🤴 Texas Instruments

Industrial Solutions Guide

Amplifiers, Data Converters, Digital Signal Processors, Digital Temperature Sensors, Interface, Microcontrollers, Power Controllers, Power Management

10 2005

Table of Contents

→

Intelligent Sensors, Process Control

Pressure	4-6
Weight Scales	7
Temperature	
Flow Metering	
Linear Voltage Differential Transformer	
Current Measurement	
Light Measurement and Laser Control	
Photodiodes	
Motor Control	
Asynchronous, DC and Servo Motors	20-23
	20 20
Security	
Surveillance Cameras, Glass Breakage and Smoke Detectors	
Test and Measurement	
Electronic E-Meter	
Scientific Instrumentation	30
High-Speed Signal Analysis	31
Wireless for Industrial	
RF Applications	
Programmable Logic Control	
Input/Output Cards, Internal Communication/Interface/Isolation, Core Logic	34-35
Field Bus Systems	
Factory Communications	
RS-485 Transceivers PROFIBUS Transceivers/CAN Transceivers	
1394/USB/UART	
Isolation	
Digital Coupler and Isolation Amplifiers	
Powering Industrial Designs	
	43
Selection Tables	
Amplifiers	44-50
Difference/Log/Isolation Amplifiers	44
Instrumentation Amplifiers	45-46
Operational Amplifiers	47
Comparators	
High-Speed Amplifiers	48-49
Power Amplifiers	
Temp Sensors	
4-20mA Transmitters and Receivers	
Voltage References	
Data Converters	
ADCs	
Intelligent ADCs	
DACs	
Microcontrollers	
Interface	
1394	
Power and Control	
Power Management	
Application Reports	
	67
Worldwide Technical Support	68
	nX

Pressure

4

Pressure sensors convert a physical value—weight, tire pressure, level, force, and flow—into a differential signal in the mV/V range and are referred to as metal thick-film, ceramic or piezo-resistive. The majority of designers use the cost-effective piezo-sensors (25mbar – 25bar). However, these are very nonlinear, temperature dependent and have large offset and offset drift. Plus, they require attention to electronic calibration and compensation.

The block diagram (at right) shows the functional block diagram of a pressure signal conditioning system.

Sensor Signal Conditioning — performs all necessary functions to calibrate, compensate for temperature variance, scale, and linearize the sensor signal.

Analog/Digital Processing — there are two ways to convert and linearize the sensor signal. The analog technique results in an analog solution and provides an analog output. This technique is cheap and fast, but limited to a maximum of 11- to 16-bit resolution. Digital is more precise, up to 24 bits, and provides a digital output at moderate speed.

The bridge excitation linearization circuit is optimized for bridge pressure nonlinearities with a parabolic shape (see above). The linearization circuit is digitally programmable, but the pure analog signal conditioning side is handled by the same process as in TI's wellknown 4-20mA transmitters, such as XTR105, XTR106 or XTR108. The heart of the PGA309 is a precision, lowdrift programmable gain instrumentation amplifier using an auto-zero technique and includes a programmable fault monitor and over/underscale limiter. It also offers a digital temperature compensation circuit. Calibration is carried out either via a one-wire digital serial interface or through a two-wire industry-standard connection.

Pressure system functional block diagram

Calibration parameters are stored in an external nonvolatile memory to eliminate manual trimming and achieve long-term stability. An evaluation module, PGA309EVM (see below) includes software and calibration sheet for easy evaluation of your sensor + PGA309 combination.

The highly integrated, CMOS PGA309, available in TSSOP-16, is tailored for bridge pressure sensors and adds to TI's portfolio of highly flexible, lowest noise amplifier and instrumentation amplifier solutions that also include the OPAx227, OPAx132, OPA335, OPA735, INA326, INA327, INA118 and INA122.

Industrial Solutions Guide

Pressure

Complete Voltage-Output, Programmable Bridge Sensor Signal Conditioner PGA309

Get samples, datasheets, EVMs and app reports at: www.ti.com/sc/device/PGA309

Real-world sensors have span and offset errors, ever changing over temperature. In addition, many bridge pressure sensors have a nonlinear output with applied pressure. The sensor conditioner, PGA309 is an ideal choice in combination with low-cost piezo resistive or ceramic thin-film pressure sensors.

Key Features

- Ratiometric or absolute voltage output
- Digitally calibrated via single-wire or two-wire interface
- Eliminates potentiometer and trimming
- · Low, time-stable total adjusted error
- +2.7V to +5.5V operation
- Packaging: small TSSOP-16

Applications

- Bridge sensors
- Remote 4-20mA transmitters
- Strain, load, weight scales
- Automotive sensors

24-Bit, $\Delta \Sigma$ ADC with Excellent AC and DC Performance ADS1271

Get samples, datasheets, EVMs and app reports at: www.ti.com/ADS1271

The ADS1271 is a 24-bit, delta-sigma ADC with up to 105kSPS data rate. It offers the unique combination of excellent DC accuracy and outstanding AC performance. The high-order, chopper-stabilized modulator achieves very low drift with low in-band noise. The onboard decimation filter suppresses modulator and signal out-of-band noise. The ADS1271 provides a usable signal bandwidth up to 90% of the Nyquist rate with only 0.005dB of ripple.

Key Features

- AC performance: 109dB SNR (52kSPS); 105dB THD
- DC accuracy: 1.8mV/°C offset drift; 2ppm/°C gain drift
- High resolution: 109dB SNR
- Low power: 40mW dissipation

Applications

 Ideal for vibration/modal analysis, acoustics, dynamic strain gauges and pressure sensors

ADS1271 functional block diagram

All Vertilinearization Vertilinearization Vertilinearization Vertilinearization Fault Auto-Zero PGA Over/Under Sale Limiter Analog Signal Conditioning Ext Temp Ext Temp

PGA309 functional block diagram

Pressure

6

→

Zero-Drift, Low Offset, Single-Supply Op Amps OPA334/OPA335

Get samples, datasheets, EVMs and app reports at:

www.ti.com/sc/device/OPA334, www.ti.com/sc/device/OPA335

The OPA334 and OPA335 CMOS op amps use auto-zeroing techniques to simultaneously provide very low offset voltage and near-zero drift over time and temperature. These high-precision amps offer high input impedance and rail-to-rail output swing.

Key Features

- Low offset voltage: 5µV (max)
- Zero drift: 0.05µV/°C (max)
- Quiescent current: 285µA
- Packaging: SOT23-5, SOT23-6, SO-8, MSOP-10 (dual)

Device Recommendations

OPA335 –5V supply bridge amplifier

Device	Description	Key Features	Benefits	Other TI Solutions
	nagement Products			
DCP12405	1W/5V DC/DC converter	Miniature 24V DC/DC converter with 1500V galvanic	Fully integrated DC/DC converter in a miniature	TPS54xx SWIFT [™] family,
		isolation, integrated 5V LDO	package, high isolation and regulated output,	highest efficiency DC/DC
			smallest height in the industry	converter w/integrated FET
TPS71501	LDO: 24V/1.2V - 15V	Adjustable LDO, ultra-low quiescent current 3.5 μ A to 50mA	Excellent for low-power applications up to 1.2V	LM317, lowest cost
				LDO with 37V input
Data Conve	erters			
ADS1256	24-bit ADC	24-bit ADC, filters, PGA, digital I/O, sensor excitation, GP I/Os	Highest resolution (25.4-bit ENOB) and lowest input	ADS1218, core of MSC121x
			reference noise in the industry – up to 30kSPS	family with additional Flash
MSC121x	8051-based MCU with	24-bit ADC, filters, PGA, digital I/O, sensor excitation,	Lowest noise and highest integration in the market,	MSC1200, low-cost
	ADS1218 $\Delta\Sigma$ converter	burn-out current sources, offset DACs, 4 x 16-bit	includes all necessary external circuitry —	version without DACs
	including Flash memory	DACs, temperature sensor	all-in-one solution	
ADS1271	24-bit, 105kSPS ADC	Low offset drift: $<1\mu V/^{\circ}C$, passband ripple $<\pm0.005 dB$,	24-bit ADC with DC accuracy plus AC	PCM4202, PCM4204
		THD <-109dB	performance at highest speed up to 105kSPS	
References	5			
REF3125/30/	References	Small package, high initial accuracy, low drift	15ppm/°C stable reference for precise data conversion	REF30xx with max.
33/40				50ppm/°C drift
Amplifiers				
OPA335	Zero-drift op amp	CMOS 0.05µV/°C drift, 5µV offset, RRIO at 3.3VDC,	Best long-term stability for industrial use, single supply,	OPA735, 12V version with
		single supply	best in class, automotive temp range	improved noise and drift
INA326	High-precision	Single supply 30nV/√Hz noise, RRIO, CMOS	Lowest noise in the industry and best long-term stability,	INA337, automotive temp
	instrumentation amp		no need for dual supply	range, –40°C to +125°C
XTR115	4-20mA transmitter	Includes all functions to generate 4-20mA output signal	Lowest cost all-in-one solution (<\$1) up to 36V supply	XTR110 is intended for
	including sensor excitation	and bridge excitation	voltage, no need for DC/DC converter	3-wire output
PGA309	Programmable	Includes sensor excitation, linearization and temperature-	Fully integrated sensor conditioning system on a chip	XTR108, similar but is targeted
	pressure sensor	compensated conditioning, ADC, DAC, temp sensor	(SOC), small package, only 16-bit ASSP on the market	for PT100, temp sensors
	conditioner			included, 4-20mA transceiver
TMP121	Digital temp sensor	Integrated temp sensor, $\Delta\Sigma$ ADC and SPI interface	High resolution and accuracy, extended industrial	TMP175
		to convert valve temp into digital code	temperature range, SOT-23 package	(SMB-bus interface)
Interface		, ,		
SN65HVD1176	PROFIBUS transceiver	Interfaces PROFIBUS fieldbus to system controller	Optimized for PROFIBUS, up to 160 users per bus, up to	SN65HVD485E,
			40Mbps, benchmarked by Siemans as reference device	low-cost version
SN65HVD251	CAN-bus transceiver	Interfaces CAN fieldbus to system controller	Improved drop-in replacement for PCA82C251,	SNHVD233
		,	tolerates ±200V transients	(3.3V version)
Processor				
MSP430F1121	18-bit MCU with Flash	Low-power MCU, lowest power in industry, 6µs wake-up	Reduces heat in sensor system, reduces cost of power	MSP430Cxx without
			source and increases lifetime	Flash , even lower power

Intelligent Sensors, Process Control

Weight Scales

Electronic weight scales are found in many industrial applications in some shape or form and are ubiquitous in today's food industry. Manufacturers of electronic weight scales traditionally choose proprietary ASICs to tailor the performance of their analog front end for highest accuracy and stability. The diagram at right shows an approach using standard products offering up to 25.4 effective number of bits (ENOB) or 23 noise-free bits of resolution.

A major challenge in designing weight scales is the sampling of multiple load cells while offering extremely low input referred noise (RTI). The ADS1256 and ADS1232 guarantee input referred noise of $30nV/\sqrt{Hz}$ and $50nV/\sqrt{Hz}$, respectively, and at the lowest cost. Another important factor is the analog circuitry's long-term stability with regard to offset drift and gain. Here the accuracy of the amplified input signal, either single-ended or differential, must be guaranteed over years of operation. Auto-zero amplifiers, such as the OPA335 and the INA326 instrumentation amplifier, meet these stringent requirements by achieving offset drifts of $0.05\mu V/^{\circ}C$ (OPA335) and $0.4\mu V/^{\circ}C$ (INA326).

For an easy-to-use solution, the MSC1210 family offers a complete data acquisition system on a chip comprised of:

- An optimized 8051 core, (3-times faster than standard version at same power)
- A 24-bit, $\Delta\Sigma$ ADC with 22 ENOBs, and 75nV/ $\sqrt{\text{Hz}}$ (RTI)
- A PGA with gain steps from 0 128

Device Recommendations

• 2kB Boot ROM and up to 32kB Flash memory

Keypad **Resistors** Capacitor 1 2 3 Memory LCD Crystal Load Cell Analog Filter ADC Am **MSP430** Optional LDC PROFIBUS Battery Reg. 3.3V ead Acid 4A-H LDO ▲. Reg. 5V Isolation Basic weight scale application SN65HVD11 PROFIBUS Transceiv PROFIBUS

Device	Description	Key Features	Benefits	Other TI Solutions
Power Mana	agement Products			
TPS76301	Low-power 150-mA, low-dropout (LDO) linear regulator	Regulates 6V to 3.3V and 5V	Small package	TPS76333
Amplifiers				
0PA335	Zero drift op amp	$0.05 \mu V/^\circ C$ drift, $5 \mu V$ offset, RRIO at 3.3VDC single supply	Best long-term stability for industrial use, no need for dual supply, best in class, automotive temp range	OPA735, 12V version of OPA335
INA326	High-precision instrumentation amp	$30nV/\sqrt{Hz}$ noise, RRIO, single supply	Lowest noise in industry and best long-term stability, no need for dual supply	INA337, automotive temp range –40°C to +125°C
Data Conver	ters			
ADS1256	24-bit, 30kSPS $\Delta\Sigma$ ADC w/ multiplexer	Very low noise, 24-bit resolution, input reference noise 30nV	Integrated, small package, easy to use	MSC1210
ADS1232	24-bit, 240SPS cost-effective $\Delta\Sigma$ ADC	Very low noise 24-bit resolution, input reference noise, cont. time PGA	Best price/performance ratio for weight scale applications	ADS1243
Interface				
SN65HVD1176	PROFIBUS RS-485	Optimized for PROFIBUS, 2.1V min., V _{OD} low bus cap.	Improved signal fidelity and enhanced transmission reliability	SN65HVD05
SN65HVD251	CAN-bus transceiver	Interfaces CAN fieldbus to system controller	Improved drop-in replacement for PCA82C251, tolerates ±200V transients	SNHVD233
Processor				
MSP430F413	MSP430	16-bit ultra-low-power microcontroller, 8kB Flash, 256 RAM, comparator, 96 segment LCD	Low-power, integrated LCD driver and flash	MSP430F417

a a la c

7

8

Temperature is the most frequently measured physical parameter and can be measured using a diverse array of sensors. All of them infer temperature by sensing some change in a physical characteristic. Three of the most common types are Thermocouples, Resistance Temperature Detectors (RTDs), and NTC-Thermistors.

Common types of thermocouples, RTDs and NTC-thermistors

Thermocouples consist of two dissimilar metal wires welded together to form two junctions. Temperature differences between the junctions cause a thermoelectric potential (i.e. a voltage) between the two wires. By holding the reference junction at a known temperature and measuring this voltage, the temperature of the sensing junction can be deduced. Thermocouples have very large operating temperature ranges and the advantage of very small size. However, they have the disadvantages of small output voltages, noise susceptibility from the wire loop, and relatively high drift.

Resistance Temperature Detectors (RTDs) are wire winding or thin-film serpentines that exhibit changes in resistance with changes in temperature. While metals such as copper, nickel and nickel-iron are often used, the most linear, repeatable and stable RTDs are constructed from platinum. Platinum RTDs, due to their linearity and unmatched long-term stability, are firmly established as the international temperature reference transfer standard. Thin-film platinum RTDs offer performance matching for all but reference grade wire-wounds at improved cost, size and convenience. Early thin-film platinum RTDs suffered from drift, because their higher surface-to-volume ratio made them more

Comparison of Temperature Sensor Attributes

Criteria	Thermocouple	RTD	Thermistor
Cost-OEM quality	Low	High	Low
Temperature range	Very wide	Wide	Short to medium
	–450 $^{\circ}$ F to +4200 $^{\circ}$ F	-400° F to $+1200^{\circ}$ F	-100° F to $+500^\circ$ F
Interchangeability	Good	Excellent	Poor to fair
Long-term stability	Poor to fair	Good	Poor
Accuracy	Medium	High	Medium
Repeatability	Poor to fair	Excellent	Fair to good
Sensitivity (output)	Low	Medium	Very high
Response	Medium to fast	Medium	Medium to fast
Linearity	Fair	Good	Poor
Self heating	No	Very low to low	High
Point (end) sensitive	Excellent	Fair	Good
Lead effect	High	Medium	Low
Size/packaging	Small to large	Medium to small	Small to medium

Temperature (°C)

sensitive to contamination. Improved film isolation and packaging have since eliminated these problems making thin-film platinum RTDs the first choice over wire-wounds and NTC thermistors.

NTC Thermistors are composed of metal oxide ceramics, are low cost, and the most sensitive temperature sensors. They are also the most nonlinear and have a negative temperature coefficient. Thermistors are offered in a wide variety of sizes, base resistance values, and Resistance vs. Temperature (R-T) curves are available to facilitate both packaging and output linearization schemes. Often two thermistors are combined to achieve a more linear output. Common thermistors have interchangeabilities of 10% to 20%. Tight 1% interchangeabilities are available but at costs often higher than platinum RTDs. Common thermistors exhibit good resistance stability when operated within restricted temperature ranges and moderate stability (2%/1000 hr at 125°C) when operated at wider ranges.

Low-Cost PT100 Linearization Circuit for 0°C to 400°C

A low-cost RTD measurement circuit with linearization is achieved with just one dual operational amplifier, OPA2335, and seven resistors. The first stage linearizes a PT100 sensor over a temperature range from 0°C to 400°C, yielding a maximum temperature error of ±0.08°C. R₁ defines the initial excitation current of the RTD. R₃ and R₄ set the gain of the linearization stage to ensure the input of A₁ stays within its common-mode range. Rising temperature increases V₀₁. A fraction of V₀₁ is fed back to the input via R₂ for linearization. Resistors, R₁ – R₄, are calculated so that the maximum excitation current through the RTD is close to 100 Ω to avoid measurement errors through self-heating.

The second stage performs offset and gain adjustment. Here the linear slope of V₀₁ is readjusted to provide a V₀₂ slope of 10mV/°C within an output range of 0.5V to 4.5V.

Temperature Measurement of a Remote 3-Wire RTD via a 4-20mA Current Loop

This circuit measures the temperature of a remote 3-wire RTD using the 4-20mA current transmitter, XTR112. The device provides two matched current sources for RTD excitation and line-resistance compensation. Internal linearization circuitry provides 2^{nd} -order correction to the RTD, thus achieving a 40:1 improvement in linearity. I_{R1} is the excitation for the RTD. I_{R2} is the compensation current flowing through R_Z and R_{LINE1}. By choosing the value of R_Z to be equal to the RTD resistance at minimum temperature, the internal instrumentation amplifier (INA) only measures the temperature dependent difference in RTD resistance.

 R_{CM} is used to provide an additional voltage drop to bias the inputs of the XTR112 within the common-mode input range. The $0.01\mu F$ bypass capacitor minimizes common-mode noise. R_G sets the gain of the INA. For 2^{nd} -order linearization, a fraction of the INA output voltage is fed back via the resistors, R_{LIN1} and R_{LIN2} . Internally, the output voltage is converted into a current and then added to the return current, I_{RET} , to yield an output current of $I_0 = 4mA + V_{IN} \bullet 40/R_G$.

On the current-loop side, transistor, Q_1 , conducts the majority of the signal-dependent 4-20mA loop current. This isolates most of the power dissipation from the internal precision circuitry of the XTR112, maintaining

excellent accuracy. For detailed information on the calculation of the resistor values for various temperature ranges, refer to the XTR112 data sheet.

Temperature Measurement with a K-Type Thermocouple Using Wired Cold-Junction Compensation (CJC)

This thermocouple measurement circuit uses the auto-zero, singlesupply amplifier, OPA335. A precision voltage reference, REF3040, provides the 4.096V bridge supply. The forward voltage of diode, D₁, has a negative temperature coefficient of $-2mV/^{\circ}C$, and provides the cold-junction compensation via the resistor network R₁ to R₃. The zero-

Temperature measurement of a remotely located RTD

9

adjustment for a defined minimum temperature is achieved via R₆, while R₇ and R₈ set the gain for the output amplifier. The OPA335 provides a high DC open-loop gain of A_{OL} = 130dB, allowing 16-bit+ accuracy at high gain in low-voltage applications. The auto-zero operation removes the 1/f noise and provides an initial offset of 5µV (max) as well as an extremely low offset drift over temperature of 0.05μ V/°C (max). Thus the OPA335 ideally suits single-supply, precision applications where high accuracy, low drift and low noise are imperative.

Autonomous Temperature Measurement System for Multiple Thermocouples Using MSC1200

This temperature measurement system measures the differential output voltage of four different types of thermocouples, ($T_{C1}-T_{C4}$), and one reference temperature using the mixed-signal controller, MSC1200. The MSC1200 incorporates a $\Delta\Sigma$ ADC with 22-bits of effective resolution, with a versatile input multiplexer, a selectable input buffer, and a programmable gain amplifier (PGA) with gain adjustments from 1 to 128. The device includes on-chip Flash and SRAM memory and an improved 8051-CPU, running 3-times faster than the initial standard version at the same power consumption. An on-chip current digital-to-analog converter, (I-DAC), provides excitation current to the RTDs and thermistors.

Integrated Current Sources Allow for Sensor Burn-Out Detection

In the case of remotely located thermocouples, input RC low-pass filters remove differential and common-mode noise, which might have been picked up by the thermocouple leads running through a noisy environment. For the various types of thermocouples, different PGA settings may be required to reduce the analog input impedance. Low input impedance can cause compensation current to flow through a thermocouple. These currents disturb electron density (which the Seebeck effect is based on) thus generating wrong thermo-EMF readings at the thermocouple output. To provide consistently high input impedance of some GW, the input buffer must be enabled. This however reduces the input common-mode range to 50mV above analog ground and 1.5V below the positive analog supply. To ensure that the thermocouple signals are within that range, each input is biased via a 10k to 100k Ω resistor. The bias voltage is provided by the precision voltage reference circuit, REF3112, which has an initial error of 0.2% and a temperature drift of 15ppm/°C.

Cold-Junction Compensation

Cold-junction compensation (CJC) is performed by reading the output voltage across a linearized thermistor circuit via A_{INCOM}

→

The versatility of the input mux allows assigning the positive and negative inputs of the buffer to any of the analog input pins. Thus, to measure the reference temperature differentially, one buffer input is connected to A_{INCOM} , while the other input is connected to the "lowend" input of any of the thermocouples (A_{IN} 1, 3, 5 or 7). However, once an input has been selected, all subsequent differential measurements of the reference temperature should be made against the same "low-end" input. If the MSC1200 is close to the isothermal block, and based on the required accuracy, the on-chip temperature sensor could be used for CJC.

Constant Temperature Control for Thermoelectric Coolers with INA330

The INA330 is a precision amplifier designed for thermoelectric cooler (TEC) control in optical networking and medical analysis applications. It is optimized for use in 10k Ω thermistor-based temperature controllers. The INA330 provides thermistor excitation and generates an output voltage proportional to the difference in resistances applied to the inputs. It uses only one precision resistor plus the thermistor, thus providing an alternative to the traditional bridge circuit. This new topology eliminates the need for two precision resistors while maintaining excellent accuracy for temperature control applications. The INA330 offers excellent long-term stability, and very low 1/f noise throughout the life of the product. The low offset results in a 0.009°C temperature error from -40° C to $+85^{\circ}$ C.

An excitation voltage applied to the inputs, V₁ and V₂, creates the currents, I₁ and I₂, flowing through the thermistor (R_{THERM}) and the precision resistor (R_{SET}). An on-chip current-conveyor circuit produces the output current, I₀ = I₁ – I₂. The output current, flowing through the external gain-setting resistor (R_G) is buffered internally and appears at the V₀ pin. Any bias voltage applied to the other side of R_G adds to the output voltage, so that V₀ = I₀ • R_G + V_{ADJUST}. This output voltage feeds a PID controller, which provides the input voltage to a TEC driver in bridge-tied-load configuration. The two operational amplifiers (OPA569) are CMOS, single-supply power amplifiers capable of driving load currents of up to 2A at 3V supply.

In this application, the temperature to be controlled is set by the DAC. If the temperature of the TEC rises above the set temperature, TEC current flows in one direction for cooling. If the temperature falls below the set-point, the current direction is reversed and the TEC heats. The dotted line indicates closed-loop thermal feedback from the TEC to the thermistor, which it is mechanically mounted to, but electrically isolated from.

Constant Temperature Control for Thermoelectric Coolers with INA326

The INA326 is a high-performance, low-cost, precision instrumentation amplifier with rail-to-rail input and output. It's a true single-supply instrumentation amplifier with very low DC errors and input common-mode ranges that extend beyond the positive and negative rail. These features make it suitable for general-purpose to highaccuracy applications.

Excellent long-term stability and very low 1/f noise assure low offset voltage and drift. The INA326 is a two-stage amplifier with each gain stage set by R_1 and R_2 , respectively. Overall gain is described by the equation: $G = 2 \cdot R_2 / R_1$.

The INA326 measures the difference between the voltage of the temperature set-point (R₇), and the voltage across the thermistor (R_{THERM}). The differential input voltage is amplified by a factor of 100 (G = 2 • 100k Ω / 2k Ω) and fed, via an RC-lowpass filter into the PID controller. R₁₄, C₇ is an output filter that minimizes auto-correction circuitry noise.

The PID controller shown uses separate adjustment stages, allowing for optimized adjustment of controller parameters to the closed-loop system. Once these parameters have been determined, the existing circuitry consisting of five op amps for PID, summing and loop-gain adjustment can be converted into a single amplifier PID controller.

 \leftarrow

Get samples, datasheets and app reports at:

www.ti.com/sc/device/TMP75, www.ti.com/sc/device/TMP175

The TMP75 and TMP175 are two-wire, serial output temperature sensors. The devices require no external components and are capable of reading temperatures with a resolution of 0.0625°C. The two-wire interface is SMBus compatible, which allows the TMP175 to have up to 27 devices on one bus and the TMP75 eight devices. Both feature SMBus alert functions and are ideal for extended temperature measurements found in industrial environments.

Key Features

- 27 addresses (TMP175)
- 8 addresses (TMP75)
- Digital output: two-wire serial interface
- Resolution: 9- to 12-bits, user selectable
- Accuracy:
- $\pm 1.5^{\circ}$ C (max) from -25° C to $+85^{\circ}$ C $\pm 2.0^{\circ}$ C (max) from -40° C to $+125^{\circ}$ C
- Low quiescent current: 50µA, 0.1µA standby
- Wide supply range: 2.7V to 5.5V
- Packaging: SO-8

Applications

- Power-supply temperature monitoring
- Computer peripheral thermal protection
- Thermostat controls
- Environmental monitoring and HVAC

TMP75/175 functional block diagram

Flow Metering

The application requirements of flow measurement in industrial settings varies from low cost to very high precision and fast flow metering found in petrochemical and pharmaceutical plants. This section contains explanations of the most common techniques and offers various solutions for overcoming flow measurement obstacles.

The Magnetic-Inductive Flowmeter

The magnetic-inductive flowmeter consists of a non-ferromagnetic tube wrapped with a magnetic coil. Electrodes in the tube's inner isolated surface are in contact with the liquid (must be conductive) that flows through the tube.

The coils around the pipe generate a magnetic field within the tube. The magnetic field inducts a voltage in the liquid, which is proportional to the speed of the liquid in the tube. This voltage is measured via the electrodes. As the measured voltage is very low, precise low-noise instrumentation amplifiers, such as the INA103, options are needed at the amplifier front end. Usually the voltage is digitized with precision $\Delta\Sigma$ ADCs such as the ADS1252.

The magnetic-inductive flowmeter

The Coriolis Flowmeter

The coriolis flowmeter consists of a tube, which is forced into oscillation by a low-frequency power driver. Liquid particles flowing through the tube are deviated by the mechanical oscillation of the tube. These deviations are different in their signs, depending on their distance to the position of the power source. Close to the power source, the particles of the liquid are accelerated. In the area of the mechanical sensors the particles are decelerated. In the coriolis flow meter, the mechanical forces (which are decelerating) are measured/detected by inductive sensor systems. The very low resulting voltages are amplified by precision amplifiers and then digitized. The phase difference between the basic oscillation of the tube and the resulting inductive sensor signal describes the amount of mass-flow in the tube.

As the detected voltages are very low, a low-noise precision amplifier in the sensor front-end is required. For digitizing the measurement signal, a 2-channel precision ADC ($\Delta\Sigma$) is needed as the phase-accuracy between the two channels has a direct impact on the measurements' accuracy.

Differences Between the Two Measurement Techniques

The magnetic inductive system can only measure the liquid's speed through the tube. As the diameter of the tube is known, the volume of flow can be calculated. The liquid must have minimal electrical resistance. Non-conductive liquids can't be measured.

The coriolis technique makes it possible to actually measure the amount of mass flowing through the tube. This technique is more expensive.

Operational principle of a coriolis mass flowmeter

Intelligent Sensors, Process Control

Flow Metering

Low-Cost Method:

14

TPS7701 functional block diagram

- Ultra-low-power MSP430 requires <10mA for the complete metering application
- No power transformers required for power supply management
- Simple capacitor-tapped power supply coupled with an LDO

Quadrature decoding, detect rotation, direction error detection

Quadrature decoding example: Generation of input signal with the two LC-type sensors S1 and S2 used. If the previous position of the damped plate is known, together with the current state, the rotation as well as the direction of rotation can be detected. For the digital signals, a "0" means the sensor is above the undamped part of the plate and "1" means it is above the damped area, the metal part. Additional sensors can be used for redundancy, but two sensors are sufficient to detect rotation and direction.

- Two LC sensors or one GMR sensor are used (S1, S2)
- State machine in scan I/F enable to detect rotation, error and distortion

Device Recommendations

High-Precision Method:

MSP430FW427 single-chip flow meter

- Small battery meets life-cycle of 2 calibration periods due to scan I/F
- Various sensors and physical conditions are handled
- Performance for additional functions e.g. automatic meter reading at low power

Device	Description	Key Features	Benefits	Other TI Solutions
Reference				
REF3140	Voltage Reference	Drift = 20ppm/°C 4.097V, 0.2%	Very low drift, tiny package	REF02, REF102
Isolation F	Products			
DCV010515D	Dual Converter	Isolation converter, +5V _{IN} , ±15V _{OUT}	Low noise, small board data	DCP10515
DCV0105052D	Dual Converter	Isolation converter, +5V _{IN} , ±5V _{DUT}	Low noise, small board data	DCP10505
Power Ma	nagement Product			
TPS54110	SWIFT™ Buck Controller	Adjustable output (0.9V-3.3V), 1.5A	Very easy to use, flexible output	TPS64200
Data Conv	erters			
ADS8321	16-bit, 100ksps	Power = 2mW, 8-pin, SFDR = 86dB	Excellent performance	ADS8320, ADS8325
ADS1251	24-bit, 20ksps	Power = 155mW, SFDR = 100dB	Only 7.5mW, single 5V supply	ADS1252
MSC121x	24-bit ADC, MCU, REF	8051 MCU with integrated 24-bit up to 1kSPS ADC,	Cost effective and highest integration all in a	MSC1212, MSC1200
	DAC, PGA	16-DAC and precision reference, eight inputs and PGA	single-chip solution	

Hydraulic valves are used to direct the flow of liquid mediums, most commonly oil, from input ports to output ports. The direction of flow is determined by the position of a spool, which is driven by a linear force motor. The valve electronic is split into three core-subsystems:

Power Conversion — provides galvanic isolation between the valve power and the external fieldbus and auxiliary 24V supplies. It also provides regulated supply voltages to the individual functional blocks.

Fieldbus Interface and Control — provides galvanic isolation between the system controller and the fieldbus signals. The system controller translates the incoming data from the fieldbus into valve commands for the DSP, and vice versa, it translates the valve data from the DSP into fieldbus signals.

Valve Control — performs spool positioning, pressure and temperature measurement. It also indicates alarm conditions.

The valve controller receives a position command from the fieldbus via the system controller and drives the linear force motor until the output signal of the position sensor (LVDT = Linear Variable Differential Transformer) equals the input value of the position command. At the same time, pressure and temperature are monitored. An alarm condition is indicated if one of these sensors exceeds a pre-determined safety value.

Linear Voltage Differential Transformer

Basic hydraulic valve diagram

Device Recommendations

Device	Description	Key Features	Benefits	Other TI Solutions			
Power Ma	Power Management Products						
UCC3823	PWM Controller	Universal PWM controller for 24V, isolated boost converter to drive motor control	Lowest cost, small package	UCC3813, TL5001			
DCR010505	1W/5V DC/DC Converter	Miniature 5V DC/DC converter with 100V galvanic isolation, integrated 5V LDO	Fully integrated DC/DC converter in miniature package, high isolation and regulated output	DCP020505 (2W, unregulated)			
TPS70751	Dual LDO: 3.3V/1.8V	Two regulated output voltages for DSP split-supply systems with power-up sequencing, 250mA output current	Industry's most integrated supply systems, with power good indicator, UVL and thermal shutdown	TPS70851, TPS70251			
TPS3305-18	Dual SVS: 3.3V/1.8V	Dual supervisory circuit for DSP and processor supplies including POR generator	Requires no external capacitors, temp-compensated V _{REF} , small package	TPS3306-18, TPS3806133			
Amplifiers							
OPA4345	Quad, low-power op amp	Used as active low-pass filter to convert PWM into analog signal	Low power, low offset, small package, low cost	OPA4340, OPA4346			
TLV2472	Dual, single-supply, high O/P drive	Drives LVDT sensor with ±25mA	No cross-over distortion in BTL configuration, lowest supply voltage, drives up to ±35mA	TLC074, TLC084			
INA118	Single/dual supply inst. amp	Senses LVDT output with high linearity	High linearity at lowest supply voltage	INA128			
0PA544	Power amplifier	Drives linear force motor (±10V/1A)	Class AB amp with current limit and thermal shutdown	OPA548, OPA549, OPA56			
PGA309	Programmable pressure sensor conditioner	Includes sensor excitation, linearization and temperature- compensated conditioning	Fully integrated sensor conditioning system on a chip (SOC), small package	_			
TMP121	Digital temp sensor	Integrates diode temp sensor, $\Delta\Sigma$ ADC and SPI interface to convert valve temp into digital code for the DSP	High resolution and accuracy, extended industrial temp range, ultra small package	TMP175 (SMBus interface)			
Interface							
SN65HVD1176	PROFIBUS transceiver	Interfaces PROFIBUS fieldbus to system controller	Optimized for bus, up to 160 users per bus, up to 40Mbps, benchmarked by Siemens as reference device	SN65HVD485E			
SN65HVD251	CAN-bus transceiver	Interfaces CAN fieldbus to system controller	Improved drop-in replacement for PCA82C251, tolerates ±200V transients	SNHVD233 (3.3V version)			

Current Measurement

Current is one of the most common values measured in industrial applications. The Motor Control chapter (pages 20-23) describes precise current measurement using delta-sigma modulators and precision SAR ADCs that also require galvanic isolation. Another approach to directly measuring current uses instrumentation amplifiers which allow direct shunt measurements with common-mode voltages up to 60V.

High-Side Current Shunt Monitors INA138/INA168/INA170

Get samples and datasheets at: www.ti.com/sc/device/INA138, www.ti.com/sc/device/INA168, www.ti.com/sc/device/INA170

The INA138 and INA168 are high-side, unipolar, current shunt monitors with low quiescent current and are available in SOT23-5 packaging. Input common-mode and power supply voltages are independent and can range from 2.7V to 36V (IN138) or to 60V (INA168). The devices convert a differential input voltage to a current output. The current is converted back to a voltage with an external load resistor that sets any gain from 1 to over 100.

Key Features

16

- Wide supply range
- INA138: 2.7V to 36V
- INA168: 2.7V to 60V
- Unidirectional current: INA138/9, INA168/9
- Bidirectional current: INA170
- Low guiescent current: 25µA
- Independent supply and common-mode voltages
- Wide temp range: -40°C to +125°C
- Packaging: SOT23-5

Applications

- · Current shunt measurement in automotive, telephones, computers
- Portable and battery-backup systems
- Power management
- Precision current source

INA138/INA168 functional block diagram

Current Shunt Monitor with -16V to +36V **Common-Mode Range** INA193/INA194/INA195/INA196/INA197/INA198

Get samples and datasheets at: www.ti.com/sc/device/PARTnumber Replace PARTnumber with INA193, INA194, INA195, INA196, INA197 or **INA198**

The INA193-INA198 family of current shunt monitors with voltage output can sense drops across shunts at common-mode voltages from -16V to +36V, independent of the supply voltage. The devices are available with three output voltage scales: 20V/V, 50V/V and 100V/V. The 400kHz bandwidth simplifies use in current control loops.

Key Features

- Common-mode voltage range: -16V to 36V (80V in development)
- High accuracy: ±3% over temp
- Bandwidth: up to 400kHz
- Quiescent current: 250µA
- Three transfer functions available: 20V/V, 50V/V, 100V/V
- Packaging: SOT23

Applications

- Current shunt measurement in automotive, telephones, computers
- Portable and battery-backup systems
- Power management
- Use in PWM current control loops
- 16-bit, 1 channel, ±250mV input range: ADS1202
- 16-bit. 1 channel. ±250mV input range: ADS1203
- 16-bit, 4 channels, 0 to 5V input range: ADS1204

INA19x functional block diagram

Photodiodes

Measurement of Photodiode Currents

Photometric measurements for industrial, test, analytical, laboratory, photographic, and general light detection have many similar requirements to those in high-speed optical communications systems. Best results depend on how the photodiode is used and the amplifier techniques that follow it.

Many light sources produce slow variations but often have wide dynamic range up to 8 decades or 160dB. In contrast, fiber optic transmission systems have high bandwidth and also wide variation in optical power level. There are many ways to optimally configure a photodiode circuit.

A common technique utilizes a transimpedance amplifier in which a short circuit is forced across the photodiode. This keeps the photodiode's dark current and the associated noise and temperature drift low but results in higher photodiode capacitance. Therefore, the zero-bias technique is used for relatively slow systems where optical power levels vary from very tiny to very large. For faster systems, a reversebiased photodiode circuit is commonly used. This results in smaller photodiode capacitance but dark current, temperature drift and noise are increased. To keep errors to a minimum, the bias voltage must be very clean; meaning low noise and good temperature stability. In certain very fast systems that use an avalanche photodiode with a large active optical light gathering area, reverse bias is mandatory.

In addition to diode-biasing, different types of transimpedance circuits are employed. One is an op amp with a resistor in the feedback loop. This produces a linear, continuous response of output voltage to input current. Spike transitions will occur, however, if the feedback resistor is switched to other values to change the gain during signal acquisition.

