2, the number of freedoms grows faster than the number of restrictions. The choice
of one M-th band filter {or one lowpass filter Hg(z)) does not determine the other choices. This is
attractive at first— we can have linear phase with orthogonality. But decisions are still needed.
We can make those decisions late or early! The range of designs can be left very wide (late de-
cision). Or we can restrict the filter bank to have a structure that we know is desirable {early
decision, simplifying the design). This chapter studies both possibilities. In all cases we abso-
lutely want fast implementation.

In practice, fast algorithms come by cascading simple functions, At the lowest level they are
based on 2 x 2 butterflies. At a higher level three structures are quick:

Rotations and delays ot  DFT banks or DCT banks.

All constant orthogonal matrices are products of M(M — 1)/2 plane rotations. All paraunitary
matrices are products of rotations and delays. {(Householder would use reflections and delays —
this factorization is an important theorem.) Under quantization and roundoff, an orthogonal but-
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terfly remains orthogonal. The difficulty will be the large number of rotation angles, approxi-
mately N M{M — 1) /2 for filters of lengths N. An optimal design may have excellent properties
but it will not be easy to find.

This chapter will pursue all three structures. We develop the polyphase approach in Section
9.2 and the time domain approach (to LOT and GenLOT) in Section 9.3. Those sections extend
to M channels the earlier ideas from two channels. Then Section 9.4 focuses on cosine modu-
Jatton — not seen for two channels but now important,

It may assist the reader if we now briefly highlight DFT and DCT filter banks. These are
modulated filter banks because all M filters come from frequency shifts of one prototype filter.
It is usuval to refer to DCT filter banks as cosine-modulated filter banks. In many applications,
the DFT loses and the DCT wins.

Block Transforms

The simplest filter banks use only the M-point DFT or the M-point DCT. The signal is split
into blocks of length M. These blocks are separately transformed. There is no overlapping or
interaction between blocks, and no filter design is involved. The polyphase matrix can be the
Fourier DFT matrix or the DCT matrix (this is the JPEG standard). In a block transform, H , is
just a constant matrix — and there is no smoothing between blocks.

The analysis half can be drawn with the modulators first or the decimators first. Figure 9.1
shows the direct form of the block DFT and the more efficient polyphase form (Wy, = e—/27/3),
Section 9.2 discusses the block generation step in detail, because a serial to parallel S/P converter
is extremely important — as a way to start the filter bank.
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Figure 9.1: The DFT block transform: M samples at a time. Using DCT gives JPEG.

DFT Filter Banks

Now we include filters. The two-channel DFT filter bank appeared early in Chapter 4 (not with
that name). The highpass frequency response shifted Ho(e/?) by 7. Consequently, ki (n) was
the alternating sign version of ho(n). The reader will remember that H,(z) = Ho(—z) did not
go well with perfect reconstruction. For two channels, the best arrangement is (o alternate signs
between Hp and F; and between H, and Fy. This is not DFT.
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For an M-channel DFT bank, the frequency response from Hy is Ho(¢/®) shifted by %
The corresponding z-transform and time-domain relations are

Hy(2) = Hoze /P™M) and  ky(n) = ho(n)el P */M.

The synthesis filters are modulated in the same way. Note that the coefficients become complex
for M > 2. This is a disadvantage. The great advantage is the simplicity of design and the speed
of implementation, when the whole analysis bank is based on one filter Hy (and the DFT).

Figure 9.2 shows the direct form and polyphase form of the DFT analysis bank. It differs
from Figure 9.1 only by including filters — which come before (I M} in the direct form and
after (] M) in the polyphase form. We are free to use the DFT or the IDFT in analysis, and
teverse this choice in synthesis. The transfer functions E;(z) are the polyphase components of
Hy(2).

Figure 9.2 reduces to Figure 9.1 when by = (1, 1,...,1). Then the product of DFT and
IDFT gives perfect reconstruction trivially, a block at a time. Section 9.2 derives the PR condi-
tion for a DFT bank that involves filters. The requirements on those filters are quite restrictive.
DFT banks are generally superseded by filter banks based on the DCT, if reconstruction is de-
sired.

We saw the same for continuous time in Chapter 8. Cosine modulation is the best.
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Figure 9.2; Direct form and polyphase form: DFT bank built from one filter.

Cosine-modulated Filter Banks

Cosine modulation replaces the complex DFT by the real DCT. Remember that there are four
different cosine transforms. They use different extensions; Types II and IV are appropriate for
filter banks. (Types I and III give undesirable bandwidths for the first and Jast filters. For the
same reason, the filter length is constrained to be 2M or more generally 28 M .} We use Type
IV with the factors k + 1 and n + 1 in the frequencies.

The DCT matrix C* is symmetric and orthogonal. We shift the frequencies w achieve per-
fect reconstruction, starting from the lowpass prototype p(n):

2 M1y ;
hy(n) = fi(n) = p(m) e [(k + %)(n + J )%] ) Lt

The shift of n by -"g- has the effect of centering p. That simphfies the conditions on this protot pe
(ilter — “the window” — (o achieve perfect reconstruction. The PR conditions are beauntul tor
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filter length 2M. We write them now without proof:

Even symmetry p(n) =p(N —n)

Orthogonality p*(n)+p*(n+M)=1.

(9.2)
(9.3)

These are precisely analogous to the conditions on the continuous-time cosines in Chapter 8.
There the window was subject to g2() + g(r + 1) = 1. Section 9.4 will extend the discrete-
time requirements to filter lengths 2K M, and establish orthogonality and perfect reconstruction.
There are analogous conditions in continuous time — when each window overlaps several other
windows.

We can already see the major advantages of cosine modulation:

¢ Simplicity of design: one filter p(n) only
¢ Symmetry and orthogonality
¢ Very fast implementation,

The simplicity is crucial when M is large. That is the central point — to accept and indeed to

welcome restrictions that simplify the structure. The implementation is fast because the DCT is
fast. Ultimately this is because the FFT is fast.
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Figure 9.3: Cosine modulation by the DCT: & and M + & are twins.

Remember that the M-point DCT is created from the 2M-point DFT. In our applications the
DCT has real outputs, reducing the full (complex) computation by half. The analysis bank will

mnvolve

» 2M polyphase filters
e 2M complex modulators with real inputs
+ one 2M-point DFT with real outputs,

Figure 9.3 is directly based on the DCT, and emphasizes how phases k and M + k are twinned.
Each pair of phases is like a 2-channel orthogonal filter bank! (On which the reader is by now
an expert.} The good implementations have a delay chain of length 2M and decimators (} M)
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coming first. They generate rwo blocks of length M in Figure 9.3, as the double-length DFT
requires.

The cosine-modulated basis functions are not linear phase. They are even around @ = 0 and
odd around @ = 7, which produces Type-IV orthogonality. The first four basis functions when
M = 32 are drawn in Section 8.3,

Figure 9.4a shows the idealized frequency response P(e/®) of the lowpass prototype filter —
the window p. Then Figure 9.4b shows the phase shifts from cosine modulation, Notice espe-
cially how each cosine (the sum of two exponentials) produces two copies of P(e/*). One copy
is shifted left and one copy is shifted right. A good prototype will have passband approximately
Jo| = 7. The design of that symmetric window subject to (9.2) gives a good M-channel filter
bank — structured by cosine modulation.
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Figure 9.4: Idealized frequency response of the prototype and the cosine-modulated filters,

The original references for the discrete-time filter bank are in [Mr). The key to the contin-
uous-time construction was found by [Coifman-Meyer). More recent references are in Section
94, where we also pursue the possibility of biorthogonality. In that case the analysis window
P(n) is dual to the synthesis window p(n):

pin)
Py +p2in + M)’

This corresponds to (1) = g(t)/(g%(t) + g2(¢ + 1)) in continuous time.

It seems fair to say that the discrete-time construction is always a little more delicate. For
orthogonality, we check sums instead of integrals. The sums often depend on equal spacing in
time or frequency. Where time-varying windows and window lengths were no problem in Sec-
tion 8.4, they are more difficult for discrete filters. But their potential value is so great that the
effort is worth making.

Pn) =

Problem Set 9.1

1. Draw the DCT basis functions g, B;, ha, b, when M = 8§, They are drawn in Section 8.3 for
M =32,

2. Suppose the prototype p in Figure 9.4 is an ideal brick wall. What are the coefficients p(n) and
what is P{w)?

3. Invent a prototype p(n) that satisfies the PR conditions (9.2) and (9.3), with M = 2 and then
general M. The filter has ¥ + | coefficients.

4. Verify that the two systems below are equivalent where H, (z) = H(ze~/27/¥),

~O @~ M~ @ M

P
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9.2 Polyphase Form: M Channels

Digital filter banks divide the signal into M subbands, then process the subbands and recon-
struct. The analysis bank splits the input signal and the synthesis bank recombines it. The es-
sential information is extracted from the subband signals in the processing block. Its form varies
and depends on the applications. In an audio/video compression system, the spectral contents
of the subband signals are coded depending on their energies. In a radar system, the subband
signals might be used to null cut a narrow-band interference adaptively. Other applications are
image analysis and enhancement, robotics, computer vision, echo-cancellation, voice privacy
and communications.
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Figure 9.5: A maximally-decimated uniform filter bank with M channels.

Figure 9.5 illustrates a maximally decimated M -channel filter bank. The frequency responses
Hy(e/®) and Fg(e/®) have passbands as shown. The analysis filters H;(z) channelize the input
signal x(n) into M subband signals, which are downsampled (decimated) by a factor M. At the
receiving end, the M subband signals are decoded, interpolated and recombined by the synthe-
sis filters Fi(z). The decimator, which decreases the sampling rate, and the expander, which
increases the rate, are denoted by (1 M) and (1 M).

Reconstruction Error

Since the filters Hg(z) are not ideal, the filtered signals are not bandlimited to /M. There-
fore the aliases from dewnsampling will overlap. They depend on the stopband attenuation of
H,.(e/?) and their transition bands. The interpolated (upsampled) signals have M images of the
compressed spectrum (assuming that no processing has been done after the analysis bank). These
images are filtered by the synthesis filters F;(z).

