Chapter 11

Applications

11.1 Digitized Fingerprints and the FBI

The FBI has 30 million sets of fingerprints (300 million fingers) from felony arrests. I always
assumed that they have my fingerprints too, because I once applied for a security clearance. (I
believe it was granted. So far I have not been arrested. This is the first author, still at large.) The
40,000 sets of prints that arrive each day are divided into three groups:

5000 new prints to be saved
15000 repeat prints (recidivists) to be compared
20000 security clearances to check and return to other agencies.

Up to now, the prints are on cards in Washington. The file cabinets fill a whole floor in the FBI
building. The final identification is always done by trained examiners. The “minutiae” that they
watch for are ridge endings and bifurcations, which form permanently in childhood. In a British
court, 12 of these indicators provide a legal match (fewer than 12 in most US courts -— there are
about 150 minutiae per finger). The FBI stores the cards in a special order, which begins with an
automated classification using arches, loops, and whorls. Then come finer details unti! manual
search is possible. Multiresclution is natural for fingerprints,

This data has to be digitized, and transmitted more quickly. The prints will be captured by
electronic “live scans” instead of ink. At present most cards are simply mailed to the FBL. The
criminal has gone from the booking station long before the fingerprints reach Washington. The
new turnaround time, for digital information sent to the West Virginia office, is to be two hours
(if requested).

At present, the rules do not allow the FBI to keep fingerprint files for juveniles, That group
is responsible for a large fraction of breaking and entering felonies. They leave fingerprints all
over the place! Some states do maintain files on juveniles, and it seems likely that changes in
technology will bring changes in the law. The digital revolution is reaching criminology.

Our focus is on the specifications for the compression of gray scale images (256 levels of
gray). The FBI chose a wavelet/scalar quantization (WSQ) algorithm. It was initially expected
that the JPEG standard would win, but at compression of 15:1 and 20:1 the blocking from the
DCT was severe. Ridges that are separated in the true image were found to merge during com-
pression. This is unacceptable. It did not happen for wavelets. The linear phase 9/7 filter bank
appeared just in time to be compared with the Daubechies 8/8 bank, and 9/7 was better for two
main reasons:
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1. Symmetry (and symmetric extension at the boundaries)
2. The image contents do not shift between the subbands.

A ridge has the same position within each subband, when filters have zero phase. The FBI con-
firmed that symmetric extension is better than circular convolution.

At 500 pixels per inch, ridges typically repeat every 10 to 16 pixels. The dominant frequency
bandis w = 7 /8 to @ = 7 /4. The subband tree (Figure 11.1) goes down four levels in this range.
All WSQ encoders will use the same tree. Symmetric filters up to 31 or 32 taps are permitted —
and the 9/7 pair is recommended.
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Figure 11.1: The WSQ subbands.

Each of the 64 subbands has its own uniform scalar quantization. The coefficient is set to
p = 0if it fafls between —~Z /2 and Z /2. A high percentage of the compression comes from this
zeroth bin. The compressed image has strings of zeros, and the entropy coding step (Huffman
coding) transmits a long string by giving its length. The other bin widths Q are smaller (about
.8Z). Then the coefficient 4 > 0 falls into the pth bin in Figure 11,2 if %Z +(p—DN@=<a<
%Z + pQ.

Thus a is coded by the small integer p. The coding rule is similar for ¢ < 0. The decoder
(inverse direction) assigns to p the number a at the midpoint of the bin. The decoder also has
an option to shift away from the bin center.
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Figure 11.2: The quantization map from real numbers a to integers p.

The key question is the choice of Z and @ for each subband. This is the problem of bit allo-
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cation in Section 11.2. The FBI uses an empirical relationship @y = ¢C;/ log o). controlled by
the variance oy of the kth subband. Flat signals, with small variance, contain little information.
The bin widths are correspondingly larger. The constant Cy can give extra emphasis to subbands
that happen to be at the scale of ridges and pores. Then the constant g controls the overall com-
pression. In the FBI system, g is partly determined by the size of the blank background that
surrounds the print. The ten megabytes of data per card are compressed by 15 :1.

Theoretically, all bands should be at the same stage on their rate-distortion curves, The dif-
ficulty is to measure the distortion that our eyes actually perceive. It is not the L2 norm! Energy
is a convenient measure of error, but it does not agree well with human perception.

Experiments indicate that the improvement over the JPEG algorithm (the DCT in 8 x 8
blocks) increases with the compression ratio. At high compression, the blocking effects in
the JPEG output overwhelm the signal. It becomes impossible to follow the ridge lines, and the
FBI examiners frankly said no. One effort of Tom Hopper, who is leading the move to digital,
is to convert all the groups who deal with fingerprints — including state and local police and the
registry of motor vehicles. They have to believe in the investment, and the quality of the com-
pressed signal is what they go by. Then they build the systems.

Entropy Coding

A set of 254 symbols captures bin values p from —73 to 74 and the lengths of zero runs up to 100.
A few escape symbols account for all remaining possibilities. In a highpass channel, the symbols
p = £1 might occur with frequency up to 25% each, and p = 32 up to 5% each. Zero runs
might account for 12% (length 1) and 6% (length 2) and 3% (length 3). The lowpass channels,
with smaller bin widths, have more information in higher values of p. A block of subbands will
use the same Huffman table to encode the quantized values. This yields the compressed image
data in the figure below. The deceder reverses the entropy coding, then the quantization, and
finally the wavelet transform.

Original Image Reconstructed Image at 0.25 bpp

T
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11.2 Image and Video Compression

Image Compression

“A picture is worth a thousand words.” This English aphorism reminds us of the importance of
images. Itis especially true in the age of information highway and multimedia. Computers, fax
machines, videophones, teleconferencing systems and storage devices impact our workplace.
Text, data, sound, image and video clip are grouped together to send over data networks or to
store. The amount of data is astronomical. Compression increases the throughput of the network
and the capacity of the storage device. For satellite transmission, compression greatly reduces
cost.

A 24-bit color picture with 256 by 256 pixels needs more than 0.2 MByte of storage. A high
density diskette with capacity of 1.4 MB can store about 7 pictures. If the picture can be com-
pressed by 50 to 1 without any perceptual distortion, the capacity of the diskette increases to 350
pictures. This is significant. The key point here is the notion of perceptual lossless compression.
A good coding algorithm should study and incorporate the human visual system to exploit re-
dundancy in the image.

There are many techniques for image coding. Subband coding is today the most successful.
Pyramid coding was and is effective for high bit-rate compression. Transform coding based on
the Discrete Cosine Transform became popular in the 1980s because of low complexity and ef-
fective bit allocation. This became the JPEG standard in image coding. For gray-scale images, it
performs well for compression ratios up to 16 to 1. At 24 to 1 compression, JPEG’s synthesized
image suffers from blocking, which manifests the short basis functions used in reconstruction.
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Figure 11.3: The steps of a transform-based image coder.

Subband coding using wavelets (this means tree-structured filter banks) avoids blocking at
medium bit-rate, because its basis functions have variable length. Long basis functions repre-
sent flat background (low frequency). Short basis functions represent regions with texture. At a
reasonable distance, one can not detect the errors easily. At low bit-rate, wavelet coding suffers
from ringing when high frequencies (textures) are deleted. The ringing artifacts are significant
around edges with high intensity. They have the shape of the basis functions that are emphasized
in synthesis.

Part of the “Barbara” image and its Discrete Cosine Transform are in Figure 11.4. The image
is blocked (8 by 8) and then transformed. The transformed subimage also has size 8 by 8. The
intensities of the first few coefficients (the upper left corner of the transform) are the largest. The
DCT preserves energy and the essential information is in those few coefficients. Quantization
assigns more bits to these pixels. The objective of bit allocation is to minimize the distortion.
The quantized subbands are then scanned and coded using lossless compression. This entropy
coder watches for runs of zeros and transmits their length (roughly 3 : 1 compression for free).

Similar procedures are used in the wavelet-based transform coder. Figure 11.5 shows the
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Original Image Transformed Image (8 x 8 DCT)

Figure 11.4: The discrete cosine transform shows most energy in the DC coefficients (bright
points).

transform using a two-channel filter bank. The upper left subimage is obtained by lowpass fil-
tering in both the horizontal and vertical directions, indicated by LL. The other three subimages
{(much lower intensity) have details involving high frequencies. The bit allocation algorithm will
assign many bits to LL and few bits to HH. The normal number of iterations on the LL subimages
is 4 or 5, as shown on the right side of Figure 11.5.

Figure 11.5: The discrete wavelet transform of “Barbara™ (one level and four levels).