Another approach is the logarithmic amplifier with a diode in the op amp's feedback loop. This produces a continuous non-linear response of output voltage to input current. It has the unique ability to apply high gain to low-level signals, while providing low gain to high-level signals. It's like a smooth automatic gain circuit without switching transitions that does not disrupt the signal at any time.

Yet another approach is the switched integrator with a capacitor in the feedback loop. It has the advantage of integrating the noise and allowing easy ability to change gain by simply altering the time allowed for the capacitor to charge. Output voltage depends on how long the capacitor is allowed to charge. In fact it is easy to change the gain by simply changing the charging time. The switched integrator configuration is used as an analog front end in the direct digital converter (DDC) where the analog output voltage is directly converted into a high-resolution digital word on the same chip.

Measurements of Photodiode Currents: Light Measurement and Laser Control

The linear transimpedance amplifier finds its use in wide bandwidth applications with up to five decades of dynamic input range. Wideband amplifiers, such as the OPA353, have the necessary gain bandwidth to provide high transimpedance gain. This type of amplifier, however, lacks the DC-precision for wider dynamic input range at low input currents. To improve the DC-parameters, an auto-zero amplifier, such as the OPA335, is implemented in a composite configuration. While the wideband amplifier provides the current-tovoltage conversion in the signal path, the auto-zero amplifier compensates its offset. Thus the composite amplifier provides wide bandwidth at high transimpedance gain over a dynamic input range of five decades. The design of a composite transimpedance amplifier requires serious effort in stability calculations. To shorten the design time of photodiode front ends, Texas Instruments has developed a new, wideband transimpedance amplifier, the OPA380, with a bandwidth of 1MHz at 120dB transimpedance gain. Its dynamic input range extends over 5 decades and allows for current measurement down to 5nA.

17

Photodiodes

18

OPA335 in wideband photodiode application

OPA380 offers 1MHz BW and allows current measurement down to 5nA

Logarithmic amplifiers provide the widest dynamic input range of up to 7-8 decades. Their 3dB bandwidth, however, decreases linearly with decreasing input current (see Output Power Circuit pg. 19). While linear transimpedance amplifiers measure the absolute value of an input current, and convert it into an output voltage via a feedback resistor, ($V_{OUT} = I_{IN} \cdot R_F$), logarithmic amplifiers provide the logarithmic ratio of two input currents in the form of an output voltage ($V_{OUT} = \log I_1/I_2$). Usually I_1 represents the current to be measured, and I_2 is a reference current. The logarithmic comparison of two input currents offers the benefit of measuring the input and output quantity of a physical transmission system, be it of optical, electrical, or mechanical nature.

3dB frequency vs. photo current

Constant Gain Control and Gain Adjustment of an Optical Amplifier

Load variations in the transmission fiber cause transients of optical power at the amplifier's output. To minimize these transients, optical gain control is achieved by two log amps measuring the optical amplifier's input and output power. A difference amplifier subtracts the output signals of both log amps and applies an error voltage to the following PID-controller. The controller output adjusts a voltage-controlled current source (VCCS), which then drives the actual pump laser. The amplifier operates at the desired optical gain, when the error voltage at the PID output is zero.

Gain setting is achieved by varying the reference current of Log₁. Again, a variation in V_{OUT1} translates into a new power level at the pump laser output until the error voltage at the PID output is zero.

Current measurement using log amps

Photodiodes

Controlling the Optical Output Power of a Laser Diode

With the diode's output power decreasing over its lifetime, a control loop is required to keep the output power constant. In the feedback path, a fraction of the output signal (1%) is fed back via a photodiode and converted into electrical current. The laser is calibrated by making the reference current, I_{REF} , equal to the photo current, I_1 . This allows the detection of minute changes in photo current. Deviations between reference and photo current are converted into an error signal and applied to the bias input of the laser diode driver. The driver then increases the bias current of the laser diode until the error signal diminishes to zero.

Output power circuit for a laser diode

Absorbance Measurement

In the case of an absorbance measurement, a light source provides input to two photodiodes, D₁ and D₂. D₂ receives light directly from the source, resulting in a current, I₂. D₁ receives a reduced optical signal which has passed through a material sample with an absorbance coefficient, α , thus yielding a current of I₁ = I₂ • α . The amplifier, performing the logarithmic ratio of I₁/I₂, then provides an output of V_{OUT} = log I₁/I₂ = log I₂ • α /I₂ = log α . Thus, V_{OUT} is a direct indication for α .

Absorbance measurement circuit

Switched integrating amplifiers allow current detection down to fA levels. Because of their mode of operation, their figures of merit are full-scale charge (Q_{FS}) and integration time (T_{INT}), rather than input current in nA and bandwidth in kHz. Switched integrators work on the principle that a reference voltage charges the feedback capacitor of an inverting amplifier from one side; then, the opposite side of the capacitor is connected to the amplifier input for the duration of T_{INT} to receive the input charge. After the integration phase, the remaining output voltage is available for further analog-to-digital conversion.

Configuration of the front end integrators of the DDC112

For highest accuracy, the Texas Instruments DDC112 switched integrator device combines a dual integrator and a 20-bit, $\Delta\Sigma$ ADC with digital interface for microcontroller and DSP control. An extensive control interface allows variation of the full-scale range from a minimum 47.5pC to a maximum 1000pC, and the integration time from T_{INT} = 50µs (non-continuous mode) to 1s (continuous mode). Typical applications are direct photo-sensor digitization, CT scanner, DAS, infrared pyrometer, liquid/gas chromatography and blood analysis.

DDC112 functional block diagram

Asynchronous, DC and Servo Motors

Digital Motor Control

Today's motor control applications challenge electronic circuitry to achieve the highest efficiency, lowest power consumption and highest precision control. There are several motor types in which digital and analog solutions are increasing performance in motor control applications. Synchronous motors are also described as BLDC (Brushless DC) or PMSM (Permanent Magnet Synchronous Motors). The only difference between them is the shape of the induced voltage, resulting from two different manners of wiring the stator coils. The back-emf is trapezoidal in the BLDC motor, and sinusoidal in the PMSM motor. Digital techniques addressed by the C2000TM DSP controller make it possible to choose the correct control technique for each motor type. Processing power can extract the best performance from the machine and reduce system costs. Options include using sensorless techniques to reduce sensor cost, or even eliminate it; additionally, complex algorithms can help simplify the mechanical drive train design, also lowering system cost.

For asynchronous motors, speed regulation is a typical concern. Three phase inverters with a 6 PWM scheme are widely used for variable-speed drive applications. Depending on the application, a simple V/Hz open-loop (scalar) control where no feedback is required can be applied, or a vector control in which current, voltage and speed information is needed.

Scalar Control: (V/Hz)

- Simple to implement: only three sine waves feeding the motor are required
- Position information not required (optional)
 Doesn't deliver good dynamic performance
 - Torque delivery not optimized for all speeds

Vector control, also called Field Oriented Control, allows designers to fulfill all of the "ideal" control requirements. Having information on all system parameters, such as phase current and bus voltage, allows delivery of the appropriate power at the right moment thanks to real-time control made possible by DSP integration and MIPS availability.

TMS320F2810 event manager block diagram

21

Asynchronous, DC and Servo Motors

Servo Motor Control Application and Featured Products

The figure at right is an example of a typical motor control circuit. The IU, IV and IW channels measure the motor's currents. The motor's position/speed and load are measured simultaneously by Ax, Bx, etc. using resolver or analog encoder sensors. Simultaneously sampling at least two currents or all three currents is important to achieving maximum accuracy in motor positioning. Good linearity and low offset of the ADC is mandatory. Channel A_{N1} measures the differential DC link voltage. Fast sampling in the range of 2µs or less per channel guarantees fast leakage current detection for IGBT control. A_{N3} measures the motor's temperature. The level input of the window comparators are connected to an 8-bit DAC for control purpose.

Servo motor control functional block diagram

Current Shunt Modulator ADS1203

Get samples, datasheets and EVMs at: www.ti.com/sc/device/ADS1203

The ADS1203 is a delta-sigma modulator with 95dB dynamic range, operating from a single +5V supply. The differential inputs are ideal for direct connection to transducers or low-level signals. It is available in an 8-lead TSSOP package. A 16-pin QFN (3x3) package will be available 1005.

Key Features

- Resolution: 16-bits
- Input range : ±250mV
- Linearity: ±1LSB (typ)
- Internal 2.5V reference

Family Members:

- 16-bit, 1 channel, ±250mV input range: ADS1202
- 16-bit, 1 channel, ±250mV input range: ADS1203
- 16-bit, 4 channels, 0 to 5V input range: ADS1204
- INA139, high-side current-shunt monitor (diff. amplifier), up to 36V common-mode input
- INA169, high-side current-shunt monitor (diff. amplifier), up to 60V common-mode input

ADS1203 functional block diagram

Texas Instruments 10 2005

Asynchronous, DC and Servo Motors

2+2 Channel Simultaneous Sampling, 16-Bit ADC **ADS8361**

Get samples, datasheets and EVMs at: www.ti.com/sc/device/ADS8361

The ADS8361 is a 16-bit, 500kSPS ADC with four fully differential input channels grouped into two pairs for high-speed, simultaneous signal acquisition. The device offers a high-speed, dual serial interface and is available in an SSOP-24 package and specified over the -40°C to +85°C operating range.

Key Features

22

D

- 4 fully differential input channels
- 2µs throughput per channel
- INL: ±3 LSB (typ)
- Power consumption: 150mW
- Internal 2.5V reference
- Supply voltage: 2.7V to 5.5V
- Pin-compatible upgrade to ADS7861 (12- to 16-bit)

Family Member

- 12-bit, 2x2 channel, serial interface: ADS7861
- 12-bit, 2x2 channel, parallel interface: ADS7862
- 12-bit, 3x2 channel, parallel interface: ADS7864
- 16-bit, 2x2 channel, serial interface: ADS8361
- 16-bit, 6x1 channel, parallel interface: ADS8364

ADS8361 functional block diagram

Complete Analog Front End ADS7869

Get samples, datasheets and EVMs at: www.ti.com/sc/device/ADS7869

The ADS7869 is the next-generation successor of the well known VECANA01 analog front end and includes three ADCs with a total of seven S/H capacitors and 12 fully differential input channels. There are four sign comparators connected to four input channels. The device offers a very flexible digital interface, featuring 3 different modes, starting from serial SPI, adjustable parallel up to the VECANA01compatible mode. For position sensor analysis, two up-down counters are added on the silicon. This feature ensures that the analog input of the encoder is held at the same point of time as the counter value.

Key Features

- Resolution: 12-bits
- 2 up-down counter modules on-chip
- Sampling rate: 1MSPS
- INL: ±1 LSB (typ)
- Power consumption: 250mW
- Packaging: TQFP-100

ADS7869 functional block diagram

Asynchronous, DC and Servo Motors

1.8V, 7MHz, 90dB CMRR Rail-to-Rail I/O Op Amps OPA363/OPA364

Get samples, datasheets and EVMs at: www.ti.com/sc/device/OPA363, www.ti.com/sc/device/OPA364

The OPA363 and OPA364 families are high-performance CMOS op amps optimized for very low voltage, single-supply operation. Designed to operate on single supplies from 1.8V (\pm 0.9V) to 5.5V (\pm 2.25V), these amps are ideal for sensor amplification and signal conditioning in battery-powered systems. They are optimized for driving medium speed A/D converters (up to 100kHz) and offer excellent CMRR without the crossover associated with traditional complimentary input stages. The input common mode range includes both the negative and positive supplies and the output voltage swing is within 10mV of the rails. All versions are specified for operation from -40°C to +125°C.

Key Features

- Slew rate: 5V/µs
- Low offset: 500µV (max)
- Quiescent current: 750µA/channel (max)
- Available in single, dual and quad
- Packaging: SOT23-5, SO-8, MSOP-8, TSSOP-14, SO-14

Applications:

- Signal conditioning
- Data acquisition
- Process control
- Test equipment
- Active filters

Device Recommendations

Device	Description	Key Features	Benefits	Other TI Solutions		
Amplifiers						
0PA335	Zero-drift op amp	$0.05 \mu V/^\circ C$ drift, $5 \mu V$ offset, RRIO at 3.3VDC, single supply	Best long-term stability for industrial use, no need for	OPA735, 12V version with		
			dual supply, best in class, automotive temp range	improved noise and drift		
INA326	High-precision	30nV/√Hz noise, RRIO, single supply	Lowest noise in the industry and best long-term stability,	INA337, automotive temp		
	instrumentation amp		no need for dual supply	range, –40°C to +125°C		
TMP121	Digital temp sensor	Integrated diode temp sensor, $\Delta\Sigma$ ADC and SPI	High resolution and accuracy, extended industrial	TMP175		
		interface to convert valve temp into digital code or the DSP	temperature range, ultra small package	(SMB-bus interface)		
0PA227	Low noise amp	V_{N} = 3nV, CMRR $>$ 120dB, V_{S} = 5 to 36V	Very low noise, small package	OPA350, OPA725		
Interface						
SN65HVD1176	PROFIBUS transceiver	Interfaces PROFIBUS fieldbus to system controller	Optimized for PROFIBUS, up to 160 users per bus, up to	SN65HVD485E,		
			40Mbps, benchmarked by Siemans as reference device	low-cost version		
SN65HVD251	CAN-bus transceiver	Interfaces CAN-fieldbus to system controller	Improved drop-in replacement for PCA82C251,	SNHVD233		
			tolerates ±200V transients	(3.3V version)		
Power Ma	nagement Products					
REF3140	Voltage reference	Drift = 20ppm/°C, 4.097V, 0.2%	Very low drift, tiny package	REF02, REF102		
DCV010505D	Dual converter	Isolation converter, +5V _{IN} , ±5V _{OUT}	Low noise, small board area	DCP010505		
TPS54110	SWIFT™ buck converter	Adjustable output (0.9V to 3.3V), 1.5A	Very easy to use, flexible output	TPS64200		
Data Conv	erters					
ADS1206	V/F Converter	0-5V input, 1-4MHz output	Low cost direct DC-Link current measurement	INA19x, INA138		
DAC7731	16-bit, 5µs settling time	Output = ±10V, INL = 0.0015%	Small package	DAC7741		
Other						
FilterPro TM	Free design software	Design low pass filters, quick, easy	Free, www.ti.com	_		

Industrial Solutions Guide

Surveillance Cameras, Glass Breakage and Smoke Detectors

Surveillance IP Video Node Basics

Digital video surveillance systems include embedded image capture capabilities which allow video images or extracted information to be compressed, stored or transmitted over communication networks or digital data links. The TVP51xx video decoder family offers a high-performance, low-cost analog video interface supporting PAL/NTSC/SECAM video systems. Fast lock times and superior analog processing capabilities make them an ideal fit for any kind of streaming video applications. A typical audio subsystem consists of an audio codec and an audio amplifier. The TPA3007D1, based on the patented filter-free modulation scheme, is a high-efficiency, state-ofthe-art, Class-D audio amplifier. TI's video surveillance solutions are primarily based on the high-performance TMS320DM64x digital media processors, which have on-chip video ports for easy connection to video devices. The DM64x devices are capable of handling both video and audio encode/decode for IP-based video surveillance applications. Cost-competitive video compression/decompression algorithms are available from TI or through our partner network for JPEG, MPEG2, MPEG4, H.264, and more. Audio compression/decompression algorithms are also available.

IP Video Node block diagram

25

Surveillance Cameras, Glass Breakage and Smoke Detectors

High-Performance Digital Signal Processors TMS320DM64x

Get samples, datasheets and app reports at: www.ti.com/dm64x

TI's video surveillance solutions are primarily based on the highperformance DM64x DSP-based digital media processors. The DM64x digital media processors have on-chip video ports for easy connection to video devices and are capable of handling both video and audio encode/decode for IP-based video surveillance applications. The single programmable digital media processor is a cost-effective solution because the need for external PCI or EMAC is eliminated.

Key Features

- Performance up to 5760 MIPS performance at 720MHz
- Multiple input/output glueless interfaces for common video and audio formats
- Performance real-time video encoding, decoding, or transcoding
- Three dual-channel video ports support simultaneous video input and output
- Advanced connectivity with 10/100 Ethernet MAC and 66MHz PCI
- Ready-to-use application software such as MPEG-4, MPEG-2, MPEG-1, WMV9, H.26L, H.263, H.261, M-JPEG, JPEG2000, JPEG, H.264 and more.

Applications

- Network camera-based surveillance and IP video nodes
- Video-on-demand set-top boxes, personal video recorders and digital media centers
- Statistical multiplexer and broadcast encoders
- IP-based video conferencing and IP-based videophones

High-Performance Digital Signal Processors TMS320C6414T and TMS320C6415T

Get samples, datasheets and app reports at: www.ti.com/sc/device/TMS320C6414

TMS320C64x[™] DSPs offer the highest level of performance to meet the demands of the digital age. At clock rates up to 1GHz, the C64x[™] DSPs can process information at a rate of more than 8000 MIPS. TI's C64x DSPs are backed by an extensive selection of optimized algorithms and industry-leading development tools.

Key Features

- Highest in-class performance with production class devices available up to 1GHz
- TMS320C64x DSPs are 100% code-compatible with TMS320C6000[™] DSPs
- C64x DSPs offer up to 8000 MIPS with costs as low as \$20.00
- Advanced C Compiler and Assembly optimize maximize efficiency and performance
- Packaging: 23-/27-mm BGA options

Applications

- Statistical multiplexers
- Broadcast encoders
- Video conferencing
- Video surveillance

TMS320DM642 digital media processor block diagram

TMS320C6415T DSP block diagram

Security

26

Ð

Surveillance Cameras, Glass Breakage and Smoke Detectors

Device Recommendations

Device	Description	Key Features	Benefits
Amplifiers			
TLV246x	Op amp	Ideal for audio amplification, low power consumption	Cost-effective solution with low noise and small SOT-23 package
TPA3007D1	Class-D audio amp	6.5W into an 8Ω load from 12V supply, 3^{rd} generation modulation	Replaces large LC filter with small Ferrite Bead Filter, no heatsink required,
		technique, short circuit protected	improved efficiency, improved SNR
Data Conve	rters		
TVP5146	NTSC/PAL/SECAM	Quad, 30MSPS, 10-bit ADC, supports component YPrPb/RGB,	10 video inputs, SCART support, includes a 5-line adaptive comb filter for
	4x 10-bit digital video	programmable video output format, certified Macrovision copy protection	best-in-class Y/C separation, 4 10-bit, 30MSPS ADCs for superior
	decoder w/Macrovision	detection, built-in video processing, VBI data processor, I ² C interface	noise performance
TVP5150A	8-bit video decoder	Single 8-bit ADC, composite and S-video support, built-in video	2 video inputs, 4-line adaptive comb filter, fast lock times, extremely
	(PAL, NTSC, SECAM)	processing, I ² C interface	low power, low cost
TLV320AIC12	Dual-channel	Programmable sampling rate up to: max 26kSPS w/ on-chip IIR/FIR filter,	Directly connect to McBSP w/o logic, interface with multiple analog I/Os
	voice codec	max 104kSPS w/ IIR/FIR bypassed, built-in amps for microphones/speakers	DSP software, analog/digital PGA to increase performance
Processor			
TMS320DM642	Video processor	Ability to perform video/audio encode on multiple channels, direct I/F	Cost effective with single programmable DSP, no need for external PCI or
		to NTSC/PAL decoder through video ports/audio through McBSP	EMAC, eliminates the need for external FPGA
Power Man	agement Products		
TPS2383	Power sourcing	Internal PD detection signature output, internal PD classification output,	Individually manage power for up to 8 ethernet ports, all operations of the
	equipment power	programmable inrush current limit, 0.3 Ω low-side FET input, internal	TPS2383A are controlled through register read and write operations over
	managers (PSEPM)	thermal protection and UVLO compliant to the PoE IEEE 802.3af standard	a standard (slave) I ² C serial interface
UCC1809/	Current mode	Programmable soft start with active low shutdown	Anti-cross conduction circuitry, allows the output to sink current by
2809/3809	PWM controller		allowing the synchronous rectifier to turn on w/o the switch node collapsing
TPS2370	Power interface switch	All detection, classification, inrush current limiting and switch FET	Low-input voltages (1.8V to 10V), draws >12µA, allowing accurate sensing
		control necessary for compliance with IEEE 802.3af standard	of the external 24.9-k Ω discovery resistor
TPS76850	Fast-transient-response	Low drop-out = 230mV at 1A, 2% tolerance, open drain power good,	Designed to have a fast transient response and be stable with $10\mu F$ low
	1-A LDO	thermal shutdown protection	ESR cap at low cost
TPS70148	Dual-output LDO	1.2V/1.5V/1.8V/2.5V/3.3V options for dual-output voltages, selectable	Complete power management solution designed for TMS320 [™] DSP family,
	for DSP systems	power-up sequence for DSP appilcations, power-on reset with	easy programmability, differentiated features: accuracy, fast, transient
		delay, power good, two manual reset, thermal shutdown	response, SVS supervisory, reset and enable pins
TPS5130	Triple sync buck	3 independent step-down DC/DCs and 1 LDO, 1.1V-28V input range,	On-chip sync rectifier drives less expensive N-Ch MOSFET, allows smaller
	controller with LDO	0.9V to 5.5V output range, sync for high efficiency, auto PWM/SKIP	input cap to reduce cost, resistor-less current protection reduces external
		overvoltage/current protection, short-circuit protection	part count

Power Supply

Smoke Detector

Smoke detection is a critical application, not only because life can depend on the reliability of the sensor but also because false alarms can be quite costly. There are several ways to detect smoke, but optical detection is the most common. In order to achieve high reliability, a highly integrated solution is desirable. Due to laws that require a detector in every room (e.g. in hotels) cost is also a decisive factor.

In order to achieve low maintenance costs, batteries must have several

years of life which require a pulsed application with fast wake-up time, fast processing time and exceptionally low stand-by current. This makes the mixed-signal processor, MSP430, an ideal choice for this application.

The figure at right, shows the heart of a smoke detector. A pulsed IR-transmitter and IR-receiver are located in a non-reflective measurement chamber which has to be protected against outside light, only light from the IR-transmitter, which is reflected by the smoke, can reach the IR-receiver. Two subsequent measurements are performed. The first measures the surrounding light when the IR-transmitter is switched off; the second measures reflected light when the IR-transmitter is switched on. This differential

.31 C₁₁ 2.2µF C₁₂ 100nl V_{cc} Vss XIN X_{OUT} Sensor P2.5/Rosc C₂ 3.3pF ≹Rosc Alarm MSP430F1111 P2.3/CA0 V_{MEAS} P1.7 SD P2.0 P2.1 **R**₃ δ80kΩ **R**₁₀ P1.6 P2.2/V_{CAP} P2.4/CA1 CMEAS

Smoke detector block diagram

measurement method requires not only a high dynamic range linearity sensor and circuitry, but also a high linearity of the system.

Device Recommendations

Device Type	Recommended Device	Device Characteristics
Microcontroller	MSP430F1111	1.8V to 3.6V lowest power microcontroller with analog comparator for dual slope A/D conversion
Operational Amplifiers	0PAx340	Fast RRIO transimpedance amplifier with trimmed offset voltage
	OPAx336	Low offset, low drift RRO amplifier with only 32µA quiescent current
	0PAx381	Fast, zero drift transimpedance amplifier with <1mA quiescent current
	TLV247x	Fast, lowest drift $0.4\mu V/^{\circ}C$, general-purpose amplifier with shutdown
	TLV276x	Medium speed, 1.8V RRIO amplifier with shutdown and fast turn on/off time
	TLV224x	1µA, 5kHz, RRIO nanopower operational amplifier
	OPAx379	1.8V, 2µA, 100kHz, RRIO nanopower operational amplifier

Preview devices appear in **bold blue**.

28

D

Surveillance Cameras, Glass Breakage and Smoke Detectors

Glass Breakage Detector

The typical acoustic glass breakage sensor works by using a microphone to measure the sound spectrum of pressure differences in the glass. The first signal wave represents the vibration caused by an object hitting the glass. This frequency is in the 200kHz range. The second signal, in the 5kHz frequency range, occurs when the glass breaks. The figure shows an implementation using a low dropout regulator, an amplifier and the MSP430 microntroller with an onboard ADC. A fast rail-to-rail amplifier is needed to boost the transducer signal to the ADC input voltage range. All following stages are integrated into the MSP430 signal controller.

Glass breakage detector block diagram

Device Recommendations

Device Type	Recommended Device	Device Characteristics
Microcontroller	MSP430F1132	1.8V to 3.6V lowest power microcontroller with integrated 10-bit, 200kSPS ADC
Operational Amplifiers	TLV278x	Fast 8MHz GBW, 4.3V/µs SR, 1.8V, RRIO operational amplifier with shutdown
	OPAx363	Fast 7MHz GBW, 6V/µs SR, 1.8V, RRIO amplifier with excellent input linearity and shutdown
Voltage Regulator	TPS77001	Adjustable, 50mA output current voltage regulator with low dropout and low quiescent current
Data Converter	AD \$7866	Lower power family at 8-, 10-, 12-bit >200kSPS, 1.2V to 3.6V ADC

Preview devices appear in bold blue.

Electronic E-Meter

29

Electronic E-Meter

Industry's First Single-Chip IC for Electronic Energy Meters

- Single-chip solution for electronic e-meter application
- Single supplier solution
- Analog Front End (AFE) with coprocessor integrated in the ESP430CE1 module.
- Ultra-low-power MSP430FE42x for extremely long life cycles
- Main CPU can run mainly for communication like ripple control, tariff switching or sleep
- Provides shunts, current transformers (CT) and di/dt sensors like Rogowski coils

Calculated Results:

- Active, reactive, apparent power
- Software programmable metering start current
- Status
- Waveform samples
- Power factor
- DC removal
- Mains period
- RMS, peak values (current/voltage)
- Temperature
- Line cycle counter
- Automatic voltage drop detection level select by software
- Tamper detection for single phase, 2-wire metering

Next-Generation Electronic E-Meter

The MSP430FE42x is designed to meet the requirements of next generation electronic e-meters including the ability to meet different international standards such as IEC62053-21/22/23 (Europe) and ANSI C12.XX (US). High integration provides for an easy-to-use solution with the smallest size and lowest cost.

Device Recommendations

Device	Description	Key Features	Benefits	Other TI Solutions			
Interface							
SN65HVD3082E	5-V, half-duplex RS-485 transceiver	Ideal for metering applications,	Cost-effective solution with low-power and slew-rate control	SN65HVD3085E			
		low power consumption and slew-rate control					
SN65LBC184	5-V, half-duplex RS-485 transceiver	Ideal for metering applications, integrated	Integrated Transient Voltage Protection for highest reliability	SN65LBC182			
		transient voltage protection and slew-rate control					
Data Conver	ter						
ADS8364	6Ch, 16-bit, 250kHz SAR	High-speed simultanous sampling ADC for security	Fastest control loop to secure circuit braker shut off	ADS1204			
		power metering					
Op Amp							
0PA363	Rail-to-rail, 1.8V, high CMRR	Low noise , no crossover distortion at low power	Ideal for driving high speed and precision 16-bit ADCs	0PA2822, 0PA350			
		and high GBW 7MHz					
Microcontro	Microcontrollers						
MSP430F42x	Ultra-low-power, 16-bit RISC CPU	Single-chip IC for Electronic E-meter	Easily integrated solution in a small package and lowest cost	MSP430FE425			
				MSP430FE27			

Scientific Instrumentation

In today's industrial scientific instrumentation applications, such as gas/liquid chromatography, mass spectrometry and vibration analysis, the analog signal requires processing with maximum resolution at the highest speed while achieving optimum signal-to-noise ratio, lowest ripple and THD. For automatic test equipment (ATE) an excellent DNL and INL are also expected.

In gas chromatography applications, an ADC converts the signal and separates the desired frequency product from the mixture. Combining high resolution (16- to 18-bit range) with the highest speed (MHz range) while achieving high SNR is the major challenge.

The ADS160x family of 16-bit, 5MSPS, delta-sigma ADCs was developed for applications based on a newly patented Adaptively Randomized DWA (Data Weighted Averaging) Algorithm architecture and works up to 5MHz (10MHz in 2x mode) bandwidth while achieving SFDR above 100dB.

For mass spectrometry application an unprecedented 0.0025% ripple can be expected.

In applications such as mirror positioning for precision laser beam control, a very fast, high-resolution control loop is needed to achieve maximum accuracy and throughput. The ADC needs to have the lowest latency at maximum resolution to position the laser. The application below shows the ADS8381 (18-bit, 500kHz) – one of the fastest SAR ADCs available – with 112dB SFDR and 18-bits NMC.

Recommended high-speed ADC driver circuit using OPA2822

DWF1-364838 laser mirror positioning application, test and working principle: 1 mirror for 1 direction

ADS160x typical spectral response

31

4

High-Speed Signal Analysis

High-Speed Signal Analysis

High-speed test and measurement applications are characterized by the need for high SNR, high sampling rate and other high-speed characteristics as determined by the system designer. Input signals may be large bandwidth and thus the input bandwidth of the ADC becomes critical (the ADS5500 family delivers 750MHz BW). At the same time, to support input frequencies higher than 1/2 the ADC's sampling rate, undersampling is often applied, requiring the converter to perform well (SNR/SFDR) at these high input frequencies. The ADS5500 operates well beyond 200MHz. Peripheral functions also have a dramatic impact on signal chain performance. The amplifier driving the ADC has a direct impact on SNR/SFDR, thus it must be chosen carefully to maintain specified system performance (OPA69x/OPA84x single-ended, THS450x/THS430x differential and THS900x for driving transformers are very good choices). Additionally,

High-Performance ADCs

Device	Bits	MSPS	SNR (dB)	SFDR (dB)	Power (mW)
ADS5500	14	125	70.5	82	780
ADS5541	14	105	71	85	710
ADS5542	14	80	72	82	670
ADS5520	12	125	69	82	740
ADS5521	12	105	69	85	700
ADS5522	12	80	70	82	660

Additional Products

TI Solution	Device	Device Characteristics
Operational Amplifier	OPA695	Ultra-wideband (1.4GHz), current-feedback, 2500 V/ μ s slew rate (G=+2)
Operational Amplifier	THS9000	50 to 350MHz cascadeable op amp optimized for high IF frequencies
Digital-to-Analog Converter	DAC5686	Dual-channel 16-bit, 500MSPS with selectable 2x to 16x interpolation CommsDAC™
Digital Up/Down Converter	GC5016	Wideband, quad, channels independently configurable, low power
Clock Distribution Circuit	CD C7005	Low-phase noise, low-skew clock synthesizer and jitter cleaner, 3.3V supply
Digital Signal Processors	TMS320C64x [™]	16-bit, fixed-point DSPs, up to 1GHz clock rates and 8 GigaMACs of performance, with the industry's best power
	TMS320C55x [™]	consumption benchmarks
Digital Signal Processor	TMS320C67x [™]	32-bit DSPs with up to 1GFLOPS of floating-point processing performance

ADC performance is critically impacted by clock jitter; thus, a low-jitter clock source, such as the CDC7005, can provide an ideal solution.

ADS5500 in Video and Imaging Application (High-End Camera, Video Inspection, Motion Control, Security Camera)

The ADS5500's 14-bit resolution provides higher SNR to process highquality images accurately, and simplifies the analog input circuitry by reducing the need for programmable gain amplifiers. Also, its high sample rate allows designers to scan images faster or oversample the input signal, which simplifies analog filter design and lowers system cost. The ADS5500's low power dissipation extends battery life in portable systems and provides cost savings due to the lower power supply and system thermal management requirements.

ADS5500 in test and measurement applications

ADS5500 in video and imaging applications

RF Applications

Industrial applications have had to wait many years for the availability of effective wireless solutions to overcome shop floor communications obstacles such as expensive cables and wiring costs. To date, efforts to simplify industrial interface has met with little success especially with more recent demands for lower power and overall system costs in applications such as metering, security systems, fire detectors and HVAC systems.

In response to these market demands, TI has introduced a multiband radio frequency (RF) transceiver, TRF6903, and transmitter, TRF4903. These devices can wirelessly transmit and/or receive up to 64kbps of data for the 315, 433, 868, and 915MHz industrial, scientific and medical (ISM) bands. The devices can interface easily to a baseband processor such as TI's MSP430. A synchronized data clock, provided by the TRF6903 and TRF4903, is programmable for most common data rates, eases baseband processing and reduces code complexity. The devices work exceptionally well with various MSP430 microprocessor family members and has complete EVM kits and software available.

The TRF6903 and TRF4903 are also single-chip solutions for low-cost multiband Frequency Shift Keying (FSK) or On/Off Keying (OOK) devices used to establish a frequency-programmable, half-duplex, bidirectional RF link. The devices operate down to 2.2V and are designed for low power consumption with a 0.6µA standby current.

For frequency hopping systems, these devices are the fastest and most efficient hoppers available. The TRF6903 and TRF4903 require no calibration when switching to a new frequency which makes them highly efficient at high data rates.

Features:

- Transceiver (TRF6903) and Transmitter (TRF4903) available
- 315, 433, 868 and 915MHz operation
- Apt for frequency hopping protocols
- Clock recovery with training recognition
- Standby current: 0.6µA (typ)
- 2.2V to 3.6V operation
- Output power: +8dBm (typ)
- FSK/00K modes of operation
- Data rates up to 64kbps
- Industrial temperature range: -40°C to 85°C

Tools Available:

- Free samples
- Evaluation modules at \$149 each
 - MSP-TRF6903-DEMO: Two boards equipped with TRF6903 and MSP430F449
 - MSP-TRF4903-DEMO: Two boards equipped with TRF4903 and MSP430F449.

The EVM kits for the TRF6903 and TRF4903 are used to demonstrate a bidirectional RF link between the two boards and for prototyping by downloading new software code to the MSP430F449 using a JTAG connector. The schematic and board layouts can be used as a reference design if desired. A user's guide is included.

System Design Software

EasyRF™ tools for TRF6903: Calculates values for PLL filter, LNA, PA matching, crystal switch caps, IF matching and S/H capacitors.

EasyRF™ for TRF4903: Calculates values for PLL filter, PA matching, and crystal switch caps.

TRF6903 wireless connection for 315, 433, 868, and 915MHz operation

To download these tools or for further information on ISM RF, please visit www.ti.com/ismrf

Wireless for Industrial

RF Applications

Wireless Communication Devices for Industrial Applications

		Frequency				Operating Voltage				
		(MHz)	(MHz)		Output Power	(V)	(V)	Current		
Device	Description	Min	Max	Standards Supported	(dBm)	Min	Мах	(µA)	Package	Price
TRF6903	RF Transceiver	315	915	FSK, OOK	8	2.2	3.6	0.6	PQFP-48	\$2.85
TRF6901	RF Transceiver	860	930	FSK, OOK	8	1.8	3.6	0.6	PQFP-48	\$2.70
TRF6900A	RF Transceiver	850	950	FSK, Narrow-band FM	5	2.2	3.6	0.5	PQFP-48	\$3.20
TRF5901	RF Transceiver	902	928	FSK, Narrow-band FM	5	3	3.6	0.5	PQFP-48	\$3.20
TRF4903	RF Transmitter	315	915	FSK, OOK	8	2.2	3.6	0.6	TSSOP-24	\$2.00
TRF4900	RF Transmitter	850	950	FSK, Narrow-band FM	7	2.2	3.3	0.5	TSSOP-24	\$1.90
TRF4400	RF Transmitter	420	450	FSK, Narrow-band FM	7	2.2	3.6	0.5	TSSOP-24	\$1.90

Input/Output Cards, Internal Communication/Interface/Isolation, Core Logic

Programmable Logic Controls (PLC) are widely used in industrial applications primarily in the areas of factory and process automation. PLC systems consist of different subsystems realized either as complete integrated systems or as base unit plus plug-in cards/ modules for different options.

Industrial Analog I/Os

PLCs and field extension modules control large numbers of electronic actuator, such as motors, solenoids and electronic ballasts. Due to the wide range of actuator and their different performance requirements, the XTR300 provides signals in the form of drive voltage or current with large voltage offset compliance. Typical voltage ranges are \pm 5V, \pm 10V, while current ranges include \pm 20mA, \pm 10mA, as well as 0-20mA and 4-20mA.

XTR300 functional block diagram

In addition to these common ranges, many proprietary signal interfaces exist, which all have one problem in common; tailoring the electronic drive's design to match the required actuator's input.

To ease this design task, TI has developed an industrial analog current/voltage output driver, the XTR300. This device provides an operational amplifier working as a signal driver in the forward direction, and an instrumentation amplifier in the feedback loop.

Digital control sets the XTR300 into voltage-output or current-output mode. Error flags indicate over-temperature, load-error, and common-mode error.

For most applications the setting of just two resistor values (R₁ and R₂), as well as the selection between current or voltage mode is sufficient to accommodate a wide range of output signals of up to ± 25 mA or ± 17.5 V.

For more exotic output ranges, modification of the reference voltage, V_{REF} and the gain resistor, R_{OS} is possible.

The figure to the right shows a typical application for a single-channel output of $\pm 10V$ or $\pm 20mA$, depending on the XTR300's digital control for either voltage or current mode.

A reference voltage is applied to the control DAC, DAC8531, and to the XTR300. The microcontroller performs device configuration, error monitoring and also provides the DAC input code. The analog output of the DAC8531 feeds the input of the XTR300, which then drives the load behind the terminal connector.

For a floating load, switch S_1 provides the option for establishing ground referred input signals to the instrumentation amplifier. The LC and RC networks perform RF- and LF-noise rejection.

The multi-channel driver shown below uses a quad DAC, DAC8534, to control four XTR300 drivers, each providing a different output range.