There are two types of etrors in the reconstructed output signal X(n): distortions (magnitude
and phase} and aliasing. The nonideal filtering characteristics of Hi(z) and F;(z) contribute to
both distortion and aliasing. The changes in sampling rates (downsampling and upsampling)
contribute to the aliasing error. A system with no aliasing error is “alias-free”. We compute the
z-transform relation between input and output for M = 3:
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o The analysis filters produce Ho(z)X (z) and H ()X (z) and H:(2) X (2).
e (] 3)and (1 3) then produce two aliases in each channel ¥ =0, 1, 2:

1 (H@X @)+ H@W)X W) + HWHX(W?)  with W = ¢/,

e The synthesis filters multiply those z-transforms by Fi(z). Adding the nine terms,
and collecting the terms for X (z) and its aliases X (zW) and X (zW?), the total output
from the filter bank is

X(2) = T(D)X @) + Ti@DX W) + T(D) X CW?). (9.4)

The perfect reconstruction conditions are Ty(z) = z~¢ (no amplitude distortion) and T; (z) =
D{z) = 0 (no aliasing). These three equations are written out explicitly in (9.10) below. For
general M, the input-output relation is

M-l M—1
X(@) =) T@XEW"  where Ti(z) = % 3" F@HGWY. (9.5
k=0 =0

Since the transfer functions 7i(z), Ta{(z). ..., Tuy-(z) multiply the shifted versions
of the input spectrum, they are the aliasing transfer functions, The distortion function Ty(z) mul-
tiplies the original spectrum. Then Tp(z) X (z) is the output when all aliasing is cancelled. The
objective is to find a set of PR filters Hi(z) and F.(z):

To(z) =z7¢ (no distortion for k = 0)
Ti(z) =0 (alias-free for 1 < k < M),

Paraunitary and biorthogonal filter banks (with additional properties such as linear phase and
cosine modulation) satisfy all conditions in (9.6). The conventional Pseudo-QMF bank cancels
aliasing at adjacent bands (T1(z) = 0). The “Near PR” banks have To(z) = z~¢ and T3(2)
near zero. The DFT filter bank cancels all aliasing components, but suffers from distortions! Tt
satisfies the last M — 1 conditions in (9.6) but not the first. In discussing a specific M-channel
filter bank, one has to keep in mind its reconstruction properties.

Perfect Reconstruction: I (9.6)

Note: For a two-channel filter bank, perfect reconstruction requires

l To(z) = 3[Fo(2) Ho(2) + Fi(2) Hi(z)) = 27 ©7)
T1(z) = 3[Fo(2}Ho(—2) + F(DH\(-1)] = 0. )
Solving for F(z) yields the synthesis filters from the analysis filters;
Fo(z) = 21’—%11', (-z) and Fi(z) = _x Ho(~2) (9.8)
A(2) A(z)
where A(z) = Ho(z)H((—2) — Ho(—2z)H1(z). An FIR system has £ delays:
Determinant A(z) =2:7%,  Fo(2) = Hi(—2)., F1(2) = —Ho(—2). 9.9)

This simple relationship does not extend to filter banks with more channels. The perfect
reconstruction equations for a three-channel bank are

Tz = FR@QH® + F(H(2) + F(2)Ha(2) = 3¢
Ti(z} = FR@HGEW) + FA@OHGEW)Y + FBOQHEW) = 0
Tz) = Fo@H W) + FR@QHGEWYH + BOHGEWH = 0

(9.10)
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where W = e~/2*/3_ Writing this system in matrix form, the solution for Fy(z) is

Fo(2) Hy(2) Hi(2) Hy(2) I 3
Fi(z) | =] HzW) Hi(zW)  H,zW) 0 . 9.11)
Fy(2) Ho(zW?  Hi(zW?)  Ha(zW?) 0

This inverse transpose of the modulation matrix H,,(z) gives

Fiz) | = e Hy(zW)Ho(zW?2) — Hy(zW?) Hy(zW)

Fo(z) 3-t | @W)Hy (W) — Hi W2 Hy(zW)
{9.12)
F(z) Ho(zW)YH, (2W?) — Hy(z W2 Hy(2W)

where A(z) 1s the determinant of H,(z). The synthesis filter Fy(z) depends on twe filters H;(z)
for j # k. This relationship complicates the design for M channels.

The number of parameters grows linearly with M. To simplify the design and implementa-
tion, explicit relations between the filters are often imposed;

Paraunitary Synthesis is time-reversed from analysis: Fi(z) = z7Y He(z 7).
Linear Phase Hi(z) = £27V Hi (z7') (symmetric or antisymmetric).

DFT Filter Bank Hi(z) comes from Ho(z W*).

Cosine Modulation Hy(z) and F(z) are DCT modulations of one prototype.

Pairwise Mirror Image  Hy_y_(2) = Hy(—z) for odd M and z~¥ Hy(~2™") for even M.
The frequency responses are symmetric about Z

Each relation reduces the number of parameters by 2 (or by M, for DFT and cosine modulation).
But the requirements might prevent our design methods from finding a good solution. The only
two-channel linear-phase paraunitary filter bank is Haar’s Ho(z) = 14z~ " and Hi(z) = 1—z71.
By imposing both properties, we have limited our solution,

The choices depend on the applications. Cosine modulation is used in audio compression and
telecommunications. It is efficient and has high stopband attenuation. Linear phase is important
in image compression and signal detection,

Before developing filter banks for M > 2, we generalize the delay chain, the serial-parallel
and parallel-serial converter, and the polyphase form.

Serial-Parallel and Parallel-Serial Converters

The figure below shows the block diagram of a delay chain. The transfer function from the input
to the kth output is z~*. By itself, the delay chain is not very interesting. However, cascading
the delay chain with downsamplers or upsamplers will yield serial-parallel or parallel-serial con-
verters.

Upsamplers cascaded with delay chain
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The cutput at the kth branch of the S/P converter is x(nM — &), which implies that the input
sequence is selected in a counter-clockwise fashion. The branches select signals in the order
O0M—-1, M-2,...,2, 1,0, M—1,.... When x(n) is a causal signal, the output of the
S/P converter (M = 4) is:

branch O x(0) x(d) x(8) x(12)

0 3 7 m ... '
é 0 ﬁ2§ ;56; :EIO; output rate = (input rate}/M
3

0 x(1) x(5) x(9)

A P/S converter is a cascade of expanders and a reverse-ordered delay chain. The outputy(n)
is an interleaved combination of the signals y, (n}. Thus its rate is M times the rate of y,(n). The
signals y,(n) are selected in a clockwise fashion, Assuming that y,(n) are cansal, and M = 3,
the serial output is

Y2(0) ¥ () y(0) (1) y (1) 3o (1) ¥2(2) ¥, (2) 3o(2) -+

Polyphase Representation of a Filter Bank
An analysis filter H;(2) is the sum of M phases Hy(z):

M=l
Hi(@) = D 27 Hoe@¥),  hie(n) =h(Mn + 0). (9.13)
=0

The four phases (M =4)of 1 +3z7' — 4z 2+ 7773 + 677 =375 + 7 % are

Hio(@) = 14677 : Hi2(2) = =4 4271 9.14)

Hk‘] (z)= 3- 33_‘ Hk_3 (2)=17.

Consider a lowpass H(z) of length 81. Figure 9.6(a) shows | H{e/®)| with center frequency
at %. The magnitudes (nearly constant} and phases (nearly linear) of the four components H(z)
are plotted in 9.6(b} and (c). The phase responses are such that |H| =2 1 in the passband and
H =~ 0in the stopband. Since magnitudes are approximately equal, the phase angles accomplish
this task. Figure 9.6(d) plots the offsets Ay(w) = —10w — @Pe(w). We observe that A, (w) is
nearly —€w/4 (in general —fw/M). The polyphase components provide fractional delays so
that H(z) is a good lowpass filter.
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Figure 9.6: (a) Magnitude response of a lowpass filter, (b) Magnitude response of the polyphase
filters, (c} Phase responses of the polyphase filters, (d) Phase offset.

There are M? polyphase components since each Hy(z) has M components. Grouping these
components in row k, the analysis transfer function is

Ho(z) Hyo(z™) Hoi(z™) -+ Hom—1(z™) 1
H(2) Hyo(z™) Hy2M)y o Hygo (2™ 77!
Hy -1 (2) | Hyu-10GM)  Hy-10G@") o Hyooyo(2™) LoD

szz"")

(9.15)
H(2) is the polyphase matrix of the analysis bank. The mapping between k(1) and H p(2)is
one to one. The impulse response of Hy ((z2) is ke ¢(n) = by (Mn + ©).

Example 9.1. Suppose that the analysis filters of a 3-channel filter bank are

Hy(z) 142271 #3272 44273 + 5274 4 6275 + 776
Hi(@ = 1-2270 4327247373 4 5,74 _ 625 4726
Hyz) 14227 =3z72 44273 4 5774 — 6273 47776

The corresponding polyphase transfer matrix is
144271 +7272 245270 34677!

Hp(@)=| 1~4z7'+7272 24571 3 —gz71
1+4z7'+7272 245277 —3-6z71
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The synthesis filter has a Type-II representation (phase £ before channel £):
M=l
F@ =Y M " OF ") fam =fHMn+M-1-0) (9.16)

For Fi(z) = 1 + 3z7' — 4272 + 7273 + 627* — 327 + 275, the four components that enter
column & of the Type-II polyphase matrix F(z) are

Fox(m)=7 Fiue)=—-a4+z"" Fau@)=3- 3770 P =1+627"

The corresponding synthesis bank can be rewritten as

Fo(2) Fooz™)  Fio?*) -+ Fu-10(2") 77D
FI(Z) FO_I(ZM) F]_](ZM) . FH—LI(ZM) Z—(M-z}
Fu-1@ . Fou—1@) Fua@ - Fy_ima(Y) ] 1
F:{z“)
9.17)

Transposing, Fp(z) is the polyphase transfer matrix of the synthesis bank. Using H,(2)
(Type-1 polyphase) and F ,(z) (Type-II polyphase), one can redraw Figure 9.5(a) as Figure 9.7(a).
Then decimators move to the left of H,(z*) by the Noble Identity. Similarly the expanders move
to the right of F,(z¥).

A few words on the implementation efficiency of Figure 9.7(b). The input is blocked into M
vectors by a Serial/Parallel converter (implemented as cascade of delay chain and decimators).
The blocks are filtered by F,(z)H ;(z) and then recombined using a Parallel/Serial converter,
The total number of nonzero coefficients in H,(z) and F,(2) is the same as that in H,(z) and
Fi(2). The main difference is a more efficient rate of operation. The filtering in the polyphase
form is done at the input rate divided by M.
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Figure 9.7: Polyphase representations of an M -channel uniform filter bank.
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Modulation Matrix

Writing the PR conditions (9.6) in matrix-vector form displays the aliasing component matrix,
which is the transposed modulation matrix H7. (z):

Ho(2) H@ o Hya@ Fo(2) To(2)
HoGW)  HiGW) - HyaGW) R@ | T@)
HoeWH) HieWHY) . Hea@w Yy || meo Tyt (@

The term modulation comes from the fact that row & of H,, is obtained by modulating row zero
(shift in frequency by 2mk/M). The term aliasing component comes from the fact that row &
of HY, determines the aliasing transfer function T (z) —which should be zero for k > 0. The
theory of filter banks can be derived using either H,,(z) or H p{z). Although they are equivalent,
H p(z) is preferred because it is used in the implementation.