The subsections below discuss these building blocks in detail. The organization is:

» Choice of transformations and their effects on image coding.
+ Bit allocation algorithm and quantization.
¢ Entropy coding algorithms.
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o Error measures.
o Comparison of block transforms and wavelets,

Choice of Transformations and Their Effects on Image Coding

Consider the block transform coder in Figure 11.6. The input blocks are
vy =[ x(eM) x(eM—1) . xaM-N+1) |7,

Each block is transformed to length M by y(n) = PT v(n). The figure shows a uniform filter
bank with M channels. The kth row of PT contains the filter coefficients k; (n). Examples are
the DCT (N = M), the Lapped Orthogonal Transform (N = 2M), and the Generalized LOT
(N =LM)

vm oym m v ym S
/ 'f / / if
o Aren x(m) [ H @ H{im} tMH F @
-1 o
E £ He HiuH & HiuH F@
- x z_ = - & -
g PO : : g : : :
#1 ﬁ
i -
Y x(n)
\'ﬂ;‘w \'O_Crlol' h m:ﬂ'l’

Figure 11.6: Block transform and the equivalent filter bank. The kth row of PT contains by (n).

The subband signal y(n) is quantized, entropy coded, and stored. In synthesis, the stored
signal is decoded (to produce ¥(n)) and then transformed by the matrix P. In the absence of
quantization, P = [Py Py - -+ P1_;] gives an orthogonal transform:

L-1-¢
S PPl =80 O0<t<L-1. (11.1)
m=0

The synthesis filters are time-reversed versions of the analysis filters. The reconstructed signal
¥(n) is a linear combination of the basis vectors. What properties of those vectors (columns of
P) will produce a good perceptual image coder?

o They should be smooth and symmetric (or antisymmetric). Smoothness controls the noise
in a region with constant background. Symmetry allows the use of symmetric extension
to process the image’s borders.

o They should decay to zero smoothly at both ends. Figure 11.7(a) shows the basis functions
of the DCT. Note that they do not decay to zero. This creates discontinuity between blocks
(subimages) when the image is compressed. This blocking artifact can be seen from the
reconstructed image in Figure 11.7(b). The compression rate is 32 to 1 (0.25 bpp).
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o The bandpass and highpass filters should have no DC leakage. Higher frequency bands

will be quantized severely. It is desirable for the lowpass band to contain all of the DC
information. Otherwise, if the bandpass and highpass responses to @ = 0 are not zero, we
see the checkerboard artifact in Figure 11.8(b).

An equivalent form of the DC leakage condition can be derived for the lowpass filter:
Ho(2km /M) = b(k) for k < M. These w; are the mirror frequencies.

s The basis functions should be chosen to maximize coding gain.

» Their lengths should be reasonably short 1o avoid excessive ringing and reasonably long

1o avoid blocking. Figure 11.9 shows transforms of length 8 (DCT) and 48 (GenLOT)
uvsed in 32 :1 compression. The first transform has blocking and the second transform has
ringing. Intuitively, one would like to represent texture by short functions and background
by long functions. This is offered by wavelets.
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Figure 11.7: Blocking at 32 :1 comes from discontinuities of the 8 DCT basis functions at edges.

b4

o In the frequency range |w| < 3;, the bandpass and highpass responses should be small.

This minimizes the quantization effect on bandpass and highpass.

Wavelet-based transform One attractive property of wavelets is their ability to adjust the
lengths of basis functions. A four-level wavelet decomposition and its equivalent nonuniform
filter bank are in Figure 11.10. The low frequency basis function is a cascade of interpolated
versions of the lowpass filter Hy. Its effective length is large, Higher frequencies are iterated
less; the basis functions become shorter. The signal is approximated by a few basis functions.
After four levels in Figure 11.5, most of the energy is in the lowpass subband. This upper left
subimage is a coarse approximation of the original. The other bands add details. Bir allocation
becomes crucial. Clearly, subimages with low energy levels should have fewer bits.

We comment further on desirable properties of a two-channel filter bank, now emphasizing
what becomes important with iteration.
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Figure 11.8: Frequency responses of GenLOT with M = 8 and N = 24. The bandpass responses
at w = 0 (DC) are not zero. The DC component leaks over to produce checkerboarding,

Genl.OT (48) at 0.25 BPP

Figure 11.9: Short DCT basis vectors produce blocking. Long GenLOT vectors produce ringing.
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Figure 11.10: A four-level discrete wavelet transform and its equivalent nonunifortn filter bank.

o The synthesis scaling function should be smooth and symmetric. Figure 11.11 shows sev-
eral sawtooth subsections, plus two large jumps. Those jumps in the synthesis scaling
function produce “blocking-like artifacts™ in the reconstructed image.

o The highpass analysis filter should have no DC leakage, When output from this filter is
quantized, we do not want to affect the DC component of the signal. It is desirable that
the lowpass subband contains all the DC energy. Figure 11.12 shows the filter banks, their
scaling functions, and the reconstructed image (at 1 bpp). Note the checkerboard artifact
and the nonzero responses at w = . Wavelet theory requires the lowpass filters to have
at least one zero. This is also beneficial for image coding.

o The analysis filters should be chosen to maximize coding gain.

o Fo(2) should be long and F\(2) should be short, A long Fo(z) will help the coder to repre-
sent flat regions. A short F1(z) will minimize ringing due to quantization. Figure 11.13(a)
shows blocking at 0.25 bpp from the short Haar filter. Figure 11.13(b) shows ringing for
a longer S-tap Fi(z).

o Hi(z) should have good stopband attenuation to minimize the leakage of quantization
neise into low frequencies.

» How does one factor a given halfband P(z) into Hy(z) Fp(z)? One should choose Hy(z)
short (and therefore Fi(z) short) and Fy(z) long, Hy(z) should have at least one zero at
w = 7. Fy(z) should have many zeros at & to obtain a smooth scaling function. An ex-
ample is the filter bank with length (2, 14) (factors of the maxflat filter). The total of eight
zeros at 7t is the same as the (9, 7) FBI filter bank. Figure 11.14 shows the reconstucted
images at 0.5 bpp using the (2, 14) and FBI systems. The PSNR is 24.68 dB and 25.30 dB
for (2, 14) and (9, 7). The image gualities are comparable, although (2, 14) has smaller
coding gain (.45 dB) compared to 9.787 dB of the FBI system.

Bit Allocation and Quantization

After transformation the subband signals are quantized, entropy coded and stored {or transmit-
ted). Figure 11.15 shows typical distributions for the subband signals, For bandpass and high-
pass subbands, zero-mean Gaussian is a good approximation. The lowpass subband is image-
dependent and its distribution is roughly uniform. Given M subimages and a fixed bit rate R,



11.2 Image and Video Compression

Lh

ol

H,(w) F, (w)
1 "" /
@ anatysis () O synthesis ()

Figure 11.11: Frequency responses and scaling functions. The synthesis scaling function is
rough and has large jumps. This produces blocking-like artifacts.
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Figure 11.12: Frequency responses and scaling functions of a filter bank, The lowpass responses
are not zeto at w = x. This DC leakage yields a checkerboard in the reconstructed image.
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Figure 11.13: Blocking from a short synthesis lowpass filter. Ringing from a long synthesis high-
pass filier.

Figure 11.14: Image compression at (.5 bpp using (2, 14} and (9, 7) filter lengths.
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how does one assign bits to the subimages? The bit allocation algorithm needs a cost function
D. Examples of D are distortion, energy and entropy. We discuss the minimization of distortion
for a uniform quantizer with variable bit length next.
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Figure 11.15: Typical distributions of subband coefficients.

Consider the 4-level wavelet decomposition in Figure 11.5. The original image size is 256
by 256 with 8 bits per pixel, for a total of 524,288 bits. How does one assign 16,384 bits to the
subbands for a 32 to 1 compression? The numbers of pixels in the subbands go from 16 by 16 up
to 128 by 128. Assigning one extra bit to the coefficients in the small subband does not increase
the total number of bits as much as assigning the extra bit to the large subbands. Let

e N be the total number of bits in the original image

e M be the number of subbands (M = 13 for four levels)

e o = N /N be the relative subband size

e b= (b, ..., by) contain the bit lengths allocated to the subbands

€; be the quantizer performance index

e o be the subband variance

w; be the weighting factor (for perceptual coding).
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Define the quantization error and the total bit rate as:

M M
D) =) wwef 2™ of and RG) = oy by
k=1 k=1

The bit allocation problem is to minimize D(b) subject to R(B) = R, = fixed bit rate. This can
be solved using a Lagrange multiplier A:

min {D®) + ARG} =min Y o (wrel 27 o + A by). (11.2)
Assume that all €, = ¢, and set & = A/€2. Then (11.2) reduces to
min {w, 27 o2 + % b} VE. (11.3)

Differentiate (11.3) with respect to b; to obtain a closed form solution:

1 (2log, 2)wio}
b = Llog, (_’,{’_‘) (11.4)
Then the bit-rate constraint R(d) == R, becomes
M M 2
(2log, Dw; o
Ecqbk = %Z(ﬂ; logz("—ew'—k'—k) = Rc.
k=1 =1 A
This yields the multiplier X = A/e2:
— o 1
= 2[2,,:, oy log, (2 log, 2w, a‘)—m] (1L5)

In summary, the average subband variances 67 lead to A, subject to the constraint. Then the
allocated bit length by is computed from (11.4). When R, is too small, the resulting bit length
can be negative for subbands with very small signal variances. Since one can not assign negative
bits, the bit allocation algorithm is restarted with these subbands removed (0 bits). The iterative
algorithm is;

1. Find bit lengths b, and set all negative b;, to zero.
2. Reduce the number of subbands appropriately, M,., = Moy — Myero.
3. Adjust R; = R, s, and repeat step 1. Stop if all b, > 0.