Quad-channel drive with 4 x XTR300

Input/Output Cards, Internal Communication/Interface/Isolation, Core Logic

Single-channel drive with XTR300, $V_{IN} = 0 - 4V$, $V_{OUT} = \pm 10V$ or $I_{OUT} = \pm 20mA$

Device Recommendations

Device	Description	Key Features	Benefits	Other TI Solutions
Power Manag	gement Products			
REF3140	Voltage reference	Drift = 20ppm/°C, 4.097V, 0.2%	Very low drift, tiny package	REF02, REF102
DCV010515D	Dual converter	Isolation converter, +5V _{IN} , ±15V _{OUT}	Low noise, small board area	DCP010515
DCV010505D	Dual converter	Isolation converter, +5V _{IN} , ±5V _{OUT}	Low noise, small board area	DCP010505
TPS54110	SWIFT™ buck converter	Adjustable output (0.9V – 3.3V), 1.5A	Very easy to use, flexible output	TPS64200
Amplifiers				
INA118	Instrumention amp	Gain = 1 to 1000, CMRR > 110dB, 8-pin	Very low power	INA128
IS0124	Isolation amp	Isolation = 2400V, Output = ±10V	No external components required	IS0122
PGA204	Prog. gain INA	Gain of 1, 10, 100, 1000, precision	Small package	PGA203
0PA227	Low noise amp	$V_N = 3nV$, CMRR > 120dB, $V_S = 5-36V$	Very low noise, small package	0PA350, 0PA725
DRV591	PWM driver	±3A max, high efficiency, tiny package	Single 5V supply, tiny package	DRV104
OPA569	Linear power amp	2.4A, RRO 200mV to rail, thermal protection	Single 5V, tiny package, complete solution	0PA549
XTR300	I/O Driver	±10V, ±20mA, Input/Output	Multipurpose I/O driver for all industrial I/O voltage currents	_
Data Converte	ers			
ADS8325	16-bit, 100kSPS ADC	Power = 2mW, 8-pin, SFDR = 86dB, power = 82mW	Single 5V supply, power only 2mW, single 5V supply for bipolar	ADS8320
ADS7809	16-bit, 100kSPS ADC	Power = 2mW, 8-pin, SFDR = 86dB, bipoloar (±10V), power = 82mW	Single 5V supply, power only 2mW, single 5V supply for bipolar	ADS7805, ADS832 ADS8509, ADS850
ADS8402	16-bit, 1.25MSPS ADC	Power = 2mW, 8pin, SFDR = 86dB, bipoloar (±10V), power = 82mW	Single 5V supply, power only 2mW, single 5V supply for bipolar	ADS8412
ADS1251	24-bit, 20kSPS ADC	Power = 155mW, 8-pin, SFDR = 100dB, power = 7.5mW, INL = 0.0015%	Excellent performance, only 7.5mW, single 5V supply	ADS1252
DAC7731	16-bit, 5µs settling time	Output = ±10V, INL = 0.0015%	Small package	DAC7741
DAC7631	16-bit, 10µs settling time	Power < 2mW, output = ±2.5V	Single 5V, small package	DAC7641
DAC8534	Quad, 16-bit DAC	Low power, 16-bit swing DAC	Excellent price/performance ratio	DAC8532
Interface				
PC12050B	PCI-PCI bridge	66MHz, 32-bit	_	PC12250
SN65HVD24	RS-485	Failsafe, extended common mode, RX EQ	Only RX with EQ in industry	SN65HVD23
SN65MLVD200A	M-LVDS transceiver	100Mbps, 8-pin package	First M-LVDS complete transceiver	SN65MLVD202A
SN65HVD485E	Half-duplex transceiver	5V supply, MSOP-8, 10Mbps	Thermal shutdown protection, low supply current	_
TLK2201	Gigabit Ethernet TRX	10-bit interface, 1 – 1.6Gbps serial	Power < 200mW	TLK1501, TLK1201
Other				
UAF42	Active filter	Low-, high- or band-pass filter	Fully integrated active filter	RC Filter
MPC50x	Analog mux	Analog input = ±15V	_	_
FilterPro TM	Free design software	Design low pass filters, quick, easy	Free, www.ti.com	_

Preview devices are listed in **bold blue**.

G

Factory Communications

Industrial Automation is the computerization of manufacturing and process steps, which workers can't carry out as fast, as precise or as often as a machine. Traditionally Industrial Automation has been separated into two major categories: Factory Automation and Process Automation. standards, so multiple competing standards came into use such as PROFIBUS, InterBus, DeviceNet and others. These field-buses are simply all-digital, serial, two-way communication systems that serve as a Local Area Networks (LAN) for factory/plant instrumentation monitoring and device control.

Factory Automation senses and drives physical quantities such as pressure, temperature, flow, force vibration, mass and density. Applications typically require 10-12 bits of resolution and communicate at rates between 50 and 400kbps. However, there are several technologies that communicate at much faster signaling rates, such as PROFIBUS DP running at 12Mbps.

Process Automation performs compositional measurements such as conductivity, pH and chemical analysis in addition to physical quantities as in Factory Automation. Applications typically require 16 bits of resolution and communication rates between 10 and 50kbps.

Nodes in Industrial Automation environments are grouped into three distinct families: controllers, sensors and actuator. As the name suggests, controllers are used to manage variables such as temperature based on pre-determined values and information provided by sensors. If the difference between a pre-determined and sensed value exceeds a certain limit, the controller tries to manipulate the variable through an actuator such as a cooler. The number of nodes and the distance separating these nodes can vary greatly, which creates the need for specialized communications called industrial networks.

In the 1940s, process instrumentation used 3 to 15psi pressure signals for monitoring control devices. By the 1960s, the first standardized communication method was introduced—the 4-20mA technique of pure analog current-loop signaling. By the nature of the technology, every node requires its own set of cabling between the controller and itself, which creates a maze of cables, yet it is still used extensively in industrial networks. In the 1970s, industrial applications began using PLCs (programmable logic controllers) and digital computers. By the mid 1980s, industry's quest for a standardized all-digital field-bus became a reality. However, major industrial companies and countries, mainly Germany, France and the US, did not let go of their de facto

Process automation system

Requirements in Industrial Environments:

Many hazards threaten the various electrical devices and it is difficult to encase or protect interface cabling. Both device and network must be able to maintain operation even under the most undesirable conditions. Common hazards include:

- Power surges (e.g. of nearby motors)
- Ground potential differences (e.g. due to equalizing currents)
- Electrostatic Discharge (ESD)
- Excessive number of nodes (e.g. in flow control many sensors and actuator)
- Long cable lengths in large factories

In order to maintain operation under such circumstances, devices need the following properties:

- Immunity to power surges (transient suppression)
- Wide common-mode range
- High ESD protection
- · Low unit load, allowing for many nodes
- High output drive, high sensitivity, receiver equalization, pre-emphasis

Download the *Interface* Selection Guide at: interface.ti.com

37

Factory Communications

5V, RS-485 Transceivers with Integrated Transient Suppression SN65LBC184/SN65LBC182

Get samples, datasheets and app reports at: www.ti.com/sc/device/SN65LBC184, www.ti.com/sc/device/SN65LBC182

The SN65LBC184 differential data line transceiver is available in the trade-standard footprint of the SN75176 with built-in protection against high-energy noise transients. This feature provides a substantial increase in reliability for better immunity to noise surges coupled to the data cable over most existing devices. Use of these circuits provides a reliable low-cost, direct-coupled (with no isolation transformer) data line interface without requiring any external components. The SN65LBC184 can withstand over-voltage transients of 400-W peak (typical). The conventional combination wave called out in IEC 61000-4-5 simulates the over-voltage transient and models a unidirectional surge caused by inductive switching and secondary lightning transients.

Key Features (LBC184)

- Integrated transient voltage suppression
- Standard RS-485 common-mode voltage range: -7V to 12V
- JEDEC & IEC ESD protection:
 - ±30kV IEC 61000-4-2, contact discharge
 - ±15 kV IEC 61000-4-2, air-gap discharge
 - ±15kV EIA/JEDEC, human body model
- Up to 128 nodes on a bus (1/4 unit-load)

Functional logic diagram (positive logic)

Surge waveform combination wave

Extended Common Mode Transceivers with Optional Receiver Equalization SN65HVD2x

Get samples, datasheets and app reports at: www.ti.com/hvd2x

The SN65HVD2x device series offers a very wide input voltage operating range. The RS-485 standard requires functionality at DC-levels at the receiver input between -7V and +12V ($\pm7V$ plus swing of up to 5V). These devices nearly triple this requirement and are fully functional between -20V and +25V, while surviving $\pm27V$ and transients up to 60V.

Key Features

- Common-mode voltage range (–20V to +25V) more than doubles TIA/EIA-485 requirement
- Best in class ESD protection in the industry: 16kV HBM
- Up to 256 nodes on a bus (HVD21, 22 and 24) (1/8 unit-load)
- Optional receiver equalization (HVD23 and HVD24)

RS-485 standard operation

HVD2x's wide common-mode voltage range

SN65HVD2x extended common-mode voltage range

Device Recommendations

	Cable Length and	
Numbers	Signaling Rate	Number of Nodes
SN65HVD20	Up to 50m at 25Mbps	Up to 64
SN65HVD21	Up to 150m at 5Mbps (with slew rate limit)	Up to 256
SN65HVD22	Up to 1200m at 500kbps (with slew rate limit)	Up to 256
SN65HVD23	Up to 160m at 25Mbps (with receiver equalization)	Up to 64
SN65HVD24	Up to 500m at 3Mbps (with receiver equalization)	Up to 256

38

Factory Communications

PROFIBUS Transceiver SN65HVD1176

Get samples, datasheets and app reports at: www.ti.com/sc/device/SN65HVD1176

PROFIBUS is the most frequently used process-automation bus in Europe, and is growing in use in other regions. Despite this fact, the selection of suitable transceivers is very limited. In fact, for many years, TI's SN65ALS1176 has been the only device approved by the PROFIBUS User Organization. The reason for this is that a high output drive is required (minimum 2.1V differential) and at the same time, the bus-capacitance must not exceed 10pF. These requirements actually oppose each other and the combination is hard to achieve. The SN65HVD1176 fulfills all PROFIBUS requirements, plus offers very good noise rejection to common-mode noise and has significantly improved timing parameters.

Key Features

- Standard RS-485 common-mode voltage range: -7V to 12V
- High ESD protection of 10kV HBM
- Up to 160 nodes on a bus (1/5 unit-load)
- High output drive: differential output exceeds 2.1V

HVD1176 functional block diagram

3.3V and 5V CAN Transceivers SN65HVD23x/SN65HVD251

Get samples, datasheets, EVMs and app reports at:

www.ti.com/sc/device/PARTnumber

Replace PARTnumber with SN65HVD230, SN65HVD231, SN65HVD232, SN65HVD233, SN65HVD234, SN65HVD235 or SN65HVD251

The SN65HVD251 (5V) and SN65HVD23x (3.3V) families of CAN transceivers are intended for use in harsh environment applications. They feature cross-wire, loss-of-ground, over-voltage and over-temperature protection, and wide common-mode range and can withstand common-mode transients of \pm 200V. The SN65HVD230/1/2 operate over a -2V to 7V CMR on the bus, and can withstand common-mode transients of \pm 25V; SN65HVD233/4/5 and SN65HVD251, operate over a -7V to 12V CMR and will withstand transients of \pm 100V and \pm 50V, respectively.

Key Features for SN65HVD251

- Drop-in improved replacements for the PCA82C250 and PCA82C251
- Bus-fault protection of ±36V
- Bus-pin ESD protection exceeds 14kV HBM
- High input impedance allows up to 120 SN65HVD251 nodes
- Meets or exceeds the requirements of ISO 11898

Applications

- CAN data buses
- DeviceNet[™] data buses
- Smart distributed systems (SDS)
- SAE J1939 standard data bus interface
- NMEA 2000 standard data bus interface
- ISO 11783 standard data bus interface

Functional diagram (positive logic)

ISO ^r	11898 Specification	Implementation
Applie	cation Specific Layer	DSP or MCU
Data-Link	Logic Link Control	Embedded Stand-Alone
Layer	Medium Access Control	CAN Controller
	Physical Signaling	SN65HVD251
Physical Layer	Physical Medium Attachment	↓ ↑
	Medium Dependent Interface	CAN Bus-Line

Factory Communications

High-Performance 1394-1995 Link Layer for **Industrial and Bridge Applications** TSB42AC3

Get samples, datasheets, EVMs and app reports at: www.ti.com/sc/device/TSB42AC3

The TSB42AC3 is a 1394-1995 general-purpose link layer ideal for a wide range of applications. The TSB42AC3 provides a high-performance interface with the capability of transferring data between the 32-bit host controller and the 1394 PHY-link interface. The 1394 PHY-link interface provides the connection to the 1394 physical layer device (PHY). The LLC provides the control for transmitting and receiving 1394 packet data between the FIFO and PHY-link interface at rates of 50 (backplane only), 100, 200, and 400Mbit/s.

Key Features

- Generic 32-bit, 50-MHz host bus interface
- Programmable 10K byte total for asynchronous, isochronous and general FIFO
- Separate ACK FIFO register decreases SCK-tracking burden on the host
- Additional programmable status output to pins
- Completely software compatible with the TSB12LV01B
- IEEE 1149.1 JTAG interface to support board level scan testing

Applications

- Motor/motion/process control
- Industrial imaging

TSB42AC3 functional block diagram

Texas Instruments 10 2005

USB-to-Serial Bridge TUSB3410

Get samples, datasheets, EVMs and app reports at: www.ti.com/sc/device/TUSB3410

The TUSB3410 provides an easy way to move your UART device to a fast, flexible USB interface by bridging between a USB port and an enhanced UART serial port. The TUSB3410 contains all the necessary logic to communicate with the host computer using the USB bus. The TUSB3410 can be used to build an interface between a legacy serial peripheral device and a PC with USB ports, such as a legacy-free PC. An evaluation module can jump-start your USB development, or you can use it as a complete USB-to-RS-232 converter.

Key Features

- Built-in, two-channel DMA controller for USB/UART bulk I/O
- Enhanced UART features including programmable software/ hardware flow control and automatic RS-485-bus transceiver control, with and without echo

The TUSB3410 can support a total of three input and three output (interrupt, bulk) endpoints

Factory Communications

USB-Based Controller with MCU GPIO TUSB3210

Get samples, datasheets, EVMs and app reports at: www.ti.com/sc/device/TUSB3210

The TUSB3210 is a USB-based controller with a general-purpose, industry-standard 8052 MCU and a 32 GPIO. It contains 8K x 8 RAM space for application development. The TUSB3210 is programmable, making it flexible enough to use for a variety of general USB I/O applications

Key Features

- Supports 12Mbps USB data rate (full speed)
- Supports USB suspend/resume and remote wake-up operation
- Integrated 8052 microcontroller

12 MH: PLL RSTI and Dividers Interrupt and WDT 2x16-Bit 6K x 8 ROM JSE FxR USB-0 P0.[7:0] 8K x 8 BAM [1] Port [7:0] 8 Port 2.[7:0] 512 x 8 SRAM P3.[7:0] Port logic I²C Controlle 8 I²C Bus USB SIE 8 TDIV

TUSB3210 functional block diagram

Quad UART with 64-Byte FIFO TL16C754B

Get samples, datasheets and app reports at:

www.ti.com/sc/device/TL16C754B

Texas Instruments' wide portfolio of space-saving, performanceenhancing UARTs are pin-for-pin compatible with many leading UART manufactures' devices.

Key Features

- 3.3V and 5V operating voltages available
- 64-byte programmable trigger-level FIFO buffering
- Up to 3.2Mbps data transfer rate

Applications

- Industrial automation controls
- Base stations
- Cell phones
- PCs

TL16C754B functional block diagram

41

There are many applications where it is desirable, even essential, that a sensor have a direct (galvanic) electrical connection with the system to which it is supplying data in order to avoid either dangerous voltages or currents from one half of the system from damaging the other half, or breaking an intractable ground loop. Such a system is said to be "isolated", and the area which passes a signal without galvanic connections is known as an "isolation barrier".

Isolation barrier protection works in both directions, and may be needed in either half of the system, sometimes both. Common applications requiring isolation protection are those where sensors may accidentally encounter high voltages, and the system it is driving must be protected. Or a sensor may need to be isolated from accidental high voltages arising downstream in order to protect its environment: examples include prevention of explosive gas ignition caused by sparks at sensor locations or protecting patients from electric shock by ECG, EEG and EMG test and monitoring equipment. The ECG application may require isolation barriers in both directions: the patient must be protected from the very high voltages (>7.5kV) applied by the defibrillator, and the technician handling the device must be protected from unexpected feedback.

Isolated temperature measurement with dual supplies

Digital Coupler and Isolation Amplifiers

Applications for Isolation Amplifiers

- Sensor is at a high potential relative to other circuitry (or may become so under fault conditions)
- Sensor may not carry dangerous voltages, irrespective of faults in other circuitry (e.g. patient monitoring and intrinsically safe equipment for use with explosive gases)
- To break ground loops

Isolation Amplifier Design

Obstacles in isolation amplifier design include offset, drift, gain accuracy, and nonlinearity or distortion. The high-performance isolation amplifier applies either linear optocouplers (LOCs), or modulators with digital capacitive isolation, either of which is implemented differentially to increase linearity over a large signal range. Isolation amps use dual-feedback circuit topology to significantly reduce distortion.

While feedback across the barrier corrects for these errors, it only does so as long as the circuit on each side of the barrier is an exact match. This is difficult to achieve as the circuits are not on the same piece of silicon. In integrated circuit isolation amplifiers, the output and feedback demodulator are made from "adjacent" die from the same silicon wafer, allowing for better matching than discrete designs.

Isolated temperature measurement with single supply

42

Digital Coupler and Isolation Amplifiers

Galvanic Isolation Solutions

System designers must contend with poor power quality, ground faults, and lightning strikes interfering with or disrupting system performance. Additionally, the distance between the nodes on a network can be substantial and often AC outlets from different ground domains power the nodes. The potential difference between these ground domains may include a dc bias, 50 or 60Hz AC harmonics, and various transient noise components.

If these grounds are connected together by a cable logic ground or shielding, a ground loop can exist and current will flow into the cable. Ground-loop currents can have severe effects on a network, including the degradation of data, excessive EMI, component damage, and when the potential difference is large enough, a human electrical hazard.

New magnetic field isolation techniques not only retain old problems like high power consumption, no fail-safe output and a restricted operating temperature range, but also introduce a whole new set of problems associated with susceptibility to external magnetic fields.

TI isolation solutions are designed to eliminate problems associated with existing isolation technologies. Problems such as high power consumption, no fail-safe output, low signaling rates and high pulse-width distortion are common. When using optocouplers, the low efficiency with which the electro-optical conversion occurs is especially problematic as the amount of current required to turn on the phototransistor increases with the age of the part. This is due to the LED's reduction of light emission over time and which is accelerated by high operating temperatures.

The soon to be released (20 2005) ISO721 and ISO722 provide isolation solutions solving all of these problems. Other isolation products currently in development at TI include multi-channel isolators, isolated CAN and RS-485 transceivers, isolated op amps, isolated data converters and an isolated gate controller interface.

3.3V High-Speed Digital Isolators ISO721/ISO722

The ISO721 digital isolator is a logic input and output buffer separated by a silicon oxide (SiO₂) insulation barrier that provides galvanic isolation of up to 4000V. Used in conjunction with isolated power supplies, the device prevents noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

A binary input signal is conditioned, translated to a balanced signal, then differentiated by the capacitive isolation barrier. Across the isolation barrier, a differential comparator receives the logic transition information, then sets or resets a flip-flop and the output circuit accordingly. A periodic update pulse is sent across the barrier to ensure the proper dc level of the output. If this dc-refresh pulse is not received for more than 4 μ s, the input is assumed to be unpowered or not functional, and the fail-safe circuit drives the output to a logic high state.

Key Features

- 4000V isolation
- Fail-safe output
- Signaling rate up to 100Mbps
- UL 1577, IEC 60747-5-2 (VDE 0884, Rev. 2), IEC 61010-1 and CSA Approved
- 25kV/µs transient immunity

ISO721 functional block diagram Product release scheduled for 20 2005

How to Power Your Industrial Application

TI offers extensive online information on powering industrial designs.

(1) Controllers for Typical Industrial Power Supplies

The TPS40054/55/57 and TPS40060/61 are families of synchronous buck controllers with input voltage ranges of 8V - 40V and 10V - 55V, respectively. Learn more about these products at: www.ti.com/sc/device/tps40054

(2) Controllers for Very Economical Power Supply Design

The TL5001 and TL5001A offer an industrial input voltage range from 3.6V to 40V. Their flexible PWM control architecture allows costoptimized power supplies for a variety of industrial control solutions. More details at:

www.ti.com/sc/device/tl5001 and www.ti.com/sc/device/tl5001a

VIP Selection Tool - Results

Top 2 picks shown for each category. Click 'Show All Now' button to view all results for the respective device type.

Search Criteria: Vin=5, Vout1=3.3, Jout1=6, Vout2=N/A, Jout2=N/A **Revise Search Criteria**

	Artsuntack LDO with Power Good LDO with Power Good	
K) RO		
DESS-HEAD	Low Fund Webage Back Converter	
1955481	Low Input Willage Back Converter	
Mir (Millio	mater	
19540000	Low JoynA Volkeye Made Synchronica Ruck Controller	
1009421	Law Jrps.4 Vokape Mode Synchronical Back Controller	
They live the		
THERE	II A, S-V Input Wels-Output Adjust Plug -in Power Hodule	
meridan	II. R. SV Input Wels-Output Adjust Plup -In Power Hodale	

UEESBES (3) Low Power Economy BICHUS Current Mode PRPE UCCNED S Low Power Economy DICHUS Current No. de PMM

Example:

- 1. Enter your Voltage In (V)
- 2. Enter your Voltage Out (V)
- 3. Enter your Current Out (A)
- **Results in Top Recommendations for:**

- 4. Select Search Devices
- DC/DC Converters

• LDOs

- DC/DC Controllers
- Plug-In Modules
- PWM Controllers

(3) Select an Appropriate Device Using TI's VIP Tool

Visit power.ti.com, click on the "VIP Selection Tool" button and enter the desired input and output voltage(s). This tool provides recommendations from our many product portfolios, including DC/DC controllers, DC/DC converters, low-dropout linear regulators, PWM controllers and complete module solutions.

(4) Reference Design Resources

Our reference design home page features solutions including schematics and detailed bills of materials. Go to power.ti.com, select "Design Resources" and then "Reference Designs."

(5) Not Sure Which Architecture Will Fit?

The Power Supply Topology poster, available at:

http://focus.ti.com/lit/ml/sluw001/sluw001.pdf, provides typical power supply devices for each topology. The Power Management Applications Solutions brochure, available at:

http://focus.ti.com/lit/ml/slub007/slub007.pdf, lists relevant application notes.

(6) Power Management Selection Guide

This guide provides an overview of TI's extensive power supply product portfolio. You can download the guide at: http://power.ti.com/selectionguide

(7) Powering Xilinx and Altera FPGAs

Texas Instruments offers a variety of ready-touse solutions to power core and I/O voltages

for Altera[®] and Xilinx[®] FPGAs. Web pages for Altera (www.ti.com/alterafpga) and Xilinx (www.ti.com/xilinxfpga) feature Power Management Reference Guides, along with downloadable schematics and bills of material for each design.

Amplifiers

Difference Amplifiers Selection Guide

						Offset							
		Spec			Offset	Drift	CMRR	BW		Power	١ ₀		
		Temp			(µV)	(µV/°C)	(dB)	(MHz)	Output Voltage	Supply	(mA)		
Device	Description	Range	Ch.	Gain	(max)	(max)	(min)	(typ)	Swing (V) (min)	(V)	(max)	Package(s)	Price ¹
Genera	l Purpose												
INA132	Micropower, high-precision	l ²	1, 2	1	250	5	76	0.3	(V+) - 1 to (V-) + 0.5	+2.7 to +36	0.185	DIP, SO	\$1.05
INA133	High-precision, fast	l ²	1, 2	1	450	5	80	1.5	(V+) – 1.5 to (V–) + 1	±2.25 to ±18	1.2	SOIC-8/-14	\$1.05
INA143	High-precision, G = 10 or 1/10	l ²	1, 2	10, 1/10	250	3	86	0.15	(V+) - 1 to (V-) + 0.5	±2.25 to ±18	1.2	SOIC-8/-14	\$1.05
INA145	Resistor programmable gain	l ²	1, 2	1-1000	1000	103	76	0.5	(V+) - 1 to (V-) + 0.5	±1.35 to ±18	0.7	SOIC-8	\$1.50
INA152	Micropower, high-precision	l ²	1	1	750	5	86	0.7	(V+) - 0.2 to (V-) + 0.2	+2.7 to +20	0.65	MSOP-8	\$1.20
INA154	High-speed, precision, G = 1	l ²	1	1	750	20	80	3.1	(V+) - 2 to (V-) + 2	±4 to ±18	2.9	SOIC-8	\$1.05
INA157	High-speed, G = 2 or 1/2	l ²	1	2, 1/2	500	20	86	4	(V+) - 2 to (V-) + 2	±4 to ±18	2.9	SOIC-8	\$1.05
Audio													
INA134	Low distortion: 0.0005%	l ²	1, 2	1	1000	2 ³	74	3.1	(V+) - 2 to (V-) + 2	±4 to ±18	—	SOIC-8/-14	\$1.05
INA137	Low distortion, $G = 1/2$ or 2	l ²	1, 2	2, 1/2	1000	2 ³	74	4	(V+) - 2 to (V-) + 2	±4 to ±18	2.9	SOIC-8/-14	\$1.05
High Co	mmon-Mode Voltage												
INA117	±200-V CM range	l ²	1	1	1000	20	86	0.2	(V+) - 5 to (V-) + 5	±5 to ±18	—	SOIC-8	\$2.70
INA146	±100-V CM range, prog. gain	l ²	1	0.1-100	5000	100 ³	70	0.55	(V+) - 1 to (V-) + 0.1 5	±1.35 to ±18	0.7	SOIC-8	\$1.70
INA148	$\pm 200\text{-V}$ CM range, 1M Ω input	l ²	1	1	5000	100 ³	70	0.1	(V+) - 1 to (V-) + 0.2 5	±1.35 to ±18	0.3	SOIC-8	\$2.10
High-Sic	de Current Shunt Monitors												
INA138	36V max	El ⁴	1	200µA/V	1000	1 ³	100	0.8	0 to (V+) - 0.8	+2.7 to 36	0.045	SOT23-5	\$0.99
INA139	High-speed, 40V max	El ⁴	1	1-100	1000	1	100	4.4	0 to (V+) - 0.9	+2.7 to 40	0.125	SOT23-5	\$0.99
INA168	60V max	El ⁴	1	200µA/V	1000	1 ³	100	0.8	0 to (V+) - 0.8	+2.7 to 60	0.045	SOT23-5	\$1.25
INA169	High-speed, 60V max	El ⁴	1	1-100	1000	1	100	4.4	0 to (V+) - 0.9	+2.7 to 60	0.125	SOT23-5	\$1.25
INA19x	–16V to 36V CM range	El ⁴	1	20, 50, 100V/V	2000	1	100	0.4	0.4 (V+) - 0.1	+2.7 to 13.5	0.9	SOT23-5	\$0.80
INA170	High-side, bi-directional	l ²	1	1-100	1000	1	100	0.4	0 to (V+) - 0.9	+2.7 to 60	0.125	MSOP-8	\$1.25

¹Suggested resale price in U.S. dollars in quantities of 1,000. $^{2}I = -40^{\circ}C$ to $+85^{\circ}C$. $^{3}Denotes single supply. {}^{4}EI = -40^{\circ}C$ to $+125^{\circ}C$.

For complete product listing visit amplifier.ti.com

Logarithmic Amplifiers Selection Guide

					Conformity	Conformity	Offset							
			Input	Input	Error	Error	Voltage			١ ₀				
			Current	Current	(Initial 5	(Initial 5	(Input			Per				
	Spec ²	Scale	Range	Range	Decades)	Decades)	Amplifiers)	Vs	Vs	Ch.				
	Temp	Factor	(nA)	(mA)	(%)	(%/°C)	(mV)	(V)	(V)	(mA)	Reference	Auxiliary		
Device	Range	(V/decade)	(min)	(max)	(max)	(typ/temp)	(max)	(min)	(max)	(max)	Туре	Op Amps	Package(s)	Price ¹
LOG101	C3	1	0.1	3.5	0.2	0.0001	1.5	±4.5	±18	1.5	External	-	SO-8	\$6.95
LOG102	С	1	1	1	0.3	0.0002	1.5	±4.5	±18	2	External	2	SO-14	\$7.25
LOG104	C3	0.5	0.1	3.5	0.2	0.0001	1.5	±4.5	±18	1.5	External	_	SO-8	\$6.95
L0G112	C3	0.5	0.1	3.5	0.2	0.00001	1.5	±4.5	±18	1.75	2.5V Internal	1	SO-14	\$7.90
L0G2112 ³	C3	0.5	0.1	3.5	0.2	0.00001	1.5	±4.5	±18	1.75	2.5V Internal	1	SO-16	\$11.35
L0G114	C3	0.375	0.1	3.5	0.2	0.001	4	±2.25	±5	15	2.5V Internal	2	QFN-16	TBD

¹Suggested resale price in U.S. dollars in quantities of 1,000. ${}^{2}C = 0^{\circ}C$ to $70^{\circ}C$; $C3 = -5^{\circ}C$ to $75^{\circ}C$. ${}^{3}Dual LOG112$.

Preview devices appear in **bold blue**.

Isolation Amplifiers Selection Guide

			Isolation	Isolation	Isolation		Input	Small-		
		Spec ²	Voltage Cont	Voltage Pulse/	Mode	Gain	Offset Voltage	Signal		
		Temp	Peak (DC)	Test Peak	Rejection DC	Nonlinearity	Drift (±µV/°C)	Bandwidth		
Device	Description	Range	(V)	(V)	(dB) (typ)	(%) (max)	(max)	(kHz) (typ)	Package(s)	Price ¹
IS0120	1500-Vrms isolation, buffer	WI	2121	2500	160	0.01	150	60	DIP-24	\$68.20
IS0121	3500-Vrms isolation, buffer	12	4950	5600	—	0.01	—	60	CERDIP-16	\$66.35
IS0122	1500-Vrms isolation, buffer	12	2121	2400	160	0.02	200	50	DIP-16, SOIC-28	\$9.40
IS0124	1500-Vrms isolation, buffer	12	2121	2400	140	0.01	_	50	DIP-16, SOIC-28	\$7.20
Digital	Couplers									
IS0150	Dual, bi-directional digital coupler	I	1500	2400	_	_	_	_	DIP-12, SO-12	\$7.47
10			00 214/1 EE®C +-	10500.10 05004	- 05°0.1 40°	0 +05°0				

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²WI = -55°C to +125°C; I2 = -25°C to +85°C; I = -40°C to +85°C.