To connect H,,(z) to H,(z) we need two matrices. One is the diagonal delay matrix P(z) =
diag(l,z™',...,z7®™M=D) The other is the M-point DFT matrix F,, which gives the modula-
tions: s g e e et

Hp.(éif)D.(.z)ﬁM- (9.18)

:igfltcr. The first row
of H,(z™) contains the phases Hy; of that same filter. To assemble phases of any function, we
multiply by delays:

 Modulation and Polyphase Hn(z)

Hy(z) Ho(zW) --- Hwo(z*) Huz¥) - 11
e ] .- 7V @w)!
Factoring the delays 1,27, ..., z7~1 from the rows of the last matrix leaves Fy,. The whole

matrix multiplication becomes exactly H,,(z) = H,(z*)D(2)Fy.

The diagonal delay matrix is clearly paraunitary. The Fourier matrix F u/NM is unitary
(thus paraunitary, but complex). Then (9.18) shows that & p(2) is paraunitary when H,, (z)/vM
is paraunitary.

Theorem 9.1  The equivalent conditions in the z-domain for an orthogonal M-channel filter
bank are

1. The polyphase matrix is paraunisary: H' (2= YH,(z) = I.

2. The modulation matrix divided by /M is parawnitary: H. (z-)Hu(2) = MI.

It is satisfying that each condition has a direct proof, on its own. The direct proof for polyphase is
to sce the analysis bank ending with H ,(z), and the synthesis bank starting with H; z™1). That
meeting produces 7 at the center of the filter bank, In polyphase form, the whole bank generates
blocks of M samples, filters with I, and reconstructs the signal from the blocks. This is perfect
reconstruction.

The direct proof of the modulation condition comes from following each channel instead
of each phase. When we did this with synthesis filters Fy, the perfect reconstruction condition
Ti(z) = 271 6(k) was

(Fo(z) Fi(z) -+ Fy_ 1@ Hu(z) =Mz~ © ... 0]. 9.19)
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This is the top row of Fp,(z)Hnx{2). The other rows come from modulating the F's:

Foz) Fi(@) - | [ Ho(z) HozW) --- 7!

FoGW) FGW) - || HiR) HieW) --- | =M W)™ . (920)

This is perfect reconstruction with causal filters, It applies to all cases—orthogonal or bi-
orthogonal. In the orthogonal case the filters are Fi(z) = 2~ He(z™1). So bring the diagonal
matrix in (9.20) to the other side to find ﬁ: (z"HH,(z) = MI. Note that H,, has complex co-
efficients because of the powers of W. The polyphase matrix H, has real coefficients, because
all filters are real.

Perfect Reconstruction: Polyphase Form

We have just given the perfect reconstruction condition in modulation form. It was written ex-
plicitly for M = 3 in equation (9.10), by following the signal through three channels. Equation
(9.19) is the same statement for M channels. Equation (9.20) expresses that PR condition in
terms of the matrices H,,(z) and F,,(z). Now we express perfect construction in terms of H,(z)
and Fp(z).

The reader will not be surprised by the result. The beauty of the polyphase form is the way
it handles the algebra, for any number of filters.

Theorem 9.2 An M-channel filter bank gives perfect reconstruction if
F,(H,(z) =771 (9.21)

The overall delay of the system isI = M — 1 + LM, so that To(z) = cz~. The analysis and
synthesis filters are biorthogonal.,

A first proof begins with the modulation matrices in (9.20). Then the identity (9.18) converts to
polyphase matrices. The result is the PR condition (9.21).

For a second proof, imagine the analysis-synthesis cascade with the polyphase matrices in
the middle. The bank begins with an S/P converter and ends with a P/S converter. When the
product of polyphase matrices is z~Z1, the whole filter bank is a simple delay. This is perfect
reconstruction.

Note: The most general case allows reordering of the channels. The product of the Type-1
analysis matrix H,(z) and the Type-II synthesis matrix F(z) is

Fp(z)H,,(z)=z“L[ z-(".', "*;'}" ] (9.22)

The overall delay is increased by r. We mention that z~! is present below the diagonal whenever
the system is alias-free; this gives the “pseudo-circulant™ of Problem 4. For r = { we return to
the fundamental case (9.21), when the product is 2.

Example 9.2. Suppose vis any uml column vector iy = I Then choosc

H (z) -wn' + z” WIth H (z) = zwv? -I-I -wT, . (9.23)



312 Chapter9 M-Channe! Filter Banks

You can verify immediately that the product is /. The matrix H p(2) gives an orthogonal analysis
bank, and the causal matrix F,(z) = z:“l':l‘,j1 (z) gives the synthesis bank. These degree-one ma-
trices are the building blocks for all paraunitary matrices. This is the great factorization theorem
began by Belevitch and completed by Vaidyanathan [V, p. 273):

:': L .
.- Every paraunitary H,(2) factors into (l_[ [! —vivi +vpl z—l])Q_ (9.24)
: j=1 E

Example 9.3. Suppose w”y = 1. Choose the analysis polyphase matrix
H,@y=1—vw" + 77w with H;,"(z) =zwl +T— T, (9.25)

Again the product is /. But H,,' is not H?. The causal matrix F,(z) = z7'H; ' (z) gives the
biorthogonal synthesis bank (not orthogonal unless v = w). These degree-one matrices do not
give building blocks for the most general biorthogonal filter banks. [PhVaid] have identified the
correct subclass.

DFT Filter Banks

The analysis filters are all modulations Hy(z) = Hg(zW*) of the lowpass filter, The idealized
responses are shown in Figure 9.8. Notice that the frequency allocations are very different from
Figure 9.5. Similarly the synthesis filters are Fi(z) = Fo(z W¥). All filters have linear phase
if Hp and Fy have linear phase. But the filter coefficients are complex for M > 2, because
W = ¢=/27/M s complex,

F
Hy H, H, Hya
n o, o 2 4n 2n ®
M M M M

Figure 9.8: Idealized frequency response of the DFT filter bank.

This DFT filter bank is an excellent example for the use of polyphase matrices. Figure 9.2
showed the result of reordering the steps of subsampling and filtering. The lowpass filter co-
efficients hg(n) on the left were separated into M phases on the right: Ho(z) = Eo(z™) +
z7'E1(zM) + - - - . The polyphase matrix for the whole analysis bank is

H,(z) = [DFT] diag(Ey(2), E1(2), ..., Ey_1(2)). 9.26)

The implementation of a DFT filter bank is shown in Figure 9.9. The input signal x(n) is
blocked into vectors of M components by the delay chain and downsamplers. The subband sig-
nals are then filtered by the polyphase components E,(z) of Hy(z) and passed through an M-
point DFT. The polyphase filters have real coefficients, so the inputs to the DFT are real. If the
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ik B H B R,@ H{Tml
z lM E](Z) ™ R](Z) 1M z-I

g "
DFT
IDFT

IMHE,,., (@) o -{RM_,(z) M "

Figure 9.9: Polyphase representation of M-channel uniform DFT filter bank.

length of the lowpass filter is N, the computation load for the analysis bank is N multiplications
and an M-point DFT for every M input samples.

The synthesis bank reverses these steps. We use the Type-II polyphase form of the lowpass
filter Fo(z) = Ray—1(2)+- - -+z~ M~V Ry(z™). Then the polyphase matrix F,(z) has the IDFT
multiplied by the diagonal matrix with entries Ro(z), ..., Ry—;(z}. The product of analysis and
synthesis is a diagonal matrix when the DFT and IDFT cancel:

Fp(0)Hp(2) = diag(Ro(2) Eo(2), RI(DE(2). ..., Ry—1(Z)}Ey-1(2))- (9.27)

This filter bank is alias-free if all diagonal elements are equal. It gives perfect reconstruction if
those equal elements are pure delays:

PR condition R.(DEi(z) =z~" forallk. (9.28)

But these filters Ry(z) = z~*E X 1(z) are IIR rather than FIR. For stability we would want each
E;(2) to be minimum phase (zeros inside the unit circle). We also hope for linear phase. It is
impossible to have both.

Theorem 9.3  [Nguyen-Vaidyanathan] The polyphase components of a linear phase filter
Hy(2) cannot all have minimum phase.

The anti-aliasing option is to choose FIR synthesis filters Ry (2):
Ri(z) = Eo(2)E((2) - - - Em-1(2) omitting E(z). (9.29)

These filters are very long, about M — 1 times as long as the analysis filters. The products
Ry(2) Ex(2) are all equal and aliasing is cancelled. The distortion function Tp(z) is the product
with a delay:

To(z) = 27 Eo()E1 () - - - Ey—1(2)- 9.30)

Perfect reconstruction is not possible. The natural question is whether one can design Hp(z)
such that either the magnitude or phase distortion is cancelied. Is there any choice of Hy(z) such
that Ty is an allpass function (thus, no magnitude distortion) or a linear-phase function (thus, no
phase distortion)? The answers are direct and beautiful:

If Hy(z) has linear phase then To(2) has linear phase.
If the components E(z) are allpass then Ty(z) is alipass.
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In either case the output needs to be equalized. The equalizer for the allpass case should be
an allpass filter that equalizes the phase distortion. The equalizer for the linear phase case should
be a linear phase filter that equalizes the magnitude distortion. '

For these alias-free filter banks, with synthesis filters from (9.29), we note that Hy(z) and
Fo(z) cannot both be good lowpass filters. If they were good, there would be almost no overlap
between H,(z) and H,y2(z), and between Fi(z) and Fey2(2). Then the products F,(z) H,(zW)
do not overlap and their sum Ti(z) cannot be zero! A typical T (z) from good filters is drawn
below: ’

AL A

0

LI S A A

IM-1}2 2n ‘@
( }M

zjgb>
z|gb>

—-r X
M M

Summary The polyphase method gives a direct approach to the analysis of DFT filter banks.
Unfortunately, the results are almost all negative. We cannot even cancel aliasing, The DFT
bank is fast, but not good in reconstruction. The DCT bank in Section 9.4 is also fast, and it
reconstructs perfectly.

Properties of Paraunitary Filter Banks and Matrices

Power Complementary 37! |h’;¢(.¢34""“)|2 =1 and Y10 Hi(z ) H(2) = 1.