For a linear-phase filter bank without orthogonality, the signal energy is not preserved. Quan-
tization noise introduced in the subbands is amplified by the synthesis bank. Assuming that the
quantization etrors are uncorrelated and defining B, = o, 3, ﬁc(n), the reconstruction error
variance is 02 = fi;' By 0. By normally ranges from 0.9¢ to 1.1ay for practical systems,
and it is reasonable to assume that By = 1 (as for an orthogonal filter bank).

From b; and oy, we compute the step size Ay for the quantizer. The maximum allowable
quantization error for the kth subband is T, = ¢4 03 /2%, where c; = 8 is a reasonable choice.
The step size A, is normally chosen to be

Ay = max (27;, Agmin) for by > 0 and Ay = 2X; jpox + € for by = 0. (11.6)
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Here X} pg; is the largest nonzero value, by max is the maximom number of bits for coding a
nonzero normalized coefficient, and Ay iy is the minimum step size to guarantee that by .,
is not overridden for coding X mey. The Huffman table of the sequential baseline coder has a
limited size and should be kept small. The table is also quantized and transmitted. Therefore,
Ay must be greater than or equal to the smallest 8, that is not quantized to zero. Summarizing,

Xl:.max

Ag min = max {m 5&}; € > 4.

The exception for the case where by = 0 in (11.6) assures that all coefficients are quantized
to zero if no bit is assigned. ¢ > & is necessary to keep all normalized coefficients 5, =
round (y;/Ag) smaller than 0.5,

The lowpass channel variance strongly depends on the signal. Its distribution is approxi-
mately uniform. A, computed from (11.6) would be too large since the uniform quantizer is
more effective for uniform distribution (rather than Gaussian). This error is equalized appro-
priately by scaling the lowpass subband variance by 57 = ¢ a? before bit allocation. <y is
determined experimentally and is different for every signal. It is about 1.5 for the image Lenna.

Perceptual weighting for wavelet-based image coding It is well known that minimizing the
squared error does not guarantee optimal results in the perceptual sense. At medium and low
bit-rates, human eyes are less sensitive to loss of high frequencies. One needs to weight the
quantization noise in the subband using the sensitivity of the human eye. But perceptual quality
is complicated. We summarize here a simple and effective weighting scheme for the estimated
quantization noise before bit allocation. More bits are allocated to low and medium bands, and
high frequency noise is increased. The figure below shows the weight factors for three levels
with @ > 1 and the improvement for a = 2.

(9,7} system at 0.125 bpp, a=1 (9.7) system at 0.125 bpp, a=2

[¥]a%] -
a>la’] ° 1
a
a3 32
al a®
The choice of weight for an M-channel GenLOT is w = [ &' ... & 1 ]T. Ex-

tending to 2-D yields W = w w”. Here are the reconstructed images using GenLOT of length
48, with @ = 1 and a = 2. Note again the improvement with a = 2.
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GenLOT(48) at 0.125 bpp, a=1

GenLOT (48) at 0.125 bpp, a=2

Since PSNR is maximal for ¢ = 1, this weighting is a tradeoff between perceptual quality
and error measure of the reconstructed image. At lower rates, perceptual quality is more impor-
tant. The weighting scheme is simple, efficient, and image independent. It does not guarantee
perceptually optimal results! A reliable measure for perceptual quality (and the best weight) is
an ongoing research problem,

Entropy Coding

After bit allocation and quantization, we have subimages with discrete levels represented by in-
tegers. How do we store or transmit these subimages? Many highpass coefficients are zero after
quantization. These coefficients should be grouped so that the entropy coder can take full ad-
vantage of long strings of zeros. This is accomplished by scanning.

Run-length coding or Huffman coding or a combination should be used to reduce the redun-
dancy of the images [PM]. We will discuss the baseline entropy coder which is a combination.
JPEG also uses the baseline coding method.

Scanning of the discrete wavelet coefficients To demonstrate scanning, consider the three-
level wavelet transform in Figure 11.16. Subbands 2, 5 and 8 are highly correlated since 2 is the
coarse approximation of 5 and 5 is the coarse approximation of 8, Suppose the pixel at the upper
left corner of subband 2 is zero. Then it is very likely that the pixels in a 2 x 2 shaded square
of subband 5 are zero. Similarly, the pixels in a 4 x 4 shaded square of subband 8 are probably
zero. One can group these pixels into an “AC sequence” of length 21 (= 1+4+ 16) by vertically
scanning the shaded squares. Figure 11.16 also shows the scanning patterns for subbands 3, 6
and 9 (horizontal) and for subbands 4, 7 and 10 (diagonal). When the original image has size
32, the 16 pixels each in subbands 2, 3, 4 give 48 AC sequences. The low frequency band ts
scanned horizontally and grouped into the DC sequence of length 16. This scanning method is
similar to the zero-tree coder proposed by [Shapiro).

Scanning of the block transform  Consider an image of size 32 x 32 transforms to 16 blocks
of size 8 x 8, using an 8-channel GenLOT. The quantized coefficients are scanned and entropy-
coded. The £ coefficients in block £ are correlated with the £ coefficients in blocks & +m. There-
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Figure 11.16: Scanning method used in the Discrete Wavelet Decomposition.

fore one should scan them in a zig-zag pattern, as shown in the figure. These scanned coefficients
are grouped to sequences of length 16. There are 64 such sequences.

Figure 11.17: Scanning method used in the block transform.

Sequential Baseline Coding After scanning the quantized subimages, we have a set of DC
and AC sequences to be stored. The baseline coder takes advantage of the correlation in the AC
sequences. This algorithm combines Sequential Baseline Coding and Huffman entropy coding.
The basic principle is similar to the JPEG coder, but does not restrict to the DCT.

Coding of the AC sequence: The sequence 900201000 —30030 —1 — 1 has
strings of zeros interlacing with nonzeros. An efficient representation remembers the number of
zeros before each nonzero. Symbol-1 is the pair (Runlength, Size) where Runlength specifies the
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number of preceding zeros. Size determines the number of bits to encode the current nonzero.
Symbol-2 gives the (Amplitude) of the nonzero: Size = n corresponds to Amplitude less than 2"
(but not less than 2",

This representation of the example gives a string of symbel-1 and symbol-2:
0, D4 (2,2)2 (1,D1 (3,2)-3 (2,2)3 (1, 1)—1 (0,1)—1 (0,0).

Note the terminal symbel-1 (0, 0) at the end, Also (1, 1) and (0, 1) and (2, 2) occur twice in the
string. Huffman entropy coding (see Figure 11.18) can exploit this redundancy in symbol-1. A
simple way to code symbol-2 “a” in binary is:

b a — ize-1 ifa>0
| lal otherwise.
: Symbol-1 Huffman entro
0 [+ (Runlengih, Size) [ cofing Py
0 E ‘.l.‘
2| = ] : Storage
0 Symbol-2
3 | (Amplinde) [ Binary coding |#
-1 $

Figure 11.18: Steps in a Sequential Baseline Coder.

Coding of the DC sequence: DC coefficients measure the average energy of the input sig-
nal. There is usnally a strong correlation between neighboring coefficients. For efficiency we
use differential coding: save the first coefficient and then the differences between successive co-
efficients. These are coded as for AC coefficients. Since one would not expect long zero strings,
Runlength is not used. Symbol-I only gives Size. An excellent source for Sequential Baseline
Coder is [PM].

Three error measures are often vsed to compare coders and perceptual guality:

M-1N-}
Mean Square Error MSE = 3= Z tx(m, n) — X(m, n)|?

m=0 r=0
Peak Signal Noise Ratio  PSNR = 10 log,o(2%) (1.7)
Maximum Error MaxError = Max |x(m, n) —X(m, n)|

The image is M x N. The MSE and PSNR are directly related, and one normally uses PSNR to
measure the coder’s objective performance. At high rate, images with PSNR above 32 dB are
considered to be perceptually lossless. At medium and low rates, the PSNR does not agree with
the quality of the image,
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Comparison of image coder based on block transforms and wavelets

Block Transform Image Coder: GenL.OT with M channels Figure 11.19(a) shows the cod-
ing gain as a function of the overlapping factor N, for various values of M. Notice the large im-
provement from 4 channels to 8 channels. The added improvement for M = 10 and 16 channels
is less. For fixed M, one observes a steady increase in coding gain as N increases. GenLOT with
8 channels is a good compromise between the implementation complexity and performance.
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Figure 11.19: (2) Plots of coding gains as functions of overlapping factor. {(b) Plots of PSNR
differences for the “Lenna” image using 8-channel systems for various bit rates.

Figure 11.19(b) shows the PSNR difference between GenLOT and DCT, for several over-
lapping factors N. At high rate (> 1 bpp), the improvement is not significant, All block image
coders would work well at high rate. At medium rate the improvement is larger, since DCT algo-
rithms suffer from blocking. At low rate, blurring and ringing artifacts control the performance
of the image coder.