Amplifiers

Single-Supply Instrumentation Amplifiers Selection Guide

Name None Bins oth Other oth oth<						Input	Offset		CMRR	BW	Noise		١ ₀		
Special Special Linearial Temp Barge Linearial (Ki) Current (Ki) G = 100 (K) Chitti (Ki) G = 100 (Ki) CH 100 (Ki) Oth ti (Ki) G = 100 (Ki) CH 1000					Non			Offset							
Teng Gain Teng Gain (max) (m			Spec ²		Linearity		G = 100		G = 100	G = 100	1kHz	Power			
Intering Description Range Gain Imax1 (max1							(µV)	(µV/°C)	(dB)	(kHz)	(nV/√Hz)	Supply			
NA221 BR0, SHDN, low effset, gain error WI 5 to 1000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.08 MSSP=1 NA222 Dual IMA22 WI 5 to 10000 0.01 0.01 0.001 77 60 50 100 2.7 to 5.5 0.08 MSSP=1 NA222 Dual IMA22 WI 5 to 10000 0.01 0.01 10000 7 60 500 100 2.7 to 5.5 0.08 MSSP=1 NA222 Dual IMA22 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP=8 NA228 BUA IMA22 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP=8 NA228 BUA IMA25 HOL IMA25 1 5 to 1000 0.01 2.7 to 5.5 0.5 0.7 107 70 10 2.7 to 5.5	evice	Description	Range	Gain	(max)			-	(min)	(min)	(typ)		(max)	Package(s)	Pric
NA322 Dual INA22 WI 5 to 1000 0.01 0.01 1000 7 ² 90 50 100 27 to 55 0.08 TSSDP-14 VA322 RRD, SHDN, low cost WI 5 to 10000 0.01 10000 7 60 50 100 27 to 55 0.08 MSDP-14 VA322 Micropower, RRO, CM to ground I 5 to 1000 0.01 10000 7 ³ 60 500 100 27 to 55 0.1 MSDP-8 VA322 RRO, wide SW, SHDN WI 5 to 1000 0.01 10000 7 ³ 60 500 100 27 to 55 0.1 MSDP-8 VA325 Micropower, c1 V V _{SKT} , low cost I 5 to 1000 0.01 25 0.7 10 10 10 0.01 S00 55 0.7 10 10 10 50 S00 80 200 46 2.7 to 55 0.5 MSDP-8 VA218 Micropower, c1 V S _{SKT} , low cost I 5 to 1000 0.01 500 50 100 2.7 to 55 0.5 S00.68 S00.68	ingle-S	Supply, Low Power IQ < 525	µA per	Instrumenta	ation Amp										
NA322 RB0, SHDN, low cost WI 5 to 1000 0.01 0.01 10000 7 60 50 100 27 to 55 0.08 MSDP-8 NA222 Dual INA322 WI 5 to 1000 0.01 0.01 10000 73 60 500 100 27 to 55 0.1 MSDP-8 NA232 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 73 60 500 100 27 to 55 0.1 MSDP-8 NA232 RR0, wide BW, SHDN WI 5 to 1000 0.012 25 250 3 83 9 35 2.27 to 85 0.2 S0/MSDP-1 NA2125 Dual INA25 I 5 to 10000 0.012 25 55 0.7 107 70 0 2.7 to 55 0.5 S0/RSDP-1 NA218 RO, Mide BW, SHDN WI 5 to 1000 0.01 0.01 50 67 90 2.00 46 2.7 to 55 0.55 S0/LS	IA321	RRO, SHDN, low offset, gain error	WI	5 to 10000	0.01	0.01	1000	7 ³	90	50	100	2.7 to 5.5	0.06	MSOP-8	\$1.1
NA2322 Ual NA322 WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.1 to 5. 0.06 TSSDP-14 VA122 Micropover, RN 0, CM to ground I 5 to 1000 0.012 25 250 3 90 5 60 2.2 to 5.5 0.065 715 SOP.14 VA123 Micropover, CN V _{apr} low cost I 5 to 1000 0.01 0.01 1000 73 60 500 100 2.7 to 5.5 0.1 MSDP-8 VA128 Micropover, CN V _{apr} low cost I 5 to 1000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSDP-1 VA118 Precision, low drift, low power ⁴ I 1 to 1000 0.01 25 25 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 VA318 RAD, Wide BW, SHDN WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 55 5.5 SOIC-8 MSDP-8 VA315 RAD, Wide BW,	IA2321	Dual INA321	WI	5 to 10000	0.01	0.01	1000	7 ³	90	50	100	2.7 to 5.5	0.06	TSSOP-14	\$1.
NA2322 Ual NA322 WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.1 to 5. 0.06 TSSDP-14 VA122 Micropover, RN 0, CM to ground I 5 to 1000 0.012 25 250 3 90 5 60 2.2 to 5.5 0.065 715 SOP.14 VA123 Micropover, CN V _{apr} low cost I 5 to 1000 0.01 0.01 1000 73 60 500 100 2.7 to 5.5 0.1 MSDP-8 VA128 Micropover, CN V _{apr} low cost I 5 to 1000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSDP-1 VA118 Precision, low drift, low power ⁴ I 1 to 1000 0.01 25 25 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 VA318 RAD, Wide BW, SHDN WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 55 5.5 SOIC-8 MSDP-8 VA315 RAD, Wide BW,	IA322	RRO, SHDN, low cost	WI	5 to 10000	0.01	0.01	10000	7	60	50	100	2.7 to 5.5	0.06	MSOP-8	\$0.
NA122 Micropower, RB0, CM to ground I Sto 1000 0.01 25 250 3 90 5 60 2.2 to 36 0.025 SDIC-8 NA323 RB0, wide BW, SH0N WI 5 to 1000 0.01 0.01 1000 7 ³ 60 500 100 2.7 to 55 0.1 MSDP-8 NA126 Micropower, <iv v<sub="">SA1, Iow cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/MSDP-1 NA218 RM0, wide BW, SH0N WI 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/MSDP-1 NA218 RM0, wide BW, SH0N WI 5 to 1000 0.01 0.01 500 5³ 90 2000 46 2.7 to 55 0.5 TSSDP-14 NA231 Internal Ref, sleep mode⁴ I 4<to 10000<="" th=""> 0.01 0.01 1000 5³ 86 110 40 2.7 to 55 2.1 SMODC-8 NA331 Dual INA321 WI 10, 50</to></iv>			WI	5 to 10000	0.01	0.01	10000	7	60	50	100	2.7 to 5.5	0.06	TSSOP-14	\$1.
NA322 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.001 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSDP-8 NA322 Dual (NA322 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSDP-8 NA222 Dual (NA22 L 5 to 10000 0.012 2.5 2.50 3 83 9 35 2.7 to 36 0.22 SO/MSDP-1 NA31 RP, Micke BW, SHDN WI 5 to 1000 0.01 0.01 0.05 59 90 2000 46 2.7 to 5.5 0.5 MSDP-8 NA31 RP, Micke BW, SHDN WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 MSDP-8 NA325 Internal Ref, siegn mode ⁴ I 4 to 10000 0.01 0.01 50 100 2.7 to 5.5 2.1 MSDP-8 NA355 Low offset, RR0, Ste 5.3Vjas WI 10, 50 0.01 0.01 1000 <td< td=""><td>IA122</td><td>Micropower, RRO, CM to ground</td><td>1</td><td>5 to 10000</td><td></td><td>25</td><td>250</td><td>3</td><td>90</td><td>5</td><td>60</td><td></td><td>0.085</td><td>SOIC-8</td><td>\$2.</td></td<>	IA122	Micropower, RRO, CM to ground	1	5 to 10000		25	250	3	90	5	60		0.085	SOIC-8	\$2.
NA2322 Dual INA332 WI 5 to 1000 0.01 0.01 0.01 0.001 73 60 500 100 2.7 to 5.5 0.1 MSOP-8 VA126 Micropower, < IV V _{Str,} low cost I 5 to 10000 0.012 2.5 2.50 3 83 9 35 2.7 to 36 0.2 S0/MSOP-1 VA127 Micropower I 1 to 10000 0.01 2.5 55 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 VA313 RR0, Wide BW, SHON WI 5 to 1000 0.01 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 MSOP-8 VA231 Dual INA331 WI 5 to 1000 0.01 2.5 2.5 100 4.5 3.8 2.7 to 36 0.525 SIC-16 MSOP-8 VA231 Ibaai INes Fastiss 3.8 1.0 40 2.7 to 5.5 2.1 MSOP-8 VA232 RN0, ShDN, low driste, gain error WI 10, 50 0.01 0.01 1000 7 ³ </td <td></td> <td>1</td> <td>WI</td> <td></td> <td>0.01</td> <td>0.01</td> <td></td> <td></td> <td>60</td> <td>500</td> <td></td> <td></td> <td>0.1</td> <td></td> <td>\$0.</td>		1	WI		0.01	0.01			60	500			0.1		\$0.
NA126 Micropower, < 1V V _{SAT} , fow cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/MSOP-I VA218 Dual IMA126 I 10 to 10000 0.002 5 55 0.7 107 70 10 2.7 to 36 0.28 S0/MSOP-I VA318 RPC, Wiee BW, SHDN WI 5 to 1000 0.01 0.01 0.01 53 80 2000 46 2.7 to 55 0.5 TSSOP-IA VA328 RPC, Wiee BW, SHDN WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 55 0.5 TSSOP-IA VA325 Internal Ref, sleep mode ⁴ I 4 to 10000 0.01 0.01 1000 5 ³ 86 110 40 2.7 to 55 2.1 MSOP-8 VA325 Low offset, RRD, low cost, WI 10, 50 0.015 0.01 1000 7 ³ 80 50 100 2.7 to 55 0.6 MSOP-8 VA322 RRD, SHDN, low cofst WI 5 to 100															\$1.
VA2126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/INSOP-1 VA118 Precision, low crift, low power ⁴ I 1 to 10000 0.01 500 55 0.7 107 70 10 2.7 to 35 0.385 SOIC-8 VA313 RR0, Wide BW, SHDN Wi 5 to 1000 0.01 0.01 1000 5 ³ 90 2000 46 2.7 to 5.5 0.5 MSOP-8 VA323 Dual INA331 WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 2.1 MSOP-8 VA155 Low offset, RR0, SH = 5/VJps Wi 10, 50 0.015 0.01 8000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 VA155 Low offset, RR0, SH = 5/VJps Wi 10, 50 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA222 Dual INA321 Wi 5 to 1															\$1.
NA118 Precision, low drift, low power ⁴ I 1 10000 0.002 5 55 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 NA331 RRD, Wide BW, SHDN WI 5 to 1000 0.01 0.01 53 80 2000 46 2.7 to 55 0.5 MSDP-8 NA231 Low Inset, RRD, SR = 65V/µs WI 10 to 1000 53 86 110 40 2.7 to 55 2.1 MSDP-8 NA156 Low offset, RRD, SR = 65V/µs WI 10, 50 0.01 0.01 8000 5 ³ 86 110 40 2.7 to 55 2.1 MSDP-8 NA156 Low offset, RRD, low cost, SR = 65V/µs WI 10, 50 0.01 0.01 8000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSDP-8 NA221 RRD, SHDN, low cost, WI 5 to 1000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSDP-8 NA222 RD, SHDN, low cost WI 5 to 1000 0.01 0.01 <td></td> <td>\$1.</td>															\$1.
NA331 RRO, Wide BW, SHDN WI 5 to 1000 0.01 0.01 500 5 ³ 90 2000 46 2.7 to 5.5 0.5 MSOP-8 VA2331 Dual INA331 WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 TSSOP-14 VA125 Internal Ref, sleep mode ⁴ I 4 to 1000 0.01 0.01 1000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 VA125 Low offset, RRO, SR = 6.51/µs WI 10, 50 0.015 0.01 1000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 VA221 RDO, Nov offset, gain error WI 10, 50 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA2221 Dual INA321 WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA2321 Dual INA321 WI 5 to 10000															\$4.
VA231 Dual INA31 WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 TSSDP-14 VA125 Internal Ref; sleep mode ⁴ I 4 to 10000 0.01 25 250 2 100 4.5 38 2.7 to 3.6 0.52 SOIC-16 Single-Supply, Low offset, RR0, SR = 65/l/js WI 10, 50 0.015 0.01 1000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 VA155 Low offset, RR0, SR = 65/l/js WI 10, 50 0.015 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA321 Dial INA321 WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA321 Dial INA321 WI 5 to 10000 0.01 0.01 1000 7 60 50 100 2.7 to 5.5 0.06 TSSOP-14 VA3231 Dial INA321 WI 5 to 10000 0.01<															\$1.
NA125 Internal Ref, sleep mode ⁴ I 4 to 10000 0.01 25 250 2 100 4.5 38 2.7 to 36 0.525 SDIC-16 Single-Supply, Low Input Bias Current I _B < 100pA VI 10, 50 0.015 0.01 1000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 NA156 Low offset, RR0, low cost, SR = 65V/µs WI 10, 50 0.015 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 2.1 MSOP-8 NA2321 Dual INA321 WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 NA3222 BRO, SHDN, low coffset, gain error WI 5 to 10000 0.01 0.01 10000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 NA3222 BRO, SHDN, low cost WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.5 MSOP-8 N23232 BRO, wide BW, SHDN															\$1.
Single-Supply, Low Input Bias Current I _B < 100pA NA155 Low offset, RR0, SR = 65V/µs WI 10, 50 0.015 0.01 1000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 NA156 Low offset, RR0, Iow cost, SR = 6.5V/µs WI 10, 50 0.015 0.01 1000 7 ³ 86 110 40 2.7 to 5.5 2.1 MSOP-8 NA321 RR0, SHDN, Iow offset, gain error WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 NA322 Dual INA321 WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 NA322 Dual INA321 WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 NA322 Dual INA331 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 50 100 2.7 to 5.5 0.1 MSOP-8 <td></td> <td></td> <td>1</td> <td></td> <td>\$2.</td>			1												\$2.
NA155 Low offset, RR0, SR = 6.5V/µs WI 10, 50 0.015 0.01 1000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSDP-8 VA156 Low offset, RR0, low cost, SR = 6.5V/µs WI 10, 50 0.015 0.01 8000 5 ³ 86 110 40 2.7 to 5.5 2.1 MSDP-8 VA321 Dall Na21 WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA3221 Dall NA321 WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 VA3221 Dall NA322 WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 VA3232 Dall NA332 WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.5 MSOP-8 VA333 RR0, wide BW, SHDN WI 5 to 1000 0.01 </td <td></td> <td></td> <td>ent la Z</td> <td></td> <td>0.01</td> <td>23</td> <td>230</td> <td>Z</td> <td>100</td> <td>Ŧ.J</td> <td>50</td> <td>2.7 10 30</td> <td>0.323</td> <td>3010-10</td> <td>ψ2.</td>			ent la Z		0.01	23	230	Z	100	Ŧ.J	50	2.7 10 30	0.323	3010-10	ψ2.
NA156 Low offset, RR0, low cost, SR = 6.5V/µs WI 10, 50 0.015 0.01 8000 5 ³ 86 110 40 2.7 to 5.5 2.1 S0IC-8, MSOP-8 VA321 RR0, SHDN, low offset, gain error WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA322 Dual INA321 WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 VA322 Dual INA321 WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 VA3232 Dual INA321 WI 5 to 1000 0.01 0.01 1000 7 ³ 80 2000 46 2.7 to 5.5 0.5 MSOP-8 VA333 R0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.5 TSSOP-14 VA333 RR0, wide BW, SHDN WI <t< td=""><td>-</td><td></td><td></td><td></td><td>0.015</td><td>0.01</td><td>1000</td><td>53</td><td>86</td><td>110</td><td>40</td><td>27 to 55</td><td>21</td><td>MSOP-8</td><td>\$1.</td></t<>	-				0.015	0.01	1000	5 3	86	110	40	27 to 55	21	MSOP-8	\$1.
SR = 6.5V/µs Image: Construct of the construct of t															\$0.
NA321 RR0, SHDN, low offset, gain error WI 5 to 1000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 NA322 Dual INA321 WI 5 to 10000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 MSOP-8 NA322 RR0, SHDN, low cost WI 5 to 10000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 NA323 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 NA323 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 80 2000 46 2.7 to 5.5 0.5 MSOP-8 NA323 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA323 RR0, wide BW, SHDN WI 5 to 1000 <td>IATJU</td> <td></td> <td>VVI</td> <td>10, 50</td> <td>0.015</td> <td>0.01</td> <td>0000</td> <td>J</td> <td>00</td> <td>110</td> <td>40</td> <td>2.7 10 3.3</td> <td>2.1</td> <td></td> <td>φ0.</td>	IATJU		VVI	10, 50	0.015	0.01	0000	J	00	110	40	2.7 10 3.3	2.1		φ0.
NA2321 Dual INA321 WI 5 to 1000 0.01 0.01 1000 7 ³ 90 50 100 2.7 to 5.5 0.06 TSS0P-14 NA322 RR0, SHDN, low cost WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MS0P-8 NA322 Dual INA322 WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 TSS0P-14 NA331 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 80 2000 46 2.7 to 5.5 0.5 MS0P-8 NA2331 Dual INA331 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MS0P-8 NA332 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MS0P-8 NA323 DRID, auto zero, I 1 1 <to 0.01<="" td=""> <t< td=""><td>14 221</td><td></td><td>14/1</td><td>E to 10000</td><td>0.01</td><td>0.01</td><td>1000</td><td>73</td><td>00</td><td>EO</td><td>100</td><td>27 to 55</td><td>0.06</td><td></td><td>\$1.</td></t<></to>	14 221		14/1	E to 10000	0.01	0.01	1000	73	00	EO	100	27 to 55	0.06		\$1.
NA322 RR0, SHDN, low cost WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 NA322 Dual INA322 WI 5 to 1000 0.01 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 MSOP-8 NA331 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 1000 5 ³ 90 2000 46 2.7 to 5.5 0.5 MSOP-8 NA323 Dual INA331 WI 5 to 1000 0.01 0.01 1000 7 ³ 60 500 100 2.7 to 5.5 0.5 TSSOP-14 NA332 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA232 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA2326 RRIO, auto zero, ow drift, Ow power ⁴ 1 1 to 10000 0.0		-													
NA2322 Dual INA322 WI 5 to 10000 0.01 10000 7 60 50 100 2.7 to 5.5 0.06 TSSOP-14 NA331 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 500 5 ³ 90 2000 46 2.7 to 5.5 0.5 MSOP-8 NA331 Dual INA331 WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 MSOP-8 NA332 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA332 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 Stopply, Precision Vos < 300µA, Low Vos															\$1.
NA331 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 500 5 ³ 90 2000 46 2.7 to 5.5 0.5 MSOP-8 NA331 Dual INA331 WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 TSSOP-14 NA332 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA332 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 SR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 SR10, auto zero, SuDIN, Supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 CM > supply, low drift I 0.1 to 0.01 2 100 0.															\$0.
NA2331 Dual INA331 WI 5 to 1000 0.01 0.01 1000 5 ³ 80 2000 46 2.7 to 5.5 0.5 TSSOP-14 NA332 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA332 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA332 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-10 Stopply, Precision V _{0S} < 300µA, Low V _{0S} Drift 1 10000 0.002 5 55 0.7 107 70 10 2.7 to 5.5 3.4 MSOP-8 NA226 RRI0, auto zero, SHDN, (I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-10 CM > supply, low drift 10000 0.01 2 100 0.4															\$1.
NA332 RR0, wide BW, SHDN WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 NA2323 Dual INA332 WI 5 to 1000 0.01 0.01 10000 7 ³ 60 500 100 2.7 to 5.5 0.1 MSOP-8 Single-Supply, Precision Vos < 300µA, Low Vos Drift Dift <															\$1.
NA2332 Dual INA332 WI 5 to 100 0.01 0.01 1000 7 ³ 60 500 100 2.7 to 5.5 0.1 TSSOP-14 Single-Supply, Precision V _{OS} < 300µA, Low V _{OS} Drift I 1 to 10000 0.002 5 55 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 NA18 Precision, low drift, low power ⁴ I 1 to 10000 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA326 RRIO, auto zero, SHDN, CM vifit I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA327 RRIO, auto zero, SHDN, CM vifit I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA337 RRIO, auto zero, low drift, CM vifit EI 0.1 to 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 NA338 RRIO, auto zero, low drift, CM vifit															\$1.
Single-Supply, Precision V _{OS} < 300µA, Low V _{OS} Drift NA118 Precision, low drift, low power ⁴ I 1 to 10000 0.002 5 55 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 NA326 RRI0, auto zero, CM > supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA327 RRI0, auto zero, SHDN, CM > supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA327 RRI0, auto zero, SHDN, CM > supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 CM > supply, low drift EI 0.1 to 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 NA338 RRI0, auto zero, low drift, CM > supply, SHDN EI 0.1 to 0.01 2.5															\$0.
NA118 Precision, low drift, low power ⁴ I 1 to 1000 0.002 5 55 0.7 107 70 10 2.7 to 36 0.385 SOIC-8 NA326 RRIO, auto zero, CM > supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA327 RRIO, auto zero, SHDN, CM > supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 NA327 RRIO, auto zero, SHDN, CM > supply, low drift I 0.1 to 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-10 NA337 RRIO, auto zero, low drift, CM > supply EI 0.1 to 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 NA38 RRIO, auto zero, low drift, CM > supply, SHDN EI 0.1 to 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 MSOP-10 Micropow					0.01	0.01	10000	7 ³	60	500	100	2.7 to 5.5	0.1	TSSOP-14	\$1.
NA326 RRIO, auto zero, CM > supply, low drift I 0.1 to 10000 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 VA327 RRIO, auto zero, SHDN, CM > supply, low drift I 0.1 to 10000 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 VA327 RRIO, auto zero, SHDN, CM > supply, low drift I 0.1 to 10000 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-8 VA337 RRIO, auto zero, low drift, CM > supply EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-8 VA338 RRIO, auto zero, low drift, CM > supply, SHDN EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 VA122 Micropower, RRO, CM to ground I 5 to 10000 0.012 25 250 3 90 5 60 2.2 to 36 0.085 SOIC-8 NA126 <td></td> <td></td> <td>IA, Low</td> <td>V_{OS} Drift</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>			IA, Low	V _{OS} Drift		_						_			
CM > supply, low drift 10000 Image: constraint of the supply low drift 10000 Image: constraint of the supply low drift <		Precision, low drift, low power ⁴	Ι	1 to 10000	0.002	5	55	0.7	107	70	10	2.7 to 36	0.385		\$4.
NA327 RRIO, auto zero, SHDN, CM > supply, low drift I 0.1 to 10000 0.01 2 100 0.4 100 1 33 2.7 to 5.5 3.4 MSOP-10 NA337 RRIO, auto zero, low drift, CM > supply EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 NA337 RRIO, auto zero, low drift, CM > supply EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-30 NA338 RRIO, auto zero, low drift, CM > supply, SHDN EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-30 NA122 Micropower, RRO, CM to ground I 5 to 10000 0.012 25 250 3 90 5 60 2.2 to 36 0.085 SOIC-8 NA125 Internal ref, sleep mode ⁴ I 4 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-10 NA1	IA326	RRIO, auto zero,	Ι	0.1 to	0.01	2	100	0.4	100	1	33	2.7 to 5.5	3.4	MSOP-8	\$1.
CM > supply, low drift EI 10000 CI		CM > supply, low drift		10000											
NA337 RRIO, auto zero, low drift, CM > supply EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-8 NA338 RRIO, auto zero, low drift, CM > supply EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-8 NA338 RRIO, auto zero, low drift, CM > supply, SHDN EI 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-8 NA122 Micropower, RRO, CM to ground I 5 to 10000 0.012 25 250 3 90 5 60 2.2 to 36 0.085 SOIC-8 NA125 Internal ref, sleep mode ⁴ I 4 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.525 SOIC-16 NA126 Micropower, < 1V V _{SAT} , low cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-10 NA2126 <td< td=""><td>IA327</td><td>RRIO, auto zero, SHDN,</td><td>I</td><td>0.1 to</td><td>0.01</td><td>2</td><td>100</td><td>0.4</td><td>100</td><td>1</td><td>33</td><td>2.7 to 5.5</td><td>3.4</td><td>MSOP-10</td><td>\$1.</td></td<>	IA327	RRIO, auto zero, SHDN,	I	0.1 to	0.01	2	100	0.4	100	1	33	2.7 to 5.5	3.4	MSOP-10	\$1.
CM > supply 10000 Image: CM > supply		CM > supply, low drift		10000											
NA338 RRIO, auto zero, low drift, CM > supply, SHDN El 0.1 to 10000 0.01 2 100 0.4 106 1 33 2.7 to 5.5 3.4 MSOP-10 NA122 Micropower, RRO, CM to ground I 5 to 10000 0.012 25 250 3 90 5 60 2.2 to 36 0.085 SOIC-8 NA125 Internal ref, sleep mode ⁴ I 4 to 10000 0.01 25 250 2 100 4.5 38 2.7 to 36 0.525 SOIC-8 NA126 Micropower, < 1V V _{SAT} , low cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.22 SO/MSOP-10 NA126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-10 NA2126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-10 Signal Amplifiers for Temperature Control I _B (nA)	IA337	RRIO, auto zero, low drift,	El	0.1 to	0.01	2	100	0.4	106	1	33	2.7 to 5.5	3.4	MSOP-8	\$1.
CM > supply, SHDN 10000 Image: CM > supply, SHDN Image: CM > supply, SHDN <th< td=""><td></td><td>CM > supply</td><td></td><td>10000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		CM > supply		10000											
NA122 Micropower, RR0, CM to ground I 5 to 10000 0.012 25 250 3 90 5 60 2.2 to 36 0.085 SOIC-8 NA125 Internal ref, sleep mode ⁴ I 4 to 10000 0.01 25 250 2 100 4.5 38 2.7 to 36 0.525 SOIC-16 NA126 Micropower, < 1V V _{SAT} , low cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 NA2126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 NA2126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 Signal Amplifiers for Temperature Control I _B (nA) Temp Error ⁵ 1/F Noise 1/F 1/F 1/F 1/F 1/F 1/F 1/F <	IA338	RRIO, auto zero, low drift,	EI	0.1 to	0.01	2	100	0.4	106	1	33	2.7 to 5.5	3.4	MSOP-10	\$1.
NA125 Internal ref, sleep mode ⁴ I 4 to 10000 0.01 25 250 2 100 4.5 38 2.7 to 36 0.525 SOIC-16 NA126 Micropower, < 1V V _{SAT} , low cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 NA126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 Signal Amplifiers for Temperature Control I _B (nA) Temp Error ⁵ 1/F Noise 1/F Noise 1/F Noise															
NA125 Internal ref, sleep mode ⁴ I 4 to 10000 0.01 25 250 2 100 4.5 38 2.7 to 36 0.525 SOIC-16 NA126 Micropower, < 1V V _{SAT} , low cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 NA126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 SO/MSOP-1 Signal Amplifiers for Temperature Control I _B (nA) Temp Error ⁵ 1/F Noise 1/F Noise 1/F Noise	IA122	Micropower, RRO, CM to ground	1	5 to 10000	0.012	25	250	3	90	5	60	2.2 to 36	0.085	SOIC-8	\$2.
NA126 Micropower, < 1V V _{SAT} , low cost I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/MSOP-1 NA2126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/MSOP-1 Signal Amplifiers for Temperature Control I _B (nA) Temp Error ⁵ 1/F Noise 1/F Noise 1/F Noise															\$2.
NA2126 Dual INA126 I 5 to 10000 0.012 25 250 3 83 9 35 2.7 to 36 0.2 S0/MSOP-1 Signal Amplifiers for Temperature Control I _B (nA) Temp Error ⁵ 1/F Noise															\$1.
Signal Amplifiers for Temperature Control I _B (nA) Temp Error ⁵ 1/F Noise			1											SO/MSOP-16	\$1.
			Control					-							Ţ.
NA330 Optimized for precision 10K I — 0.2 ³ — 0.009°C ³ — 1 0.0001 2.7 to 5.5 3.6 MSOP-10				_					_			2.7 to 5.5	3.6	MSOP-10	\$1.
thermistor applications °C pp						0.2		0.000 0		'		2.7 10 0.0	0.0		ψı.

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²WI = -55°C to +125°C; I = -40°C to +85°C; EI = -40°C to +125°C. ³Typical. ⁴Internal +40-V input protection. ⁵-40°C to +85°C.

Amplifiers

46

Ð

Dual-Supply Instrumentation Amplifiers Selection Guide

		-		_										
					Input	Offset	011	CMRR	BW	Noise		۱ _۵		
		6 2		Non	Bias	at	Offset	at	at	at	Damas	per		
		Spec ²		Linearity (%)	Current (nA)	G = 100 (μV)	Drift (µV/°C)	G = 100 (dB)	G = 100 (kHz)	1kHz (nV/√Hz)	Power	Amp (mA)		
Device	Description	Temp Range	Gain	(max)	(max)	(max)	(max)	(ub) (min)	(min)	(typ)	Supply (V)	(max)	Package(s)	Price
	upply, Low Power I ₀ < 850µA per In					(11107)		()	()	\typ/	(•)		l uckuye(3/	THE
INA122	Micropower, RRO, CM to ground		5 to 10000	0.012	25	250	3	90	5	60	±1.3 to ±18	0.085	DIP-8, SOIC-8	\$2.10
INA126 ³	Micropower, < 1V V _{SAT} , low cost		5 to 10000	0.012	25	250	3	83	9	35	±1.35 to ±18	0.2	DIP/SO/MSOP-8	\$1.0
INA118	Precision, low drift	·	1 to 10000	0.002	5	55	0.7	107	70	10	±1.35 to ±18 ⁴	0.385	SOIC-8	\$4.15
INA121	Low bias, precision	I	1 to 10000	0.005	0.05	500	5	100	50	20	±2.25 to ±18 ⁴	0.525	SO-8	\$2.50
INA125	Internal ref, sleep mode ⁴	1	4 to 10000	0.01	25	250	2	100	4.5	38	±1.35 to ±18	0.525	SOIC-16	\$2.05
INA128 ³	Precision, low noise, low drift ⁴	L	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to ±18	0.8	SOIC-8	\$3.05
INA129	Precision, low noise, low drift AD620 second source ⁴	I	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to +18	0.8	SOIC-8	\$3.05
INA141 ³	Precision, low noise, low drift,	1	10, 100	0.002	5	50	0.7	110	200	8	±2.25 to +18	0.8	SOIC-8	\$3.05
	pin compatible with AD6212 ⁴		,											
Dual-S	upply, Low Input Bias Current I _B < 1	00pA												
INA110	Fast settle, low noise, wide BW	С	1,10,100, 200, 500	0.01	0.05	280	2.5	106	470	10	±6 to ±18	4.5	CDIP-16	\$7.00
INA121	Precision	T	1 to 10000	0.005	0.05	500	5	100	50	20	±2.25 to ±18 ⁴	0.525	SO-8	\$2.50
INA111	Fast settle, low noise, wide BW	1	1 to 10000	0.005	0.02	520	6	106	450	10	±6 to ±18	4.5	SO-16	\$4.20
INA116	Ultra low I _B 3 fA (typ), with buffered	I.	1 to 10000	0.01	0.0001	5000	40	80	70	28	±4.5 to ±18	1.4	SO-16	\$4.20
	guard drive pins ⁴													
Dual-S	upply, Precision V _{OS} < 300µA, Low \	V _{os} Dri	ft											
INA114	Precision, low drift ⁴	Ι	1 to 10000	0.002	2	50	0.25	110	10	11	±2.25 to ±18	3	SO-16	\$4.20
INA115	Precision, low drift, with gain sense pins ⁴	Ι	1 to 10000	0.002	2	50	0.25	120	10	11	±2.25 to ±18	3	SO-16	\$4.20
INA131	Low noise, low drift ⁴	I	100	0.002	2	50	0.25	110	70	12	±2.25 to ±18	3		\$3.80
INA141 ³	Precision, low noise, pin com. w/AD6212	I.	10, 100	0.002	5	50	0.7	110	200	8	± 2.25 to $\pm 18^{4}$	0.8	SOIC-8	\$3.55
INA118	Precision, low drift	I	1 to 10000	0.002	5	55	0.7	107	70	10	±1.35 to ±18 ⁴	0.385	SOIC-8	\$4.15
INA128 ³	Precision, low noise, low drift ⁴	Ι	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to ±18	0.8	SOIC-8	\$3.05
INA129	Precision, low noise, low drift, AD620 second source ⁴	Ι	1 to 10000	0.002	5	60	0.7	120	200	8	±2.25 to ±18	0.8	SOIC-8	\$3.05
INA122	Micropower, RRO, CM to ground	I.	5 to 10000	0.012	25	250	3	90	5	60	±1.3 to ±18	0.085	SOIC-8	\$2.10
INA125	Internal ref, sleep mode ⁴	I	4 to 10000	0.01	25	250	2	100	4.5	38	±1.35 to ±18	0.525	SOIC-16	\$2.05
INA126 ³	Micropower, < 1V V _{SAT} , low cost	Ι	5 to 10000	0.012	25	250	3	83	9	35	±1.35 to ±18	0.2	SO/MSOP-8	\$1.05
INA101	Low noise, wide BW, gain sense pins	С	1 to 10000	0.007	30	259	23	100	25000	13	±5 to ±18	8.5	T0-100, CDIP-14, PDIP-14, SO-16	\$7.90
INA110	Fast settle, low noise, low bias, wide BW	С	1,10,100, 200, 500	0.01	0.05	280	2.5	106	470	10	±6 to ±18	4.5	CDIP-16	\$7.00
Dual-S	upply, Lowest Noise													
INA103	Precision, fast settle, low drift, audio, mic pre amp, THD+N = 0.0009%	С	1, 100	0.0006 ⁵	12000	255	1.2 ⁵	100	800	1	±9 to ±25	13	SO-16	\$5.00
INA163	Precision, fast settle, low drift, audio, mic pre amp, THD+N = 0.002%	I	1 to 10000	0.0006 ⁵	12000	300	1.2 ⁵	100	800	1	±4.5 to ±18	12	SOIC-14	\$2.50
INA166	Precision, fast settle, low drift, audio, mic pre amp, THD+N = 0.09%	Ι	2000	0.005	12000	300	2.5 ⁵	100	450	1.3	±4.5 to ±18	12	SO-14 Narrow	\$5.95
INA217	Precision, low drift, audio, mic pre amp, THD+N = 0.09%, SSM2017 replacement	Ι	1 to 10000	0.0006 ⁵	12000	300	1.2 ⁵	-100	800	1.3	±4.5 to ±18	12	SO-16	\$2.50
			. .										r	

¹Suggested resale price in U.S. dollars in quantities of 1,000.²I = -40°C to +85°C; C = 0°C to 70°C. ³Parts also available in dual version. ⁴Internal +40-V input protection. ⁵Typical.

Amplifiers

Operational Amplifiers Selection Guide

	,	0 2		011	D. 16		NI *	0.011/	0.0	M	v				1 / 6	
		Spec ²	0.0	Offset	Drift	I _B	Noise	GBW	SR	V _{IN}	V _{IN}				I _Q / Amp	
	B	Temp	S, D,	(mV)	(µV/°C)	(pA)	1kHz	(MHz)	(V/μs)	Low	High	V _{OUT}	V _{OUT}		(mA)	. . 1
Device	Description	Range	T, Q ³	(max)	(typ)	(max)	(nV/√Hz)	(typ)	(typ)	(min)	(max)	Low	High	V _{SUP}	(max)	Price ¹
	Input—Low Offset, Lo	ow Drift	_													
0PA234	SS, gen. purpose		S, D, Q	0.1	0.5	25 nA	25	0.35	0.2	-0.1	4	0.1	4	2.7 to 36	0.3	\$1.30
0PA241	SS		S, D, Q	0.25	0.4	20 nA	45	0.035	0.01	-0.2	4	0.1	4.9	2.7 to 36	0.03	\$1.15
0PA227	Low noise/G>5		S, D, Q	0.075	0.1	10 nA	3	1	1	-13	13	-13	13	±2.5 to ±18	3.8	\$1.65
0PA277	Lowest offset /drift		S, D, Q	0.02	0.1	1 nA	8	1	0.8	-13	13	-14.5	13.8	±2 to ±18	0.825	\$0.85
TLC220x	SS, low noise		S, D	0.2	0.5	10	8	1.8	2.5	0	2.7	0.05	4.7	4.6 to 16	1.5	\$1.75
FET-Input	t—Low Noise, Wide B	andwid	th													
0PA130	Low power, FET		S, D, Q	1	2	20	16	1	2	—	—	—	—	±2.5 to ±18	0.65	\$1.40
0PA132	THD = 0.00008%	1	S, D, Q	0.5	2	50	8	8	20	-12.5	12.5	-14.5	13.8	±2.5 to ±18	4.8	\$1.45
OPA627	Very low-noise	12	S	0.5	2.5	10	5.6	16	55	-11	11	-11.5	11.5	±4.5 to ±18	7.5	\$12.25
CMOS—	Low Input Bias Curren	t (I _B), Ra	il-to-Rail	In and O	ut											
0PA336	RRO, SOT23	1	S, D, Q	0.125	1.5	10	40	0.1	0.03	-0.2	4	0.1	4.9	2.3 to 5.5	0.032	\$0.40
0PA340	RRIO, SOT23		S, D, Q	0.5	2.5	10	25	5.5	6	-0.3	5.3	0.005	4.995	2.5 to 5.5	0.95	\$0.80
0PA350	RRIO, MSOP	1	S, D, Q	0.5	4	10	8	38	22	-0.1	5.1	0.05	4.95	2.5 to 5.5	7.5	\$1.30
0PA355	High-speed, RRO	El	S, D, T	9	7	50	5.8	200	300	-0.2	4	0.3	5.2	2.5 to 5.5	11	\$1.90
OPA364	1.8V, high CMRR, SS	El	S, D, Q	0.5	2	10	17	7	5	-0.1	5.6	0.02	5.48	1.8 to 5.5	0.75	\$0.60
OPA725/6	Low-noise, high-speed	El	S,D	3	4	200	15	20	30	0	9	0.15	11.525	4 to 12	6.2	\$0.90
0PA727	e-Trim [™] , precision	I	S	1.5	0.3	100	6	20	30	-0.1	8.5	0.1	7	4to 12	4.3	\$1.45
0PA734/5	0.05µV/°C (max)		S,D	0.005	0.05	200	150	1.6	1.5	-0.1	10.5	0.05	11.95	2.7 to 12	0.75	\$1.25
0PA703/4	RRIO, SOT23/G>5	1	S, D, Q	0.75	4	10	45	1/3	0.6	-0.3	12.3	0.045	11.95	4 to 12	0.2	\$1.30
0PA743	RRIO, SOT23		S, D, Q	1.5	8	10	30	7	10	-0.3	12.3	0.075	11.925	3.5 to 12	1.5	\$0.95
TLC081x	Low cost, SS, SHDN	EI	S, D, Q	1	1.2	50	8.5	10	16	0	3.5	0.25	4.1	4.5 to 16	2.5	\$0.50
TLC2252	Dual, RRO, low power	EI, WI	D, Q	1.5	05	6	19	0.2	0.12	_	_	_	_	4.4 to 16	0.0625	\$0.65
TLC2272	Dual, RRIO	E, WI	D, Q	9.5	2	1	9	2.18	3.6	_	_	_	_	4.4 to 16	1.5	\$0.65
TLV240x	SS, RRIO, SOT23	EI	S, D, Q	1.2	3	300	500	0.005	0.002	-0.1	10	0.15	4.95	2.5 to 16	0.95µA	\$0.80
TLV276x	SS, SOT23, SHDN	El	S, D, Q	3.5	9	15	95	0.5	0.2	0	3.6	0.02	3.58	1.8 to 3.6	0.028	\$0.65
	o Autocalibration—Hi			••	•											
TLC450x	SS, auto cal	El	S, D	0.05	1	50	12	4.7	2.5	0	2.7	0.1	4.9	4 to 6	1.5	\$1.35
0PA335	Auto zero, SS	EI	S, D	0.005	0.02	200		2	1.6	-0.1	3.5	0.1	4.9	2.7 to 5.5	0.3	\$1.90
0PA380	Transimpedance amp.	EI	S,D	0.0025	0.02	50	200	90	80	0.1	3.7	0.12	4.9	2.7 to 5.5	9.5	\$1.95
OPA381	Low power	El	S,D	0.0025	0.03	50	10	18	12		0.7	0.12		2.7 to 5.5	1	\$1.45
UT AUUT	LOW HOWEI	LI	0	0.0023	0.00	50	10	10	14					2.7 10 3.3		ψ1. 4 J

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²I = -40°C to +85°C; I2 = -25°C to +85°C; EI = -40°C to +125°C, WI = -55°C to +125°C. ³S = single; D = dual; T = triple; Q = quad.

Comparators Selection Guide

				Output	t _{RESP}	Vs	Vs				
			l _Q Per Ch.	Current	Low-to-	(V)	(V)	V _{0S} (25°C)			
Device	Description	Ch.	(mA), (max)	(mA) (min)	High (µs)	(min)	(max)	(mV) (max)	Output type	Package(s)	Price ¹
Low Po	wer I _Q <0.5mA										
TLV370x	Nanopower, push-pull, RRIO	1, 2, 4	0.0008	—	36	2.5	16	5	Push-Pull	MSOP, PDIP, SOIC, SOT23, TSSOP	\$0.60
TLV349x	Low voltage, speed/power	1, 2	0.0012	—	<0.1	1.8	5.5	15	Push-Pull	SOT23, SOIC, TSSOP	\$0.42
Combin	ation Comparators and Op	o Amp	s								
TLV230x	Sub-micropower, RRIO	2	0.0017	—	55	2.5	16	5	Open Drain/Collector	MSOP, PDIP, SOIC, TSSOP	\$0.90
TLV270x	Sub-micropower, RRIO	2, 4	0.0019	_	36	2.5	16	5	Push-Pull	MSOP, PDIP, SOIC, TSSOP	\$0.90
Compa	rator and Voltage Reference	ce									
TLV3011	Micropower with built-in 1.242V	1	0.003	5	<7	1.8	5.5	15	Push-Pull	SC70, SOT23	\$0.75
TLV3012	Nanopower, Push-Pull	1	0.005	0.5	6	1.8	5.5	12	Push-Pull	SC70-6, SOT23	\$0.75

¹Suggested resale price in U.S. dollars in quantities of 1,000.

47

G

Amplifiers

High-Speed Amplifiers Selection Guide

			Supply		BW at A _{CL}	BW G = +2	GBW Product	Slew	Settling Time	THD 2Vpp	Diffe	rential	V _N	V _{os}		
			Voltage	A _{CL}	(MHz)	(MHz)	(MHz)	Rate	0.1%	G = 1.1MHz	Gain	Phase	(nV/√Hz)	∙os (mV)		
Device	Ch.	SHDN	(V)	(min)	(typ)	(typ)	(typ)	(V/µs)	(ns) (typ)	(dB) (typ)	(%)	(°)	(typ)	(max)	Package(s)	Price ¹
Fully Dffere THS4120/21	ential 1	Y	3	1	100	_	_	55	60	-75	-	-	5.4	8	SOIC, MSOP PowerPAD™	\$1.90
THS4120/21 THS4130/31	1	Y	5, ±5, ±15	1	150	90	90	52	78	-75 -97	_	_	1.3	2	SOIC, MSOP PowerPAD	\$3.50
THS4130/31 THS4140/41	1	Y	5, ±5, ±15 5, ±5, ±15	1	160			450	96	-97 -79			6.5	7	SOIC, MSO, PowerPAD	\$3.50
THS4140/41 THS4150/51	1	Y	5, ±5, ±15 5, ±5, ±15	1	150		100	450 650	53	-79 -84	_	_	7.6	7	SOIC, MSOP PowerPAD	\$3.40
THS4150/51 THS4500/01	1	Y	5, ±5, ±15 5, ±5	1	370	175	300	2800	6.3	-04		_	7.0	7	SOIC, MSO, PowerPAD,	\$4.70
	·			•								_			Leadless MSOP PowerPAD	
THS4502/03	1	Y	5, ±5	1	370	175	300	2800	6.3	-100	_	_	6	7	SOIC, MSOP PowerPAD, Leadless MSOP PowerPAD	\$4.00
THS4504/05	1	Y	5, ±5	1	260	110	210	1800	20	-100	—	—	8	7	SOIC, MSOP PowerPAD,	\$1.75
															Leadless	
0PA692	1	Y	5, ±5	1	280	225	-	2000	8	-93	0.07	0.02	1.7	2.5	SOT23, SOIC	\$1.45
CMOS Amp	_	_								_						
0PA354	1	-	2.5 to 5.5	1	250	90	100	150	30	-	0.02	0.09	6.5	8	SOT23, SOIC PowerPAD	\$0.75
0PA2354	2	—	2.5 to 5.5	1	250	90	100	150	30	_	0.02	0.09	6.5	8	SOIC PowerPAD, MSOP	\$1.20
0PA4354	4	-	2.5 to 5.5	1	250	90	100	150	30	-	0.02	0.09	6.5	8	SOIC, TSSOP	\$1.80
0PA355	1	Y	2.5 to 5.5	1	450	100	200	300	30	—	0.02	0.05	5.8	9	SOT23, SOIC	\$0.90
0PA2355	2	Y	2.5 to 5.5	1	450	100	200	300	30	-	0.02	0.05	5.8	9	MSOP	\$1.50
0PA3355	3	Y	2.5 to 5.5	1	450	100	200	300	30	—	0.02	0.05	5.8	9	SOIC	\$1.90
OPA356	1	—	2.5 to 5.5	1	450	100	200	300	30	-	0.02	0.05	5.8	9	SOT23, SOIC	\$0.90
OPA2356	2	—	2.5 to 5.5	1	450	100	200	300	30	_	0.02	0.05	5.8	9	SOIC, MSOP	\$1.50
0PA357	1	Y	2.5 to 5.5	1	250	90	100	150	30	-	0.02	0.09	6.5	8	SOT23, SOIC PowerPAD	\$0.75
0PA2357	2	Y	2.5 to 5.5	1	250	90	100	150	30	—	0.02	0.09	6.5	8	MSOP	\$1.20
FET-Input																
OPA655	1	—	±5	1	400	185	240	290	8	-100	0.01	0.01	6	2	SOIC	\$9.70
OPA656	1	—	±5	1	500	200	230	290	—	-80	0.02	0.05	7	1.8	SOT23, SOIC	\$3.35
OPA657	1	—	±5	7	350	300	1600	700	10	-80	—	—	4.8	1.8	SOT23, SOIC	\$3.80
THS4601	1	—	±5, ±15	1	440	95	180	100	135	-76	0.02	0.08	5.4	4	SOIC	\$9.95
Voltage Fe	edbacl	k														
OPA2822	2	—	5, ±5	1	400	200	240	170	32	-86	0.02	0.03	2	1.2	SOIC, MSOP	\$2.30
0PA686	1	_	±5	7	425	_	1600	600	16	-82	0.02	0.02	1.3	1	SOT23, SOIC	\$2.95
0PA842	1	_	±5	1	400	56	200	400	15	_	0.003	0.008	2.7	1.2	SOT23, SO	\$1.55
0PA843	1	_	±5	3	500	65	800	1000	7.5	_	0.001	0.012	2		SOT23, SO	\$1.60
0PA846	1	_	±5	7	500	_	1750	625	15	_	0.02	0.02	1.2	0.5	SOT23, SOIC	\$1.70
0PA847	1	_	±5	12	600	_	3900	950	20	_	_	_	0.85	0.5	SOT23, SOIC	\$2.00
THS4021	1	_	±5, ±15	10	350	_	1600	470	40	-68	0.02	0.08	1.5	2	SOIC, MSOP PowerPAD	\$2.20
THS4022	2	_	±5, ±15	10	350	—	1600	470	40	-68	0.02	0.08	1.5	2	SOIC, MSOP PowerPAD	\$3.65
THS4031	1	_	±5, ±15	2	100	100	200	100	60	-72	0.015	0.025	1.6	2	SOIC, MSOP PowerPAD	\$2.00
THS4032	2	_	±5, ±15	2	100	100	200	100	60	-72	0.015	0.025	1.6	2	SOIC, MSOP PowerPAD	\$3.35
THS4271/75	1	Y	5, ±5, 15	1	1400	390	400	1000	25	-110	0.007	0.004	3	10	SOIC, MSOP PowerPAD	\$2.85
Voltage-Li	miting	Ampli	fiers													
OPA698	1	N	5, ±5	1	450	215	250	1100	_	-93	0.012	0.008	5.6	5	SOIC	\$2.00
OPA699	1	Ν	5, ±5	4	260	_	1000	1400		_	0.012	0.008	4.1	5	SOIC	\$2.05
Current Fe	ed <u>ba</u> c	:k														
OPA691	1, 2, 3	Y	5, ±5	1	280	255	_	2100	8	-93	0.07	0.02	1.7	2.5	SOT23, SOIC	\$1.55
OPA684	1, 2, 3, 4	Y	5, ±5	1	210	160	_	820	_	-77	0.04	0.02	3.7	.35	SOT23, SOIC	\$1.35
OPA683	1, 2	Ŷ	5, ±5	1	200	150	_	540	_	-84	0.06	0.03	4.4	3.5	SOT23, SOIC	\$1.20
OPA658	1, 2	N	±	1	900	680	_	1700	11.2	-70	0.025	0.02	2.7	5.5	SOT23, SOIC	\$1.55
THS3091	1	Ŷ	±5, ±15	1	235	210	_	5000	42	-72	0.013	0.02	2	3	SOIC, SOIC PowerPAD	\$3.60
¹ Suggested re																

Ð

Amplifiers

High-Speed Buffer Amplifiers Selection Guide

					A _{CL} Min			Settling		THD						
	Spec ²				Stable	BW	Slew	Time	١ ₀	(FC =	Diff	Diff	V _{os}	I _B		
	Temp	V _S ±15	V _S ±5	V _S 5	Gain	at ACL	Rate	0.01%	(mA)	1MHz)	Gain	Phase	(mV)	(µA)		
Device	Range	(V)	(V)	(V)	(V/V)	(MHz)	(V/µs)	(ns) (typ)	(typ)	(dB) (typ)	(%)	(°)	max	max	Package(s)	Price ¹
THS3201	1	Ν	±5, ±15	1	1200	1000	—	9000	10	-65	0.02	0.01	6.8	4	SOIC, MSOP PowerPAD TM	\$1.60
BUF634	1	Yes	Yes	Yes	1	180	2000	200	250	_	0.4	0.1	100	20	DIP, SOIC, T0220-5,	\$3.05
															DDPak-5	
0PA633	С	Yes	Yes	_	1	260	2500	50	100	_	_	0.1	15	35	DIP	\$5.45

¹Suggested resale price in U.S. dollars in quantities of 1,000. $^{2}I = -40^{\circ}C$ to $+85^{\circ}C$; $C = 0^{\circ}C$ to $70^{\circ}C$.