This assures that there is no magnitude distortion: Ty(z} = 1. It does not determine the
aliasing transfer functions. Thus paraunitary implies power complementary but power
complementary does not imply paraunitary.

Time Reversal Fi(z) = z7¥H,(z™")
The magnitude responses satisfy | Fi(z)| = |Hy(2)|. Fi(z) has maximum phase if H,(z)
has minimum phase. If H;(z) is linear phase, then so is Fiy(z). The modulation matrix
H,(z) and the AC matrix H,(z) are paraunitary. This follows from H,(z) =
(DFT)D()H ], (™).

Spectrat Factor of M-th Band Filter The rows of H,,(z) are paraunitary: P, = ﬁk H, has

M=1 M=l
Y HGEWHHW) =Y Pew) =1.
f=0 =0
Then Py is an M-th band filter. Notice that P (z) is linear phase by definition. Thus, H (2}
is a spectral factor of an M-th band linear phase filter.

Columnwise orthogonality The kth and ¢th columns are orthogonal. The elements in column
k are power complementary: 3 Hpi (271 Ho(2) = 1.

Determinant is an allpass function Let H(z) be a square paraunitary matrix and let A(z) de-
note its determinant. Then H(z) H(z) = [ implies that A{z)A(z) = L. Consequently,
A{(2) is an allpass function. For an FIR paraunitary system, A(z) is a delay.
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Submatrices and cascades Any columns of a paraunitary matrix H{z) give a paraunitary sub-

matrix. Any cascade H(z)H2(z) is also paraunitary.

Problem Set 9.2

. Show that H = I — 27 is a symmetric orthogonal matrix if vTv = 1. This is a Householder

reflection (det H = 1) in the plane perpendicularto v. Show that H =TI — w7 + 77 w7 is
a paravnitary matgix.

2. What is the entry in row k, column /, of the modulation matrix H,(z) ?

3. Verify that F,(:)H ,(z) = z~'I and find the coefficients in all four filters:

3+4z7t -3-2¢"! 2+ 34277
FP(Z} = [ _2_2z—l 2+z—l ] HP(Z) = [ 2+2z—l 3+4z—l ]

Is this an orthogonal bank? Is H,(z) paraunitary? What are the determinants?

. A two-channel bank is afias-free if T\(z) = Fp(z) Ho(—2) + F1(2)Hi{—2) = 0. Verify that

F(z)H,,(2) is diagonal. Then substitute (9.18) to prove that F . ()H ,(z) is a psewdo-circulant
matrix:

. T T,
F"'(Z)H”‘(Z)z[ @ s ] F”(Z)H"(Z)=[ STyoda  Tosven ]

This pattern extends to all M-channel alias-free filter banks. When the aliasing functions
Tieenes Ty are zero, the product F,,(z)}H,,(z) is a diagonal matrix with entries To(z),
To(zW).. ... The product F ,(z)H ,(2) is again a pseudocirculant. The prefix “pseudo” comes
from the extra factor z~! multiplying all entries below the main diagonal.

. For the following analysis filters, find H,(z) and its determinant. Find synthesis filters F,(z)

such that the overall system is PR.
(@) Hy(z) 1+3z7' =227 L HiD) =27 + 227, Ho(n) = 272
by Ho(2) l+z'+z72 4273+ 227 -2 i@ =1+z27 4224277 +
3t 42T 2 @y =t -2

Let Hz) = 1+ 27"+ 272 = 0.5273, Hi(2) = 27" + 272 — 0.25z7%, and Hha(2) = 772, Find
the PR synthesis filters in polyphase form F ,(z) and modulation form F,(z) using (9.12}.

Find the relation between Y (z) and X(z) below. Is it LTI? What is the system if H(z) is an
odd-length linear phase M -th band filter?

xin) — {M [ H(z) |+ lM—'Y(n)

8. What is the polyphase matrix for a Serial/Parallel converter?

9. Let H,(z) and H;(z) be paraunitary. Show that the cascade system H,{z) H>(z) is paraunitary,

10.

How about the system 5 (H;(2) + H2(2))?

Show that the 3 x 3 polyphase matrix is paraunitary, given that B; are orthogonal matrices.
Suppose the delays z~! are replaced by the first-order allpass section A(z) = ‘;'ﬁ% Find
H,(2) and its determinant. Find the synthesis polyphase matrix F,(z) that cancels aliasing.
Does PR synthesis exist?

:Bo B, 132:
gy S Pl N o P I o
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11. A rrensmultiplexer is the reverse of a filter bank {synthesis first). Two or more signals x; (#)
are multiplexed and seni over a high bandwidth channel. At the receiving end, the signal is
demultiplexed. The outputs ¥ (n) suffer from distortion and crosstalk. A PR transmultiplexer
cancels crosstalk and reconstructs the signals x;(n) exactly.

{(a) Express X £(z) in terms of X (z) and the filters. What are the conditions on H,(z) and
F,(z) such that the transmultiplexer is PR?

(b) Suppose (H,(z), F,(z)) yield a PR filter bank, and a transmultiplexer is constructed by
Hi(z) = Hy(2), Fi(2) = 27" F,(z). Show that this choice yields a PR transmultiplexer.

x@— 1214 Fg Hy ()2 | oo

xm— 12 F H, ]2+ 5m

12. Let (H:(2), Fi.(2)) be an M-channel PR filter bank. What are the exact conditions on L such
that (Hi(zL), Fi(z%)) is also PR?

13. Let (Hi(z), Fi(2)) be the filters in a paraunitary filter bank. Define H; @) = Hy(ze!) and
show that the filter bank is still paraunitary.

9.3 Perfect Reconstruction, Linear Phase, Orthogonality

There is much to recommend the time domain. The filter matrix Hy, in block form — all M anal-
ysis channels together— is a block Toeplitz marrix. These matrices are easy to understand and
analyze, if you remember that each entry is an M x M block. With filters of length 2Mf, we have
two blocks on each row as shown:

k(1) k(0)
Hy = k(1) A(O (931
k(1) A

This is the Lapped Orthogonal Transform (LOT) of Malvar. Itis simply a filter bank with some
overlapping but not much. We could have less overlapping or more:

1. No overlapping: H, is block diagonal = block transform (DFT and DCT).
2. One overlap: H; is block 2-diagenal = Lapped Orthogonal Transform (LOT).
3. Filter lengths BM: H has B block diagonals = general case.

We are not introducing new filter banks. These are standard M-channel analysis banks, in-
cluding the downsampling operation (| M). The only novelty is to interleave the channels, so
that we watch all M channels at once. Previously (| 2)H, from the lowpass channel was written
above (} 2)H| from the highpass channel:

T ho(3) ko) ho(1)  ho(0)

Ro(3) ko  ho(1)  ho(0)
W2H, |
[uz)Hl ]‘ mMG) k@) R(1) kO (-32)

B3 m@ B0 m}O
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Interleaving rows gives our block Toeplitz matrix, with block size M = 2:

[ ho(®) ko) ho(l)  ho(0) T
MG m@ m) mo
H, - hoB) ko) ho(1)  ho(0) ©33)

(G3) h2) k() k(0

This is the time domain block form when M = 2 and B = 2. The filter lengths are BM =4,
The z-transform is the polyphase matrix

_ i [ @ oD Y, [ Be@ ko3
Hy () = B(O) +2 f‘—“)‘[m({n hi(1) ]” [hl(z) 1 3) ]

Note The block (k) contains the k-th coefficient from each phase of each filter. The underbar
in &(k} is used to emphasize that this M x M block is the coefficient of z*inH p(2). When we
form blocks, the column order inside each block is to be reversed. Thus hy(0) is to the left of
ho(1) in the block, where it was to the right in (9.33). The orthegonality conditions on &(0) and
k(1) are immediate in the time and z-domains:

Theorem 9.4  The Lapped Orthogonal Transform (LOT) requires

B(O)TBO) + k(1) B(1) = Inxu (9.34)
(orthogonality of tails) h(1)Th(0) = 8y, u

Also Hbe,' = I. This moves the transposes to the second factors in (9.34).

The general case with B blocks per row (and filter lengths BM) will produce B block equa-
tions from H} H), == I. You could say that these equations are “Condition O” in the time domain.
The paraunitary requirements were “Condition O" in the polyphase domain and modulation do-
main. Notice the difference from the two-channel case. There Condition O was applied only
to one filter Hy. The highpass filter H; was determined by an alternating flip. Here, unless we
impose a special structure on the bandpass filters H,, ..., Hy_1, we must include them all in
Condition O,

The DFT filter bank does impose such a structure — but it makes orthogonality impossible
(except in the block transform case B = 1 which is pure DFT with no filters). The DCT filter
bank also imposes a structure. It produces all M filters from the knowledge of one filter. But
this time, for the DCT bank, arthogonality is possible. In that case Condition O is no longer
double-shift orthogonality, it is M-shift orthogonality.

For the most general LOT, multiply (9.34) by (0) to find A(0)k(0)T £(0) = h(0). We freely
use B(OA(1)T = 0 and £(0)" k(1) = 0 to obtain

h(0)
k(1)

=  ROBO) ROy +A(1) = PQ (9.35)

= RDWAO) ®RO)+ A1) = (-P)Q. )
The matrix @ = h(0) + A(1) is orthogonal because (9.34) gives 27 Q = I. The matrix

P = R(O)RO)T is a projection matrix. It is symmetric and P> = h(O)R(0)"BOAO) =
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B(0)k(0)" = P. Similarly, B(1)k(1)7 is a projection, and the two projections add to 1. The
general solution (9. 35) for the blocks in H;, was found by Heller and Tohmlerl

_’"'vh(O) rQ and k(1)

(I P)Q w1th P. pr0_|ecllon Q—orthogonal

The speclal caee P I glves 0 Iock dlagonal and 1t represents a snmple or-
thogonal block transform. The general LOT can choose any projection matrix P and orthogonal
matrix . Notice that @ = H,(1).