One should also compare the subjective performance. Figure 11.20 shows the reconstructed
images for DCT and GenLOT (length 48) at 1 bpp and 0.125 bpp. Although the PSNR improve-
ment at 0.125 bpp is only 0.52 dB, one observes a large difference in subjective quality.

Wavelet-based image Coder with L levels and p zerosatmw  Allfilters used in this study are
factors of a halfband maximally-flat P(z). One way to form symmetric Fp(z) and Hy(z) from
P(z) of length 135 is to assign four zeros at 7 and the four complex zeros to Fo(z). Then Hy(z)
will have the remaining four zeros at & and the two real zeros. This yields the (9, 7) system used
by the FBI. To obtain filter banks with even length (Type A), move one zero at & from Ho(z) to
Fo(z). This yields the (10, 6) system.

Figure 11.21(a) shows the unified coding gain as function of the number of levels L and the
p zeros at 7 in P(z). For a given P(z), we compute the unified coding gain for all linear-phase
systems and plot the best value. See also [Maj1]. This plot assumes that the image is an AR(1)
model with o = 0.95. The unified coding gain saturates around 4 or 5 levels of decomposition.
More than 5 levels of decompeosition help very little. Type A and Type B systems show a similar
coding gain.

The best filter bank for a given P(z) is used in a wavelet-based study with four levels of
decomposition for the “Lenna” image. The PSNRs of the reconstructed images are computed
for various rates and plotted in Figure 11.22 for Type A systems. Notice how Haar wavelets are
worst. Odd-length B systems show a similar PSNR performance.
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DCT at 1bpp (a=1) GenLOT (48) at 1bpp (a=1)

DCT at 0.125 bpp (a=2.5) GenLOT (48) at 0.125 bpp (a=2.5)

Figure 11.20: Reconstructed images using DCT and GenLOT (length 48) for 1 bpp and 0.125
bpp.
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Figure 11.21: Unified coding gain for the best even-length Type- A systems and odd-length Type-
B systems. Vm is the number of vanishing moments of the halfband filter P(z).
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Discussion  Given an image and a compression ratio, should one use a block transform
(GenLOT) or a wavelet-based transform? At high rate (1 bpp), the perceptual quality is very
similar. At medium rate, wavelet-based transforms perform a little better (GenLOT has ring-
ing). At low rate, all ransforms have their drawbacks and it is hard to pick one over the others.
We can only display the outputs and tabulate the error measures as shown in Figure 11,23,

Type A at 0.125 bpp (a=2.5) Type B at (1125 bpp (a=2.5)

(6,10} (7.9)  |GenLOT

MSE 189.1 1817 169.3
PSNR (dB) § 2536 25.54 25.84

Max Error 88.42 9372 00.16

Figure 11.23: Reconstructed images vsing Type A (6, 10) and Type B (9, 7). Error measures
include GenLOT (length 48) from Figure 11.21.

Software for image compression is available at

http:/isaigon.ece. wisc.edu/ waveweb/OMFE himl

Video Compression

Commercial systems such as video-on-demand, videophone, video conferencing and multime-
dia applications are being planned and manufactured for home use. The key to their success is
video compression. Video on the Internet will be at a low bit-rate!

Video signals are sequences of 2D images updating at about 30 frames per second. The new
dimension is time. One can extend separable processing from 2D to 3D. Then a video compres-
sion system would use a 3D separable filter bank in the front end. The transformed sequences
are quantized and entropy coded. A bit allocation algorithm based on rate distortion theory can
be used te find the optimal bit assignment.

Another approach to video compression is based on motion estimation. At 30 frames/second,
the information in frames m and m + 1 is highly correlated. Suppose that one can estimate the
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motion vectors for all pixels, to indicate where each part of the image moves in the following
frame. Then it is sufficient to send the first frame (compressed) and the motion vectors. At the
synthesis bank, the first frame is reconstructed and subsequent frames are formed by using the
motion vectors (plus small corrections to the image). The quality of the reconstructed image
depends on the accuracy of the estimated motion vectors.

Consider the image coder based on § x 8 blocks transformed by the DCT. The first frame
is quantized, entropy coded and transmitted. The second frame is transformed into blocks. For
a specific block (X, L), the search algorithm considers the neighbor blocks (K £ 1, L + 1)
to estimate the motion vectors. These are also coded and transmitted. However, an imperfect
estimate reduces the quality of the reconstructed second frame. Consequently, one also needs to
transmit the expected residual error. The MPEG video standard [MPEG2] employs both forward
and backward predictions for motion vector estimation.

Similar algorithms based on the wavelet transform are being developed. Where MPEG deals
with subblocks, the wavelet algorithm has blocks with different sizes at different resolutions.
Motion estimation is more complicated since there are several scales to search. We estimate
motion first on a coarse scale, then on finer scales. The support regions also depend on the filter
lengths. The memory requirement for MPEG is lower, but multiresolution is more powerful. An
early comparison is in [Zafar].

Problem Set 11.1

1. If A, B, C, D occur with probabilities 0.4, 0.3, 0.2, 0.1, a Hoffman entropy coder will create
a binary tree:
A, B,C,D havecodes 0,10,110,111

What are the Huffman codes for X, ¥, Z with probabilities 0.2, 0.5, 0.3?

11.3 Speech, Audio, and ECG Compression

Psychoacoustic model of the ear To design effective algorithms for speech and audio com-
pression, one needs to know how hearing works. The more one knows, the better the algorithms.
Psychoacoustics is the study of hearing, from which quantitative models are built. The models
are based on years of extensive tests on humans, which led to these conclusions:

¢ Hearing is associated with critical bands. These nonuniform frequency bands can be ap-
proximated by tree-structured filter banks. In speech compression, the filter bank is a four-
level dyadic tree. Audio compression is based on either M-band uniform or M-band tree-
structure cosine-modulated filter banks (Figure 11.24). There is always a tradeoff between
complexity and accuracy in the approximation of critical bands. The filter bank in Figure
11.24(c) is more complicated than the other two. However, it approximates the critical
bands more accurately.

o Around any frequency f. there is masking. An adjacent frequency f with magnitude be-
low T foy. f) 1s masked by f,, and is not audible;

M (£) 1<t

T(fm, )= MCED (:{:)-m; o f

(11.8)
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In a speech/audio compression system, the signal is transformed by a tree-structured filter bank,
The frequency allocation approximates the critical bands of the human ear. The frequencies f,,
with significant power are detected, and their masking envelopes T(f,, f) are computed. The
combined masking envelope forms the masking curve of the signal. The quantization noise level
is kept below the masking curve. Out-of-band masking noise is negligible as long as the fre-
quency responses of the filter banks have high attenuation.

The allocation of B bits to the signal, assigning by bits to subband £, tries to keep the quan-
tization noise inside the masking curve:

Minimize 3~ (=22 Y L centat S < B
mimize gﬁ(zb‘_l) m such that ; k= D.

Here or,ﬁl ¢ 15 the masking power of the kth subband and p, is its peak value.

Speech Compression

Speech compression is important in mobile communications, to reduce transmission time. Dig-
ital answering machines also depend on compression. The bit-rates are low, typically 2.4 kbits

per second to 9.6 kbits/second. The best algorithms vse either linear predictive models or sinu-
soidal models.
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Speech is classified into voiced and unvoiced sounds. Voiced sounds are mainly low fre-
quency. In CELP (code excitation linear predictor) the voiced sound is modeled as the output
of an all-pole IIR filter with white noise as input. The filter coefficients are found by linear pre-
diction. This filter represents the transfer function of the vocal tract. In a sinusoidal transform,
the voiced sounds use a sinusoidal basis. Unvoiced sounds (like sss) have components in all
frequency bands and resemble white noise. Model-based techniques achieve reasonable perfor-
mance at low rates.

At more than 16 kbits/second, subband coding is effective and compatible with the models.
Psychoacoustics has associated human hearing to nonuniform critical bands. These bands can be
realized roughly as a four-level dyadic tree (Figure 11.24a). For sampling at 8 kHz, the frequency
bands of the dyadic tree are: 0-250 Hz, 250-500 Hz, 500-1000 Hz, 10002000 Hz and 2000—
4000 Hz. These bands can be quantized and coded depending on subband energy; the average
signal to noise ratio is maximized. And the noise masking property is used.

High-Fidelity Audio Compression

Music signals have no models. The frequency spectrum of a harp is not similar to that of a piano.
Subband coding, which makes no assumption on the signal model, is a natural choice. Consider
an audio signal of CD quality, sampled at 44.1 kHz with 16 bits of resolution. The total bit-rate is
705.6 kbits/second. For multimedia applications, one would like to compress it to a range from
64 to 192 kbits/second (11:1 to 4 :1). High-fidelity audio compression implies that there is no
perceptual loss in the reconstructed signal. This is crucial for digital audio broadcast and satel-
lite TV, where sound quality is the most important feature. Applications of audio compression
systems are;

» Digital audio broadcasting » Production (tapeless studio, editing systems)
« Satellite TV, High-Definition TV - Storage devices (studio & consumer market)
« Contribution and Distribution links e Multimedia applications

The noise floor (stopband attenvation) of the filter banks should be below —96 dB (16 bits
at 6 dB per bit), although lower attenvation is always preferred. To minimize noise from adja-
cent subbands, the stopband attenuation is required to have steep roll-off rate. Interested readers
should consult [Dehery, Stautner, Brandenburg).