For a complete product listing visit amplifier.ti.com

PWM Power Drivers Selection Guide

	Output	Saturation							
Temp	Current	Voltage	۱ _۵	Vs	Vs	Duty Cycle	Duty Cycle		
Range ²	(A) (min)	(V) (max)	(mA) (max)	(V) (min)	(V) (max)	(%) (min)	(%) (max)	Package(s)	Price ¹
	1.9	1	5	9	60	10	90	TO-220, DDPAK	\$3.85
WI	2	2.2	9	8	60	10	90	TO-220, DDPAK	\$3.85
	3	0.6	0.8	8	32	10	90	SO-8, SO-8 PowerPAD™	\$1.60
	1.5	0.6	1	8	32	10	90	14-lead PowerPAD	\$1.60
	Range ²	TempCurrentRange2(A) (min)I1.9WI2I3	TempCurrentVoltageRange2(A) (min)(V) (max)I1.91WI22.2I30.6	Temp Range2Current (A) (min)Voltage (V) (max)I (mA) (max)I1.915WI22.29I30.60.8	Temp Range ² Current (A) (min) Voltage (V) (max) I _Q (mA) (max) V _S (V) (min) I 1.9 1 5 9 WI 2 2.2 9 8 I 3 0.6 0.8 8	Temp Range ² Current (A) (min) Voltage (V) (max) I (mA) (max) V _S (V) (min) V _S (V) (max) I 1.9 1 5 9 60 WI 2 2.2 9 8 60 I 3 0.6 0.8 8 32	Temp Range ² Current (A) (min) Voltage (V) (max) I _Q (mA) (max) V _S (V) (min) Duty Cycle (%) (min) I 1.9 1 5 9 60 10 WI 2 2.2 9 8 60 10 I 3 0.6 0.8 8 32 10	Temp Range ² Current (A) (min) Voltage (V) (max) I _Q (mA) (max) V _S (V) (min) Duty Cycle (%) (min) Duty Cycle (%) (max) I 1.9 1 5 9 60 10 90 WI 2 2.2 9 8 60 10 90 I 3 0.6 0.8 8 32 10 90	Temp Range ² Current (A) (min) Voltage (V) (max) I ₀ (mA) (max) V _S (V) (min) Duty Cycle (%) (min) Duty Cycle (%) (max) Package(s) I 1.9 1 5 9 60 10 90 TO-220, DDPAK WI 2 2.2 9 8 60 10 90 TO-220, DDPAK I 3 0.6 0.8 8 32 10 90 SO-8, SO-8 PowerPAD TM

 1Suggested resale price in U.S. dollars in quantities of 1,000. $^2I = -40^\circ$ C to $+85^\circ$ C; WI = -55° C to $+125^\circ$ C.

Power Operational Amplifiers Selection Guide

	Spec ²	I _{OUT}	Vs	Bandwidth	Slew Rate	۱ _۵	V _{os}	V ₀ Drift	I _B		
Device	Temp Range	(A)	(V)	(MHz)	(V/µs)	(mA) (max)	(mV) (max)	(µV/°C) (max)	(nA) (max)	Package(s)	Price ¹
0PA445/B	12	0.015	10 to 40	2	15	4.7	5-3	10	0.05	TO-99, DIP-8, SO-8	\$4.75
OPA452	El	0.05	20 to 80	1.8	7.2	5.5	3	5	0.1	T0220-7, DDPak-7	\$2.55
OPA453	EI	0.05	20 to 80	7.5	23	5.5	3	5	0.1	T0220-7, DDPak-7	\$2.55
0PA541	12	10	±10 to ±40	full power 55kHz	10	20	1	30	0.05	TO-3, ZIP	\$11.10
0PA544	1	2	20 to 70	1.4	8	12	5	10	0.1	T0220-5, DDPak-5	\$6.88
0PA2544	l I	2	20 to 70	1.4	8	12	5	10	0.1	ZIP11	\$12.00
0PA547	1	0.5	8 to 60	1	6	10	5	25	500	T0220-7, DDPak-7	\$4.35
OPA548	l I	3	8 to 60	1	10	17	10	30	500	T0220-7, DDPak-7	\$6.00
OPA549	1	8	8 to 60	0.9	9	26	5	20	500	ZIP11	\$12.00
0PA551	EI	0.2	8 to 60	3	15	7	3	7	0.1	DIP-8, SO-8, DDPak-7	\$2.40
0PA552	El	0.2	8 to 60	12	24	7	3	7	0.1	DIP-8, SO-8, DDPak-7	\$1.75
0PA561	EI	1.2	7 to 16	17	50	50	20	50	0.1	HTSSOP-20	\$2.65
OPA569	l I	2	2.7 to 5.5	1.2	1.2	6	2	1.3 (typ)	10 µA	SO-20 PowerPAD	\$3.10
TLV411x	EI	0.3	2.5 to 6	2.7	1.6	1	3.5	3	0.05	PDIP, MSOP, SOIC	\$0.75

¹Suggested resale price in U.S. dollars in quantities of 1,000. 2 I2 = -25° C to $+85^{\circ}$ C; I = -40° C to $+85^{\circ}$ C; EI = -40° C to $+125^{\circ}$ C.

For a complete product listing visit amplifier.ti.com

Digital Temperature Sensors Selection Guide

	Supply Voltage		–25°C to 85°C Accuracy	Quiescent Current	Resolution	Programmable	Max Operating Temp		
Device	(V)	Interface	(°C max) ²	(µA) max	(Bits)	Temp Alert	(°C)	Package	Price ¹
TMP100	2.7 to 5.5	2-wire	±2	45	9 to 12	—	150	SOT23	\$0.75
TMP101	2.7 to 5.5	2-wire	±2	45	9 to 12	1	150	SOT23	\$0.80
TMP121	2.7 to 5.5	SPI	±1.5	50	12	_	150	SOT23	\$0.90
TMP122	2.7 to 5.5	SPI	±1.5	50	9 to 12	1	150	SOT23	\$0.99
TMP123	2.7 to 5.5	SPI	±1.5	50	12	_	150	SOT23	\$0.90
TMP124	2.7 to 5.5	SPI	±1.5	50	12	_	150	SO-8	\$0.70
TMP75	2.7 to 5.5	2-wire	±1.5	50	12	1	127	SO-8	\$0.70
TMP175	2.7 to 5.5	2-wire	±1.5	50	12	1	127	SO-8	\$0.85

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²All digital temp sensors have a ±0.5°C typical accuracy.

New products are listed in **bold red**.

50

Ð

Amplifiers/Voltage References

4-20mA Transmitters and Receivers Selection Guide

						Additional		
			Loop		Output	Power		
		Sensor	Voltage	Full-Scale	Range	Available		
Device	Description	Excitation	(V)	Input Range	(mA)	(V at mA)	Package(s)	Price ¹
2-Wire	General Purpose							
XTR101	IA with current excitation	Two 1mA	11.6 to 40	5mV to 1V	4-20	—	DIP-14, SOIC-16	\$8.70
XTR115	$I_{\rm IN}$ to $I_{\rm OUT}$ converter, external resistor scales $V_{\rm IN}$ to $I_{\rm IN}$	$V_{REF} = 2.5V$	7.5 to 36	40µA to 200µA	4-20	—	SOIC-8	\$1.05
XTR116	$I_{\rm IN}$ to $I_{\rm OUT}$ converter, external resistor scales $V_{\rm IN}$ to $I_{\rm IN}$	$V_{REF} = 4.096V$	7.5 to 36	40µA to 200µA	4-20	-	SOIC-8	\$1.05
3-Wire	General Purpose							
XTR110	Selectable input/output ranges	$V_{REF} = 10V$	13.5 to 40	0V to 5V,	4-20, 0-20,	_	DIP-16	\$7.10
				0V to 10V	5-25			
4-20mA	Current Loop Receiver							
RCV420	4-20mA input, 0V to 5V output, 1.5V loop drop	$V_{REF} = 10V$	+11.5/-5 to ±18	4-20mA	0V to 5V	—	DIP-16	\$3.55
2-Wire	RTD Conditioner with Linearization							
XTR105	100 Ω RTD conditioner	Two 800µA	7.5 to 36	5mV to 1V	4-20	5.1 at 1	DIP-14, SOIC-14	\$4.00
XTR112	High-resistance RTD conditioner	Two 250µA	7.5 to 36	5mV to 1V	4-20	5.1 at 1	DIP-14, SOIC-14	\$4.00
XTR114	High-resistance RTD conditioner	Two 100µA	7.5 to 36	5mV to 1V	4-20	5.1 at 1	DIP-14, SOIC-14	\$4.00
2-Wire	Bridge Sensor Conditioner with Linearization	1						
XTR106	Bridge conditioner	5V and 2.5V	7.5 to 36	5mV to 1V	4-20	5.1 at 1	DIP-14, SOIC-14	\$4.00
2-Wire	RTD Conditioner with Digital Calibration for	Linearization,	Span and Of	fset				
XTR108	100 Ω to 1k Ω RTD conditioner, 6-channel input	Two 500µA	7.5 to 24	5mV to 320mV	4-20	5.1 at 2.1	SSOP-24	\$3.35
	Mux, extra op amp can convert to voltage sensor							
	excitation, calibration stored in external EEPROM							
Bridge	Conditioner with Digital Calibration for Linea	rization, Spar	n and Offset o	over Temperatu	'e			
PGA309	Complete digitally calibrated bridge sensor	$V_{EXC} = V_{S'}$	2.7V to 5.5V	1mV/V to	0.1V to	_	TSSOP-16	\$3.40
	conditioner, voltage output, calibration stored in	2.5V, 4.096V		245mV/V	4.9V			
	external EEPROM, one-wire/two-wire interface				at V _S =+5V			
Suggeste	d resale price in U.S. dollars in quantities of 1 000					٨	lew products are liste	d in hold (

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New products are listed in **bold red**.

Voltage References Selection Guide

			Initial	Drift	Long-Term Stability	Noise 0.1 to 10Hz	Ι _α	Temperature	Output		
			Accuracy	(ppm/°C)	(ppm/1000hr)	(µVp-p)	max	Range	Current		
Device	Description	Output (V)	(%) max	max	(typ)	(typ)	(mA)	(°C)	(mA)	Package(s)	Price ¹
REF1112	Nanopower 1.25V shunt	1.25	0.2	30	60	25	0.0012	-40 to +125	1A to 5mA	SOT-23	\$0.85
REF31xx	Precision, micropower	1.25, 2.048, 2.5	0.2	15	24	15 to 30	0.1	-40 to +125	±10	S0T23-3	\$1.10
		3.0, 3.3, 4.096									
REF30xx	Micropower, bandgap	1.25, 2.048, 2.5,	0.2	50	24	20 to 45	0.05	-40 to +125	25	SOT23-3	\$0.60
		3.0, 3.3, 4.096									
REF02B	Low drift, low noise, buried zener	5	0.13	10	50	4	1.4	-25 to +85	+21, -0.5	PDIP-8, SOIC-8	\$2.65
REF102A	Low drift, low noise, buried zener	10	0.1	10	20	5	1.4	-25 to +85	+10, -5	PDIP-8, SOIC-8	\$1.75
REF102B	Low drift, low noise, buried zener	10	0.05	5	20	5	1.4	-25 to +85	+10, -5	PDIP-8, SOIC-8	\$4.40
REF102C	Ultra-low drift, low	10	0.025	2.5	20	5	1.4	-25 to +85	+10, -5	PDIP-8, SOIC-8	\$5.10
	noise, buried zener										
Current Re	eferences										
REF200	Dual current reference with current mirror	Two 100µA	±1µA	25 (typ)	-	1µАр-р	-	-25 to +85	50μA to 400μA3	PDIP-8, SOIC-8	\$2.60
1 Cummonto	d vacala nuica in U.C. dall	ana in avantitiaa	of 1 000						A/	warducto and listed	the first of the second

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New products are listed in **bold red**.

51

G

$\Delta\Sigma$ ADCs Selection Guide

		Sample	Number of								
	Res.	Rate	Input		Input Voltage		Linearity	NMC	Power		
Device	(Bits)	(kSPS)	Channels	Interface	(V)	V _{REF}	(%)	(Bits)	(mW)	Package(s)	Price ¹
ADS1271	24	105	1 Diff	Serial, SPI	±2.5	Ext	0.0015	24	50 - 100	TSSOP-16	\$5.90
ADS1252	24	41	1 SE / 1 Diff	Serial	±5	Ext	0.0015	24	40	SOIC-8	\$5.60
ADS1255	24	30	2 SE / 1 Diff	Serial, SPI	PGA (1-64), ±5V	Ext	0.0010	24	35	SSOP-20	\$8.25
ADS1256	24	30	8 SE / 4 Diff	Serial, SPI	PGA (1-64), ±5V	Ext	0.0010	24	35	SSOP-28	\$8.95
ADS1251	24	20	1 SE / 1 Diff	Serial	±5	Ext	0.0015	24	7.5	SOIC-8	\$5.60
ADS1254	24	20	4 SE / 4 Diff	Serial	±5	Ext	0.0015	24	4	SSOP-20	\$6.70
ADS1210	24	16	1 SE / 1 Diff	Serial, SPI	PGA (1-16), ±5	Int / Ext	0.0015	24	27.5	PDIP-18, SOIC-18	\$10.25
ADS1211	24	16	4 SE / 4 Diff	Serial, SPI	PGA (1-16), ±5	Int / Ext	0.0015	24	27.5	PDIP-24, SOIC-24, SSOP-28	\$10.90
ADS1216	24	0.78	8 SE / 8 Diff	Serial, SPI	PGA (1-128), ±2.5	Int / Ext	0.0015	24	0.6	TQFP-48	\$5.00
ADS1217	24	0.78	8 SE / 8 Diff	Serial, SPI	PGA (1-128), ±5	Int / Ext	0.0012	24	0.8	TQFP-48	\$5.00
ADS1224	24	0.24	4 SE / 4 Diff	Serial	±5	Ext	0.0015	24	0.5	TSSOP-20	\$3.25
ADS1244	24	0.015	1 SE / 1 Diff	Serial	±5	Ext	0.0008	24	0.3	MSOP-10	\$2.95
ADS1245	24	0.015	1 SE / 1 Diff	Serial	±2.5	Ext	0.0015	24	0.5	MSOP-10	\$3.10
ADS1242	24	0.015	4 SE / 2 Diff	Serial, SPI	PGA (1-128), ±2.5	Ext	0.0015	24	0.6	TSSOP-16	\$3.60
ADS1243	24	0.015	8 SE / 4 Diff	Serial, SPI	PGA (1-128), ±2.5	Ext	0.0015	24	0.6	TSSOP-20	\$3.95
ADS1212	22	6.25	1 SE / 1 Diff	Serial, SPI	PGA (1-16), ±5	Int / Ext	0.0015	22	1.4	PDIP-18, SOIC-18	\$7.70
ADS1213	22	6.25	4 SE / 4 Diff	Serial, SPI	PGA (1-16), ±5	Int / Ext	0.0015	22	1.4	PDIP-24, SOIC-24, SSOP-28	\$9.00
DDC112	20	3	2 SE, 1 IN	Serial	50-1000pC	Ext	0.025	20	80	SOIC-28, TQFP-32	\$12.10
DDC114	20	2.5	4SE, 1 IN	Serial	50-350pC	Ext	0.025	20	50	QFN-48	\$18.00
ADS1625	18	1.25MSPS	1 Diff	P18	±3.75	Int/ Ext	0.0015	18	520	TQFP-64	\$37.60
ADS1626	18	1.25MSPS	1 Diff	P18 w/ FIFO	±3.75	Int/ Ext	0.0015	18	520	TQFP-64	\$37.60
ADS1202	16	10MHz Clock	1 SE / 1 Diff	Modulator	±0.3	Int / Ext	0.018	16	30	TSSOP-8	\$3.10
ADS1203	16	10MHz Clock	1 SE / 1 Diff	Modulator	±0.3	Int / Ext	0.003	16	30	TSSOP-8, QFN 3 x 3	\$3.10
ADS1204	16	10MHZ Clock	4 SE	Modulator	±2.5	Int / Ext	0.003	16	60	QFN 5 x 5	\$4.15
ADS1605	16	5MSPS	1 Diff	P16	±3.75	Int/ Ext	0.0015	16	560	TQFP-64	\$32.05
ADS1606	16	5MSPS	1 Diff	P16 w/ FIFO	±3.75	Int/ Ext	0.0015	16	560	TQFP-64	\$33.75
ADS1602	16	2.5MSPS	1 Diff	Serial	±3	Int/ Ext	0.0015	16	550	TQFP-48	\$23.00
ADS1601	16	1.25MSPS	1 Diff	Serial	±3	Int/ Ext	0.0015	16	350	TQFP-48	\$14.00
ADS1100	16	0.128	1 SE / 1 Diff	Serial, I ² C	PGA (1-8), V _{DD}	Ext	0.0125	16	0.3	SOT23-6	\$1.80
ADS1110	16	0.24	1 SE / 1 Diff	Serial, I ² C	PGA (1-8), ±2.048	Int	0.01	16	0.7	SOT23-6	\$1.95
ADS1112	16	0.24	3 SE / 2 Diff	Serial, I ² C	PGA (1-8), ±2.048	Int	0.01	16	0.7	MSOP-10, SON-10	\$2.65

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New products are listed in **bold red**. Preview products are listed in **bold blue**.

Data Converters

SAR ADCs Selection Guide

		Sample	Number									
	Res.	Rate	of Input		Input Voltage		Linearity		SINAD	Power		
Device	(Bits)	(kSPS)	Channels	Interface	(V)	V _{REF}	(%)	NMC	(dB)	(mW)	Package(s)	Price ¹
ADS8380	18	580	1 SE	Serial, SPI	V _{REF}	Int / Ext	0.0018	18	90	100	QFN-6 x 6	\$17.33
ADS8382	18	580	1 Diff	Serial, SPI	$\pm V_{REF}$ (4.1V) at 1/2 V_{REF}	Int / Ext	0.0018	18	95	100	QFN-6 x 6	\$18.16
ADS8381	18	580	1 SE	P8 / P16 / P18	V _{REF}	Ext	0.0018	18	88	100	TQFP-48	\$16.65
ADS8383	18	500	1 SE	P8 / P16 / P18	(V _{REF}) +4.1V	Ext	0.006	18	85	110	TQFP-48	\$15.75
ADS8411	16	2000	1 SE	P8 / P16	(V _{REF}) +4.1V	Int	0.00375	16	87	155	TQFP-48	\$22.00
ADS8412	16	2000	1 Diff	P8 / P16	$\pm V_{REF}$ (4.1V) at 1/2 V_{REF}	Int	0.00375	16	90	155	TQFP-48	\$23.05
ADS8401	16	1250	1 SE	P8 / P16	+4, V _{REF}	Int	0.00375	16	85	155	TQFP-48	\$12.55
ADS8402	16	1250	1 Diff	P8 / P16	$\pm V_{REF}$ (4.1V) at 1/2 V_{REF}	Int	0.00375	16	88	155	TQFP-48	\$13.15
ADS8371	16	750	1 SE	P8 / P16	+4.2V (V _{REF})	Ext	0.003	16	87	110	TQFP-48	\$12.00
ADS8323	16	500	1 Diff	P8 / P16	±2.5V at 2.5	Int / Ext	0.009	15	83	85	TQFP-32	\$7.10
ADS8361	16	500	2 x 2 Diff	Serial, SPI	±2.5V at +2.5	Int / Ext	0.00375	14	83	150	SSOP-24	\$10.35
ADS8342	16	250	4 Diff	P8 / P16	±2.5	Ext	0.006	16	85	200	TQFP-48	\$11.30
ADS7815	16	250	1 SE	P16	±2.5	Int / Ext	0.006	15	84	200	S0IC-28	\$21.30
ADS8364	16	250	1 x 6 Diff	P16	±2.5V at +2.5	Int / Ext	0.0045	14	82.5	413	TQFP-64	\$18.10
TLC4545	16	200	1 Diff	Serial, SPI	V _{REF}	Ext	0.0045	16	84.5	17.5	SOIC-8, VSSOP-8	\$6.85
ADS7805	16	100	1 SE	P8 / P16	±10	Int / Ext	0.0045	16	86	81.5	PDIP-28, SOIC-28	\$21.80
ADS8320	16	100	1 Diff	Serial, SPI	V _{REF}	Ext	0.012	15	84	1.95	VSSOP-8	\$5.15
ADS8321	16	100	1 Diff	Serial, SPI	±V _{REF} at +V _{REF}	Ext	0.012	15	84	5.5	VSSOP-8	\$5.15
ADS8325	16	100	1 Diff	Serial, SPI	V _{REF}	Ext	0.006	16	91	2.25	VSSOP-8, QFN-8	\$5.90
ADS8343	16	100	4 SE / 2 Diff	Serial, SPI	±V _{REF} at +V _{REF}	Ext	0.006	15	86	3.6	SSOP-16	\$7.45
ADS8345	16	100	8 SE / 4 Diff	Serial, SPI	±V _{REF} at +V _{REF}	Ext	0.006	15	85	3.6	SSOP-20	\$8.00
ADS7807	16	40	1 SE	Serial, SPI / P8	4, 5, ±10	Int / Ext	0.0022	16	88	28	PDIP-28, SOIC-28	\$27.40
ADS7813	16	40	1 SE	Serial, SPI	+4, 10, ±3.3, 5, 10	Int / Ext	0.003	16	89	35	PDIP-16, SOIC-16	\$21.30
ADS7825	16	40	4 SE	Serial, SPI / P8	±10	Int / Ext	0.003	16	83	50	PDIP-28, SOIC-28	\$29.55
ADS7891	14	3000	1 SE	P8 / P14	2.5	Int	0.009	14	78	90	TQFP-48	\$10.50
ADS7890	14	1250	1 SE	Serial, SPI	2.5	Int	0.009	14	78	90	TQFP-48	\$10.50
TLC3541	14	200	1 SE	Serial, SPI	V _{REF}	Ext	0.006	14	81.5	17.5	SOIC-8, VSSOP-8	\$5.00
TLC3544	14	200	4 SE / 2 Diff	Serial, SPI	4	Int / Ext	0.006	14	81	20	SOIC-20, TSSOP-20	\$6.00
TLC3548	14	200	8 SE / 4 Diff	Serial, SPI	4	Int / Ext	0.006	14	81	20	SOIC-24, TSSOP-24	\$6.40
TLC3574	14	200	4 SE	Serial, SPI	±10	Ext	0.006	14	79	29	SOIC-24, TSSOP-24	\$6.85
TLC3578	14	200	8 SE	Serial, SPI	±10	Ext	0.006	14	79	29	SOIC-24, TSSOP-24	\$8.65
ADS8324	14	50	1 Diff	Serial, SPI	±V _{REF} at +V _{REF}	Ext	0.012	14	78	2.5	VSSOP-8	\$4.15
ADS7871	14	40	8 SE / 4 Diff	Serial, SPI	PGA (1, 2, 4, 8, 10, 16, 20)	Int	0.03	13	_	6	SSOP-28	\$5.00
ADS7881	12	4000	1 SE	P8 / P12	2.5	Int	0.024	12	71.5	110	TQFP-48	\$7.35
ADS7869	12	1000	12 Diff	Serial, SPI / P12	±2.5 at +2.5	Int / Ext	0.048	11	71	250	TQFP-100	\$14.60
ADS7886	12	1000	1 SE	Serial, SPI	V _{DD} (2.5V to 5.25V)	Ext	0.024	12	70	11	SOT23-6, SC-70	\$2.35
ADS7810	12	800	1 SE	P12	±10	Int / Ext	0.018	12	71	225	S0IC-28	\$27.80
ADS7818	12	500	1 Diff	Serial, SPI	5	Int	0.024	12	70	11	PDIP-8, VSSOP-8	\$2.50
ADS7835	12	500	1 Diff	Serial, SPI	±2.5	Int	0.024	12	72	17.5	VSSOP-8	\$2.75
ADS7852	12	500	8 SE	P12	5	Int / Ext	0.024	12	72	13	TQFP-32	\$3.40
ADS7861	12	500	2 x 2 Diff	Serial, SPI	±2.5 at +2.5	Int / Ext	0.024	12	70	25	SSOP-24	\$4.05
ADS7862	12	500	2 x 2 Diff	P12	±2.5 at +2.5	Int / Ext	0.024	12	71	25	TQFP-32	\$5.70
ADS7864	12	500	3 x 2 Diff	P12	±2.5 at +2.5	Int / Ext	0.024	12	71	52.5	TQFP-48	\$6.65
TLC2551	12	400	1 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	15	SOIC-8, VSSOP-8	\$3.95
TLC2552	12	400	2 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	15	SOIC-8, VSSOP-8	\$3.95
TLC2554	12	400	4 SE	Serial, SPI	4	Int / Ext	0.024	12	71	9.5	SOIC-16, TSSOP-16	\$5.30
TLC2558	12	400	8 SE	Serial, SPI	4	Int / Ext	0.024	12	71	9.5	SOIC-20, TSSOP-20	\$5.30
ADS7800	12	333	1 SE	P8 / P12	±5, 10	Int	0.012	12	72	135	CDIP SB-24, PDIP-24	\$30.50
ADS7866	12	200	1 SE	Serial, SPI	V _{DD} (1.2V to 3.6V)	Ext	0.024	12	70	0.25	SOT23-6, QFN-2 x 2	\$2.15
ADS7816	12	200	1 Diff	Serial, SPI	V _{REF}	Ext	0.024	12	72	1.9	PDIP-8, SOIC-8, VSSOP-8	\$1.95
¹ Suggested re	esale price i	n U.S. dolla	rs in quantitie.				New produc	ts are list	ed in bold r	ed. Previe	w products are listed in b	old blue.

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New products are listed in **bold red**. Preview products are listed in **bold blue**.

Ð

53

SAR ADCs Selection Guide (Continued)

		Sample	Number									
	Res.	Rate	of Input		Input Voltage		Linearity		SINAD	Power		
Device	(Bits)	(kSPS)	Channels	Interface	(V)	V _{REF}	(%)	NMC	(dB)	(mW)	Package(s)	Price ¹
ADS7841	12	200	4 SE / 2 Diff	Serial, SPI	V _{REF}	Ext	0.024	12	72	0.84	SSOP-16	\$2.50
ADS7842	12	200	4 SE	P12	V _{REF}	Ext	0.024	12	72	0.84	SSOP-28	\$3.10
ADS7844	12	200	8 SE / 4 Diff	Serial, SPI	V _{REF}	Ext	0.024	12	72	0.84	SSOP-20	\$2.90
TLC2574	12	200	4 SE	Serial, SPI	±10	Ext	0.024	12	79	29	SOIC-20, TSSOP-20	\$5.30
TLC2578	12	200	8 SE	Serial, SPI	±10	Ext	0.024	12	79	29	SOIC-24, TSSOP-24	\$5.80
TLV2541	12	200	1 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	2.8	SOIC-8, VSSOP-8	\$3.85
TLV2542	12	200	2 SE	Serial, SPI	V _{REF}	Ext	0.024	12	72	2.8	SOIC-8, VSSOP-8	\$3.85
TLV2544	12	200	4 SE	Serial, SPI	+2, 4	Int / Ext	0.024	12	70	3.3	SOIC-16, TSSOP-16	\$4.20
TLV2548	12	200	8 SE	Serial, SPI	+2, 4	Int / Ext	0.024	12	70	3.3	SOIC-20, TSSOP-20	\$4.85
TLV2556	12	200	11 SE	Serial, SPI	V _{REF}	Int / Ext	0.024	12	_	2.43	SOIC-20, TSSOP-20	\$3.55
ADS7829	12	125	1 Diff	Serial, SPI	V _{REF}	Ext	0.018	12	71	0.6	QFN-8	\$1.50
AMC7820	12	100	8 DAS	Serial, SPI	5	Int	0.024	12	72 (typ)	40	TQFP-48	\$9.60
ADS7804	12	100	1 SE	P8 / P16	±10	Int / Ext	0.011	12	72	81.5	PDIP-28, SOIC-28	\$14.05
ADS7808	12	100	1 SE	Serial, SPI	+4, 10 , ±3.3, 5, 10	Int / Ext	0.011	12	73	81.5	SOIC-20	\$10.85
ADS7822	12	75	1 Diff	Serial, SPI	V _{REF}	Ext	0.018	12	71	0.6	PDIP-8, SOIC-8, VSSOP-8	\$1.55
ADS7823	12	50	1 SE	Serial, I ² C	V _{REF}	Ext	0.024	12	71	0.75	VSSOP-8	\$2.85
ADS7828	12	50	8 SE / 4 Diff	Serial, I ² C	V _{REF}	Int / Ext	0.024	12	71	0.675	TSSOP-16	\$3.35
ADS7870	12	50	8 SE	Serial, SPI	PGA(1, 2, 4, 8, 10, 16, 20)	Int	0.06	12	72	4.6	SSOP-28	\$4.15
ADS7806	12	40	1 SE	Serial, SPI / P8	+4, 5, ±10	Int / Ext	0.011	12	73	28	PDIP-28, SOIC-28	\$12.75
ADS7812	12	40	1 SE	Serial, SPI	+4, 10, ±3.3, 5, 10	Int / Ext	0.012	12	74	35	PDIP-16, SOIC-16	\$11.80
ADS7824	12	40	4 SE	Serial, SPI / P8	±10	Int / Ext	0.012	12	73	50	PDIP-28, SOIC-28	\$13.10
TLV1570	10	1250	8 SE	Serial, SPI	2V, V _{REF}	Int / Ext	0.1	10	60	9	SOIC-20, TSSOP-20	\$3.80
TLV1572	10	1250	1 SE	Serial, SPI	V _{REF}	Ext	0.1	10	60	8.1	SOIC-8	\$3.30
TLV1578	10	1250	8 SE	Serial, SPI	V _{REF}	Ext	0.1	10	60	12	TSSOP-32	\$3.85
ADS7887	10	1000	1 SE	Serial, SPI	V _{DD} (2.5V to 5.25V)	Ext	0.05	10	61	11	SOT23-6, SC-70	\$1.55
TLC1514	10	400	4 SE / 3 Diff	Serial, SPI	+5.5 (V _{REF} = V _{DD})	Int / Ext	0.012	10	60	10	SOIC-16, TSSOP-16	\$2.90
TLC1518	10	400	8 SE / 7 Diff	Serial, SPI	+5.5 (V _{REF} = V _{DD})	Int / Ext	0.012	10	60	10	SOIC-20, TSSOP-20	\$3.45
¹ Suggested	resale price	in U.S. dolla	ars in quantitie	es of 1,000.						Previe	ew products are listed in L	old blue.

8051-Based Intelligent $\Delta \Sigma$ ADCs Selection Guide

	ADC	Sample	Number of				Program	Program				
	Res.	Rate	Input	Input Voltage		CPU	Memory	Memory	SRAM	Power	DAC Output	
Device	(Bits)	(kSPS)	Channels	(V)	V _{REF}	Core	(kB)	Туре	(kB)	(mW/V)	(Bits)	Price ¹
MSC1200Y3	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	0.1	3/2.7-5.25	8-bit IDAC	\$6.45
MSC1201Y3	24	1	6 Diff / 6 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	0.1	3 / 2.7-5.25	8-bit IDAC	\$5.95
MSC1210Y5	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	32	Flash	1.2	4 / 2.7-5.25	16-bit PWM	\$12.00
MSC1211Y2	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	4	Flash	1.2	4 / 2.7-5.25	4 x 16-bit I / VDAC	\$17.50
MSC1211Y5	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	32	Flash	1.2	4 / 2.7-5.25	4 x 16-bit I / VDAC	\$20.95
MSC1213Y2	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	4	Flash	1.2	4 / 2.7-5.25	2 x 16-bit I / VDAC	\$12.65
MSC1213Y5	24	1	8 Diff / 8 SE	PGA (1-128), ± 2.5	Int	8051	32	Flash	1.2	4 / 2.7-5.25	2 x 16-bit I / VDAC	\$15.95
MSC1202Y3	16	2	6 Diff / 6 SE	PGA (1-128), ± 2.5	Int	8051	8	Flash	0.2	3 / 2.7-5.25	8-bit IDAC	\$4.95

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New products are listed in **bold red**. Preview products are listed in **bold blue**.