Note 1. The polyphase matrix has the convenient form [P + (I — P)z~']Q. This is fast if @
and P are fast. Below, we choose @ = DCT matrix:

X — serial to parallel ——+ xinblocks — Q

delay chain and ({ M)  [—P

-1

z
Note 2. The biorthogonal lapped transform with B = 2 has 2 very similar pattern (Problem

2). The matrix P = A(0)f(0) still equals P*. In this case, P = PT and Q7 Q = I are not required.
This gives the most general PR bank with filter lengths 2M. The biorthogonal BOLT [PhVaid]
extends this designito B > 2,

Note 3. For a paraunitary matrix H,(z), the degree of the determinant is the Smith-McMillan
degree. When P has rank r, the degree is L = M — r. For the very special case of diagonal P,
with r ones and M — r zeros, the factors are clear:

Hp(z)=[ {; IM_?Z" ]Q has determinant 7 =M~}

Noted. For fast implementation, Q often starts with the DCT matrix (the matrix € of cosines).
The order M is even. Half the DCT rows and columns are symmetric, half are antisymmetric.
It is natural to think of separating those parts and maintaining linear phase. Figure 9.10 does
this separation by reordering the DCT rows to put Ceyen above Coqg. Then Malvar uses Haar
butterflies and delays to separate k(1) from k(0). At the end we may apply different orthogonal
matrices U and V. The blocks £(0) and k(1) are then

[ 200 &) J=[U V¥ ][ go:g: Eg:gﬁj . (9.36)

The free parameters in this LOT are ¥/ and V. In practice, those must also allow fast multiplica-
tion. Malvar [Mr, p. 167] suggests U = I and V = product of plane rotations or ¥ = product of
DST-1V and transposed DCT-IL. The LOT is traditionally chosen to be linear phase and to start
with the DCT-II.

Figure 9.11 shows the frequency responses of the LOTs. They are obtained by optimizing
the coding gain (part a) and the stopband attenuation (part b). We show four basis functions
(impulse responses) of the LOT that has high coding gain. Notice that they are symmetric and
antisymmetric from the DCT. In summary, LOT is a linear phase paraunitary filter bank where
the filter length is 2M .
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Figure 9.10: Polyphase transfer matrix of the Lapped Orthogonal Transform.

Longer Fliters and GenLOT

You recognize that the two blocks (B = 2) of the LOT cannot give a sharp cutoff in frequency
with great attenuation. The filters need to be longer. The time domain matrix H), is always block
Toeplitz when the input signal is blocked into M samples at a time. If the filter lengths are BM,
there are B blocks in each row of H), (and B = 2 for LOT):

k(B - 1) k(0)

o= BB-1) .. kO ©3n
The polyphase matrix for this FIR analysis bank with decimators (§ M) is
Hy(@) =h0) +h(D)z™" +- .- + h(B ~ 1)77®-D, (9.38)

Note again that all these blocks are M x M. The conditions for orthogonality come directly
from Hy Hy = I and from HT(z"")H,(z) = I

Theorem 9.5  The analysis bank with filter length BM is orthogonal if

B-1-t
> B0OTh*K +1) = 5. (9.39)

k=0
A block transform has B = 1 and only diagonal blocks in H,. The constant polyphase ma-
trix is H ,(z) == B{0). This gives bad results at block boundaries after compression, Overlapping
blocks are much smoother but the filters have BM coefficients, which gives a huge design prob-
lem until we narrow it by structural decisions. One good decision is to start the filter bank with

the DCT-II.

The simplest filters to follow the DCT are block Haar and block diagonal and block delay:

1 I I v o 11 0
W=E[l _I]aninz[ 0 Vi]andD(z)—[O Iy ]

The blocks are of order %'i- and these matrices are orthogonal. Therefore, all products are parau-
nitary. The product also has linear phase, if @ at the beginning of the filter bank separates even
and odd rows of the cosine matrix C!! (symmetric and antisymmetric cosine basis functions).
The GenLOT is a cascade of these special filters:

The GenLOT has if, @)= @ ool iifo(z)w}) e (QI;IWD(z)'W) Q. (9.40)
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Figure 9.11: Frequency responses of the LOT. (a) High coding gain. (b) High stopband attenu-
ation. Four of the eight symmetric-antisymmetric basis functions in (a).

The implementation flow graph for the analysis bank is in Figure 9.12 (see GenLOT in the Glos-
sary for the details of K). The DCT-based LOT is the case with B = 2. The DCT itself is the
case with B = 1 and H, = Q. This framework covers all orthogonal filter banks with % sym-
metric and antisymmetric channels —linear phase! The design problem is always to choose fast

@, that also achieve sharp frequency discrimination.

Blocking

xn)

b ¥ il

ey

= |

Lt

IDCT

~1
&l

B-1 ¥(n)

Unblocking

0'. L

Figure 9.12: Polyphase transfer matrix of GenLOT.

Figure 9.13 shows the frequency responses of Hy(z). The coding gain is 9.36 dB (left) and
23 dB attenuation (right). GenLOT design is included in

http://saigon.ece. wisc.edu/ “waveweb/QMFEhtmi
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Figure 9.13: Frequency response plots for the 8-channel GenLOT (length 32) with high coding
gain and high stopband attenuation.
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Products of Rotations and Delays

Every M x M orthogonal matrix @ is a product of % M (M — 1) plane rotations (Givens rotations).
R;; gives rotation by 6;; in the plane of axes i and j:

1

R — 1 ¢ = cos(8;;) and 5 = sin(6;;)
ij =

s c in rows and columns i and j,

1

The angles 8;; can be design variables (but strongly nonlinear). The rotations in the GenLOT
stay within even channels (to give U}) or odd channels (to give V;). The Givens factorization of
any causal FIR paraunitary matrix is parallel to the Householder factorization in (9.24). Where
Householder uses reflections, Gwens uses a sequence of rotations:

R;D(Z)R D(Z)Q (9.41)

Here D(z) = diag(l, 1, ..., z“) delays only the last channel. Its Smith-McMillan degree is 1,
so the degree of H,(2} is L. Q is any unitary matrix. The matrices R; can be chosen as prod-
ucts of M — 1 rotations only, in neighboring channels (1, 2), (2,3), ..., (M — 1, M). The total
number of parameters (plane rotations) is then L(M — 1) plus %M(M — 1) for @. This is the
same total as in the product (9.24) from Householder reflections.

Example 9.4. Consider a three-channel orthogonal filter bank whose polyphase transfer matrix
has McMillan degree 2. Figure 9.14 shows the corresponding lattice structure. Each rotation is
a simple butterfly connecting channels i and j. The total number of angles is 4 + 3 = 7, and the
filters have length 9.
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Figure 9.14; A three-channel paraunitary filter bank with McMillan degree 2.

Palrwise Mirror Image (PMI) Filter Banks

A further simplification of the GenLOT and other filter banks is to make each filter Hy_j_; a
“mirror image” of Hy with respectto w = 3

1Hy -1k (@)] = | He(m — )] (9.42)

This reduces the number of design parameters by a factor of 2. When M is odd, say M = 3,
the middle filter is its own mirror image and H;(z) is a function of z2. The other two channels
have H>(z) = Hp(—z). There is a convenient lattice structure [NgVa3), and the PMI property
is structurally imposed.

In the GenLOT this pairwise property connects the orthogonal matrices U; and V;. The
polyphase matrix satisfies JH,(z) = Hp(z) T, where T = diag(1, —1,..., 1, —1). The matri-
ces V; are equal to T'U, T, except the last of the V’s is JU; T".

We compare the frequency responses of two 8-channel GenLOT’s with B = 3 and filter
length 24. The second set of responses has the pairwise mirror image (PMI) property. It displays
better stopband attenuation (measured in dB), which was the objective function in the design
process.
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Permissible Lengths and Symmetry for Linear Phase

The filter lengths in GenLOT are the same and the number of symmetric and antisymmetric fil-
ters are equal. The conditions on the filter lengths XM + 8 and the symmetries for biorthogonal
filter banks are summarized below [TranNg]:
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Case Symmetry/Antisymmetry Lengths Sum of Lengths
M even, B even Ysa¥a Y K¢ iseven 2mM
Meven, fodd || ($+1DS&E-DA] T Keisodd 2mM

Modd, Beven || (B)S&(MHA | T Keisodd | @2m+ M

M odd, B odd MY s& (M)A | T Keiseven | (2m4+ DM

Tree-structured Filter Banks

A popular method to design M -channel filter banks is to cascade smaller systems. Wavelet pack-
ets use two-channe! systems. The six-channel filter bank below is obtained from cascading a
two-channel system with two three-channel systems:

LS.
0 3 T
2
G G QG

0% 332 e

Typical relations between H(z) and Hi(z) and Gg(z) are Hy(z) = Ho(2)Go(z?) and
H; (z) = H\(2)G2(z%). The 6-channel filter bank is PR if and only if the 2-channel and 3-channel
filter banks are PR.

One obtains nonuniform filter banks by cascading systems with different decimation fac-
tors [HoVaid]. A nonuniform bank with decimation factors (6, 6, 6, 4, 4) uses a 3-channel and
a 2-channel system at the second tree level. This cascade is drawn in the Glossary under Tree-
Structured Filter Banks. We emphasize the simplicity of these designs.

Summary The analysis bank is a block Toeplitz multiplication in the time domain. It is a
polyphase matrix multiplication in the z-domain. That matrix contains the blocks from the Toep-
litz form, just as H(z) contains the coefficients from one filter. The polyphase matrix extends
the familiar idea of H{(z) from one filter to M filters. This is the efficient order that gives the
polyphase form:
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o (direct time domain) Apply the analysis filters and then (] M).

¢ (more efficient order) Put the input in blocks and filter in parallel.

» (polyphase in z-domain) Multiply by H,,(z) = 3"k, (n}z™".

For M x M blocks, the kth row contains coefficients from the kth filter, Column # has the M
coefficients starting with ky (nM).

In the LOT case, with filter length 2M and two blocks per row, the first M coefficients
he(0), ..., B (M — 1) go into the main diagonal block £(0). The other coefficients ki (M), ...,
} (2M — 1) go into the subdiagonal block h(1).

The synthesis bank is also a block Toeplitz matrix. The filter lengths and the number of
blocks could be different, and the blocks in F,, are transposed. The coefficients from the kth syn-
thesis filter are in the kth column of the blocks (not the kth row). Thus the two M x M blocks
S(0) and f(1) in the length 2M case would be

fn(o) fM_|(0) fD(M) fM_[(M)
: : and | :
HM -1 - f (M-1) HCM -1 - fle (M - 1)
The simplicity in the time domain resides in the fact that the whole filter bank becomes a matrix
multiplication: ¥ = FpHpx. For M > 2 there is enough freedom to maintain orthogonality,
rather than biorthogonality, while achieving other good properties. In this case we ask H,, to

be orthogonal. We also ask for fast implementation, which leads us to GenLOT (with the DCT
matrix}. Cosine modulation is the alternative described next.