Electrocardiogram Compression

ECG waveforms are signals measured from the heart. They provide essential information to
the cardiologist. Normally, a 24-hour recording is desirable to detect heart abnormalities or dis-
orders. Storage requirements can range from 26 Mbytes, with one lead to the heart and 12 bit
resolution sampled at 200 Hz, to 138 Mbytes for a system with two leads and 16 bit resolution
sampled at 400 Hz. Compression is needed at a low bit-rate for both storage and telemedicine,

An ECG compression algorithm is judged by its ability to minimize the distortion while re-
taining all significant features of the signal. An accepted error measure is the percent root-mean-
square difference (PRD). Let x,, and x,, be the original and reconstructed signals of length N:

PRD=IZ[xo,tn)—x,,(n)lzxZ[xw(n)]z]* X 100%
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Reconstruction with low PRD does not necessarily mean clinical acceptance. The crucial re-
quirement is not to distort the diagnostic information used by the physician. This is a challeng-
ing problem since GenLOT and wavelet compression typically produce blocking and ringing.
Moreover, ECG is normally used as input to classification. If compression does not change the
outcome of the detection and classification algorithms, it is acceptable.

An ECG waveform (dashed line) is shown with its reconstruction (solid line). The compres-
sion ratio is 7.9 to 1, using the (13, 11)-tap filter bank. The reconstructed image preserves the
significant features of the origina! and the PRD is 3.9%.

WAVELET COMPRESSION RATIO 7.9 PRD=3.9%

0 015 ‘i 1j5 :
TIME IN SECONDS

Techniques such as the turning point algorithm, amplitude zone time epoch coding (AZTEC),
coordinate reduction time encoding system (CORTES), and the FAN algorithm compress the
data by discarding relatively insignificant information [T1. The reconstructed signal is obtained
by interpolating the stored samples. These algorithms are simple to implement, but they can pro-
duce significant distortion. Figure 11.25 shows the original and reconstructed waveforms using
the AZTEC and FAN algorithms. We also show the PRD as function of average bit rate for the
AZTEC, FAN and wavelet algorithms. The original signal has 12 bits per sample. In all our
tests, wavelet-based compression gave the best objective measures,

AZITEC COMPRESSION RATIO 68 PROS10.0%
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Figure 11.25: ECG Compression using the AZTEC, FAN and wavelet-based algotithms.

The blocks of the wavelet-based ECG algorithm are the same as for image coding. The in-
put is divided into segments of N samples and these vectors are transformed (four levels, linear
phase). The spectrum estimator computes a bit allocation to the subbands. They are quantized
(scalar uniform) and entropy coded. The segment size N is important in determining the com-
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pression ratio and the corresponding PRD. A large N increases the variance of the subband sig-
nals and the distortion. By experimenting with many sets of ECG data, we conclude that a block
size of 2000 is reasonable,

Software for ECG compression is available at

http./isaigon.ece.wisc.edu/ waveweb/QM F.html

11.4 Shrinkage, Denolsing, and Feature Dectection

Wavelet Shrinkage

In the L-level wavelet decomposition of a signal, the number of wavelet coefficients with signifi-
cant energy is small. This is a direct consequence of the approximation property of the wavelets,
assuming a sufficient number of vanishing moments (say p > 2). The signal can be accurately
represented by a small number of coefficients. Wavelet shrinkage, developed by Johnstone and
Donoho, selects these coefficients based on thresholding. The wavelet shrinkage algorithm de-
composes the signal into L levels and then:

¢ For each level, we select a threshold and apply “hard thresholding”. This will zero out
many small coefficients, which results in efficient representation. Thresholding is a lossy
algorithm; the original signal can not be reconstructed exactly. An alternative is soft
thresholding at level 4, chosen for compression performance or relative emror, The out-
puts ¥rara(t) and yy,z. () with threshold & are

x(t), |x(®)] =38

Yhara(t) =7 ()] <8 Hard thresholding
Ysops{t) = ;;:gn(x(t))(lx(r)l —9, :ig;: Z g Soft thresholding,
x(t) Yiard® Ysorl®

/

/

The signal in Figure 11.26 is basically lowpass with noise added. We show the reconstructed
signal with threshold levels 8 = 35 and 100. After thresholding at these levels, 92.8% and 93.4%
of the coefficients are zero. The L, norm recoveries are 99.99% and 99.98%, respectively. Re-
construction with & = 35 is closer to the original since the threshold is lower. But it uses more
terms,
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Figure 11.26: Hard thresholding generated using the Wavelet Toolbox from MathWorks.

Denoising

Thresholding generally gives a lowpass version of the original signal. By selecting 5, one can
suppress the noise w(n) in the signal x(n) = u(n) + ow(n). A simple example of w(n) is Gaus-
sian white noise N(0, 1). For denoising we use soft thresholding.

The noise power o2 is assumed to be much smaller than the signal power, Moreover, the sig-
nal is assumed to have low frequency components, whereas the noise source is white. Threshold-
ing the detailed coefficients will also remove some of signal’s power. It is generally impossible
to filter out all the noise without affecting the signal. Algorithms selecting the threshold lev-
els include Stein’s Unbiased Risk Estimate, fixed threshold, Minimax criteria or a combination
[Donbf1].

The piecewise constant signal below is corrupted by Gaussian white noise. The corrupted
signal is decomposed using the Daubechies wavelet Dg. The coefficients at level 4 are thresh-
olded using Stein’s Unbiased Risk Estimate. Notice that the reconstruction consists of the orig-
inal signal and some of the noise.

In both wavelet shrinkage and denoising, the output is a cleaned-up version of the input. This
works only when one knows the signal characteristics in advance. The algorithm will distort the
desired signals when thresholding is applied.
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Discontinuity Detection

A discontinuity in the signal can be detected by Haar wavelets. A discontinuity in the first deriva-
tive can be detected by D4. The signal in Figure 11.27(a) is linear, except for an interval of zero
slope. The D, wavelet can represent straight lines exactly (p = 2). The two discontinuities
are being captured in the wavelet coefficients. Although wavelets with longer supports could be
used, Dy is the best choice since it has good time localization.

Figure 11.27(b) shows a signal with discontinuity in the second derivative. The wavelet used
is Dg, which can represent parabolas exactly (so could Dg). Even though the discontinuity can
not be seen from the signal, it is clearly detected by the coefficients in the first level of the de-
composition.

Signal (a) Signal (b)
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Figure 11.27: Detecting discontinuity in the first derivative and second derivative. (These plots
are generated by the Wavelet Toolbox.)

Detecting discontinuities using a wavelet transform works well for signals with no noise,
When noise dominates, one will obtain many false alarms (wrong detections). For reliable de-
tection, one needs to follow the coefficients for several scales. Mallat pioneered this important
application in continuous time for the case with no noise. The section below elaborates on the
multiscale feature detection and points out its advantage comparing to the conventional feature
detection.

Multiscale Feature Detection

The step edge in Figure 11.28 can be detected from the detailed coefficients using Haar wave-
lets. An alternative approach uses the Canny edge detector in image processing [Canny]. Both
approaches work well for a signal with no noise. The output is clean and the edges can be de-
tected. For the same input with added noise, on the right side, there are many false alarms (wrong
detections).

Figure 11.29 shows the same noisy signal with its multiscale representation. Note the oc-
curence of false alarms at each scale. The consistency between the peaks at all scales allows
the edge locations to be detected.

There are several issues in a multiscale feature detector. Our example vses peak as an indi-
cator for the edge feature. However, one could also use zero crossing as an indicator. Given a
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fnput Signal Input Signal
Haar Wavelet, level 1 Haar Wavelet, level 1
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Figure 11.28: Step edge detection using Haar wavelets. The Canny edge detector is very similar.
The clean step signal (left) is easy. The signal with noise (right) is difficult at one level.
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Figure 11.29: Step edpe detection using the outputs at different scales.
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feature, which indicator is the best one to use? The second issue is the choice of filter bank. How
can one design filters that give a multiresolution representation of the indicators? The third issue
is the design of an optimal detector for various noise models, Finally, many algorithms are de-
rived in continuous time and can not be used for discrete-time implementation [Mt]. [HaNgCh)
presents a general appreach to discrete-time multiscale feature detection.

Problem Set 11.4

1. For the signal x(r) = sin¢, draw the graphs of ya.¢(¢) and Yiop:(t) after thresholding with
8= %

11.5 Communication Applications and Adaptive Systems

Transmultiplexers

A transmultiplexer is a filter bank with synthesis first. This reverse order is depicted in the figure
below. M signals come in, and they are combined into one transmitted signal. Then the receiver
has to reconstruct the M separate signals.