$\Delta \Sigma$ DACs Selection Guide

	Res.	Settling Time	Number of Output		Output		Linearity	Monotonicity	Power		
Device	(Bits)	(ms)	DACs	Interface	(V)	V _{REF}	(%)	(Bits)	(mW)	Package	Price ¹
DAC1220	20	10	1	Serial, SPI	5	Ext	0.0015	20	2.5	SSOP-16	\$6.65
DAC1221	16	2	1	Serial, SPI	2.5	Ext	0.0015	16	1.2	SSOP-16	\$5.25

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Data Converters

String and R-2R DACs Selection Guide

			Settling	# of					Mono-	Supply	Power		
		Res.	Time	Output		Output		Linearity	tonic	Voltage	(mW)		
Device	Architecture	(Bits)	(µs)	DACs	Interface	(V)	V _{REF}	(%)	(Bits)	(V)	(typ)	Package(s)	Price ¹
DAC7654	R-2R	16	12	4	Serial, SPI	±2.5	Int	0.0015	16	±14.25 to 15.75	18	LQFP-64	\$21.80
DAC7664	R-2R	16	12	4	P16	±2.5	Int	0.0015	16	±14.25 to 15.75	18	LQFP-64	\$20.75
DAC7634	R-2R	16	10	4	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.0015	15	±4.75 to 5.25	7.5	SSOP-48	\$19.95
DAC7641	R-2R	16	10	1	P16	+V _{REF} , ±V _{REF}	Ext	0.0015	15	±4.75 to 5.25	1.8	TQFP-32	\$6.30
DAC7642	R-2R	16	10	2	P16	+V _{REF} , ±V _{REF}	Ext	0.0015	15	±4.75 to 5.25	2.5	LQFP-32	\$10.55
DAC7644	R-2R	16	10	4	P16	+V _{REF} , ±V _{REF}	Ext	0.0015	15	±4.75 to 5.25	7.5	SSOP-48	\$19.95
DAC7734	R-2R	16	10	4	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.0015	16	±14.75 to 15.75	50	SSOP-48	\$31.45
DAC712	R-2R	16	10	1	P16	±10	Int	0.003	15	±11.4 to 16.5	525	PDIP-28, SOIC-28	\$14.50
DAC714	R-2R	16	10	1	Serial, SPI	±10	Int	0.0015	16	±11.4 to 16.5	525	PDIP-16, SOIC-16	\$14.50
DAC7631	R-2R	16	10	1	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.0015	15	±4.75 to 5.25	1.8	SSOP-20	\$5.85
DAC7632	R-2R	16	10	2	Serial, SPI	+V _{REF} , ±V _{REF}	Ext	0.0015	15	±14.25 to 15.75	2.5	LQFP-32	\$10.45
DAC7744	R-2R	16	10	4	P16	+V _{REF} , ±V _{REF}	Ext	0.0015	16	+2.7 to 5.5	50	SSOP-48	\$31.45
DAC8501	String	16	10	1	Serial, SPI	V _{REF} / MDAC	Ext	0.0987	16	+2.7 to 5.5	0.72	VSSOP-8	\$3.00
DAC8531	String	16	10	1	Serial, SPI	+V _{REF}	Ext	0.0987	16	+2.7 to 5.5	0.72	VSSOP-8, QFN 3 x 3	\$3.00
DAC8532	String	16	10	2	Serial, SPI	+V _{REF}	Ext	0.0987	16	2.75 to 5.25	1.35	VSSOP-8	\$5.35
DAC8544	String	16	10	4	Parallel	+V _{REF}	Ext	0.0987	16	+2.7 to 5.5	2	QFN 5 x 5	\$9.75
DAC8534	String	16	10	4	Serial, SPI	+V _{REF}	Ext	0.0987	16	+2.7 to 5.5	0.42	VTSSOP-16	\$9.75
DAC8541	String	16	10	1	P16	+V _{REF}	Ext	0.096	16	+2.7 to 5.5	0.72	TQFP-32	\$3.00
DAC8571	String	16	10	1	Serial, I ² C	+V _{REF}	Ext	0.0987	16	+2.7 to 5.5	0.42	VSSOP-8	\$2.95
DAC8574	String	16	10	4	Serial, I ² C	+V _{REF}	Ext	0.0987	16	+2.7 to 5.5	2.7	TSSOP-16	\$10.25
DAC0374	R-2R	16	5	1	Serial, SPI	+10, ±10	Int / Ext	0.0015	16	±14.25 to 15.75	100	SSOP-24	\$8.20
DAC7741	R-2R	16	5	1	P16	+10, ±10 +10, ±10	Int / Ext	0.0015	16	±14.25 to 15.75	100	LQFP-48	\$8.30
DAC7741			1	1								TSSOP-16	
	String	16			Serial, SPI	+V _{REF}	Ext	0.0987	16	2.75 to 5.25	60 0.05		\$3.25
DAC8811	R-2R	16	0.5	1	Serial, SPI	±V _{REF} / MDAC	Ext	0.0015	16	2.75 to 5.25	0.05	VSSOP-8	\$8.50
DAC8812	R-2R	16	0.5	2	Serial, SPI	±V _{REF} / MDAC	Ext	0.0015	16	2.75 to 5.25	0.05	TSSOP-16	\$10.15
DAC8814	R-2R	16	0.5	4	Serial, SPI	±V _{REF} / MDAC	Ext	0.0015	16	2.75 to 5.25	0.05	SSOP-28	\$26.35
DAC8821	R-2R	16	0.5	1	P16	±V _{REF} / MDAC	Ext	0.0015	16	2.75 to 5.25	0.05	TSSOP-28	\$12.50
DAC8830	R-2R	16	0.5	1	Serial, SPI	+V _{REF}	Ext	0.0015	16	2.75 to 5.25	0.05	SOIC-8	\$9.35
DAC8831	R-2R	16	0.5	1	Serial, SPI	+V _{REF}	Ext	0.0015	16	2.75 to 5.25	0.05	SOIC-14	\$9.35
DAC8802	R-2R	14	0.5	2	Serial, SPI	±V _{REF} / MDAC	Ext	0.0061	14	2.75 to 5.25	0.05	TSSOP-16	\$7.25
DAC8803	R-2R	14	0.5	4	Serial, SPI	±V _{REF} / MDAC	Ext	0.0061	14	2.75 to 5.25	0.05	SSOP-28	\$16.95
DAC8804	R-2R	14	0.5	1	P16	±V _{REF} / MDAC	Ext	0.0061	14	2.75 to 5.25	0.05	TSSOP-28	\$7.15
DAC8801	R-2R	14	0.5	1	Serial, SPI	±V _{REF} / MDAC	Ext	0.0061	14	2.75 to 5.25	0.3	MSOP-8	\$5.50
DAC7513	String	12	10	1	Serial, SPI	+V _{REF}	Ext	0.38	12	+2.7 to 5.5	0.3	VSSOP-8, SSOP-8	\$1.45
DAC7571	String	12	10	1	Serial, I ² C	+V _{REF}	Ext	0.096	12	+2.7 to 5.5	0.85	SOP-6, SSOP-16	\$1.55
DAC7574	String	12	10	4	Serial, I ² C	+V _{REF}	Ext	0.096	12	+2.7 to 5.5	0.85	MSOP-10	\$6.15
DAC7611	R-2R	12	10	1	Serial, SPI	4.096	Int	0.012	12	+4.75 to 5.25	5	PDIP-8, SOIC-8	\$2.55
DAC7612	R-2R	12	10	2	Serial, SPI	4.096	Int	0.012	12	+4.75 to 5.5	3.5	SOIC-8	\$2.70
DAC7613	R-2R	12	10	1	P12	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	+4.75 to 5.5	1.8	SSOP-24	\$2.50
DAC7616	R-2R	12	10	4	Serial, SPI	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	3 to 3.6	2.4	SOIC-16, SSOP-20	\$5.40
DAC7621	R-2R	12	10	1	P12	4.096	Int	0.012	12	+4.75 to 5.25	2.5	SSOP-20	\$2.75
DAC7625	R-2R	12	10	4	P12	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	+4.75 to 5.25	15	PDIP-28, SOIC-28	\$10.25
DAC7715	R-2R	12	10	4	Serial, SPI	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	±14.25 to 15.75	45	SOIC-16	\$11.45
DAC7725	R-2R	12	10	4	P12	$+V_{REF}, \pm V_{REF}$	Ext	0.012	12	±14.25 to 15.75	45	PLCC-28, SOIC-28	\$11.85
DAC7554	R-2R	12	5	4	Serial, SPI	+V _{REF}	Ext	0.012	12	2.75 to 5.25	1	MSOP-10	\$6.20
DAC813	R-2R	12	4	1	P12	+10, ±5, 10	Int / Ext	0.006	12	+11.4 to 16.5	270	PDIP-28, SOIC-28	\$12.60
TLV5614	String	12	3	4	Serial, SPI	+V _{REF}	Ext	0.1	12	+2.7 to 5.5	3.6	SOIC-16, TSSOP-16	\$7.45
TLV5616	String	12	3	1	Serial, SPI	+V _{REF}	Ext	0.1	12	+2.7 to 5.5	0.9	VSSOP-8, PDIP-8, SOIC-8	\$2.60
TLV5618A	String	12	2.5	2	Serial, SPI	+V _{REF}	Ext	0.08	12	+2.7 to 5.5	1.8	CDIP-8, PDIP-8, SOIC-8, LCCC-20	\$4.75
¹ Suggested	resale price in L	J.S. dollar	rs in quanti	ties of 1,00	0.				New produ	cts are listed in bo	old red. Pr	eview devices appear in	bold blue.

Industrial Solutions Guide

Texas Instruments 10 2005

Ð

Data Converters

String and R-2R DACs Selection Guide (Continued)

				_			_						
			Settling	# of					Mono-	Supply	Power		
		Res.	Time	Output	1	Output		Linearity	tonic	Voltage	(mW)		n 1
Device	Architecture	(Bits)	(µs)	DACs	Interface	(V)	V _{REF}	(%)	(Bits)	(V)	(typ)	Package(s)	Price ¹
DAC7541	R-2R	12	1	1	P12	±V _{REF} , MDAC	Ext	0.012	12	+5 to 16	30	PDIP-18, SOP-18	\$6.70
TLV5619	String	12	1	1	P12	+V _{REF}	Ext	0.08	12	+2.7 to 5.5	4.3	SOIC-20, TSSOP-20	\$2.60
TLV5630	String	12	1	8	Serial, SPI	+V _{REF}	Int / Ext	0.4	12	+2.7 to 5.5	18	SOIC-20, TSSOP-20	\$8.85
TLV5636	String	12	1	1	Serial, SPI	+2, 4	Int / Ext	0.1	12	+2.7 to 5.5	4.5	SOIC-8, VSSOP-8	\$3.65
TLV5638	String	12	1	2	Serial, SPI	+2, 4	Int / Ext	0.1	12	+2.7 to 5.5	4.5	SOIC-8, CDIP-8, LCCC-20	\$3.25
TLV5639	String	12	1	1	P12	+2, 4	Int / Ext	0.1	12	+2.7 to 5.5	2.7	SOIC-20, TSSOP-20	\$3.45
DAC7800	R-2R	12	0.8	2	Serial, SPI	1mA	Ext	0.012	12	+4.5 to 5.5	1	PDIP-16, SOIC-16	\$13.55
DAC7802	R-2R	12	0.8	2	P12	1mA	Ext	0.012	12	+4.5 to 5.5	1	PDIP-24, SOIC-24	\$14.00
DAC7811	R-2R	12	0.5	1	Serial, SPI	$\pm V_{REF} / MDAC$	Ext	0.0244	12	2.75 to 5.25	0.05	MSOP-10	\$3.15
DAC6571	String	10	9	1	Serial, I ² C	V _{DD}	Ext	0.195	10	2.75 to 5.25	0.5	SOP-6	\$1.40
DAC6574	String	10	9	4	Serial, I ² C	+V _{REF}	Ext	0.195	10	2.7 to 5.5	1.5	VSSOP-10	\$3.05
TLV5604	String	10	3	4	Serial, SPI	+V _{REF}	Ext	0.05	10	2.7 to 5.5	3	SOIC-16, TSSOP-16	\$3.70
TLV5606	String	10	3	1	Serial, SPI	+V _{REF}	Ext	0.15	10	2.7 to 5.5	0.9	SOIC-8, VSSOP-8	\$1.30
TLV5617A	String	10	2.5	2	Serial, SPI	+V _{REF}	Ext	0.1	10	2.7 to 5.5	1.8	SOIC-8	\$2.25
TLV5608	String	10	1	8	Serial, SPI	+V _{REF}	Ext	0.4	10	2.7 to 5.5	18	SOIC-20, TSSOP-20	\$4.90
TLV5631	String	10	1	8	Serial, SPI	+V _{REF}	Int / Ext	0.4	10	2.7 to 5.5	18	SOIC-20, TSSOP-20	\$5.60
TLV5637	String	10	0.8	2	Serial, SPI	+2, 4	Int / Ext	0.1	10	2.7 to 5.25	4.2	SOIC-8	\$3.20
TLC5620	String	8	10	4	Serial, SPI	+V _{REF}	Ext	0.4	8	+4.75 to 5.25	8	PDIP-14, SOIC-14	\$1.50
TLC5628	String	8	10	8	Serial, SPI	+V _{REF}	Ext	0.4	8	+2.7 to 5.25	15	PDIP-16, SOIC-16	\$2.45
TLV5620	R-2R	8	10	4	Serial, SPI	+V _{REF}	Ext	0.2	8	+2.7 to 5.5	6	PDIP-14, SOIC-14	\$1.00
TLV5621	R-2R	8	10	4	Serial, SPI	+V _{REF}	Ext	0.4	8	+2.7 to 5.5	3.6	SOIC-14	\$1.65
TLV5628	String	8	10	8	Serial, SPI	+V _{REF}	Ext	0.4	8	+2.7 to 5.5	12	PDIP-16, SOIC-16	\$2.20
DAC5571	String	8	8	1	Serial, I ² C	V _{DD}	Int	0.195	8	2.75 to 5.25	0.5	SOP-6	\$0.90
DAC5574	String	8	8	4	Serial, I ² C	+V _{REF}	Ext	0.195	8	2.7 to 5.5	1.5	VSSOP-10	\$2.55
TLC7226	R-2R	8	5	4	P8	±V _{REF}	Ext	0.4	8	+11.4 to 16.5	90	PDIP-20, SOIC-20	\$2.15
TLV5623	String	8	3	1	Serial, SPI	+V _{REF}	Ext	0.2	8	+2.7 to 5.5	2.1	SOIC-8, VSSOP-8	\$0.99
TLV5625	String	8	3	2	Serial, SPI	+V _{REF}	Ext	0.2	8	+2.7 to 5.5	2.4	SOIC-8	\$1.70
TLV5627	String	8	2.5	4	Serial, SPI	+V _{REF}	Ext	0.2	8	+2.7 to 5.5	3	SOIC-16, TSSOP-16	\$2.05
TLV5624	String	8	1	1	Serial, SPI	+2, 4	Int / Ext	0.2	8	+2.7 to 5.5	0.9	SOIC-8, VSSOP-8	\$1.60
TLV5632	String	8	1	8	Serial, SPI	+2, 4	Int / Ext	0.4	8	+2.7 to 5.5	18	SOIC-20, TSSOP-20	\$3.35
TLV5626	String	8	0.8	2	Serial, SPI	+2, 4	Int / Ext	0.4	8	+2.7 to 5.5	4.2	SOIC-8	\$1.90
TLC7524	R-2R	8	0.0	1	P8	1mA	Ext	0.1	8	+4.75 to 5.25	5	PDIP-16, PLCC-20,	\$1.45
1207021	11 211	0	0.1		10	min	LAL	0.2	U	11.70 10 0.20	0	SOIC-16, TSSOP-16	ψ1.40
TLC7528	R-2R	8	0.1	2	P8	1mA	Ext	0.2	8	+4.75 to 5.25	7.5	PDIP-20, PLCC-20,	\$1.55
1207020	11 211	0	0.1	2	10	min	LAL	0.2	Ū	11.70 10 0.20	7.0	SOIC-20, TSSOP-20	ψ1.00
												0010-20, 10001-20	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Preview products are listed in **bold blue**.

G

56

Ð

Data Converters/Digital Signal Controllers

High-Speed DACs Selection Guide

	Res.	Supply	Update Rate	Settling Time	Number of	Power Typ	DNL	INL		
Device	(Bits)	(V)	(MSPS)	(ns)	DACs	(mW)	max (±LSB)	max (±LSB)	Package(s)	Price ¹
DAC904	14	3.0 to 5.0	165	30	1	170	1.75	2.5	28-SOP, 28-TSSOP	\$6.25
THS5671A	14	3.0 to 5.0	125	35	1	175	3.5	7	28-SOP, 28-TSSOP	\$8.00
DAC902	12	3.0 to 5.0	165	30	1	170	1.75	2.5	28-SOP, 28-TSSOP	\$6.25
THS5661A	12	3.0 to 5.0	125	35	1	175	2.0	4	28-SOP, 28-TSSOP	\$6.25
DAC900	10	3.0 to 5.0	165	30	1	170	0.5	1	28-SOP, 28-TSSOP	\$4.25
THS5651A	10	3.0 to 5.0	125	35	1	175	0.5	1	28-SOP, 28-TSSOP	\$4.25
DAC2904	14	3.3 to 5.0	125	30	2	310	_	_	48-TQFP	\$20.19
DAC2902	12	3.3 to 5.0	125	30	2	310	2.5	3	48-TQFP	\$15.41
DAC2900	10	3.3 to 5.0	125	30	2	310	1	1	48-TQFP	\$9.19
DAC5662	12	3.0 to 3.6	200	20	2	330	2	2	48-TQFP	\$10.70
DAC5672	14	3.0 to 3.6	200	20	2	330	3	4	48-TQFP	\$13.25
DAC5675	14	3	400	5	1	820	2	4	48-HTQFP	\$29.75
DAC5686	14	1.8/3.3	500	12	2	400	TBD	TBD	100-HTQFP	\$42.00
DAC2932	12	2.7 to 3.3	40	25	2	29	0.5	2	48-TQFP	\$7.95
DAC5674	12	1.8/3.3	400	20	1	420	2	3.5	48-HTQFP	\$21.00

¹Suggested resale price in U.S. dollars in quantities of 1,000.

TMS320C28x™ Digital Signal Controllers

				Flash/														
		Boot	RAM	ROM ⁵			#	A/D ² Chs/								Core		
		ROM ⁷	(16-bit	(16-bit		CAP/	PWM	Conversion		WD		Comm			I/0	Voltage		
Device ⁵	MIPS	(words)	words ⁷)	words ⁷)	Timers	QEP	Channels	Time (ns)	EMIF	Timer	Other	SPI	SCI	CAN	Pins	(V)	Package	Price ¹
Flash Devices				_			_											
TMS320 F2801 -PZA/Q ⁵	100	4K	6K	16K	9	2/1	6 + 2 ⁸	16 ch/160	—	Y	l ² C	2	1	1	32	1.8	100-LQFP	\$5.79 ⁴
TMS320 F2801 -GGMA/Q ⁵	100	4K	6K	16K	9	2/1	6 + 2 ⁸	16 ch/160	—	Y	l ² C	2	1	1	32	1.8	100-BGA ⁶	\$5.79 ⁴
TMS320 F2806 -PZA/Q ⁵	100	4K	10K	32K	15	4/2	12 + 4 ⁸	16 ch/160	_	Y	I ² C	4	2	1	32	1.8	100-LQFP	\$8.69 ⁴
TMS320 F2806 -GGMA/Q ⁵	100	4K	10K	32K	15	4/2	12 + 4 ⁸	16 ch/160	_	Y	l ² C	4	2	1	32	1.8	100-BGA ⁶	\$8.69 ⁴
TMS320 F2808 -PZA/Q ⁵	100	4K	18K	64K	15	4/2	12 + 4 ⁸	16 ch/160	_	Y	I ² C	4	2	2	32	1.8	100-BGA ⁶	\$11.52 ⁴
TMS320 F2808 -GGMA/Q ⁵	100	4K	18K	64K	15	4/2	12 + 4 ⁸	16 ch/160	—	Y	l ² C	4	2	2	32	1.8	100-BGA ⁶	\$11.52 ⁴
TMS320 F2810 -PBKA/Q ⁵	150	4K	18K	64K	7	6/2	16	16 ch/80	_	Y	McBSP	1	2	1	56	1.9	128-LQFP	\$14.53
TMS320 F2811 -PBKA/Q ⁵	150	4K	18K	128K	7	6/2	16	16 ch /80	_	Y	McBSP	1	2	1	56	1.9	128-LQFP	\$15.50
TMS320 F2812 -GHHA/Q ⁵	150	4K	18K	128K	7	6/2	16	16 ch /80	Y	Y	McBSP	1	2	1	56	1.9	179-BGA ⁶	\$16.47
TMS320 F2812 -PGFA/Q ⁵	150	4K	18K	128K	7	6/2	16	16 ch/80	Y	Y	McBSP	1	2	1	56	1.9	176-LQFP	\$16.47
RAM-Only Devices																		
TMS320 F2811 -PBKA/Q ⁵	150	4K	20K	_	7	6/2	16	16 ch/160	—	Y	McBSP	1	2	1	56	1.9	128-LQFP	\$9.11
TMS320 F2812 -GHHA/Q ⁵	150	4K	20K	—	7	6/2	16	16 ch/160	Y	Y	McBSP	1	2	1	56	1.9	179-BGA ⁶	\$10.63
TMS320 F2811 -PGFA/Q ⁵	150	4K	20K	_	7	6/2	16	16 ch/160	Y	Y	McBSP	1	2	1	56	1.9	128-LQFP	\$10.63
ROM-Based Device	s																	
TMS320 C2810 -PBKA/Q ⁵	150	4K	18K	64K	7	6/2	16	16 ch/80	_	Y	McBSP	1	2	1	56	1.9	128-LQFP	\$7.05 ³
TMS320 C2811 -PBKA/Q ⁵	150	4K	18K	128K	7	6/2	16	16 ch/80	_	Y	McBSP	1	2	1	56	1.9	128-LQFP	\$8.22 ³
TMS320 C2812 -GHHA/Q ⁵	150	4K	18K	128K	7	6/2	16	16 ch/80	Y	Y	McBSP	1	2	1	56	1.9	179-BGA ⁶	\$9.59 ³
TMS320 C2812 -PGFA/Q ⁵	150	4K	18K	128K	7	6/2	16	16 ch/80	Y	Y	McBSP	1	2	1	56	1.9	176-LQFP	\$9.59 ³
¹ Suggested resale price i	n U.S. d	ollars in d	quantities	of 1,000. ²	Dual samp	ole/hold	d.								Nev	v products	are listed in	bold red.

³Minimum volumes for C281x devices are 10 KU with NRE of \$11,000. ⁴Production scheduled for 3005. ⁵A = -40° to 85°C; Q = -40 to 125°C (10% adder), Q100 qualified. ⁶PB-free packages available. ⁷1 word = 2 bytes. ⁸CAP can be used to generate PWM. Note: Enhanced plastic and Military DSP versions are available for selected DSPs.

Microcontrollers

MSP430 Ultra-Low-Power Microcontrollers Selection Guide

				-		Wetch												
	Prgm.				LCD 8-Bit	Watch- dog	Timer	2					Comp	Temp	ADC	DAC		
Device	(kB)	SRAM	I/0	DMA	Timer	16-Bit	AB		I ² C	SVS	BOR	MPY	A	Sensor	Ch/Res	Ch/Res	Package(s)	Price ¹
Flash Based			100.000					USAIII		343			^	0011301			i ackaye(s)	I IIICe
MSP430F1101A	1	128	14	_	_	<i>✓</i>	3 —	-	-	-	-	-	1	-	Slope	—	20-SOIC, 20-TSSOP 20-TVSOP, 24-QFN	\$0.99
MSP430C1101	1	128	14	_	_	1	3 —	_	_	_	_	—	1	_	Slope	_	20-SOP, 20-TSSOP, 24-QFN	\$0.60
MSP430F1111A	2	128	14	-	-	1	3 —	-	-	—	—	—	1	—	Slope	—	20-SOIC, 20-TSSOP 20-TVSOP, 24-QFN	\$1.35
MSP430C1111	2	128	14	—	—	1	3 —	_	—	—	—	—	\checkmark	_	Slope	_	20-SOP, 20-TSSOP, 24-QFN	\$1.10
MSP430F1121A	4	256	14	-	-	1	3 —	-	-	-	-	-	1	-	Slope	-	20-SOIC, 20-TSSOP 20-TVSOP, 24-QFN	\$1.70
MSP430C1121	4	256	14	—	—	1	3 —	—	—	—	—	—	\checkmark	—	Slope	—	20-SOP, 20-TSSOP, 24-QFN	\$1.35
MSP430F1122	4	256	14	—	—	\checkmark	3 —	—	—	—	\checkmark	—	—	\checkmark	5 / 10	—	20-SOIC, 20-TSSOP, 32-QFN	\$2.00
MSP430F1132	8	256	14	—	—	1	3 —	—	—	—	\checkmark	—	—	\checkmark	5 / 10	—	20-SOIC, 20-TSSOP, 32-QFN	\$2.25
MSP430F122	4	256	22	_	_	1	3 —	—	—	_	_	_	1	_	Slope	—	28-SOIC, 28-TSSOP, 32-QFN	\$2.15
MSP430F123	8	256	22	_	_	1	3 —	_	_	_	—	—	1	_	Slope	—	28-SOIC, 28-TSSOP, 32-QFN	\$2.30
MSP430F1222	4	256	22		_	1	3 —	1		_	1	_	_	1	8 / 10	_	28-SOIC, 28-TSSOP, 32-QFN	\$2.40
MSP430F1232	8	256	22	_	_	1	3 —	1	_	_	1	_	_	1	8 / 10	_	28-SOIC, 28-TSSOP, 32-QFN	\$2.50
MSP430F133	8	256	48	_	_	1	3 3	1	_	_	_	_	1	1	8 / 12	_	64-LQFP, 64-TQFP, 64-QFN	\$3.00
MSP430C1331	8	256	48	_	_	1	3 3	1	_	_	_	_	1	_	Slope	_	64-TQFP, 64-QFN	\$2.00
MSP430F135	16	512	48		_	1	3 3	1	_	_	_	_	1	1	8/12	_	64-LQFP, 64-TQFP, 64-QFN	\$3.60
MSP430C1351	16	512	48		_	1	3 3	1	_	_	_	_	1	_	Slope	_	64-TQFP, 64-QFN	\$2.30
MSP430F147	32	1024	48	_	_	1	3 7	2	_	_		1	1	1	8 / 12	_	64-LQFP, 64-TQFP, 64-QFN	\$5.05
MSP430F1471	32	1024	48	_	_	1	3 7	2	_	_	_	· /	1	_	Slope	_	64-LQFP, 64-QFN	\$4.60
MSP430F148	48	2048	48			v V	3 7	2	_			✓ ✓	v _	~	8 / 12		64-LQFP, 64-TQFP, 64-QFN	\$5.75
MSP430F1481	40	2048	40	_	—	v _/	3 7	2	_	_	_	✓ ✓	✓ ✓		Slope	-	64-LQFP, 64-QFN	\$5.30
MSP430F1401 MSP430F149	40 60	2048		_	-		3 7	2	_	_	_			_	8 / 12	-		
MSP430F149 MSP430F1491		2048	48	—	-	√ √	3 7		_	_	_	1	1	1		-	64-LQFP, 64-TQFP, 64-QFN	\$6.05
	60		48	_	-				_	_	_	1	1	_	Slope		64-LQFP, 64-QFN	\$5.60
MSP430F155	16	512	48	1	—	1	3 3	1	✓ ✓	1	1	_	1	1	8/12	2/12	64-LQFP	\$4.95
MSP430F156	24	1024	48	1	-	1	3 3		✓ ✓	1	V	_	1	1	8/12	2/12	64-LQFP	\$5.55
MSP430F157	32	1024	48	1	—	1	3 3		✓	√	~	_	1	1	8/12	2/12	64-LQFP	\$5.85
MSP430F167	32	1024	48	1	-	1	3 7		~	1	1	~	1	~	8/12	2/12	64-LQFP	\$6.75
MSP430F168	48	2048	48	1	—	1	3 7		1	1	~	1	1	1	8/12	2 / 12	64-LQFP	\$7.45
MSP430F169	60	2048	48	1	-	1	3 7		~	1	~	1	1	1	8 / 12	2/12	64-LQFP	\$7.95
MSP430F1610	32	5120	48	1	—	\checkmark	3 7		1	\checkmark	\checkmark	1	\checkmark	1	8 / 12	2 / 12	64-LQFP	\$8.25
MSP430F1611	48	10240	48	1	-	1	3 7		~	1	✓	1	1	1	8 / 12	2 / 12	64-LQFP	\$8.65
MSP430F1612	55	5120	48	1	—	✓	3 7		✓	1	1	1	✓	\checkmark	8 / 12	2/12	64-LQFP	\$8.95
Flash-ROM-	Based			ly with	ı LCD I	Driver			/)					_	_			
MSP430F412	4	256	48	—	96	✓	3 —	-	—	1	✓	—	1	-	Slope	—	64-LQFP, 64-QFN	\$2.60
MSP430C412	4	256	48	—	96	\checkmark	3 —	· _	—	\checkmark	\checkmark	—	\checkmark	—	Slope	—	64-LQFP, 64-QFN	\$2.90
MSP430F413	8	256	48	—	96	✓	3 —	· _	—	1	\checkmark	—	\checkmark	—	Slope	—	64-LQFP, 64-QFN	\$2.95
MSP430F413	8	256	48		96	\checkmark	3 —	· _	—	\checkmark	\checkmark	—	1	_	Slope	—	64-LQFP, 64-QFN	\$2.10
MSP430F415	16	512	48	—	96	1	3,5 —		—	1	1	—	\checkmark		Slope	—	64-LQFP	\$3.40
MSP430F417	32	1024	48	_	96	1	3,5 —		—	1	1	—	1	_	Slope	—	64-LQFP	\$3.90
MSP430FW423	8	256	48		96	1	3,5 —		_	1	1	_	1	_	Slope	_	64-LQFP, 64-QFN	\$3.75
MSP430FW425	16	512	48	—	96	1	3,5 —		_	1	1	_	1	_	Slope	_	64-LQFP	\$4.05
MSP430FW427	32	1024	48	_	96	1	3,5 —		_	1	1	_	1	_	Slope	_	64-LQFP	\$4.45
MSP430F423	8	256	14	_	128	1	3 –		_	1	1	1	_	1	3/16	_	64-LQFP	\$4.50
MSP430F425	16	512	14	_	128	· ✓	3 —		_	1	1	· ✓	_	1	3 / 16	_	64-LQFP	\$4.95
MSP430F427	32	1024	14	_	128	1	3 -		_	1	1	1	_	1	3 / 16	_	64-LQFP	\$5.40
MSP430FE423	8	256	14		128	1	3 –		_	1	1	_	_	✓ ✓	3 / 16	_	64-LQFP	\$4.85
MSP430FE425	16	512	14		128	v V	3 –		_	1	1			1	3 / 16	_	64-LQFP	\$5.45
¹ Suggested resa									aomna		•				0,10		U. 2011	ψ0.10

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²Number of capture/compare registers.

58

Ð

Microcontrollers/Interface

MSP430 Ultra-Low-Power Microcontrollers Selection Guide (Continued)

					LCD	Watch-													
	Prgm.				8-Bit	dog		ier ²						Comp	Temp	ADC	DAC		
Device	(kB)	SRAM	I/0	DMA	Timer	16-Bit	Α	В	USART	l ² C	SVS	BOR	MPY	Α	Sensor	Ch/Res	Ch/Res	Package(s)	Price ¹
Flash-ROM-I	Based	F4xx	Famil	ly witl	h LCD D	river	(V _c	; 1.8	V - 3.6V	') (Co	ntinu	ed)							
MSP430FE427	32	1024	14	—	128	\checkmark	3	—	1	—	\checkmark	1	—	—	\checkmark	3 / 16	—	64-LQFP	\$5.95
MSP430F4250	16	256	32	_	56	\checkmark	3	—	—	—	\checkmark	1	—	—	—	16	12	—	\$3.95
MSP430F4260	24	256	32	_	56	\checkmark	3	—	—	_	\checkmark	1	—	—	—	16	12	—	\$4.25
MSP430F4270	32	256	32	_	56	\checkmark	3	—	_	—	1	1	—	—	_	16	12	—	\$4.55
MSP430F435	16	512	48	—	128/160	\checkmark	3	3	1	—	1	\checkmark	—	\checkmark	1	8 / 12	—	80-LQFP, 100-LQFP	\$4.45
MSP430F436	24	1024	48	_	128/160	\checkmark	3	3	1	—	1	1	—	1	1	8 / 12	—	80-LQFP, 100-LQFP	\$4.70
MSP430F437	32	1024	48	—	128/160	\checkmark	3	3	1	—	1	\checkmark	—	\checkmark	1	8 / 12	—	80-LQFP, 100-LQFP	\$4.90
MSP430FG437	32	1024	48	1	128	1	3	3	1	—	1	1	_	\checkmark	1	12 / 12	2/12	80-LQFP	\$6.50
MSP430FG438	48	2048	48	\checkmark	128	1	3	3	1	—	1	\checkmark	_	\checkmark	1	12 / 12	2/12	80-LQFP	\$7.35
MSP430FG439	60	2048	48	\checkmark	128	\checkmark	3	3	1	—	1	1	—	1	1	12 / 12	2/12	80-LQFP	\$7.95
MSP430F447	32	1024	48	—	160	\checkmark	3	7	2	—	1	\checkmark	1	\checkmark	1	8 / 12	—	100-LQFP	\$5.75
MSP430F448	48	2048	48	_	160	\checkmark	3	7	2	—	1	1	1	1	1	8 / 12	—	100-LQFP	\$6.50
MSP430F449	60	2048	48	_	160	1	3	7	2	—	1	\checkmark	1	\checkmark	1	8 / 12	_	100-LQFP	\$7.05
MSP430F4618	116	8192	80	1	160	1	3	7	2	—	1	1	1	1	1	8 / 12	2 / 12	100-LQFP	\$9.95
MSP430F4619	120	4096	80	1	160	1	3	7	2	—	1	1	1	1	1	8 / 12	2 / 12	100-LQFP	\$9.75
Flash-ROM-I	Based	F4xx	Fami	ly witl	h 16 MI	PS (V	_{cc} 1.	8-3.	6V)										
MSP430F2101	1	128	14	_	_	1	3	—	—	—	_	_	_	√ ³	—	Slope	_	20-TVSOP, 20-SOP, 20-TSSOP, 24-QFN	\$0.99
MSP430F2111	2	128	14	_	_	1	3	—	_	_	_	_	_	√ ³	_	Slope	_	20-TVSOP, 20-SOP, 20-TSSOP, 24-QFN	\$1.35
MSP430F2121	4	256	14	_	_	1	3	—	_	—	_	_	_	√ ³	—	Slope	_	20-TVSOP, 20-SOP, 20-TSSOP, 24-QFN	\$1.70
MSP430F2131	8	256	14	_	_	1	3	—	_	_	_	_	_	√ ³	_	Slope	_	20-TVSOP, 20-SOP, 20-TSSOP, 24-QFN	\$2.05

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²Number of capture/compare registers. ³Multiplied comparator.

Preview products appear in **bold blue**.

CAN Selection Guide

Supply				I _{CC}		Bus Fault				
Voltage			Transient Pulse	max	ESD	Protection		Temp Range		
(V)	Device	Description	Protection (V)	(mA)	(kV)	(V)	Footprint	(°C)	Package(s)	Price ¹
5	SN65HVD251	Standby mode,	-200 to 200	65	14	±36	PCA82C250	-40 to 125	8-PDIP, 8-SOIC	\$0.90
		improved drop-in replacement								
		for PCA82C250 & PCA82C251								
	SN65HVD1040	Improved drop-in replacement	-200 to 200	70	6	–27 to 40	TJA1040	-40 to 125	8-SOIC	-
		for TJA1040								
	SN65HVD1039	Same as HVD1040 without	-200 to 2000	70	6	–27 to 40	TJA1040	-40 to125	8-SOIC	-
		dominant time out mode								
	SN65HVD1050	Improved drop-in replacement	-200 to 200	70	6	–27 to 40	TJA1050	-40 to 125	8-SOIC	—
		for TJA1050								
	SN65HVD1049	Same as HVD1050 without dominant	-200 to 200	70	6	–27 to 40	TJA1050	-40 to 125	8-SOIC	_
		time out mode								
	SN65HVD1040v33	TJA1040 with 3 V MCU I/Os	±200	70	6	–27 to 40	TJA1040	-40 to 125	8-SOIC	—
	SN65HVD1050v33	TJA1050 with 3 V MCU I/Os	±200	70	6	-27 to 40	TJA1050	-40 to 125	8-SOIC	_
	SN65LBC031	500Kbps	-150 to 100	20	2	–5 to 20	SN75LBC031	-40 to 125	8-SOIC	\$1.50
3.3	SN65HVD230	Standby mode	-25 to 25	17	16	-4 to 16	PCA82C250	-40 to 85	8-SOIC	\$1.35
	SN65HVD231	Sleep mode	-25 to 25	17	16	-4 to 16	PCA82C250	-40 to 85	8-SOIC	\$1.35
	SN65HVD232	Cost effective	-25 to 25	17	16	-4 to 16	SN65HVD232	-40 to 85	8-SOIC	\$1.30
	SN65HVD230Q	Automotive temp, standby mode	-25 to 25	17	15	–7 to 16	PCA82C250	-40 to 125	8-SOIC	\$1.55
	SN65HVD231Q	Automotive temp, sleep mode	-25 to 25	17	15	-7 to 16	PCA82C250	-40 to 125	8-SOIC	\$1.55
	SN65HVD232Q	Automotive temp, cost effective	-25 to 25	17	15	-7 to 16	SN65HVD232	-40 to 125	8-SOIC	\$1.50
	SN65HVD233	Standby mode, diagnostic loop-back	-100 to 100	6	16	±36	—	-40 to 125	8-SOIC	\$1.50
	SN65HVD234	Standby mode, sleep mode	-100 to 100	6	16	±36	_	-40 to 125	8-SOIC	\$1.45
	SN65HVD235	Standby mode, autobaud loop-back	-100 to 100	6	16	±36	_	-40 to 125	8-SOIC	\$1.50
1 Sugaest	ad resale price in II	S dollars in quantities of 1 000 All device	as havo a signaling r	ate of 1Mb	ns avcant l	BC031		Proviow	nroducte annoar	in hold hlue

¹Suggested resale price in U.S. dollars in quantities of 1,000. All devices have a signaling rate of 1Mbps except LBC031.

Preview products appear in **bold blue**.

Interface

USB Hub Controllers Selection Guide

				Voltage			
Device	Speed	Ports	l ² C	(V)	Package	Description	Price ¹
TUSB2036	Full (1.1)	2	No	3.3	32-LQFP	2/3-port hub for USB with optional serial EEPROM interface	\$1.15
TUSB2046B	Full (1.1)	4	No	3.3	32-LQFP	4-port hub for USB with optional serial EEPROM interface supporting Windows® 95/DOS mode	\$1.20
TUSB2077A	Full (1.1)	7	No	3.3	48-LQFP	7-port USB hub with optional serial EEPROM interface	\$1.95
TUSB2136	Full (1.1)	2	Yes	3.3	64-LQFP	2-port hub with integrated general-purpose function controller	\$3.25
TUSB5052	Full (1.1)	5	Yes	3.3	100-LQFP	5-port hub with integrated bridge to two serial ports	\$5.10

¹Suggested resale price in U.S. dollars in quantities of 1,000.