Problem Set 9.3

1. Show that &(0) = PQ and k(1) = (I — P)Q produce an orthogonal block Toeplitz H,,, for any
P = symmetric projection matrix (P° = P) and { = orthogonal matrix (@7 Q = D).
2. When the synthesis bank is anti-causal, the PR condition is FpH, = I:
O fQ) 0 h(0)
Fy = fO fO) | adH,=| k(1) kO) :
. 0 k(1)
(a) FyHy =1 and H,F, = I give what six PR conditions on the blocks?

(b) Deduce f(0) = (f(0) + S(1)B0)(0) and h(0) = BOY(0)(B(0) + k(1)). Write the
corresponding equations for {(I) and B(1).

(c) Deduce alsothat P =k (0}f(0) equals Plandk (1)f(1) equals I — P.

(d) Show finally that f(0) + Jf(l) is the inverse of @ = B(0) +A(1). Then PR for filter banks
with B = 2 blocks has this form with P2 = P;

fO=07'P, ()=0""U-P), k(O =PQ, h())={ - P)Q.
3. Verify that F,(z)H,(z) = I if P* = P in the formulas
Fo()=Q ' P+ U -PyandH(2) = P+ I — P)z™")Q.

4. If P> = P has rank r, it can be diagonalized to give r ones and M — r zeros. Show that
det H,(z) = z7*-"det @ which confirms that the filter bank is FIR.
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5, By choosing 2 x 2 matrices P and @ in Problem 2 give examples of (a) an orthogonal bank
and (b) a biorthogonal bank. What are the lowpass and highpass analysis coefficients in your
examples?

6. Let Ho(z) = Y oig' 27 Hos(z) and Hy(z) = Ho(zW*). If Hy(z) are allpass, the analysis
filters H,(z) in this DFT bank are power complementary:

Hy(z) Hooz¥) - 0 1
: = [IDFT) . N : :
Hy_1(2) 0 o+ Hom-1(z¥) z7M-D

This is not PR! With Fy(z) = Hy(z), the DFT bank has no distortion. It only has aliasing.

7. Let b, (z) and k,(z) be columns of a paraunitary matrix H(z). They are mutually orthogonal.
Show that the elements Hj ,,(z) in the kth column are power complementary filters:

Y Hw@ VHia@ =1

8. We could design M linear phase M-th band filters P;(z) and find their spectral factors Hy(z).
What are the properties of this analysis bank? It is not necessarily PR. Does it have aliasing
or amplitude or phase distortions?

9. Verify that the GenLOT in equation (9.40) has linear phase.

10. Find the relations between the analysis functions Hj(z) and their factors H;;{(z) for the 3-
channel system in the Glossary (Tree-structured Filter Bank). When the H;; are ideal filters,
sketch the ideal responses of H,(z).

11. With filter Jengths 3M, the time domain matrix H}, will have blocks &(0), (1), &(2) in each
row. Write down the B = 3 equations for orthogenality, comesponding to the two equations
in (9.34).

9.4 Cosine-modulated Filter Banks

The idea of modulation keeps developing and improving. It is a way to build the whole filter
bank around one filter — the prototype filter p(n). Instead of modulating by exponentials, we
modulate by cosines. An exponential will shift the frequency in one direction. The cosine is a
sum of two exponentials, so the frequency shift goes two ways. The frequency band is parti-
tioned symmetrically by cosine modulation, as shown below.

- 5 B @ -5 -3r in 5x b @

2M 2M 2M  ZM M M

The original construction [Rothweiler] was chosen to cancel aliasing between adjacent sub-
bands. In the z-domain, only the first aliasing emor 7)(z) was exactly zero. See Cosine-
modulated Filter Bank in the Glossary. The aliasing between other channels, such as & and
k + 2, will be small when the prototype response dies quickly in the stopband (good attenua-
tion at [w] = 7). But now, with better designs, all aliasing is gone. The filter bank can give
perfect reconstruction.
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Another step forward is in the length of the filters. The maximum length was otiginally
2M, in the Modulated Lapped Transform (MLT). Now the length can be 2K M, in the Extended
Lapped Transform (ELT). Those developments by Malvar [Mr] have parallels from other authors
as the efficiency of cosine modulation is appreciated. A very active area is the construction of
time-varying filter banks, in which the filter changes length as the signal passes through. Only
with a simple basic design could we maintain orthogonality while the overlapping filters change
with time,

Cosine modvlation can be analyzed in two domains. In the time domain, certain constant
matrices are orthogonal. In the z-domain, certain polynomial matrices are paraunitary. It seems
right to do both, but perhaps to emphasize the time domain. We begin there with the orthogo-
nality conditions on these filter coefficients:

2 M+ I\n
he(n) =f(n) =p(m) i cos [(k + %) (n + —2-—) E] (9.43)
Doesp = (1, 1, ... , 1) give the ordinary DCT block transform? No, because of the fre-

gquency shift. The M in the numerator of (9.43) changes the phase of the DCT-IV. It also affects
the orthogonality. In fact the usual orthogonality is gone. We see this directly for M = 2, by
comparing the matrix C'Y with the new matrix E,:

(€3 = cos [(k + ) (n + 1) ] = [ cos(z) - cos() ] = [ N ]

2 cos(%’) cos(?si) 5§ —c

2 cos(%)  cos(LX) —c c

Here ¢ = cos(§) and 5 = sin(§). Then immediately (C™)7(C'V) = I and € is orthogonal.
But £y is not orthogonal;

5 —c 5 —s 1 -1
E};Eo=[_s C][_c c]=[_1 1]=I—J’. (9.44)

Here and always J is the reverse identity matrix. This convention is approaching the status of
&(n) and &;;, where definitions need not be repeated. Together with Ep in modulating a lapped
transform comes the matrix E; that saves orthogonality, With M = 2 this has the rest of the
cosines:

3 3z -
(En)k,.=008[(k+%)(”+%)£]= [ cos(F) cos(?,,) ] _ [ s s ]

T [ cos(ZE)  cos(%E)
(E,)k,.=cos[(k+%)(n+2+§)5]= i COS(%) COS(%) ] (9.45)
ElE, = [ - - ] [ o | = [ } i ] = I+J  (946)
- -5 5§ =5 0 ¢
E{E, = [ - -5 ] [ —c ¢ ] = [ 0 0 ] (9.47)

This pattern is extended in the Lemma below to all sizes M and to a longer sequence Ej, ...,
E3x-1. Here, we stay with M = 2 and K = 1 to see orthogonality all the way. Our prototype
filter wilibep = (1, 1,1, 1)/+/2. Thenthe 2K M = 4 coefficients in the M = 2 channels will be
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the cosines in Eg and E; divided by ~/2. The time-domain matrix Hj, with the analysis channels
interleaved to give the block diagonal form, has Ej along the main diagonal and E; beside it:

. - —C 5y -5

1 | B, E | -5 —=5 —¢ ¢

H,= ﬁ E Eo = E - —¢ 5 -5 (.48

.. -5 =5 —¢ ¢

I .

Notice how double-shift orthogonality has become block orthogonality (and here M = 2). Inthe

block form, this orthogonality comes from E{ Ey = 0 off the diagonal and ETE; + ETE, = 21
on the diagonal. The J’s cancel in f + J +J ~ J. So we have an orthogonal filter bank.

The prototype filter p was symmetric, as we always assume. But cosine modulation shifted
the phase. The individual filters (—¢, —c, 5, —s) and (—s, —s, —c, ¢) are not linear phase. And
they do not have the accuracy of the Daubechies filters. We do not get high accuracy from cosine
modulation. In this present form we do not even get p = 1! The lowpass filter applied to the
alternating vector x(n) = (—1)" does not give zero output. Nevertheless, the coding gain is
adequate for compression, and the implementation is extremely fast,

M Channels with Filter Lengths 2KM

In general we have 2K matrices Ey, ..., E,x..; and each matrix is M x M:
2 i M"‘ I

These are the pieces of the extended cosine matrix E = [Eo E ---E; x-.], which would give

the filter coefficients if the prototype filter had all p(n) = 1. We deal first with this case of a “box

window”. Then we allow other windows and discover the orthogonality conditions on pin).
The rows of E are orthogonal. Piece by piece we have the following identities,

Lemma: The pieces of the extended cosine matrix E satisfy
E; = (-1Y'E, ElEpi = (= 1) [I 4+ (=1)**1]]
d 9.5
Es 41 = (—1YE, an E%Et+z:+1 =10, (®.50)

Proof: With £ = 25, we have added (k + %)(2,9 M) % to the arguments of the cosine in (9.49).
This is the same as adding s which multiplies the cosine by (~1)°. Similarly Ey;., is a shift
by ssr from E;. The two identities on the left are proved. The identities on the right then quickly
reduce to the first cases

EqE;=1I~] and E]E) =I+J and ETE,=0. (9.51)
Those were checked above for M = 2. For larger M, the (n, ) entry of E} Eq is

%gcos [(k + %)(n + ﬂ:—l)%] cos [(k+ %)(n + ﬂ;—l)%] =

%cos [(k + %)( wﬁ)%] + -};L—cos [(k+ %)(ﬂ +A+M+ 1)%] {9.52)

=

k

1]
o
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On line two, we wrote (cos a) (cos b) using a+b and g —b. Its first sum is 6(n — ), which gives
the matrix I. Its second sum is zero, except whenn + 7 = M — 1 and all terms are cos & = —1,
This gives the matrix —J in E5 E. Note that the reverse identity has 1’s whenn +74 = M — 1,
because the numbering starts at zero. The identities E] E; = I 4 J and ETEy = 0 have similar
proofs.

Orthogonality Conditions on the Prototype Filter p(n)

Now multiply the cosines by p(n) to get the true filter coefficients A, (n). The cosine matrix
E is M by 2K M, with columns indexed by #. It is multiplied by the diagonal matrix P =
diag(p(0), p(1), ..., p(2K M —1)). Their product EP splits into 2K square blocks EP, of size
M:

P(0)

EP = [Eg s Ezg_]] = [EO}_){) e EQK_]BZK_I] (953)
PRK ~-1)

The entries of EP are cosines multiplied by p(n). In other words we have h;(n),

The square block P, contains the prototype coefficients p(EM), ..., p(EM + M — 1). We
are simply writing out a typical block row of the analysis bank matrix H,. That row is EP as in
(9.53), except the columns come in reverse order because ki (0) is at the right end of the row.
This has no effect on orthogonality.

Under what condition is Hy an orthogonal matrix? The center block of H;Hb must be the
identity and the off-diagonal blocks of H? H), must be zero:

2K -1

D (EeP) (EeriPeys) = 6O (9.54)
1]

Inside those sums are the products E] E¢.; that are given by the Lemma. Substituting the identity
(9.50) yields the orthogonality condition on the matrices P,. That gives us the coefficients p(n)
of the (symmetric) prototype filter.