Low-bandwidth input signals x;(n) are upsampled and filtered. The combined signal goes
through a high-bandwidth channel. The received signal is filtered and downsampled to the origi-
nal rates. The outputs ¥, (n) may suffer from distortion and crosstalk becanse of the decimation,
interpolation, and non-ideal filtering.

xo(n)w F @ H @ -@—.io(n) Hy By B, By Hm-1
F, F F F

x o~ tm| F @ H, @) ..@_.;,(n)
N . . . L3

L
Xy M F @) By @ "El“h"u-n(")

WIDEBAND
CHANNEL

LR
LE N ]

The output ¥ () depends on all M inputs by X £(2) = Y_ S1e(2) X¢(z). The transfer functions
Skk(z) give the distortion. The remaining Sie(z), £ # k, are the crosstalk functions. The objec-
tive is to find Hy (z) and Fi(z) such that $(z) isa diagonal matrix, $y¢(z) = 8¢ z~". This would
be a perfect reconstruction transmultiplexer. The design solutions for the PR transmultiplexer
are closely related to those in the PR filter bank!

Let Hi(z) and Fi(z) be the analysis and synthesis filters of a perfect reconstruction filter
bank. [Vet3, KoNgVa)] show how the filters Hy(z) and z~! Fy(z) yield a perfect reconstruction
transmultiplexer (for an ideal communication channel).
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Discrete Multitone Modulation Transceivers

Transmultiplexers can be used in conjunction with discrete multitone modulation transceivers.
Discrete multitone (DMT) or multicarrier modulation is a class of orthogonal frequency modula-
tions. The transmitted data is split into several bit streams and used to modulate several carriers.
The spectrum is divided into parallel orthogonal and narrowband subchannels. Each carrier oc-
cupies one subchannel. This concept was proposed thirty years ago, but did not receive much
attention because of the difficulty in implementation using analog technology.

The advance of digital signal processors and related hardware has made the multicarrier mod-
ulation a preferred structure over the single-carrier QAM system. There is important interest in
multicarrier modulation for high-speed data transmission over the twisted pair channel of a digi-
tal subscriber line. As aresult, discrete multitone has been proposed as a standard for high-speed
digital subscriber line (HDSL) and asymmetric digital subscriber line (ADSL) communication.

Consider a typical channel where the attenuation variation could be as large as 40 dB. A
linear equalizer for a single-carrier QAM system would increase the noise, whereas a decision-
feedback equalizer would be too complex. For many channels, multicarrier medulation approxi-
mates a constant transfer function in each subchannel. Equalization becomes very simple. Other
advantages of multicarrier modulation are the reduced effect of impulse noise as a result of large
symbol duration; the flexibility of not transmitting in the corrupted subchannels in case of nar-
rowband interference; and the flexibility of transmitting important data in subchannels with high
SNRs.

One disadvantage is the large peak-to-rms ratio of the transmitted signals, which might lead
to nonlinear distortion. And the implementation complexity must be controlled. When the fre-
quency separation A f is %, where T is the symbol duration, the multicarrier system can use
the DFT. That avoids implementing several carriers using analog technology. This is one of the
main attractive features of DFT-based multicarrier modulation.

Given an ideal channel, orthogonality is ensured by the IT spacing between subcarriers, and
they can be independently demodulated. In a dispersive channel, the carriers are no longer or-
thogonal, Interference depends on the spectral overlap between subchannels. DFT-based mul-
ticarrier systems, with rectangular pulse shape and —13 dB sidelobes, can have significant in-
terchannel interference. One could employ pulse shaping to reduce spectral overlap, but the re-
sulting transmultiplexer is not necessarily orthogonal (nor petfect reconstruction).

An alternative is to use a cosine-modulated orthogonal transmultiplexer. Its spectral con-
tainment leads to superior robustness against narrowband radio frequency interference (RFI).
Interested readers should consult [RiPrNg, SaTz, TzTzPh, TzTzRe] for algorithms and compar-
isons between DFT and cosine-modulated multicarrier systems.

Adaptive Systems

Adaptive systems are important when the signals or environments are changing with time. Typ-
ical applications are inverse filtering, room acoustics modelling, and echo cancellation. We also
mention adaptive array processing (beamforming and direction finding) and channel equaliza-
tion. In these applications, an FIR filter models the signal or the environment. Its coefficients
are adapted in time to minimize an error measure. Popular adaptive algorithms are LMS (Least-
Mean-Square) and RLS (Recursive-Least-Square). A detailed treatment of adaptive filter theory
is in [H, PRCN].
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The adaptive system in Figure 11.30 is used in inverse filtering. The objective is to find f(n)
such that the error e(n) is as small as possible. Here, the desired signal d(n) is distorted by an
unknown system k(r) and is corrupted by noise. The z-transform of e{n) is

E@ = [F@) H@ -] D).

Assuming that H () is an FIR filter, the ideal choice for F(z) is z~" /H(z). But normally F(z)
is constrained to be FIR. Its length affects the convergence rate and the error.
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Figure 11.30: Adaptive systems in inverse filtering (left) and using a filter bank (right).

If the spectrum of H(e/®) is complicated, the inverse spectrum is equally complicated and
the resulting f(n) is long. By separating H{e/®) into many bands Hy(e/*), the inverse filter in
the k-th subband would not be too large. These M subbands in Figure 11.30 are adapted using
M FIR adaptive filters f; (n), much shorter than f{z) since the analyzing spectrum is simplified
band by band. The convergence rates are faster. This is a tradeoff between hardware complexity
and convergence rate.

Figure 11.31(a) shows a very different adaptive system. From the error [H(z) — F(2)] D(2),
one observes that F(z) is no longer an inverse but is an approximation to H(z). The length of
f(n) is comparable to that of B(n). This system is used to cancel telephone echo coming from
an impedance mismatch of the residence line and the switching center. It is most noticeable and
annoying for long distance calls. Here, s(n) is the speech signal, d(n) is the reference signal,
y(n) is the echo signal received at the handset, and you hear x(n).

The objective of f(n) is to reproduce s(n) while suppressing the echo y(n). Fora complicated
and nonlinear echo path, an adequate f(n) is too long. A bank of shorter filters f, (n) is better.
The signals s(») and d(n) are decomposed into M subbands, on which adaptation is performed.

s(n) S
5, (N}
oo x(n} y s [Analysis | - o &, (n)
y(n) e(n) Bank
Unkpown Adaptive Unknown Adaptive
System h(n) Filter f(n} System by (n) Filter f (n)
I I din) u Analysis
Bank d(l'l)

Figure 11.31: Adaptive systems for echo cancellation (left) and using a filter bank (right).

Filter bank adaptive systems give an improved convergence rate and error reduction [GilVet,
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JinWoLu]. Subbands with large energy can be adapted by long filters, whereas subbands with
insignificant energy can be either discarded or adjusted using short filters. The price is the ad-
ditional complexity (minimized by using lattice structure or polyphase). Two-channe! adaptive
banks are designed in {JinWoLu] and compared with spline and Daubechies wavelets.

11.6 Wavelet Integrals for Differential Equations

The possible application of wavelets to differential equations is important. In principle, this ap-
plication is available. In practice, it is not yet a real success. The overall approach is familiar,
but the competition with other methods is severe. We do not necessarily predict that wavelets
will win.

The unknown function u(¢) (or u(x) or u(x, y)) is to be approximated by a finite combination
b)Y+ - - - + by (). These “trial functions” are chosen in advance. They are polynomials
or sinusoids in the spectral method. The ¢ (¢) are piecewise polynomials in the finite element
method. Presumably they are scaling functions and wavelets in the “wavelet method.”

A key point is the option to nse different scales At = 27/. The grid becomes a multigrid. The
number of scale levels can vary with the position f or x, to produce an adaprive mesh. Flexibility
comes from multiresolution. But the wavelet mesh does not achieve the total flexibility of the
finite element method.

Up to this point in the book, all signals were assumed known. Now the coefficients b, . . .,
by are unknowns because u{¢) is unknown. There are two outstanding rules for producing N
equations for by, ..., by:

1. Collocation: Apply the differential equation at N points ¢, ..., ty.

2. Galerkin method: Choose N test functions g,(1), ..., gn(#). Replace an equation like
u”’(t) = f(t) by N “weighted residual equations:”

f (1} (0) + - + bty (1) g; (1)t = f fOgnd, 1<j<N. (119

When the test functions g; are delta functions 8( —#;), this is collocation. When the g; are the
same as the ¢, this is the Rayleigh-Ritz method. When the g; are powers of 7, this is the moment
method. The trial functions and test functions should satisfy all essential boundary conditions
in the problem — these are Dirichlet conditions like «(0) = 0. They need not satisfy natural
boundary conditions like u'(1) = 0.

Collocation seems doubtful for wavelets, which are not smooth. The Galerkin method may
also look doubtful, because of the integrals in (11.9). But these integrals can be computed by
a quadrature formula, in which the coefficients are found once and for all. Then an integral of
F{1)e () does not require point values of ¢(z), only of the smoother function £(z):

b r
[ roswa~ Y asw. aL10)
a k=1

This section discusses several quadrature rules. We have written ¢(¢) but similar rules are
needed also for the wavelet w(r). We will choose equally spaced evaluation points, so that over-
lapping integrals can share the same # (and £ (f) may be known only by those samples anyway).
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Note that integrals are often computed by parts. Derivatives are moved away from rough
functions and onto smooth functions. When the trial and test functions are the same (¢; = g;),
integration by parts changes f ¢ (r)g(r) dt into ~ { ¢'(¢)g’ () dt. This needs only one deriva-
tive, not two.