RS-485 Selection Guide

				No.	Supply	Signaling						
	Temperature			of	Voltage	Rate	ESD					
	Prefix ²	Device	Description	Tx/Rx	(V)	(Mbps)	(kV)	Fail-Safe	Nodes	Footprint	Package(s)	Price ¹
	SN65, SN75	HVD12	3.3V transceiver — 1Mbps	1/1	3.3	1	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.75
	SN65, SN75	HVD11	3.3V transceiver — 10Mbps	1/1	3.3	10	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.80
	SN65, SN75	HVD10	3.3V transceiver — 25Mbps	1/1	3.3	25	16	Short, Open	64	SN75176	8-PDIP, 8-SOIC	\$1.85
	SN65, SN75	HVD08	Wide supply range: 3 to 5.5V	1/1	3.3 to 5	10	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.90
	SN65, SN75	HVD3082E	Low power, fail-safe, high ESD	1/1	5	0.2	15	Short, Open	256	SN75176	8-PDIP, 8-SOIC, 8-MSOP	\$0.90
	SN65, SN75	HVD3085E	Low power, fail-safe & high ESD	1/1	5	1	15	Short, Open	256	SN75176	8-PDIP, 8-SOIC, 8-MSOP	\$0.90
	SN65, SN75	HVD3088E	Low power, fail-safe & high ESD	1/1	5	10	15	Short, Open	256	SN75176	8-PDIP, 8-SOIC, 8-MSOP	\$1.00
	SN65	HVD485E	Half duplex transceiver	1/1	5	10	15	Open	64	SN5176	8-PDIP, 8-SOIC, 8-MSOP	\$0.70
	SN65, SN75	HVD1176	PROFIBUS transceiver, EN 50170	1/1	5	40	10	Short, Open, Idle	160	SN75176	8-SOIC	\$1.55
	SN65	HVD22	–20V to 25V common mode, 0.5Mbps	1/1	5	0.5	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.65
	SN65	HVD21	–20V to 25V common mode, 5Mbps	1/1	5	5	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.65
	SN65	HVD20	–20V to 25V common mode, 25Mbps	1/1	5	25	16	Short, Open	64	SN75176	8PDIP, 8-SOIC	\$1.65
	SN65	HVD23	Receiver equalization, –20V to 25V Common mode, 25Mbps	1/1	5	25	16	Short, Open	64	SN75176	8-PDIP, 8-SOIC	\$1.80
Half-Duplex	SN65	HVD24	Receiver equalization, –20V to 25V common mode, 3Mbps	1/1	5	3	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.80
Hal	SN65, SN75	HVD07	High output transceiver — 1Mbps	1/1	5	1	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.50
	SN65, SN75	HVD06	High output transceiver — 1Mbps	1/1	5	10	16	Short, Open	256	SN75176	8-PDIP, 8-SOIC	\$1.55
	SN65, SN75	HVD05	High output transceiver — 40Mbps	1/1	5	40	16	Short, Open	64	SN75176	8-PDIP, 8-SOIC	\$1.60
	SN55, SN65, SN75	LBC176	Low power, -40°C to +125°C	1/1	5	10	2	Open	32	SN75176	8-PDIP, 8-SOIC	\$0.90
	SN65, SN75	LBC176A	Low power, high ESD	1/1	5	30	12	Open	32	SN75176	8-PDIP, 8-SOIC	\$1.20
	SN65	LBC176A-EP	Low power, high ESD, controlled fab & A/T	1/1	5	30	12	Open	32	SN75176	8-SOIC	\$3.51
	SN65, SN75	LBC184	Integrated transient protection, IEC 61000-4-2/5	1/1	5	0.25	15	Open	128	SN75176	8-PDIP, 8-SOIC	\$1.30
	SN65, SN75	LBC182	Similar to LBC184 without integrated transient protection	1/1	5	0.25	15	Open	128	SN75176	8-PDIP, 8-SOIC	\$1.05
	SN65, SN75	ALS176	Skew: 15ns	1/1	5	35	2	Open	32	SN75176	8-SOIC	\$0.72
	SN75	ALS176A	Skew: 7.5ns	1/1	5	35	2	Open	32	SN75176	8-PDIP, 8-SOIC	\$1.08
	SN75	ALS176B	Skew: 5ns	1/1	5	35	2	Open	32	SN75176	8-PDIP, 8-SOIC	\$0.72
	SN75	176A	Cost effective	1/1	5	10	2	None	32	SN75176	8-PDIP, 8-SOIC	\$0.27
	SN65, SN75	176B	Cost effective	1/1	5	10	2	None	32	SN75176	8-PDIP, 8-SOIC, 8-SOP	\$0.36
	SN65, SN75	LBC179A	High signaling rate, high ESD w/o enable	1/1	5	30	10	Open	32	SN75179	8-PDIP, 8-SOIC	\$1.10
	SN65, SN75	LBC180A	High signaling rate, high ESD w/ enable	1/1	5	30	10	Open	32	SN75180	14-PDIP, 14-SOIC	\$1.35
КХ	SN65, SN75	LBC180	Lower power, with enable	1/1	5	10	2	Open	32	SN75LBC180	14-PDIP, 14-SOIC	\$1.05
Full-Duplex	SN65, SN75	LBC179	Low power, without enable	1/1	5	10	2	Open	32	SN75179	8-PDIP, 8-SOIC	\$0.85
Full-I	SN75	ALS181	-12V to 12V common mode, with enable	1/1	5	10	2	None	32	SN75ALS180	14-PDIP, 14-SOP	\$1.62
	SN65, SN75	ALS180	High signaling rate, with enable	1/1	5	25	2	Open	32	SN75ALS180	14-SOIC	\$1.48
	SN75	178B	Without enables	1/1	5	10	2	None	32	SN75176	8-PDIP, 8-SOP	\$1.35
	SN75	179B	Without enables	1/1	5	10	2	None	32	SN75179	8-PDIP, 8-SOIC, 8-SOP	\$0.68

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²Available in Commercial (SN75) and Military (SN55) Temperature options in addition to Industrail Temperature (SN65).

59

Interface

RS-485 Selection Guide (Continued)

				No.	Supply	Signaling						
	Temperature			of	Voltage	Rate	ESD					
	Prefix ²	Device	Description	Tx/Rx	(V)	(Mbps)	(kV)	Fail-Safe	Nodes	Footprint	Package(s)	Price ¹
	SN75	ALS171	FAST-20 SCSI, skew: 10ns	3/3	5	20	2	Open	32	SN75ALS171	20-SOIC	\$5.40
Dual	SN75	ALS1177	Driver & receiver pair, common enable	2/2	5	10	2	Open	32	MC34050	16-PDIP, 16-SOP	\$3.24
	SN75	ALS1178	Driver & receiver pair, driver enable	2/2	5	10	2	Open	32	MC34051	16-PDIP, 16-SOP	\$3.24
	SN75	1177	Driver & receiver pair, common enable	2/2	5	10	2	N/A	32	MC34050	16-PDIP, 16-SOP	\$2.43
	SN75	1178	Driver & receiver pair, driver enable	2/2	5	10	2	Open	32	MC34051	16-PDIP, 16-SOP	\$2.43
	SN75, SN65	LBC170	FAST-20 SCSI, skew: 3ns	3/3	5	30	12	Open	32	SN75ALS170	20-SOIC, 16-SSOP	\$3.54
Triple	SN75, SN65	LBC171	FAST-20 SCSI, skew: 3ns	3/3	5	30	12	Open	32	SN75ALS171	20-SOIC, 20-SSOP	\$3.54
Ξ	SN75	ALS170A	FAST-20 SCSI, skew: 5ns	3/3	5	20	2	Open	32	SN75ALS170	20-SOIC	\$4.77
	SN75	ALS171A	FAST-20 SCSI, skew: 5ns	3/3	5	20	2	Open	32	SN75ALS171	20-SOIC	\$4.54
	SN75	ALS170	FAST-20 SCSI, skew: 10ns	3/3	5	20	2	Open	32	SN75ALS170	20-SOIC	\$4.77
	SN55, SN65, SN75	LBC172	Low power	4/0	5	10	2	N/A	32	AM26LS31	16-PDIP, 20-SOIC	\$1.65
	SN55, SN65, SN75	LBC174	Low power	4/0	5	10	2	N/A	32	MC3487	16-PDIP, 20-SOIC	\$1.75
S	SN65, SN75	LBC172A	High signaling rate, high ESD	4/0	5	30	13	N/A	32	AM26LS31	16-PDIP, 16-SOIC, 20-SOIC	\$2.25
Drive	SN65, SN75	LBC174A	High signaling rRate, high ESD	4/0	5	30	13	N/A	32	MC3487	16-PDIP, 16-SOIC, 20-SOIC	\$2.35
Quad-Drivers	SN75	ALS172A	High signaling rate	4/0	5	20	2	N/A	32	AM26LS31	16-PDIP, 20-SOIC	\$2.61
D	SN75	ALS174A	High signaling rate	4/0	5	20	2	N/A	32	MC3487	16-PDIP, 20-SOIC	\$1.13
	SN75	172	Cost effective	4/0	5	4	2	N/A	32	AM26LS31	16-PDIP, 20-SOIC	\$0.97
	SN75	174	Cost effective	4/0	5	4	2	N/A	32	MC3487	16-PDIP, 20-SOIC	\$0.63
	SN55, SN65, SN75	LBC173	Low power	0/4	5	10	2	Open	32	AM26LS32	16-PDIP, 16-SOIC	\$1.05
	SN55, SN65, SN75	LBC175	Low power	0/4	5	10	2	Open	32	MC3486	16-PDIP, 16-SOIC, 20-SOIC	\$1.00
ŝ	SN65, SN75	LBC173A	High signaling rate, high ESD, low power	0/4	5	50	6	Short, Open	32	AM26LS32	16-PDIP, 16-SOIC	\$1.40
eiver	SN65, SN75	LBC175A	High signaling rate, high ESD, low power	0/4	5	50	6	Short, Open	32	MC3486	16-PDIP, 16-SOIC	\$1.30
Rec	SN75	ALS173	Low power	0/4	5	10	2	Open	32	AM26LS32	16-PDIP, 16-SOP	\$2.61
Quad-Receivers	SN75	ALS175	Low power	0/4	5	10	2	Open	32	MC3486	16-PDIP, 16-SOP	\$2.29
0	SN55, SN75	173	Cost effective	0/4	5	10	2	Open	32	AM26LS32	16-PDIP, 16-SOIC, 16-SOP,	\$0.99
											20-LCCC,16-CDIP	
	SN65, SN75	175	Cost effective	0/4	5	10	2	None	32		16-PDIP, 16-SOIC, 16-SOP	\$0.45

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²Available in Commercial (SN75) and Military (SN55) Temperature options in addition to Industrial Temperature (SN65).

RS-232 Selection Guide

		Drivers	Receivers	Supply	Icc			
		per	per	Voltage(s)	(mA)			
Device	Description	Pkg.	Pkg.	(V)	(max)	Footprint	Package(s)	Price ¹
TL145406	Triple RS-232 drivers/receivers	3	3	±12, 5	20	MC14506	PDIP, SOIC	\$0.94
GD75232	Multiple RS-232 drivers and receivers	3	5	±12, 5	20	GD75232	PDIP, SOIC, SSOP, TSSOP	\$0.22
MAX3243	3V to 5.5V multichannel RS-232 line	3	5	3.3, 5	1	MAX3243	SOIC, SSOP, TSSOP	\$0.99
	driver/receiver with ±15kV ESD (HBM) protection							
MAX202	5V dual RS-232 line driver/receiver with ±15kV	2	2	5	15	MAX202	SOIC, TSSOP	\$0.58
	ESD protection							
MAX207	5V multichannel RS-232 line driver/receiver with	5	3	5	20	MAX207	SOIC, SSOP	\$1.08
	±15kV ESD protection							
MAX211	5V multichannel RS-232 line driver/receiver with	4	5	5	20	MAX211	SOIC, SSOP	\$1.08
	±15kV ESD protection							
MAX222	5V dual RS-232 line driver/receiver with	2	2	5	10	MAX222	SOIC	\$1.26
	±15kV ESD protection							
SN65C3243	3V to 5.5V multichannel RS-232 line driver/receiver	3	5	3.3 or 5	1	MAX3234	SOIC, SSOP, TSSOP	\$3.46
SN75185	Multiple RS-232 drivers and receivers	3	5	±12, 5	30	SN75185	PDIP, SOIC	\$0.43
		Ū	Ū	/ •	50		Now products appear	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

New products appear in **bold red**.

Ð

Interface

RS-232 Selection Guide (Continued)

		Drivers	Receivers	Supply	I _{CC}			
		per	per	Voltage(s)	max			
Device	Description	Pkg.	Pkg.	(V)	(mA)	Footprint	Package(s)	Price ¹
SN75C185	Low-power multiple drivers and receivers	3	5	±12, 5	0.75	SN75C185	PDIP, SOIC	\$0.90
SN75C3234	3V to 5.5V multichannel RS-232 line driver/receiver	3	5	3.3 to 5	1	MAX3243	SOIC, SSOP, TSSOP	\$2.02
SN75LBC187	Multichannel EIA-232 driver/receiver with charge pump	3	5	5	30	SN75LBC187	SSOP	\$3.60
SN75LP1185	Low-power multiple RS-232 drivers and receivers	3	5	5, ±12	1	SN75LP185	PDIP, SOIC, SSOP	\$1.53
SN75LPE185	Low-power multiple drivers and receivers	3	5	5, ±12	1	SN75LP185	PDIP, SOIC, SSOP, TSSOP	\$1.62
SN75LV4737A	3V to 5.5V multichannel RS-232 line driver/receiver	3	5	3 or 5	1	MAX3243	SOIC, SSOP, TSSOP	\$2.61
LT1030	Quad low-power line driver	4	0	±5	1	LT1030	PDIP, SOIC	\$0.81
MC1488	Quad line driver	4	0	±9	25	MC1488	PDIP	\$0.20
SN55188	Quad line driver	4	0	±9		MC1488	CDIP, CFP, LCCC	\$1.97
SN75188	Quad line driver	4	0	±9	25	MC1488	PDIP, SOIC, SOP	\$0.18
SN75C188	Quad low-power line driver	4	0	±12	0.16	MC1488	PDIP, SOIC, SOP, SSOP	\$0.31
SN75C198	Quad low-power line drivers	4	0	±12	0.32	_	PDIP, SOIC	\$2.25
SN75154	Quad differential line receiver	4	4	5 or 12	35	SN75154	PDIP, SOIC, SOP	\$0.41
SN75C1154	Quad low-power drivers/receivers	4	4	±12, 5	_	_	PDIP, SOIC, SOP	\$0.76
SN75LBC241	Low-power LinBiCMOS TM multiple drivers and receivers	4	5	5	8	MAX241	SOIC	\$1.73
GD75323	Multiple RS-232 drivers and receivers	5	3	±12, 5	32	GD75323	SOIC	\$0.22
MAX3238	3V to 5.5V multichannel RS-232 line driver/receiver	5	3	3.3, 5	2	MAX3238	SSOP, TSSOP	\$1.13
SN65C3238	3V to 5.5V multichannel RS-232 line driver/receiver	5	3	3.3 or 5	2	MAX3238	SOIC, SSOP, TSSOP	\$3.24
SN75196	Multiple RS-232 driver and receiver	5	3	±12, 5	20	SN75196	PDIP, SOIC	\$0.41
SN75C3238	3V to 5.5V multichannel RS-232 line driver/receiver	5	3	3.3 or 5	2	MAX3238	SOIC, SSOP, TSSOP	\$2.81
SN75LP196	Low-power multiple RS-232 drivers and receivers	5	3	5, ±12	1	SN75LP185	PDIP, SOIC, SSOP, TSSOP	\$1.53
SN65C23243	3V to 5.5V dual RS-232 port	6	10	3.3, 5	0.02	_	SSOP, TSSOP	\$4.32
SN752232	Dual RS-232 port	6	10	5	±50	_	SSOP, TSSOP	\$0.81
SN75C23243	3V to 5.5V dual RS-232 port	6	10	3.3, 5	0.02	_	SSOP, TSSOP	\$3.42
UC5171	Octal line driver with TTL mode selection	8	0	±9 to ±15	42	_	PLCC	\$6.33
UC5172	Octal line driver with long line drive	8	0	±9 to ±15	25	-	PDIP, PLCC	\$3.25

¹Suggested resale price in U.S. dollars in quantities of 1,000.

1394b Media Summary

Device	Reach	s100	s200	s400	s800	s1600	s3200
UTP-5	100m	Х	-	—	—	_	_
POF/HPCF	100m	Х	Х	Х	Х	Х	_
50µm GOF	100m	_	-	Х	Х	Х	Х
STP (beta)	4.5m	_	_	Х	Х	Х	Х
STP (DS)	4.5m	Х	Х	Х	_	_	_

Higher speeds and greater distances provide increased versatility for industrial and automated systems requiring high bandwidth real-time data.

1394 Link-Layer Controllers Selection Guide

	Supply Voltage	Speed Max	FIFO			
Device	(V)	(Mbps)	(kb)	Package	Description	Price ¹
TSB12C01A	5	100	2	100-LQFP	High-performance 5V link layer with 32-bit host I/F, 2K FIFOs	\$11.75
TSB12LV01B	3.3	400	2	100-TQFP	High-performance 1394 3.3V link layer for telecom, embedded & industrial app., 32-bit I/F, 2kb FIFO	\$8.90
TSB12LV21B	3.3	400	4	176-LQFP	PCILynx™ - PCI to 1394 3.3V link layer with 32-bit PCI I/F, 4K FIFOs	\$9.60
TSB12LV26	3.3	400	9	100-TQFP	OHCI-Lynx™ PCI-based IEEE 1394 host controller	\$3.95
TSB12LV32	3.3	400	4	100-LQFP	General-purpose link layer controller (GP2Lynx)	\$5.15
TSB42AA4	3.3	400	8	128-TQFP	1394 link layer controller with DTCP content protection for consumer electronics applications	\$9.20
TSB42AB4	3.3	400	8	128-TQFP	1394 link layer controller for consumer electronics applications - no content protection	\$10.95
TSB42AC3	3.3	400	10	100-TQFP	High-performance link layer with 32-bit I/F. May be cycle master; has 10KB FIFO and JTAG support.	\$6.50
					PHY-link timing compliant with 1394a-2000 for industrial and bridge applications.	
TSB82AA2	3.3	800	11	144-LQFP	High-performance 1394b 3.3V OHCI 1.1+ compliant link layer controller	\$7.80

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Interface

62

1394 Integrated Devices Selection Guide

	Supply Voltage	Speed Max	FIFO			
Device	(V)	(Mbps)	(kb)	Package(s)	Description	Price ¹
TSB43AA22	3.3	400	8	128-TQFP	1394a serial layer controller + 400Mbps, 2-port physical layer	\$7.20
TSB43AA82A	3.3	400	4.7	144-LQFP	2-port high performance integrated physical and link layer chip for PC peripherals	\$8.30
TSB43AB21A	3.3	400	9	128-TQFP	OHCI 1.1, 1394a link layer controller integrated with 1394a, 400Mbps, 1-port physical layer (PHY)	\$4.35
TSB43AB22A	3.3	400	9	128-TQFP	OHCI 1.1, 1394a link layer controller integrated with 1394a, 400Mbps, 2-port physical layer (PHY)	\$4.55
TSB43AB23	3.3	400	9	144-LQFP, 128- TQFP	OHCI 1.1, 1394a link layer controller integrated with a 1394a, 400Mbps, 3-port physical layer (PHY)	\$4.90
TSB43CA42	3.3	400	16	176-LQFP	iceLynx micro 2-port IEEE 1394a-2000 CES	\$10.60
TSB43CA43A	3.3	400	16.5	176-LQFP	iceLynx micro-5C with streaming audio and content protection	\$12.60
TSB43CB43A	3.3	400	16.5	176-LQFP	iceLynx micro with streaming audio	\$11.40

¹Suggested resale price in U.S. dollars in quantities of 1,000.

1394 Physical-Layer Controllers Selection Guide

	Supply Voltage	Speed Max	FIFO			
Device	(V)	(Mbps)	(kb)	Package(s)	Description	Price ¹
TSB14AA1A	3.3	100	1	48-TQFP	IEEE 1394-1995, 3.3V, 1-port, 50/100Mbps, backplane PHY	\$5.90
TSB14C01A	5	100	1	64-LQFP	IEEE 1394-1995, 5V, 1-Port, 50/100Mbps backplane physical layer controller	\$5.45
TSB17BA1	3.3	100	1	24-TSSOP	1394b-2002 compliant Cat5 cable transceiver for up to 100 meters	\$2.50
TSB41AB1	3.3	400	1	48-HTQFP, 64-HTQFP	IEEE 1394a one-port cable transceiver/arbiter	\$1.50
TSB41AB2	3.3	400	2	64-HTQFP	IEEE 1394a two-port cable transceiver/arbiter	\$1.85
TSB41AB3A	3.3	400	3	80-HTQFP	IEEE 1394a three-port cable transceiver/arbiter	\$3.00
TSB41BA3A	3.3	400	3	80-HTQFP	1394b-2002 3-port physical layer device	\$6.50
TSB41LV04A	3.3	400	4	80-HTQFP	IEEE 1394a four-port cable transceiver/arbiter	\$6.50
TSB41LV06A	3.3	400	6	100-HTQFP	IEEE 1394a six-port cable transceiver/arbiter	\$6.40
TSB81BA3	1.8, 3.3	800	3	80-HTQFP	IEEE P1394b s800 three-port cable transceiver/arbiter	\$7.80

¹Suggested resale price in U.S. dollars in quantities of 1,000.

UARTs Selection Guide

		FIFOs	Baud Rate				
Device	Channels	(bytes)	max (Mbps)	Voltage (V)	Package(s)	Description	Price ¹
TL16C450	1	0	0.256	5	40-PDIP, 44-PLCC	Single UART without FIFO	\$1.50
TL16C451	1	0	0.256	5	68-PLCC	Single UART with parallel port and without FIFO	\$2.50
TL16C452	2	0	0.256	5	68-PLCC	Dual UART with parallel port and without FIFO	\$2.55
TL16C550C	1	16	1	5, 3.3	48-LQFP, 40-PDIP, 44-PLCC, 48-TQFP	Single UART with 16-byte FIFOs and auto flow control	\$1.75
TL16C550D	1	16	1	5, 3.3, 2.5	48-LQFP, 48-TQFP, 32-QFN	Single UART with 16-byte FIFOs and auto flow control	\$1.75
TL16C552/552A	2	16	1	5	68-PLCC	Dual UART with 16-byte FIFOs and parallel port	\$3.90 /\$3.85
TL16C554/554A	4	16	1	5	80-LQFP, 68-PLCC	Quad UART with 16-byte FIFOs	\$6.05/\$6.00
TL16C750	1	16 or 64	1	5, 3.3	64-LQFP, 44-PLCC	Single UART with 64-byte FIFOs, auto flow control, low-power modes	\$3.70
TL16C752B	2	64	3	3.3	48-LQFP	Dual UART with 64-byte FIFO	\$3.10
TL16C754B	4	64	5V-3, 3.3V-2	5, 3.3	80-LQFP, 68-PLCC	Quad UART with 64-byte FIFO	\$8.35
TL16PC564B/BLV	1	64	1	5, 3.3	100-BGA, 100-LQFP	Single UART with 64-byte FIFOs, PCMCIA interface	\$5.90/\$3.10
TL16PIR552	2	16	1	5	80-QFP	Dual UART with 16-byte FIFOs, selectable IR and 1284 modes	\$6.10
TIR1000	0	None	0.115	2.7 to 5.5	8-0P, 8-TSSOP	Standalone IrDA encoder and decoder	\$1.15
TUSB3410	0	None	0.922	3.3	32-LQFP	RS232/IrDA serial-to-USB converter	\$2.50

¹Suggested resale price in U.S. dollars in quantities of 1,000.

USB Peripherals Selection Guide

		Voltage	Remote			
Device	Speed	(V)	Wakeup	Package	Description	Price ¹
TUSB3210	Full	3.3	Yes	64-LQFP	USB full-speed general-purpose device controller	\$2.50
TUSB3410	Full	3.3	Yes	32-LQFP	RS232/IrDA serial-to-USB converter	\$2.25
TUSB6250	Full, high	3.3	Yes	80-TQFP	USB 2.0 high-speed ATA/ATAPI bridge solution	\$2.80

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Interface/Power and Control

PCI Bridges Selection Guide

	Intel		Expansion						
	Compatible	Speed	Interface	Hot	MicroStar BGA™	Voltage(s)			
Device	Part Number	(MHz)	(bits)	Swap	Packaging	(V)	Package(s)	Description	Price ¹
HPC3130		33	32		No	3.3	128-LQFP, 120-QFP	Hot plug controller	\$10.95
HPC3130A		66	64		No	3.3	128-LQFP, 144-LQFP, 120-QFP	Hot plug controller	\$10.95
PC12040				Friendly	Yes	3.3, 5	144-BGA, 144-LQFP	PCI-to-DSP bridge controller, compliant to	\$10.55
								compact PCI hot swap specification 1.0	
PC12060		66	32	Friendly	Yes	3.3, 5	257-BGA	Asynchronous 32-bit, 66MHz PCI-to-PCI bridge	\$9.50
PCI2050B	21150bc	66	32	Friendly	Yes	3.3, 5	257-BGA, 208-LQFP, 208-QFP	PCI-to-PCI bridge	\$9.50
PC12250	21152ab	33	32	Friendly	No	3.3, 5	176-LQFP, 160-QFP	32-bit, 33MHz PCI-to-PCI bridge, compact PCI	\$6.10
								hot-swap friendly, 4-master	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

PCI CardBus Controllers Selection Guide

	Voltage	D3	Integrated	Integrated			
Device	(V)	Cold Wake	1394	ZV	Package(s)	Description	Price ¹
PCI1510	3.3	Yes	No	No	144-BGA, 144-LQFP	Single slot PC CardBus controller	\$3.60
PCI1520	3.3	Yes	No	No	209-BGA, 208-LQFP	PC card controller	\$4.35
PCI1620	1.8, 3.3, 5	Yes	No	No	209-BGA, 208-LQFP	PC card, flash media, and smart card controller	\$7.35
PCI4510	3.3	Yes	Yes	No	209-BGA, 208-LQFP	PC card and integrated 1394a-2000 OHCI two-port-PHY/link-layer controller	\$8.00
PC14520	3.3	Yes	Yes	No	257-BGA	Two slot PC card and integrated 1394a-2000 OHCI two-port-PHY/link-layer controller	\$9.15
PC16420	3.3	Yes	No	No	288-BGA	Integrated 2-slot PC card & dedicated flash media controller	\$9.50
PC16620	3.3	Yes	No	No	288-BGA	Integrated 2-slot PC card with smart card & dedicated flash media controller	\$10.50
PCI7410	3.3	Yes	Yes	No	209-BGA, 208-LQFP	PC Card, flash media, integrated 1394a-2000 OHCI 2-Port PHY/link-layer controller	\$11.00
PC17420	3.3	Yes	Yes	No	288-BGA	Integrated 2-slot PC Card, dedicated flash media socket & 1394a-2000	\$12.00
						OHCl 2-Port-PHY/link-layer controller	
PCI7510	3.3	Yes	Yes	No	209-BGA, 208-LQFP	Integrated PC Card, smart card and 1394 controller	\$11.00
PCI7610	3.3	Yes	Yes	No	209-BGA, 208-LQFP	Integrated PC Card, smart card, flash media ,1394a-2000 OHCI 2-Port-PHY/	\$12.00
						link-layer controller	
PC17620	3.3	Yes	Yes	No	288-BGA	Integrated 2-slot PC card with smart card, flash media, 1394a-2000 OHCI	\$13.00
						2-Port-PHY/link-layer controller	

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Power+ LogicTM: 8-Bit Devices with Integrated Control Logic and FETs ($T_c = -40^{\circ}C$ to +125°C)

		V _{DS} max	l _{CC} typ	I ₀	I _{PEAK}	r _{DS(on)} typ	E _{AS} max	t _{PLH} typ	ESD max	
Device	Description	(V)	(μA)	(A)	(A)	(Ω)	(mJ)	(ns)	(kV)	Package(s)
TPIC6259	Addressable latch	45	15	0.25	0.75	1.3	75	625	3	20/SOP (DW), DIP (N)
TPIC6273	D-Type latch	45	15	0.25	0.75	1.3	75	625	3	20/SOP (DW), DIP (N)
TPIC6595	Shift register	45	15	0.25	0.75	1.3	75	650	3	20/SOP (DW), DIP (N)
TPIC6596	Shift register	45	15	0.25	0.75	1.3	75	650	3	20/SOP (DW), DIP (N)
TPIC6A259 ¹	Addressable latch	50	500	0.35	1.1	1	75	125	2.5	20/DIP (NE), 24/SOP (DW)
TPIC6A595 ¹	Shift register	50	500	0.35	1.1	1	75	125	2.5	20/DIP (NE), 24/SOP (DW)
TPIC6A596 ¹	Shift register	50	500	0.35	1.1	1	75	125	2.5	20/DIP (NE), 24/SOP (DW)
TPIC6B259 ²	Addressable latch	50	20	0.15	0.5	5	30	150	2.5	20/SOP (DW), DIP (N)
TPIC6B273 ²	D-type latch	50	20	0.15	0.5	5	30	150	2.5	20/SOP (DW), DIP (N)
TPIC6B595 ²	Shift register	50	20	0.15	0.5	5	30	150	2.5	20/SOP (DW), DIP (N)
TPIC6B596 ²	Shift register	50	20	0.15	0.5	5	30	150	2.5	20/SOP (DW), DIP (N)
TPIC6C595 ²	Shift register	33	20	0.1	0.25	7	30	80	2.5	16/SOP (D), DIP (N)
TPIC6C596 ²	Shift register	33	20	0.1	0.25	7	30	80	2.5	16/SOP (D), DIP (N)

¹Short-circuit and current-limit protection. ²Current-limit capability.

()

64

Ð

Power Management

PWM Power Supply Control (Single Output) Selection Guide

	Typical								Max			Internal		
	Power	Max	Start-		Supply	UVLO:		V _{REF}	Duty		Voltage	Drive		
	Level	Practical	Up	Operating	Voltage	On/Off	V _{REF}	Tol.	Cycle		Feed-	(Sink/Source)		
Device	(W)	Frequency	Current	Current	(V)	(V)	(V)	(%)	(%)	E/A	Forward	(A)	Package(s)	Price ¹
Peak Curr	ent Mode (Controllers												
UCC38C40	10 to 250	1MHz	50µA	2.3mA	6.6 to 20	7.0/6.6	5	2	100	Yes	Yes	1/1	SOIC-8, PDIP-8, MSOP-8	\$0.95
UCC38C41	10 to 250	1MHz	50µA	2.3mA	6.6 to 20	7.0/6.6	5	2	50	Yes	Yes	1/1	SOIC-8, PDIP-8, MSOP-8	\$0.95
UCC38C42	10 to 250	1MHz	50µA	2.3mA	9 to 20	14.5/9	5	2	100	Yes	Yes	1/1	SOIC-8, PDIP-8, MSOP-8	\$0.95
UCC38C43	10 to 250	1MHz	50µA	2.3mA	7.6 to 20	8.4/7.6	5	2	100	Yes	Yes	1/1	SOIC-8, PDIP-8, MSOP-8	\$0.95
UCC38C44	10 to 250	1MHz	50µA	2.3mA	9 to 20	14.5/9	5	2	50	Yes	Yes	1/1	SOIC-8, PDIP-8, MSOP-8	\$0.95
UCC38C45	10 to 250	1MHz	50µA	2.3mA	7.6 to 20	8.4/7.6	5	2	50	Yes	Yes	1/1	SOIC-8, PDIP-8, MSOP-8	\$0.95

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Switching DC/DC Controllers Selection Guide

		٧ ₀	V ₀	V _{REF}	Driver	Output				Prote	ection ³			Арр	lication ⁴			Light	
	V _{IN}	(V)	(V)	Tol	Current	Current	Multiple	Frequency					Source	Source/	Prebias			Load	
Device	(V)	(max)	(min)	(%)	(A)	(A) ²	Outputs	(kHz)	OCP	OVP	UVLO	PG	Only	Sink	Operation	PGD	DDR	Efficeint	Price ¹
General-	Purpose D	C/DC C	ontrolle	ers															
TPS40007	2.25 to 5.5	4	0.7	1.5	1	15	No	300	✓		\checkmark			~	1	\checkmark		\checkmark	\$0.99
TPS40021	2.25 to 5.5	4	0.7	1	2	25	No	Program up	\checkmark		1	\checkmark		1		1		1	\$1.15
								to 1MHz											
TPS40057	8 to 40	35	0.7	1	1	20	No	Program up	1		1				\checkmark			1	\$1.35
								to 1MHz											
TPS40061	10 to 55	40	0.7	1	1	10	No	Program up	1		1			1					\$1.40
								to 1MHz											
TPS40071	4.25 to 28	23	0.7	1	1	20	No	Program up	1		1	1		1		1			\$1.35
								to 1MHz											
TPS51020	4.25 to 28	24	0.85	1	2	20	2	450	1	1	1	1					1	1	\$3.15
DC/DC C	ontrollers	with L	ight Lo	oad Eff	iciency									Commen	its				
TPS51116	3 to 28	3.4	1.5	1	0.8	10	1 + 2	Up to 500	~	1	1	1	Sync swi	itcher w/3A	A tracking LD	00	1	1	\$1.20
Other Ty	pology DC	/DC Co	ntrolle	ers _										Comme	ıts				
TPS6420x	1.8 to 6.5	6.5	1.2	_	_	3	No	_	~		✓		Simple, h	nysteretic h	nigh-efficien	cy cont	roller i	n SOT-23	\$0.55
UC3572	4.75 to 30	0	-48	2	0.5	5	No	300	1		1		Simple in	overting PV	VM controlle	er			\$1.05

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²Current levels of this magnitude can be supported. ³OCP = over-current protection, OVP = over-voltage protection, UVL0 = under-voltage lockout, PG = power good. ⁴The controller of choice for most applications will be the source/sink version, which has two-quadrant operation and will source or sink output current. PGD = Predictive Gate DriveTM technology included; DDR = supports DDR memory.

DC/DC Converter (Integrated FETs) Selection Guide

Device	V _{IN} (V)	Output Current (A)	V _{OUT} (V)	Package(s)	Price ¹
Buck (Step Down)					
TPS62040/2/3/4/6	2.5 to 6.0	1.2	Adj. 1.5, 1.6, 1.8, 3.3	MSOP-10, QFN-10	\$2.20
TPS62200/1/2/3/4/5/6	2.5 to 6.0	0.3	Adj.,1.5, 1.8, 3.3, 1.6, 2.5, 2.6	SOT 23-5	\$1.35
TPS62000/1/2/3/4/5/6/7/8	2.0 to 5.5	0.6	Adj., 0.9, 1.0,1.2, 1.5, 1.8, 2.5, 3.3, 1.9	MSOP-10	\$1.60
TPS62051/2/3/4/5	2.7 to 10	0.8	Adj., 1.5, 1.8, 3.3	MSOP-10	\$1.85
TPS54310/1/2/3/4/5/6	3.0 to 6.0	3	Adj., 0.9, 1.2, 1.5, 1.8, 2.5, 3.3	HTSSOP-20	\$2.95
TPS54610/1/2/3/4/5/6	3.0 to 6.0	6	Adj., 0.9, 1.2, 1.5, 1.8, 2.5, 3.3	HTSSOP-28	\$3.90
TPS54810	4.0 to 6.0	8	Adj. to 0.9	HTSSOP-28	\$4.20
TPS54910	3.0 to 4.0	9	Adj. to 0.9	HTSSOP-28	\$4.40
Inverter					
TPS6755	2.7 to 9.0	0.2	Adj. from -1.25 to - 9.3	SOIC-8	\$1.25
TL497A	4.5 to 12	0.5	Adj. from -1.2 to -25	TSSOP-14	\$0.86

¹Suggested resale price in U.S. dollars in quantities of 1,000.

Power Management

Low Dropout Regulators (LDOs) Selection Guide

		•																		
				Output Option	s			(%)			F	Pack	age	s						
		V _{DO}					_≤	ac		1			~							
	I ₀	@ I ₀	Ιq			Min V _{IN}	ax V	Accuracy (SC70	S0T23	MSOP	S08	S0T223	T0220	QFN	DDPAK				
Device	(mA)	(mV)	(μΑ)	Voltage (V)	Adj.	Σ	Σ	Ă	\mathbb{S}	\sim	Σ	<u> </u>	ŝ	잍	a		Features ²	CO ³	Comments	Price ¹
Positive V	/oltage,	Single	Output	Devices																
TPS797xx	10	105	1.2	1.8, 3.0, 3.3	—	1.8	5.5	4	✓								PG	0.47µF C	MSP430; lowest lq	\$0.34
TPS715xx/A	50	415	3.2	2.5, 3.0, 3.3, 5	1.2 - 15	2.5	24	4	✓						\checkmark			0.47µF C	V _{IN} up to 24V	\$0.34
TPS722xx	50	50	80	1.5, 1.6, 1.8	1.2 - 2.5	1.8	5.5	3		✓							/EN, BP	0.1µF C	Low noise, V _{IN} down to 1.8V	\$0.41
REG101	100	60	400	2.5, 2.8, 2.85, 3.0, 3.3, 5	2.5 - 5.5	2.6	10	1.5		1		✓					EN, BP	No Cap	Low noise	\$0.95
TPS792xx	100	38	185	2.5, 2.8, 3.0	1.2 - 5.5	2.7	5.5	2		1							EN	1µF C	RF low noise, high PSRR	\$0.40
TPS731xx	150	30	400	1.5, 1.8, 2.5, 3.0,	1.2 - 5.5	1.7	5.5	1		✓							EN, BP	No Cap	Reverse leakage protection	\$0.45
				3.3, 5.0, EEProm ⁴																
TPS771xx	150	75	90	1.5, 1.8, 2.7, 2.8, 3.3, 5	1.5 - 5.5	2.7	10	2				\checkmark					/EN, SVS	10µF C	Low noise	\$0.60
TPS732xx	250	40	400	1.5, 1.8, 2.5, 3.0	1.2- 5.5	1.7	5.5	1		✓			✓				EN, BP	No Cap	Reverse leakage protection	\$0.65
				3.3, 5.0, EEProm ⁴																
TPS794xx	250	145	172	1.8, 2.5, 2.8, 3.0, 3.3	1.2 - 5.5	2.7	5.5	2			1		1				EN, BP	2.2µF C	RF low noise, high PSRR	\$0.65
REG102	250	150	400	2.5, 2.8, 2.85, 3.0, 3.3, 5	2.5 - 5.5	1.8	10	2		✓		1	1				EN, BP	No Cap	Capacitor free, DMOS	\$1.05
TPS736xx	400	75	300	1.5, 1.8, 2.5, 3.0	1.2 - 5.5	1.7	5.5	1		1			1		1		EN, BP	No Cap	Reverse leakage protection	\$0.85
				3.3, EEProm ⁴																
TPS795xx	500	105	265	1.6, 1.8, 2.5, 3.0, 3.3	1.2 - 5.5	2.7	5.5	3					1				EN, BP	2.2µF C	RF low noise, high PSRR	\$1.05
REG103	500	115	500	2.5, 2.7, 3.0, 3.3, 5	2.5 - 5.5	2.1	15	2				\checkmark	1			✓	EN, PG	No Cap	Capacitor free, DMOS	\$2.50
TPS777xx	750	260	85	1.5, 1.8, 2.5, 3.3	1.5 - 5.5	2.7	10	2			✓		1				/EN,SVS	10µF T	Fast transient response	\$1.05
TPS725xx	1000	170	75	1.5, 1.6, 1.8, 2.5	1.2 - 5.5	1.8	6	2				1	1			✓	EN, SVS	No Cap	V _{IN} down to 1.8V, low noise	\$1.10
TPS786xx	1500	390	310	1.8, 2.5, 2.8, 3.0, 3.3	1.2 - 5.5	2.7	5.5	3					1			✓	EN, BP	1µF C	RF low noise, high PSRR	\$1.35
UCCx83-x	3000	400	400	3.3, 5	1.2 - 8.5	1.8	9	2.5						✓		✓	EN	22µF T	Reverse leakage protection	\$2.57
UCx85-x	5000	350	8mA	1.5, 2.1, 2.5	1.2 - 6	1.7	7.5	1						✓		✓		100µF T	Fast LDO with reverse leak.	\$3.00
Negative	Voltage	e, Single	e-Outpu	t Devices																
TPS723xx	200	280	130	-2.5	-1.29	-10	-2.7	2		✓							EN, BP	2.2µF C	Low noise, high PSRR	\$1.05
UCC384-x	500	150	200	-12.0, -5.0	-1.251	-15	-3.5	3				1					/EN	4.7µF T	Duty cycled short	\$1.86

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²PG = Power Good; EN = Active High Enable; /EN = Active Low Enable; SVS Supply Voltage Supervisor; BP = Bypass Pin for noise reduction capacitor. ³C = Ceramic; T = Tantalum; No Cap = Capacitor Free LD0. ⁴TI's TPS73xxx series of LD0s are EEProm programmable at the factory, allowing production of custom fixed voltages (as well as custom current limits), minimum quantities apply. Please contact Tl.