Theorem 9.6 The cosine modulated filter bank is orthogonal if and only if the diagonai blocks
P, are double-shift orthogonal:

> PP, = (). (9.55)
For the coefficients this means that we shift by double blocks:
2K =25-1
Z pin+EMYp(n+ EM + 2sM) = 8(s) forn=0, ..., % - 1. (9.56)
=0

The special case K = 1 has only two blocks P, and P,. So there is only s = 0:
Pm)+pin+ M)y =1. (9.57)

That corresponds exactly to the condition g?(£)+g2(t+1) = 1 on the window function in Section
8.4. That continuous-time theory only allowed neighboring windows to overlap. In discrete time
thisis K = 1.
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The next discrete case X = 2 has blocks Py, P, P,, P,. Now there are conditions from
s=0ands=1:

PP +p2(n + M) +p*(n 4+ 2M) +p*(n + 3M) = 1

pin)p(n +2MY +p(n+ Mp(n +3M) = 0. (9.58)

We can design 4M lowpass coefficients to satisfy these conditions!

Proof: Theorem 9.6 is our main result. The analysis of cosine modulation led here. The con-
ditions (9.54) for odd { are automatic because E} Ep,; = 0 in (9.50). The conditions for even
i = 2s require the substitution of (—=1)°[I + (= 1)**1J] for E] E¢4»;. The J’s cancel when we
sum on € because the prototype filter is symmetric. (You see why the filter length 2K M is an
even multiple of M, to have an even number of J's with alternating sign.) Then (9.55) and (9.56)
reduce to }_ PT P, .. For orthogonality this must give §(s) in (9.57) and (9.58).

Two symmetric solutions to p?(n) + p?(n + M) = 1 are the sine windows

p(n) =sin [%] and p{n) = —sin [(n + %)%] . (9.59)

Malvar observed that the latter is the only prototype for which the resulting nth filter has fre-
quency response 8(n) at @ = 0. (The accuracy is p = 1.} The zeroth filter reproduces a DC
input and the other filters null it, with no DC leakage. This normalization was expected in the
rest of the book and is desirable in image coding. Malvar also gives a family of solutions when
K=12

Polyphase and Lattice Structure

The polyphase coefficients are the blocks EgPy, ..., Esg_ 1Py _; along each row of the time
domain matrix Hj. The filter bank is orthogonal when this polyphase matrix >~ E P, z™¢ is pa-
raunitary:

Hy @O, = (Y PTET) (Y Eekz) = 1. (9.60)

The constant term in the product is 3 P} E; E¢P,. Equation (9.55) makes this the identity matrix
I. The coefficient of z ™ in the productis 3" PT E] E,; P, ,,. Equation (9.55) makes this the zero
matrix. Under these conditions H ,(z) is paraunitary.

For K = 1 the polyphase matrix simplifies to Eo¢P,, + 2~ E|P,. It is paraunitary, after using
E{Eo = 0 and E{El =TI+ Jand EgEo =TI —J, when

PP +P1Py=1. (9.61)

This pairs off the prototype filter coefficients into equation (9.57).
Let G(z),0 < &k < 2M — 1 be the polyphase components of the prototype filter P(z). The
pairs (G (2), G y44(2)) of a paraunitary cosine-modulated filter bank satisfy

1
Ge(z™") Gr(2) + Guai(@) Cyia(z) = T (9.62)
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This agrees with the orthogonality condition in a two-channel filter bank. The conditions
{9.62) extend to filters of any length [NgKoill. Thus, the cosine-modulated bank can be im-
plemented by two-channel paraunitary filter banks in parallel, as depicted in the Glossary (see
Tree-structured Filter Bank). This is efficient because of the lattice structures associated with
the pair (G (2), Gi+a(2)] and the matrix C.

Example9.5. Figure 9.15 shows the frequency responses of an 8-channel PR cosine-modulated
filter bank. The filter length is 128. The resulting filters have stopband attenuation about 80 dB.
The design procedure is based on QCLS, Chapter 10 will elaborate more on this formulation,

Prototype Filter Analysis Filters

L
o O

0
-10)
& " a2
= | L
> »
& o & -0
- g
£ -50
g
-0 -80) ; ‘
w0 .""I“""I " " L |n||'l'|'i AN {'l 1-'!‘ i
|| \ f H|H | T rJ |.| i
1o} L fji i‘ilhl lin r (i 5
Momalzed Frequency

Figure 9.15: Frequency response plots for an 8-channel PR cosine-modulated filter bank.

Note 1 A pseudo-QMF bank is a cosine-modulated filter bank where the first aliasing trans-
fer function 71(z) is cancelied. The other T3(z), ..., Ty-1(z) are minimized by constraining
the stopband cutoff frequency w, < {7 of P(z) such that there is no overlap between H,(z)
and Hya2(2). Consequently, the aliasing error is comparable to the stopband attenuation of the
prototype filter. The distortion function Tp(2) is not a delay. The design procedure is to find a
prototype filter that minimizes the following weighted objective function:

i + 2_ r . a 2
o f |P )| dw+ (1 — ) f |To(e/) — e=/%|* de
wy 0
where 0 < & < 1. One often has to trade off aliasing with distortion.

Note2 The prototype filter P(z) for an NPR Pseudo-QMF bank is a linear phase spectral fac-
tor of a 2M -th band filter. There is no distortion. The aliasing errors can be minimized by high
attenuation.

Example 9.6. Figure 9.16 shows the frequency responses of a 16-channel NPR cosine-modu-
lated filter bank. The filter length is 256, By constraining P(z) to be the spectral factor of a 32-
band filter, the resulting filter bank has no magnitude nor phase distortion. The only distortion
here is the aliasing, which is less than or equal to —72 dB,
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Figure 9.16: Frequency response plots for the 16-channel NFR cosine-modulated filter bank.
Prototype filter P(z) (left) and Analysis filters H, (z) (right).

Problem Set 9.4

1. Verify that Malvar's windows (3.59) satisfy p2(n) + p*(n + M) = 1 for orthogonality.

2. Construct explicitly (by hand or by Matlab) the 3 x 3 matrices CY EyE\ EyforM = 3.
Check by Matlab whether the identities (9.51) still hold for odd M.

3. For prototypes p(n) in synthesis and §(n) in analysis (so that H; # F;), what will be the condi-
tions for a perfect reconstruction cosine-modulated filter bank (filter length 2M and eventually
2KMY?

4. Let p(r) have linear phase. Show that A, (n) in (9.43) cannot have linear phase.

5. Let (n) be a spectral factor of a 2M-th band filter. Show that the distortion function T(z) =
£=0 Fk(Z}Hk(Z) is a delay.

6. Find the conditions on the prototype filters p(z) for a biorthogonal cosine-modulated filter
bank. Cheung's MIT thesis has shown that with symmetry, there are M /2 extra free parameters
compared to the orthogonal case.

9.5 Multidimensional Filters and Wavelets

Images are two-dimensional. Processing those images is an extremely important application of
subband filtering. We certainly need two-dimensional filters! Their construction is coming late
in the book because it is either quite easy or quite hard - depending on the type of filter:

1. Separable: Products of one-dimensional filters (easy).
2. Nonseparable: Genuinely two-dimensional filters (hard).

Each filter bank is associated with a subsampling matrix M. In & dimensions this matrix is
d % d. In one dimension it contains the usual number M. In two dimensions we consider the
two leading possibilities:

= o
o

(separable) M; = [

] (nonscparablequincunx)Mq=[ _: : ]
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These matrices have eigenvalues [A| > 1, as required. Their determinants are M, =4 and
M, = 2. The lightface symbol M still represents the number of channels. M is also the number
of scaling functions plus wavelets.

In two dimenstons, a filter is a two-dimensional convolution y=hxx Inthe w = (@, )
and z = (21, z2) domains, we multiply by H (e, w,) and H(z,, )

Hx (m,n2) =3 % hiki, k2) x(ny — by, ny — k)

ky  k

H(w) X(w) = (Z: Zh(kl , kz)eqi(k|ml+k;m}) (Z Zx(n[ , nz)e-f(mm1+nzwz))
HDX @ = (E Zh(k, s kz)zl""z;*’) (Z Zx(m, nz)zf"'z;”’) .

The frequency response H(w;, w») has period 27 in both variables. A set of four brick wall
filters will cover the period square with no overlap. These ideal filters are (O low-low, (1) low-
high, (2) high-low, and (3) high-high:

Support regions for of o | lowlow | ,
four ideal 2D filters 0

3 [ 3

- L
-n { b 4

Those ideal filters are IIR. A set of four FIR separable filters is easily constructed from one-
dimensional filters ky,, and Rpign:

ho(ny, na) = Bypw(ng) Ripy(n2) ha(ne, n2) = Rujenni) Byoy ()

Re(ny, n2) = by (n1) Baign(na) Ba(my, n2) = Rpign(ny) bpigp(na).
This is the easy construction. After the filters, we sample by (| 2) in each direction. This sub-
sampling corresponds to the separable matrix M, = 2I:

(M) y(n1, m2) = y(Mn) = y(2n,, 2n,). (9.63)

We are keeping one sample out of four. The four filters in four channels give critical sampling,
The polyphase matrix will be 4 x 4 (generally M x M).

Compare with the nonseparable quincunx filter bank. With M, = 2 filters, the quincunx rule
keeps the samples for which n; + n; is even:

UM y(ny, m) =yMyn) =y@2+ny, 0y — my). 9.64)

Figure 9.17 shows the lattice of integers and the quincunx sublattice of samples:

Notice how M, = 4 separable sublattices cover the whole lattice. Similarly M, = 2 quin-
cunx sublattices (staggered grids) cover all mesh points. The separable lattices are strongly ori-
ented in the horizontal and vertical directions ! The quincunx lattice has an extra symmetry at
45° and —45°. Itis closer to isotropic, meaning independent of direction. A diagonal edge in an
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Figure 9.17: The sampling lattices for M, (separable) and Mq {quincunx).

image will be captured far better by the quincunx. But those filters are harder to design, if we
want PR and especially if we want orthogonality.

The reader will see how other sampling matrices M give the lattice points Mr. Downsam-
pling keeps all values y(Mn) on this lattice. Then the upsampling step (+ M) assigns a zero when
(m, n2) is not in the lattice. As always, (1 M) is the transpose of (| M}, If we apply both, we
get the identity operator on the lattice and otherwise zero:

on the lattice

for other (ny, ny). (9.65)

AM) (LMD y(n, n) = [ yom, 1)
A synthesis filter in each channel completes the filter bank: all normal.