We expect exact integrals for functions chosen in advance, and quadrature rules for integrals
involving inputs f(r). We discuss quadrature rules and then exact integrals.

Quadrature Rules

The usual test for accuracy is appropriate for smooth functions f(r). The ideais to try f{z) =
polynomial. The rule (11.10) has accuracy d if it gives the comrect integral for all polynomials
of degree less than 4. The first 4 terms in the Taylor series of f(¢) are integrated correctly, so
the error is from the dth derivative:

f FO @ dt =" aft) + O FO).

Changing from ¢ to 2/¢, this error will be of order (Az)? when the scale is At = 2—/:

f F@27 (2t)de =D a2 f (2778) + 0 ((an?). (11.11)
We study quadrature formulas at vnit scale, Then (11.11) gives the error at other scales.

Example 11.1. One-point quadrature. The rule has only one term:

ff(l)w(t)d! ~0 and ff(t)q&»(r)drmf(r,). (11.12)

The first rule is strange but its accuracy is d = p, because the wavelet has p vanishing moments.
The exact integral is zero up to f(#) =71,

The second rule is correct for f(t) = 1 provided f @(t)ydt = 1. Thusd = 1 at least. The
accuracy increases to d = 2 when the evaluation pointis 4 = f t¢{t)dt. (Therule is then exact
for f(#) = ¢.) This is a low-level example of the Gauss idea, to double the accuracy by choosing
intelligent #. as well as a;. But higher-order Gauss has unequally spaced #;, and is not ideal for
these applications. We follow instead the excellent paper [Sweldens-Piessens), which also gives
the coefficients a; for high order quadrature rules,

How can you find this number [ t¢(r) dt? By definition, it is the first moment M, of ¢(¢). It
equals the first moment ny = 3 kh(k) of the filter coefficients! There is a simple recursion that
gives the moments M, = [ ¢*¢(t) dt exactly from the moments m, = > k"h(k). As always,
the answer is in those coefficients A(k), when we use the dilation equation for ¢(¢):

2° f "eeydt = D 2h(k) f Q20" ¢ (2t — k) dt
= Zh(k)fr“qb(t —k)dt

= D k) f (t+ L) o(e)de

= Zﬂj(j)Zk(mi f "B () d.

i=0
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This says that 2"M, = 3% _, (;‘) m;M,_;. Bring M, to the left side:

1 2in
zn_l;(j)m,Mn_f. (11.13)
J=

In particular M; = m,. This is the best evaluation point for wavelet integrals — but it is not
generally an integer. The Dy scaling function has M, = m; = (1 + +/3)/4.

Three comments. First, orthogonal scaling functions have M; = M 12 (Problem 10). The one-
point quadrature f f(r)¢ (¢) dt = f(M) is third-order accurate, ltis correct for f(1) = I, ¢, 12.
Second, the Daubechies polynomials are nearly “interpolating” at the points ¢t = M, + &:

Moment formula M, =

¢(M) ~ 1.0002 and (M) + 1)~ —0.0004 and ¢(M; + 2) = 0.0002.

See [K] for graphs and discussion. Third, by using 3 p instead of 2 p coefficients we can construct
“coiflets” that have zero moments My, M3, ..., M,,_1. Then the one-point rule J F@Q)p(0)dt =~
J () is pth order accurate.

Exact Wavelet Integrals

We have already computed the inner productsa(k) = f ¢ (1) (t+k) dt between translates of the
scaling function. We will review the key idea, which gives a(k) in terms of the filter coefficients
(k). We never want to do an exact integral any other way. Generally we can’t! The applications
to differential equations require many more integrals, for example

f wit)w(t + k) det and f POt + ) di and f ()Pt + k) dt.

The last integrand has three factors. Freely available software now allows four factors [Kunoth).
These integrals may be needed on an interval I (usually of length 1 or 27") as well as on the
whole line. Then the integral has a one-zero box function x;(t) as an extra factor,

In all cases the key idea is to use the two-scale equation for each factor. There are two-
scale equations for ¢ (¢} and ¢'(¢) and w(¢) and the box function x,;(¢). Recall what happens
when two-scale equations are substituted into typical integrals:

a(k) f $(O)$¢ +k)dt = f (X 2ume@s - m) (3 2hmpc2r + 2% — my) a

f Wit +k)dr = f (3o 2nme @~ m) (3 2 o 2e + 2k — m))dt

8y (k)

The next step is to replace 2z by ¢ on the right side. Then dt becomes %d t. The results are very
different in our two examples:

a{k) becomes a combination of a(k + £): eigenvalue problem a = Ta
a,,(k) also becomes a combination of a{k + £): explicit equation a,, = T ,a.

The equation @ = Ta is homogeneous. Its solution must be suitably normalized. The equation
ay = T.a gives a,, in terms of the known a. The matrices are doubled-shifted Toeplitz:

T=(22HH' and T,=(J2)2H,H". © (11.14)



11.6 Wavelet Integrals for Differential Equations 397

This pattern is quite typical. Section 7.2 carried out the steps leading to T. We now carry out the
same steps for other important integrals (with more factors). Then we deal with integrals involv-
ing w(t), which do not yield eigenvalue problems. For integrals involving w(2¢), the highpass
matrix with diagonals k(0), 0, k,(1), 0, 5, (2), 0, . .. replaces H;.

Integrals of Products of ¢;(t) and ¢.(2)

We will describe the exact computation of a much wider class of integrals 5(k). All functions
to be integrated must be refinable. They satisfy two-scale dilation equations (also called refine-
ment equations). The coefficients for @o(t), ¢ (1), ¢a(e) are 2ho(k), 2k (), 2h2(k). The dilation
equation is substituted for each ¢;(¢) and for any derivatives. (Each derivative of 2¢ produces an
extra 2.} Changing the variable of inlegration brings 2t back to ¢ and yields a two-scale equation
for the integral:

b= 2“Zg(n)b(2k n) (11.15)

That is an eigenvalue problem b 2“(4, 2)Gb “The elgcnvcctor is b, and the operator (] 2)
changes k to 2k. Our first proeblem is to find the coefficients in g from the coefficients in kg, by,
and k,. The two-scale equation for the integral b follows from the two-scale equations for ¢y (1),
d1(8), d2(s).

Our presentation follows [Kunoth], who has created a valuable and freely available code.
She works in d dimensions withx = (x4, ..., xg) and allows a product of £ + 1 = 4 functions.
In principle any product of functions and their derivatives and dilations and translations is work-
able. We will begin in one dimension with £ = 2—thus a product of three functions inside the
integral. The letters b and g are different from hers, since her conventions with 2°s are not the
same.

The integrals to be computed are sometimes called connection coefficients:

blk) = bk, k) = f Po(t) D ¢y (t — k1) D** o+ — ko) dt.

The function ¢o(r) might be the standard box with dilation coefficients 3, 1. The functions ¢ (1)
and ¢, (¢) might be scaling functions, when the integrat arises from Galerkin's method. If the dif-
ferential equation is nonlinear, or has variable coefficients, that gives more factors (£ > 2) in the
integral. We are not now integrating wavelets! It is the scaling function that has a homogeneous
dilation equation and leads to an eigenvalue problem. Integrals involving w(¢) are computed
afterward. The filters kg, #, k, are all lowpass.

Our standard example is a(n) = [ ¢()@(t + k) dt = [ $(t — k)¢ (?) dt. (From now on we
have ¢ — k instead of ¢ + k; no problem.) It has £ = 1 with g&; = 0; no derivatives. Or it has
£ = 2 with ¢p(#) = 1 and (i, p2) = (0, 0). In this familiar example, the matrix is G = HH"
and the exponent is @ = 1. The double-shift matrix is T = (| 2)2HHT as usual. This example
will be a useful check, when the coefficients g(n) come from the autocorrelation g = A + k7

gn) =Y h(h(k — n). (11.16)

We jump directly to thc key formula w1th three factors ¢y, ¢1 qbz

8(”1:“2) Zflo(k)hl(k - ﬂl)hz(k -ﬂz)- :

(11.17)
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To establish that formula, and to allow derivatives of the functions ¢ (2), substitute the dilation
equations into the integral b(k,, k;). The derivatives bring 2*' and 2#2;

f_ : [ 2hatosnter — 0] [2 32k mir e = 260 = m)| [22 3 2ap)a2t - 200 — ) e

Change 2t —kto T and 24t todT. Seta = 2 + uy + py. Our integral is

2% Z ho(k)h, (M)hz(P)f $o(T) (T — ki + m — k) 2 (T — (2k2 + p — k) dT.

k.. p

(11.18)
That inner integral is 2k, +m — k, 2k, + p— k). Setn, =k —mand n; = k — p:

Biky, ko) = 2" ZZZho(k)hl(k — mhy(k — n)b(2ky — ny, 2 —n2).  (11.19)

LLIN ]

The coefficients g(n1, n2) anticipated in (11.17) have appeared (take the sum on k). The eigen-
value equation for b is

b(kl. kz) = 2" ):ﬂ, Z,,z g(ﬂl,ﬂz)b(zh —ny, Zkz - nz) (11.20)

In general & = f + Iy + cofpep. The matnx (J, Z)G must have thc elgenvalue 279, In case of
multiple eigenvectors, there is a correct choice to be made for b. It is given by moment conditions
(11.22) discovered in [DaMi);

Theorem 11.1  Suppose the filters Ho, Hy, H, have atleast 1, 1+ iy, 1+ ps zeros at n. There
is a unique finite length eigenvector b satisfying (11.21) and (11.22):

> g2k —mb(n) = 27°b(k) whichis (12)Gb =2 (11.21)
DOKEE bk k) = ! ot 60y — ) vz — ) for vy <, vy < pra. (11.22)

Example 11.2. Compute b{k) = f $()'(t — k)dr with € = 1 and gy = 1 (first derivative).

The eigenvalue problem will be 2T = b. The familiar matrix T = (| 2)2HHT has an
extra 2 because of the derivative ¢’. We have € = 1 and u; = 1 (there is no x,). Then b is the
eigenvector of T with A = % The hat function example has eigenvector (—0.5, 0, 0.5) when
normalized by (11,22}

v 6 41 -0.5 —0.5
[ 1 4 6 41 ] o =1 0 |=1b
1 4 6 ... 05 0.5

The integral of the hat function times its derivative (which is +1 then —1) is #(0) = 0, The inner
products with shifts are —.5 and .5 in agreement with b.

Th =

Example 11.3. Compute b(k) = [ ¢(t)¢"(r — k) dt = — [ ¢'(t)¢'(r — k) dt.

We can take £ = 1 and choose pty = 2, or we can take £ = 2 and choose qbo(t) 1 and
(41, #2) = (1, 1). In either case b is an eigenvector of T with eigenvalue A = 4. For the
hat function matrix above, that eigenvector is & = (—1, 2, —1). It is pleasant to £o on to third
derivatives (Problem 7). The eigenvalue for { ¢(1)¢”(r — k)dr = — [ ¢'(1)¢"(t — k) dt is
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= %. The matrix T has this eigenvalue. But we must use the 5 x 5 central submatrix instead
of 3 x 3.

Example 11.4. Integrate the Daubechies D, function ¢(r) over each interval [0, 1), [1, 2],
[2,3].

Solution. We integrate ¢(f) times translates of a box function, which has dilation coefficients
3 and 3. The Daubechies coefficients a, b, ¢, d add to 1 and are convolved with (3. 1) to find
3(a,a +b,b+c, c +d,d). After double shift, the eigenvector b for A = 1 gives the integrals
of ¢{r) over the three intervals;

0 d c+d bo by by 5+3v3
c+d b+c a+b by |=| & | vields | b [=4 2
a+b a 0 by by by 5-33
The theory extends directly from a single variable ¢ to 4 variables x = (x,, ..., x4). Each

ﬁilation equation involves integer vectors k = (ky, ..., kg):
¢0) =23 " h()p(2x ~ k). (11.23)

The convention is still 3~ k(k) = 1. The ordinary derivatives D*@(t) become mixed partial
derivatives DHg(x) = (3/dx1)" - (3/3xz)* ¢ (x) of order || = pty + -+ + {4, Substitute
the dilation equations into the desired integral, which is

b(k:,-.-.kc)=f-~f¢o(x) D¢ (x —ky) --- DMegy(x — k,) dx. (11.24)

Each integer vector ki, ..., k¢ has 4 components. When 2x in the dilation equation is replaced
by x, the multiplying factor 2 has & = €d + |1} + - - - + | t]. The two-scale equation for the
integrals is

bki,....ke)=2") glm,...,n)b ks —mi, ..., 2% —ny). {11.25)
The coefficients g follow the model (11.16). Now k is (ky, ..., k4) and each vector iy, ..., n,
has d components:
g, n) =) holhy(k—ny) - hy (k= ny). (11.26)
k
Integrals with Wavelets

Integrals involving wavelets come directly from the integrals (k) involving scaling functions.
The vser must provide the highpass coefficients for any wavelets wo(1), w(r),..., w.(¢) that
are in the integrals (staying for now at unit scale j = 0). Make those highpass replacements in
g(n) 1o get g ,(n), leaving the lowpass coefficients whenever ¢; (¢} is left in the integral. Then
the wavelet integrals are b, = 2%(| 2)g,, * b.

To emphasize: Wavelets bring no new eigenvalue problem, just a trivial matrix multiplica-
tion (trivial if you manage all the indices). Start with a basic example to see the pattern. When
w(?) replaces ¢{f), the matrix H replaces H:
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Theorem 11.2  The wavelet integrals au(k) = [ ¢(Dw(t+k) dt and au(k) = [ w(t)w( +
k) dt are computed from a by the equations

ay=Toa=(2)2HHa and awy=Twa={({2)2HH q. {(11.27)

Proof: The wavelet equation in vector form is W(r) = (| 2)2H, ®(21), where

¢~ 1) w(t—1)

B(t) = @) and W() = w(t) . (11.28)

P +1) w(t+1)

This vector form leads directly to the inner product vectors:

o0

ay, = ¢W(t)ydt and a,, = fm w()W(t)dr.

-0

To compute a,, substitute the dilation and wavelet equations:

a, = j: : (326082t ~ 1) (4228, BQ1)ar. (11.29)

For the kth term in the sum, change variables to u = 2¢ — k (so that du = 2dr). That kth term
becomes

2h(k)(§ 2)H, foo Sy B(u + k) du = 2h(k)(| 2)H,S*a. (11.30)

The k-step shift gave ®(u + k) = $~*P(u), and then f $()®(¢) dt is exactly . Now sum on
k to complete the formula:

Gy = Z 2h()(I2H S a= (| 22H\H  a. (11.31)
&

Notice that 3" h(k)S™* is the upper triangular Toeplitz matrix H' . The same steps for 4.,
wavelet times wavelet, produce the double-shifted Toeplitz matrix T, = (1 2)2HHT.

Example 11.5. For k(k) = (4. 2, 1} the piecewise linear hat function on [0, 2] is ¢ (). Its
inner products a{k) come from T

4 10 1
T=%|:4 6 4:| haseigenvectora:%li;;]_

01 4 1

For the wavelets, we choose the highpass coefficients A, (k) = %(-—l, -2,6,-2, —1). Then
H(z)H(—2) is the 6th degree Daubechies halfband filter and the synthesis functions ¢(z) are
biorthogonal to the hats. From the wavelet equation, w(¢) is also piecewise linear and it is sup-
ported on [0, 3]. The inner products with wavelet use matrix entries from H, (DH((z™!) and
Hi()H (')

2 1 ; 1 —1/12

_ul-2 6 2 |y
S = 5 -t =2 6 2|12 HYEI=T g
-1 -2 ; —1/12
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=20 -8 4 1/6 —6/24
e = 35| —20 46 -20 [4/6]—_— 18/24
4 -8 -20 1/6 —~6/24
1 4 1/24
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Integrals with multiple scales are also possible. Fora,(k) = [ ¢(1)¢(2t — k) dt we get
a different eigenvalue problema; = (J 2)2UHT ay. The reason is that the dilation equation
for ¢(2t) involves 4¢. On the right side is h(k)¢ (4t — k) which is u(2k)¢ (4t — k), provided
u = (t+ 2. The matrix U with diagonals A(0), 0, k(1), 0, 2(2), 0, ... replaces H when the
integral involves ¢ (2¢).

1

Problem Set 11.6

Integrate the hat function on [0, 2] times the box function on [0, 1], using their dilation coef-

ficients (. §. 3)and (3, ).

. For the quadratic spline that comes from h = %(l, 3, 3, 1), find the integrals over [(, 1] and

[1, 2] and [2, 3].
Compute the integrals in 3. —6. by creating the coefficients g(n) from by, A, fi; and solving the
cigenvalue problem (] 2)Gb = 27*b. Normalize by (11.22} and check by direct integration.

3. f " (hat function)® dt 5. f " (D, function ¢ (£))* dr
- —d

1 1
4. f (hat function)? dt 6. f (D4 function $(1))* dt
/] 0}

7. Follow Example 3 to integrate ¢ (1} ¢” (t — k) for (¢} = hat function.

8. The bilinear hat function in two variables x = (x1, x2) has what formula and what coefficients

10.

h(n)? Find its inner products with its translates.

The frequency response 3" Ak) e~* gives the moments H{0) = my = 1 and H'(0) = —im,
and H"(0) = —m,. Prove that an orthonormal filter with H (1) = H () = 0 has m; = m2,
by seiting @ = 0 in the second derivative of |H(0)|* + |[H(w + 7)) = 1.

Putm; = m? inequation (11.13) to show that M, = M? for orthonormal scaling functions with
accuracy p > 1. Then the one-point rule f F()p(x)det = f(M,) has second-order accuracy.