Example 1 (Separable Haar): The Haar filter will be typical of separable filters. The four fil-
ters have coefficients :I:% and the low-low response is Ho(w), @q) = ‘—" (14 e7i9)(1 4 g7iez),
We “block” the input four samples at a time, with x(0, 0), x(0, 1), x(1,0), x(1, 1) in the zeroth
block. Or in practice, the signal goes through ordinary Haar in the x direction and then in the y
direction. The two-dimensional Haar bank is a block transform with 4 x 4 blocks:

1 1 1 1
1 1 -1 1 -1
-1 -1 -1 -1

This is just the two-dimensional DFT matrix. It is also the polyphase matrix. One constant term
only, because Haar has no overlap. It is an orthogonal filter bank!
The Haar block shows a tensor product Hz,.» @ Ha,; of one-dimensional DFT’s. The matrix

} _: ] is multiplied by each of its four entries to give the four 2 x 2 subblocks.
(A tensor product has order Ny N> when the matrices have orders Ny and N;. The matrix of
order Ny appears N, times on each block row of the tensor product, muiltiplied by entries from
the matrix of order N2.) For separable filters, the 4 x 4 polyphase matrix is always the tensor
product H,(z1) ® H,(z2) of 2 x 2 one-dimensional polyphase matrices.

Every separable filter bank inherits the properties of its one-dimensional factors. The bank
is orthogonal with accuracy (p, p) if the factors are orthogonal with accuracy p, The filters can-
not also be linear phase (except for Haar). It is possible [KarVet] to achieve linear phase and
orthogonality with nonseparabile filters,

1
Hyyp = 3

Example2 (Nonseparable): Quincunx sampling has one alias term because M —1 = 1. When
(1 M,) is followed by (1 M,) as in (9.65), that alias is X (—zy, —z2). The quincunx modulation
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matrix is 2 x 2:

Hi(z1,22) Hi(-z1, —z2)
Orthogonality requires that H,(z1, 22) Hy(z7', z7') = 2. The (1, 1) entry is

Hy(z1.22) = [ Ho(z1,22)  Ho(—z1, —22) ] '

Ho(z, 22)Ho(zi'. 23") + Ho(—21, —2) Ho(—27" . =25y = 2. (9.66)

The product filter P(z, z2) must be halfband! The highpass H; comes from H, by an alternaring
Sipinz) and z;:
H\(z1, 22) = odd 2D delay of Ho(-z;", —25"). (9.67)

All looks familiar. But in two dimensions there is one enormous difference. We cannot fac-
tor most product filters. Even if the symmetric polynomial P{w;, @) is nonnegative, it may be
impossible to express it as the square | H (wy, w3){* of a polynomial. The idea of computing ze-
ros of P(z) and separating them into two factors is strictly one-dimensional. We must design
the filters directly, and not by factorization.

A cascade structure [ VK, p. 182] can give orthogonality or linear phase:

1 1
Hp(zl-zz)=R21[ = ]sz-l[ - ]---Ro.
2 1

The filter bank is orthogonal if the matrices R are orthogonal. The shortest lowpass filter & has
parameters g, b, ¢ in its eight nonzero coefficients:

—b —ab
h=| —-c -ac - 1 |. (5.68)
abc —abc

With constraints on a, b, ¢ this is analogous to the Daubechies I, filter.

Example 3 (McClellan transformation): A convenient way to design linear phase 2D filter
banks is to begin with a symmetric centered 1D filter:

L L
H(w) =) h(n)cosnw = Zh(n)n(cos w).
-L -L

The Tchebycheff polynomial 7, produces cos ne from powers of cos . For example cos 2w =
2 cos? w—1, sothat To(x) = 2x2—1. The McClellan transformation replaces cos w by a symmet-
ric 2D filter response F{w;, ax). Then H(w, @) = 3 k(M) T, (F(w, ;) is still symmetric.
In the quincunx case we choose F = li(cos «y + cosws). More general polynomials than 7,
have been used effectively in [TayKing].

By designing the 1D coefficients in H (@) we get a good linear phase 2D filter H (e, ).
When the former gives perfect reconstruction with FIR inverse, so does the latter. (The 2D de-
terminant is a monemial when the 1D determinant is. We cannot have orthogonality too.) The
accuracy is also preserved, because a factor (1 +cos w)? transforms to (14 %(cos & +c0s w2))F,
There are p zeros at the alias frequency (7, ) in the (@), @;) plane.

Note that a separable filter with response H(w;) H (w2) has p zeros at all three of the alias fre-
quencies (0, ) and (, 0) and (v, m). The zeros are needed as in 1D for stability of the iterated
lowpass filter and convergence to the scaling function.
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Dilation Equation and Wavelets

The lowpass filter has coefficients ko(k1, k). When we iterate with rescaling, the cascade al-
gorithm hopes to converge to the scaling function. The limiting equation when ¢¢*" and ¢©
approach ¢(¢) is the dilation equation:

60, ) = M T ho(ny, ma)p (Mt ~ m). 9.69)

Here t = (#1, £} and n = (n,, n3) are column vectors. The matrix M has determinant M. When
we change variables from M¢ — » to 7, this determinant preserves the double integral;

Mff (Mt — n)dnder =ff¢(1‘)d‘nd1'2. (9.70)

The lowpass normalization is still 3 3 Ao(n1, n2) = 1. This filter leads to the scaling function.
The other M — 1 filters lead to M — 1 wavelets by the usual wavelet equation:

we(ty =MD hilmi,m)pMet—n), 1<k <M. (9.71)

Orthogonality will mean that the translates ¢(f — n) at scale zero are an orthonormal basis for
the space Vj. The wavelet translates wi{f —n), ..., wy_(t — #) are an orthonormal basis for
W,. The wavelet translates and dilates M /21w, (Mt — n) are an orthonormal basis for the whole
finite energy space L2(R?).

Notice the dilation matrix M! We nearly wrote 2/ instead of M”. This would be correct only
for the matrix M = 2 that gives separable filters. The iteration then gives a separable scaling
function and three separable wavelets:

low-low: @) = ()¢ (r) high-low:  w,(6) = w(n)¢(n)

IOW'hlgh: w[(‘) = QS(II)W(&) hlgh_h]gh: w3(t) = w(f])w(rz) (9‘72)

It is pleasant to verify (Problem 3) that separable filters give these separable solutions to the dila-
tion equation and wavelet equation. With accuracy p in the one-dimensional filterand 1, ¢, .. .,
t7~1 in its scaling space Vp, the separable 2D filter (product filter) will inherit this accuracy. All
p? of the polynomials (1) (12)° willbein ¥y, forr < pands < p. Inthe special case of splines,
¢(r) is a product @11 )@ (t2) of one-dimensional B-splines. The coefficients k(n), ny) are prod-
ucts of binomial coefficients. These are just the coefficients in H(z;, 23) = (1+z; byr(1 +2 he,

Note that a quincunx filter does not need this factor. It is [1 + 1(z7" + z;')1” that gives
accuracy p for quincunx. We would construct ¢(#), rz) by the cascade algorithm. Then (£)"(#;)*
is locally in Vy if r + 5 < p. For p = 2 we only need the linear polynomials 1, #1, 2 and not the
extra #;1; that comes with separable filters.

Remark We believe that box splines could lead to multidimensional algorithms. They are
generated by filters for which H(z;, z2) has simple factors. The factorization of H is a funda-
mental 2D difficulty, and box splines are direct constructions with known factors. The future
will determine whether these (or other) multidimensional filters are successful.
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Bounded Domains

For abounded interval in one dimension, Section 8.5 proposed several constructions of boundary
functions. Local support and the multiresolution property V; C V. and even the pelynomial
accuracy p were preserved. The same properties are desirable in two dimensions but not so easy
to achieve.

We note one immediate difficulty. The boundary scaling functions ¢,(t) were differences
between monomials ¢* and combinations 3w (t — k) of interior functions. The combination
reproduces 1* exactly except near the end of the interval. In one dimension, @ (t) will have local
support. But in two dimensions the support will be a thin ring along the boundary — not local!
A more careful construction is needed.

The new paper [CoDaDe) gives a simple local construction of boundary functions for a
square domain, starting from separable wavelets. On a general domain their method is less sim-
ple. It seems better than earlier constructions, and this problem must be faced in solving partial
differential equations by a wavelet method (Section 11.6).

Problem Set 9.5
1. Show that the quincunx upsampling u(n) = x(M; 'n) yields

U @) = § [ X, @) + X + 7,00 +m)].
Express this also in the (z,, z;) domain. Which inputs give & = 07

2. For (! M,) the first row of the modulation matrix contains Hy(z,, z2), Hol(—z;, z2),
Hp(z1, —22), Hp(—2z1. —2z2). Using products Hy(z,) Ha(zz) of one-dimensional filters, write
out the 4 x 4 medulation matrix H,.{z,, z;). How is it related to the 2x2 matrices H,,(z,) and
Hm(z2)?

3. With the separable filters in equation (9.72), show that the separable scaling function ¢ ()¢ (f;)
solves the 2D dilation equation with M = 21.

4. Find M = det M and draw the lattices of vectors Mn for

1 1 1 1 1 2
M;][=[ 1 2]andM=[_] z]aner.,,:[ —1 2]

5. For M, and M, draw the Voronoi cell of points whose closest lattice point is the origin. What
is the area of the Voronoi cell?

6. [ithe lowpass filter ko(n . 1) satisfies the quincunx orthogonality condition (9.66), show that
Hi(zy, 22} = —z7 ' Ho(—z7', —z5') gives an orthogonal highpass filter. The modulation ma-
trix should have H,HT = 2I.

7. A 2D analogue of the hat function ¢ () is the bilinear tent ¢ (x )¢ (¥). Find its Fourier transform
as a function of w, and w,.

8. Another 2D analogue of the hat function is the Courant finite element C(x, y). It is lineat in
each triangle obtained from grid lines x = k;, ¥ = k3, v — x = ky. Draw the six triangles
around the origin and show that the function that is zero outside, with €(0, 0) = 1, has trans-

form in@1/2)\ { sin@/2) \ { sin(wn + ws)/2
=~ _ {sin(e; sin(w, sin{w; + w,
C(“’""’”"( /2 )( or/2 )( (r + an)/2 )

9. Take the Fourier transform of the dilation equation {9.69). By recursion find the infinite prod-
uct formula (notice the transpose) ¢(w) = [T H (M~ w).

10. What is the z-transform of (+ M)(} M)y?