Dual-Output LDOs Selection Guide

						Output Optio	tions Features														
			V _{D01}	V _{D02}	۱ ₀ @																
	I ₀₁	I ₀₂	@ I ₀₁	@ I ₀₂	l ₀	Voltage		Accuracy	PWP	Min	Мах					Low	Min	Max			
Device	(mA)	(mA)	(mV)	(mV)	(µA)	(V)	Adj.	(%)	Package	V ₀	V ₀	/EN	PG	SVS	Seq	Noise	V _{IN}	V _{IN}	C0 ²	Description	Price ¹
TPS707xx	250	150	83	—	95	3.3/2.5, 3.3/1.8,	\checkmark	2	~	1.2	5	\checkmark	\checkmark	\checkmark	\checkmark	1	2.7	5.5	10µF T	Dual-output LDO with	\$1.20
						3.3/1.5, 3.3/1.2														sequencing	
TPS708xx	250	150	83	—	95	3.3/2.5, 3.3/1.8,	1	2	1	1.2	5	\checkmark	\checkmark	1		\checkmark	2.7	5.5	10µF T	Dual-output LDO with	\$1.20
						3.3/1.5, 3.3/1.2														independent enable	
TPS701xx	500	250	170	_	95	3.3/2.5, 3.3/1.8,	1	2	1	1.2	5	\checkmark	\checkmark	1	\checkmark	1	2.7	5.5	10µF T	Dual-output LDO with	\$1.50
						3.3/1.5, 3.3/1.2														sequencing	
TPS702xx	500	250	170	_	95	3.3/2.5, 3.3/1.8,	1	2	~	1.2	5	\checkmark	\checkmark	1		1	2.7	5.5	10µF T	Dual-output LDO with	\$1.50
						3.3/1.5, 3.3/1.2														independent enable	
TPS767D3xx	1000	1000	230	_	170	3.3/2.5	1	2	1	1.2	5	\checkmark		1			2.7	10	10µF T	Dual-output FAST LDO	\$2.00
						3.3/1.8														with integrated SVS	
TPPM0110	1500	300	1000	2500	1000	3.3/1.8		2		1.8	3.3						4.7	5.3	100µF T	Outputs track within 2V	\$1.60
TPPM0111	1500	300	1000	2800	1000	3.3/1.5		2		1.5	3.3						4.7	5.3	100µF T	Outputs track within 2V	\$1.60
TPS703xx	2000	1000	160	_	185	3.3/2.5, 3.3/1.8,	1	2	1	1.2	5	1	1	1	1	1	2.7	5.5	22µF T	Dual-output LDO with	\$2.35
						3.3/1.5, 3.3/1.2														sequencing	
TPS704xx	2000	1000	160	_	185	3.3/2.5, 3.3/1.8,	1	2	1	1.2	5	\checkmark	\checkmark	1		1	2.7	5.5	22µF T	Dual-output LDO with	\$2.35
						3.3/1.5, 3.3/1.2														independent enable	

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²T = Tanalum.

66

Ð

Power Management

Plug-In Power Solutions Selection Guide

	Input Bus		P _{OUT}	Isolated	V ₀ Range	Vo	
Device	Voltage (V)	Description	or I _{OUT}	Outputs	(V)	Adjustable	Price ¹
Non-Isolated	d Single Positive	e Output					
PT5040	5	1A, 5V-input step-up ISR	1A	No	8 to 18	No	\$9.50
PT5070	12	7- to 16V-input 2A 12V output step-up/down converter	2A	No	12	Yes	\$21.16
PT5100	Wide input	1A wide-input positive step-down ISR	1A	No	3.3 to 15	No	\$7.33
PT5400	3.3/5	3.3V/5V-input 6-A adjustable SWIFT [™] ISR	6A	No	1.0 to 3.6	Yes	\$11.82
PT5500	3.3/5	3.3V/5V-input 3-A adjustable ISR	3A	No	1.0 to 3.6	Yes	\$10.80
PT5520	3.3/5	3.3V/5V-input 1.5-A adjustable ISR	1.5A	No	1.0 to 3.6	Yes	\$9.77
PT6100	Wide input	1A wide-input adjustable step-down ISR	1A	No	1.9 to 22	Yes	\$7.54
PT6210	Wide input	2A wide-input adjustable step-down ISR	2A	No	1.9 to 22	Yes	\$10.58
PT6300	Wide input	3A wide-input adjustable step-down ISR	3A	No	1.9 to 22	Yes	\$11.88
PT6340	12	12V-input 6-A adjustable ISR	6A	No	1.5 to 5	Yes	\$18.08
PT6520	3.3/5	3.3V/5V-input 8-A adjustable ISR with short-circuit protection	8A	No	1.5 to 3.7	Yes	\$18.99
PT6620	12	6A, 12V-input adjustable ISR	6A	No	1.6 to 10	Yes	\$18.99
PT6650	24	5A, 24V-input adjustable ISR	5A	No	1.8 to 17	Yes	\$18.99
PT6670	3.3	3.3V-input 20W boost ISR	20W	No	3.8 to 12.8	Yes	\$18.99
PT6700	5	1.3- to 3.5- _{OUT} 5V input 13-A programmable ISR	13A	No	1.3 to 3.5	5-bit programmable	\$21.16
PT6720	12	12V-input 13A programmable ISR	14A	No	1.3 to 3.5, 5	5-bit programmable	\$21.16
PT6880	24	5A, 18- to 36V-input adjustable ISR	5A	No	1.8 to 17	Yes	\$18.99
PT78HT200	Wide input	5V _{OUT} 2A wide-input positive step-down ISR	2A	No	3.3 to 6.5	No	\$10.80
PT78ST100	Wide input	1.5A wide-input positive step-down ISR	1.5A	No	3.3 to 15	No	\$8.63
PT78ST200	Wide input	2A wide-input positive step-down ISR	2A	No	12	No	\$10.80
Non-Isolated	d Single Negativ	e Output					
PT5020	5	1A, 5V-input positive-to-negative ISR	-1A	No	-1.7 to -15	No	\$9.50
PT6640	12	12V-input 24W adjustable plus-to-minus voltage converter	24W	No	-1.8 to -17	Yes	\$18.99
PT6910	3.3/5	3.3V/5V-input 12W adjustable plus-to-minus voltage converter	12W	No	-1.2 to -6.5	Yes	\$26.26
PT78NR100	Wide input	1A wide-input plus-to-minus voltage ISR	-1A	No	-3.0 to -15	No	\$8.63
PT78NR200	Wide input	2A wide-input plus-to-minus voltage ISR	-2A	No	-5.2 to -15	No	\$16.28
PT79SR100	Wide input	1.5A wide-input negative step-down ISR	-1.5A	No	-5 to -15	No	\$10.80
Non-Isolated	d Multiple Outpu	ıt					
PT5060	5	5- to $\pm 12/15V_{OUT}$ 9W dual output adjustable ISR	9W	No	±8 to ±20	Yes	\$10.80
PT6935	5	35W, 5V input adjustable dual output ISR	35W	No	1.3 to 3.6	Yes	\$27.37
Isolated Sing	gle Output						
DCP01_B	5, 24	1W unregulated isolated DC/DC converter with sychronization	1W	Yes	5, 12, 15	No	\$5.01
DCP02	5, 12, 24	2W unregulated isolated DC/DC converter with sychronization	2W	Yes	3.3, 5, 7, 9, 12, 15	No	\$6.50
DCR01	5, 12, 24	1W regulated isolated DC/DC converter with sychronization	1W	Yes	3.3, 5	No	\$5.60
DCR02	12, 24	2W regulated isolated DC/DC converter with sychronization	2W	Yes	5	No	\$6.85
DCV01	5, 24	1W unregulated isolated DC/DC converter with 1500V isolation	1W	Yes	5, 12, 15	No	\$8.00
PT4140	24	20W, 24V input isolated DC/DC converter	20W	Yes	1.7 to 16.5	Yes	\$32.45
PT4240	24	10W, 24V input isolated DC/DC converter	10W	Yes	1.5 to 12	Yes	\$26.00
PT4580	24	30W, 24V input isolated DC/DC converter	30W	Yes	1.8 to 15	Yes	\$38.52
Isolated Mul	tiple Output						
DCP01_DB	5, 15, 24	1W unregulated dual isolated DC/DC converter with sychronization	1W	Yes	±5, ±12, ±15	No	\$5.51
DCP02_D	5, 15, 24	2W unregulated dual isolated DC/DC converter with sychronization	2W	Yes	±5, ±12, ±15	No	\$6.50
DGF0Z_D	J, 1J, 24						
DCV01_D	5, 15, 24	1W unregulated dual isolated DC/DC converter with 1500V isolation	1W	Yes	±5, ±12, ±15	No	\$8.50

¹Suggested resale price in U.S. dollars in quantities of 1,000. ²T = Tanalum.

To access any of the following application reports, type the URL www-s.ti.com/sc/techlit/*litnumber* and replace *lit number* with the number in the Lit Number column.

Instrumentation Amplifiers sboa024 Programmable-Gain Instrumentation Amplifiers sboa033 Boost Instrument Amp CMR With Common-Mode Driven Supplies sboa031 Increasing INA117 Differential Input Range sboa031 Input Filtering The INA117 2:00V Difference Amplifiers sboa038 Isolation Analog Amplifiers sboa038 Single Supply Operation of Isolation Amplifiers sboa044 Single-Supply Operation of Isolation Amplifiers sboa044 Isolation Amalog Amplifiers withit operation of Isolation Amplifiers High-Voltage Signal Conditioning for Low Voltage ADCs sboa044 Isolation Amplifiers withit operation of Isolation Nature Source sboa054 Operational Amplifiers sboa055 sboa056 sboa056 Boost Amplifier Output Swing With Simple Modification sboa005 sboa005 Simple Circuit Delivers 38V-p at 5A from 28V Unipolar Supply sboa037 Pressure Transducer to ADC Application sloa0350 Signal Conditioning Piccolectic Sensors (Rev. A) sloa0361 Signal Conditioning Piccolectic Sensors (Rev. A) sloa037 Pressure Transducer to ADC Application sloa037 <t< th=""><th></th><th>it Number</th></t<>		it Number
AC Coupling Instrument and Difference Amplifiers sboa003 Boost Instrument Amp CMR With Common-Mode Driven Supplies sboa014 Increasing INATID Differential Input Range sboa016 Level Shifting Signals with Differential Amplifiers sboa003 Simple Output Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa004 Isolation Analog Amplifiers sboa004 Simple Output Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa004 Isolation Amps Hike Accuracy and Reliability sboa004 Operational Amplifiers sboa005 High-Voltage Signal Conditioning for Low Voltage ADCs sboa006 Make a - 10V to +10V Adjustable Precision Voltage Source sboa005 2000 Difference Amplifier with Common-Mode Voltage Monitor sboa003 Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supply sboa003 Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supply sboa006 Signal Conditioning Piezolectric Sensors (Rev. A) sloa0256 Applifiers & Bits: Introduction to Selecting Amp/Switched Integrator sboa083 Doct Anstrument Amp CMR With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integrator sboa033 Dide		
Increasing INA117 Differential Input Range sboa001 Input Filtering The INA117 ±200V Difference Amplifier sboa038 Isolation Analog Amplifiers sboa038 Isolation Analog Amplifiers sboa004 Single Output Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa004 Isolation Amps Hile Accuracy and Reliability sboa004 Operational Amplifiers High-Voltage Signal Conditioning for Differential ADCs sboa005 Boat Not base Signal Conditioning for Difference Amplifiers sboa005 sboa005 Boat Amplifier Output Swing With Simple Modification sboa005 sboa005 Boat Amplifier Output Swing With Simple Modification sboa003 sboa003 Simple Circuit Delivers 38/u-p at 5A from 28V Unipolar Supply sboa003 sboa035 Pressure Transducer to ADC Application sboa003 sboa035 Signal Conditioning Piezedetric Sensors (Rev. A) sloa0350 sboa014 Comparison of Noise Perf. of FET Transimpedence Amg/Switched Integrator sboa034 Dicde-Based Temperature Measurement sboa031 sboa032 Digat Conditioning Piezedetric Sensors (Rev. A) sboa034 sboa043 Dide-Base	Programmable-Gain Instrumentation Amplifiers AC Coupling Instrumentation and Difference Amplifiers	
Input Filtering The INA117 ±200V Difference Amplifier sboa038 Level Shifting Signals with Differential Amplifiers sboa038 Isolation Analog Amplifiers sboa004 Simple Otupt Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa004 Isolation Amps Hike Accuracy and Reliability sboa004 Operational Amplifiers sboa004 High-Voltage Signal Conditioning for Differential ADCs sboa062 ±200V Difference Amplifier with Common-Mode Voltage Source sboa009 Extending the Common-Mode Range of Difference Amplifiers sboa009 Extending the Common-Mode Range of Difference Amplifiers sboa003 Simple Circuit Delivers 38Vp- at 5A from 28V Unjolar Supply sboa037 Pressure Transducer to ADC Application sloa056 Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B) sloa033 Signal Conditioning Piezelectric Sensors (Rev. A) sloa033 Boost Instrument Amp CMR With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integrator sboa033 Boost Instrument Amp CMR Vith Common-Mode Driven Supplies sboa018 Under-Based Temperature Measurement sboa034	Boost Instrument Amp CMR With Common-Mode Driven Supplies	sboa014
Level Shifting Signals with Differential Amplifiers sboa038 Isolation Analog Amplifiers Simple Output Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa004 Single-Supply Operation of Isolation Amplifiers sboa004 Operational Amplifiers bioa004 High-Voltage Signal Conditioning for Lifferential ADCs sboa005 Boast Amplifier With Common-Mode Voltage Monitor sboa005 Boast Amplifier Output Swip With Simple Modification sboa005 Boast Amplifier Output Swing With Simple Modification sboa005 Boast Amplifier Subcuto To ADC Application sboa008 Simple Circuit Delivers 280/p.p.at SA from 28V Unipolar Supply sboa037 Pressue Transducer to ADC Application sboa008 Signal Conditioning Piezoelectric Sensors (Rev. A) slea035a Boast Instrument Amp CMR With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Ampl/Switched Integrator sboa014 Domatorson of Noise Perf. of FET Transimpedence Ampl/Switched Integrator sboa038 Diode-Based Temperature Measurement sboa031 Level Shifting Signals with Differential Amplifiers sboa032 Signal Conditioning of A Pressure Sensor	Increasing INA117 Differential Input Range	sboa001
Isolation Analog Amplifiers Sinple Output Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa0012 Single-Supply Operation of Isolation Amplifiers sboa004 Isolation Amps Hike Accuracy and Reliability sboa004 Operational Amplifiers High-Voltage Signal Conditioning for Differential ADCs sboa005 Make a -10V to +10V Adjustable Precision Voltage Source sboa005 Boxt Amplifier Output Swing With Simple Modification sboa003 Bornel Creuit Delivers 38/0-p at 5A from 28V Unipolar Supply sboa003 Simple Circuit Delivers 38/0-p at 5A from 28V Unipolar Supply sboa008 Precision Absolute Value Circuits sboa008 Signal Conditioning Piezoelectric Sensors (Rev. A) slca035b Precision Absolute Value Circuits sboa008 Signal Conditioning Piezoelectric Sensors (Rev. A) slca033b Dost Instrument Amp CMR With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integrator sboa033 Didde-Based Temperature Transducer to ADC Application sboa032 Signal Conditioning for Drive No Tachometer Feedback sboa034 Didde-Based Temperature Transimpedence Amp/Switched Integrator sboa034	Input Filtering The INA117 ±200V Difference Amplifier	sboa016
Simple Output Filter Eliminates Amp Output Ripple, Keeps Full Bandwidth sboa012 Single-Supply Operation of Isolation Amplifiers sboa004 Jolation Amps Hike Accuracy and Reliability sboa004 Operational Amplifiers High-Voltage Signal Conditioning for Low Voltage ADCs sboa052 Make a - 10V to +10V Adjustable Precision Voltage Source sboa052 2000 Difference Amplifier with Common-Mode Voltage Monitor sboa005 Boost Amplifier Output Swing With Simple Modification sboa008 Simple Circuit Delivers 38Vp- p at 5A from 28V Unipolar Supply sboa037 Pressure Transducer to ADC Application sloa0356 Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B) sloa0358 Signal Conditioning Piezoelectric Sensors (Rev. A) sloa0338 Socist Instrument Amp CMH With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integrator sboa033 Diade-Based Temperature Measurement sboa034 Diade-Based Temperature Measurements of Bridge Networks sboa018 Thermistor Temperature Transducer to ADC Application sloa0324 Signal Conditioning Wheatstone Resistive Bridge Networks sloa0324 Dorderibae Supp	Level Shifting Signals with Differential Amplifiers	sboa038
Single-Supply Operation of Isolation Amplifierssboa004Isolation Amps Hike Accuracy and Reliabilitysboa064Operational AmplifiersHigh-Voltage Signal Conditioning for Low Voltage ADCssboa097High-Voltage Signal Conditioning for Differential ADCssboa096Make a -10V to +10V Adjustable Precision Voltage Monitorsboa0052000 Difference Amplifier with Common-Mode Voltage Monitorsboa005Boost Amplifier Output Swing Wth Simple Modificationsboa003Extending the Common-Mode Range of Difference Amplifierssboa003Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationsboa038Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa0358Precision Absolute Value Circuitssboa014Comparison of Noise Perf. of FET Transimpedence Ampl/Switched Integratorsboa014DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa013Diode-Based Temperature Measurementsboa038Deatal Conditioning Wheastone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Applicationsloa032Single-Supply, Low-Power Measurements of Bridge Networkssboa013Low-Power Signal Conditioning Verastone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Applicationsloa032Single-Supply, Low-Power Measurements of Bridge Networkssboa013Diode-Based Temperature Transducer to ADC Applicationsloa0343 V Accelerometer Featuring TLV2772 Applicationsloa034 <td></td> <td></td>		
Isolation Amps Hike Accuracy and Reliability sboa064 Operational Amplifiers		sboa012
Operational AmplifiersHigh-Voltage Signal Conditioning for Low Voltage ADCssboa097High-Voltage Signal Conditioning for Differential ADCssboa052±200V Difference Amplifier with Common-Mode Voltage Sourcesboa052±200V Difference Amplifier with Common-Mode Voltage Monitorsboa009Extending the Common-Mode Range of Difference Amplifierssboa009Extending the Common-Mode Range of Difference Amplifierssboa008Simple Circuit Delivers 38Vp- p at 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationsloa056Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa0336Signal Conditioning Piezoelectric Sensors (Rev. A)sloa0336Boost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa039Diode-Based Temperature Measurementsboa019Level Shifting Signals with Differential Amplifierssboa030Doperational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa034Sorners, Sensors Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning for A Pressure Sensorslaa034Sorners, Sensors Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning for A Pressure Sensorslaa034Sourdea Protection for the RCV420 + 20mA Current-Loop Receiversboa035Joya A Converter & Current Loop no TI DS		sboa004
High-Voltage Signal Conditioning for Low Voltage ADCssboa097High-Voltage Signal Conditioning for Differential ADCssboa050±200V Difference Amplifier with Common-Mode Voltage Monitorsboa005±200V Difference Amplifier with Common-Mode Voltage Monitorsboa005Boost Amplifier Output Swing With Simple Modificationsboa003Extending the Common-Mode Range of Difference Amplifierssboa003Simple Circuit Delivers 38Vp- pat 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationshoa038Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa043Diode-Based Temperature Measurementsboa038Updet Supply, Low-Power Measurementsboa030Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa043Single-Supply, Low-Power Measurementssloa034Sensors, Sensors Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning for A Pressure Sensorslaa034SonA to -20mA Converter & Current Summing Current-to-Current Converterssboa0330-20 ma Receiver Using RCV42sboa017Implementing a 4mA to 20mA Current Loop on TI DSPsscza04520m A to -20mA Converter & Current Summing Current-to-Qurrent sboa0330-20 ma Receiver Using RCV42sboa017Photodiode Monitoring Word Pampssboa023Use L	Isolation Amps Hike Accuracy and Reliability	sboa064
High-Voltage Signal Conditioning for Differential ADCssboa096Make a -10V to +10V Adjustable Precision Voltage Sourcesboa052±200V Difference Amplifier with Common-Mode Voltage Monitorsboa009Boast Amplifier Output Swing With Simple Modificationsboa003Boast Amplifier Output Swing With Simple Modificationsboa003Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationsloa056Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa035Precision Absolute Value Circuitssboa008Signal Conditioning Piezoelectric Sensors (Rev. A)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa034DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa034Level Shifting Signals with Differential Amplifierssloa032Signal Conditioning Wheatstone Resistive Bridge Sensorssloa034V Accelerometer Featuring TU2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmitterssboa073Implementing a 4mA to 20mA Current Loop not TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-Loop sboa0730-20 mA Receiver Using RCV42sbra004Four-Wire RTD Current-Loop Tra		
Make a - 10V to + 10V Adjustable Precision Voltage Source sboa052 ±200V Difference Amplifier with Common-Mode Voltage Monitor sboa009 Bosst Amplifier Output Swing With Simple Modification sboa009 Extending the Common-Mode Range of Difference Amplifiers sboa003 Simple Circuit Delivers 38Vp- pat 5A from 28V Unipolar Supply sboa037 Pressure Transducer to ADC Application sloa056 Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B) sloa033a Boost Instrument Amp CMR With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integrator sboa033 Diode-Based Temperature Measurement sboa038 Diode-Based Temperature Measurement sboa030 Level Shifting Signals with Differential Amplifier sboa032 Single-Supply, Low-Power Measurements of Bridge Networks sboa018 Thermistor Temperature Transducer to ADC Application sloa032 Single Conditioning Vheatstone Resistive Bridge Sensors sloa034 2 V Accelerometer Featuring TLV2772 Application Brief slva050 Low-Power Signal Conditioning or A Pressure Sensor slaa034 3 V Accelerometer Featuring TLV2772 Application Brief slva053 L		
±200V Difference Amplifier with Common-Mode Voltage Monitor sboa005 Boost Amplifier Output Swing With Simple Modification sboa009 Extending the Common-Mode Range of Difference Amplifiers sboa003 Simple Circuit Delivers 38Vp- pat 5A from 28V Unipolar Supply sboa037 Pressure Transducer to ADC Application sloa056 Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B) sloa035a Precision Absolute Value Circuits sboa068 Signal Conditioning Piezoelectric Sensors (Rev. A) sloa033a Boost Instrument Amp CMR With Common-Mode Driven Supplies sboa014 Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integrator sboa033 Diode-Based Temperature Measurement sboa019 Level Shifting Signals with Differential Amplifiers sboa038 Operational Amplifier Macromodels: A Comparison sboa012 Signal Conditioning Wheatstone Resistive Bridge Sensors sloa034 3 V Accelerometer Featuring TLV2772 Application Brief slva050 Low-Power Signal Conditioning of A Pressure Sensor slaa034 Succelerometer Featuring TLV2772 Application Brief sbva003 Operating a 4mA to 20mA Current Loop on TI DSPs ssz2a045 20mA to 0-20mA Current L		
Boost Amplifier Output Swing With Simple Modificationsboa009Extending the Common-Mode Range of Difference Amplifierssboa008Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationsloa056Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa043Didde-Based Temperature Measurementsboa019Level Shifting Signals with Differential Amplifierssboa019Level Shifting Signals with Differential Amplifierssboa018Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurement of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa034S V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning of A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmitterssbra007Inplementing a 4m Ato 20mA Current Loop on TI DSPsszza04520mA Receiver Using RCV42sbra003Single Supply 4-20mA Current Loop Receiversboa003Jorgle Supply 4-20mA Current Loop Receiversboa003Jorgle Supply 4-20mA Current Loop Receiversboa003Judiding Blocks Form Complete Isolated 4-20mA Current-Loop Receiversboa003Jorgle Supply 4-20mA Current Loop Receiversboa023 <td></td> <td></td>		
Extending the Common-Mode Range of Difference Amplifierssboa008Simple Circuit Delivers 38Vp-p at 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationsloa056Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa035Precision Absolute Value Circuitssboa068Signal Conditioning Piezoelectric Sensors (Rev. A)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa044Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa034DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa043Diode-Based Temperature Measurementsboa038Operational Amplifier Macromodels: A Comparisonsboa032Single-Supply, Low-Power Measurements of Bridge Networkssboa038Operational Amplifier Macromodels: A Comparisonsloa032Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Applicationsloa032Sensors, Sensors Conditioning of A Pressure Sensorslaa034Sensors, Conditioning NCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa023Single Supply 4-20mA Current Loop Receiversbva003Single Supply 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa013Design a 60Hz Notch Filter wit		
Simple Circuit Delivers 38Vp- pat 5A from 28V Unipolar Supplysboa037Pressure Transducer to ADC Applicationsloa056Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa035bPrecision Absolute Value Circuitssboa033Boost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa043DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa019Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmitterssboa017Implementing a 4mA to 20mA Current Loop on TI DSPsszza04520m A to -20mA Converter & Current Summing Current-Loop Receiversboa013Input Overload Protection for the RCV420 4-20mA Current-Loopsboa017Iput Overload Protection for the RCV420 4-20mA Current-Loop Receiversboa023Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsb		
Pressure Transducer to ADC Applicationsloa056Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa035bPrecision Absolute Value Circuitssboa068Signal Conditioning Piezoelectric Sensors (Rev. A)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa033Diode-Based Temperature Measurementsboa034Diode-Based Temperature Measurementsboa030Level Shifting Signals with Differential Amplifierssboa030Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa034Sensors, Sensors Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmittersmplementing a 4mA to 20mA Current Loop on TI DSPsImplementing a 4mA to 20mA Current Summing Current-to-Current Converterssboa017Input Overload Protection for the RCV420 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversboa023Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loop Receiver <td< td=""><td></td><td></td></td<>		
Amplifiers & Bits: Introduction to Selecting Amps for Data Converters (Rev. B)sloa035bPrecision Absolute Value Circuitssboa068Signal Conditioning Piezoelectric Sensors (Rev. A)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa043DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa043Diode-Based Temperature Measurementsboa033Level Shifting Signals with Differential Amplifierssboa033Operational Amplifier Macromodels: A Comparisonsboa032Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning, 4-20mA Transmitterssboa045Implementing a 4mA to 20mA Current Summing Current-to-Current Converterssboa017Input Overload Protection for the RCV420 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loopsboa023Single Supply 4-20mA Current Loop Receiversboa023Soladoze Bridges on 4-20mA Current Loopsboa023Single Supply 4-20mA Current Loop Receiversboa023Single Supply 4-20mA Current Loop Receiversboa023Single Supply 4-20mA Current Loop Receiversboa023Supplier 4-20mA Current Loop Receiversboa025Building Blocks Form Complete Isolated 4-20mA Current		
Precision Absolute Value Circuitssboa068Signal Conditioning Piezoelectric Sensors (Rev. A)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa034DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa034Diode-Based Temperature Measurementsboa039Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa034J V Accelerometer Featuring TLV2772 Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning of A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmitterssbra007Implementing a 4mA to 20mA Current Loop on TI DSPsszva04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssbra007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsbra007IC Building Blocks Form Complete Isolated 4-20mA Current-Loop Receiversbra003Single Supply 4-20mA Current Loop Receiversbra003Single Supply 4-20mA Current Loop Receiversbra003Single Supply 4-20mA Current Loop Receiversbra003Single Supply 4-20mA Current Loopsbra017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbra025Build a 3-Phase Sine Wave Generator with t		
Signal Conditioning Piezoelectric Sensors (Rev. A)sloa033aBoost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa034DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa043Didde-Based Temperature Measurementsboa019Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmitterssboa017Implementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0030-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loop Receiversboa023Single Supply 4-20mA Current Loop Receiversboa033Solea023use Low-Impedance Bridges on 4-20mA Current Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loopsboa017Iput Overload Protection for the RCV420 Stof131Design a 60H2 Notch Filter with the UAF42sbfa013Design a 60H2 Notch Filter with the UAF42sbfa013		
Boost Instrument Amp CMR With Common-Mode Driven Suppliessboa014Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa034DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa043Didde-Based Temperature Measurementsboa019Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorsslaa034Sensors, Sensors Conditioning, 4-20mA Transmitterslmplementing a 4mA to 20mA Current Loop on TI DSPsImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0030-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversboa023Single Supply 4-20mA Current Loop Receiversboa033Soleadige Sone Vave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbf		
Comparison of Noise Perf. of FET Transimpedence Amp/Switched Integratorsboa034DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa043Diode-Based Temperature Measurementsboa038Derational Amplifier Macromodels: A Comparisonsboa037Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning, 4-20mA Transmitterssboa034Implementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0300-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbra0071Input Overload Protection for the RCV420 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loopsboa033Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa035Interfacing the MSP430 and TMP100 I²C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power AmplifierPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873pR×8373DRV592 Power AmplifierData Converters or Industrial Power Measurementssbaa072Amc7820REF: A Reference Design for DWDM Pump Laserssbaa072Amalog-to-Digi		
DC Motor Speed Controller: Control a DC Motor w/o Tachometer Feedbacksboa043Diode-Based Temperature Measurementsboa019Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning of A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPs20mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0030-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loopsboa023Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 12 C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873DRV5302 Power AmplifierData Converters Analog Monitor and Con		
Diode-Based Temperature Measurementsboa019Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPs20mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0030-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversbva003Single a 60Hz Notch Filter with the UAF42sbfa012Photoido Monitoring with Op Ampssboa025Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873s		
Level Shifting Signals with Differential Amplifierssboa038Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA Transmittersmplementing a 4mA to 20mA Current Loop on TI DSPs20mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I/2 Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV582 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072<		
Operational Amplifier Macromodels: A Comparisonsboa027Single-Supply, Low-Power Measurements of Bridge Networkssboa018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa011Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation Schemessloa092Pherro-Electric Cooler Control Using a TMS320F2812 DSP & spra873pRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter		
Single-Supply, Low-Power Measurements of Bridge Networkssba018Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873pRV532 Power AmplifierData Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-		
Thermistor Temperature Transducer to ADC Applicationsloa052Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPs20mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversbva025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with 0p Ampssbva035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Signal Conditioning Wheatstone Resistive Bridge Sensorssloa0343 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters Analog Monitor and Control CircuitryAmC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036 <td></td> <td></td>		
3 V Accelerometer Featuring TLV2772 Application Briefslva050Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversboa003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAmC7820REF: A Reference Design for DWDM Pump Laserssbaa0172Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Low-Power Signal Conditioning for A Pressure Sensorslaa034Sensors, Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAmCr820REF: A Reference Design for DWDM Pump Laserssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Sensors Conditioning, 4-20mA TransmittersImplementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAmC7820REF: A Reference Design for DWDM Pump Laserssbaa0172Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Implementing a 4mA to 20mA Current Loop on TI DSPsszza04520mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiaspWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV532 Power AmplifierData Converters-Analog Monitor and Control CircuitryAmC7820REF: A Reference Design for DWDM Pump Laserssbaa0172Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		5188054
20mA to 0-20mA Converter & Current Summing Current-to-Current Converterssboa0530-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa025Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa172Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		045
0-20 mA Receiver Using RCV42sbva004Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa025Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Four-Wire RTD Current-Loop Transmittersbfa007IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa025Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
IC Building Blocks Form Complete Isolated 4-20mA Current-Loopsboa017Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036	-	
Input Overload Protection for the RCV420 4-20mA Current-Loop Receiversbva003Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP &spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Single Supply 4-20mA Current Loop Receiversboa023Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation SchemesPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP &spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital ConvertersJata Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Use Low-Impedance Bridges on 4-20mA Current Loopsboa025Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I ² C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation Schemessloa092PWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP &spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital Converterssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Build a 3-Phase Sine Wave Generator with the UAF42sbfa013Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with 0p Ampssboa035Interfacing the MSP430 and TMP100 I²C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation Schemessloa092Pwmo-Electric Cooler Control Using a TMS320F2812 DSP &spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital ConvertersData Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Design a 60Hz Notch Filter with the UAF42sbfa012Photodiode Monitoring with Op Ampssboa035Interfacing the MSP430 and TMP100 I²C Temperature Sensorslaa151Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP &spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital ConvertersData Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Photodiode Monitoring with Op Amps sboa035 Interfacing the MSP430 and TMP100 I ² C Temperature Sensor slaa151 Solenoid/Vavle Power Drivers, TEC & Pump Laser Bias PWM Power Driver Modulation Schemes PWM Power Driver Modulation Schemes sloa092 Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873 pRV592 Power Amplifier Data Converters-Analog Monitor and Control Circuitry AMC7820REF: A Reference Design for DWDM Pump Lasers sbaa072 Analog-to-Digital Converters Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Interfacing the MSP430 and TMP100 I ² C Temperature Sensor slaa151 Solenoid/Vavle Power Drivers, TEC & Pump Laser Bias PWM Power Driver Modulation Schemes PWM Power Driver Modulation Schemes sloa092 Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873 pRV592 Power Amplifier Data Converters-Analog Monitor and Control Circuitry AMC7820REF: A Reference Design for DWDM Pump Lasers sbaa072 Analog-to-Digital Converters Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Solenoid/Vavle Power Drivers, TEC & Pump Laser BiasPWM Power Driver Modulation Schemessloa092Thermo-Electric Cooler Control Using a TMS320F2812 DSP &spra873DRV592 Power AmplifierData Converters-Analog Monitor and Control CircuitryAMC7820REF: A Reference Design for DWDM Pump Laserssbaa072Analog-to-Digital ConvertersData Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
PWM Power Driver Modulation Schemes sloa092 Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873 DRV592 Power Amplifier Data Converters-Analog Monitor and Control Circuitry AMC7820REF: A Reference Design for DWDM Pump Lasers sbaa072 Analog-to-Digital Converters Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		slaa151
Thermo-Electric Cooler Control Using a TMS320F2812 DSP & spra873 DRV592 Power Amplifier Data Converters-Analog Monitor and Control Circuitry AMC7820REF: A Reference Design for DWDM Pump Lasers sbaa072 Analog-to-Digital Converters Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		ala a 002
DRV592 Power Amplifier Data Converters-Analog Monitor and Control Circuitry AMC7820REF: A Reference Design for DWDM Pump Lasers sbaa072 Analog-to-Digital Converters sbaa117 Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
AMC7820REF: A Reference Design for DWDM Pump Lasers sbaa072 Analog-to-Digital Converters Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036	DRV592 Power Amplifier	sprað/3
Analog-to-Digital Converters Data Converters for Industrial Power Measurements sbaa117 Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Data Converters for Industrial Power Measurementssbaa117Using Ceramic Resonators with the ADS1255/6sbaa104Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		sbaa072
Using Ceramic Resonators with the ADS1255/6 sbaa104 Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
Standard Procedure Direct Meas. Sub-picosecond RMS Jitter High-Speed ADC slwa036		
High-Voltage Signal Conditioning for Differential ADCs sboa096		
	High-Voltage Signal Conditioning for Differential ADCs	sboa096

Title Lit	Number
LVDS Outputs on the ADS527x	sbaa118
Measuring Temperature with the ADS1216, ADS1217, or ADS1218 (Rev. A)	sbaa073a
Interfacing the ADS1202 Modltr w/ a Pulse Transformer in Galvanically Iso.	sbaa096
Combining ADS1202 w/ FPGA Digital Filter for Current Meas. in Motor Cntrl App	sbaa094
ADS1240/41 App-Note: Accessing the Onboard Temp Diode in the ADS1240/41	sbaa083
Pressure Transducer to ADC Application	sloa056
Complete Temp Data Acquisition System From a Single +5V Supply	sbaa050
Voltage Ref. Scaling Techniques Increase Converter and Resolution Accuracy	sbaa008
Thermistor Temperature Transducer to ADC Application	sloa052
Digital-to-Analog Converters	
SPI-Based Data Acquisition/Monitor Using the TLC2551 Serial ADC (Rev. A)	slaa108a
MSC1210: Incorp. the MSC1210 into Electronic Weight Scale Systems (Rev. A)	sbaa092a
Measuring Temperature with the ADS1216, ADS1217, or ADS1218 (Rev. A)	sbaa073a
Using the MSC121x as a High-Precision Intelligent Temperature Sensor	sbaa100
Interface	
Comparing Bus Solutions (Rev. A)	slla067a
Signaling Rate versus Transfer Rate	slla098
Introduction to the Controller Area Network (CAN)	sloa101
A System Evaluation of CAN Transceivers	slla109
M-LVDS Signaling Rate Versus Distance	slla127
RS-485 for E-Meter Applications (Rev. A)	slla112a
Use Receiver Equalifization to Extend RS-485 Data Communcations*	slla169
RS-485 at 230-kbps Over Uncontrolled Interconnect	slla167
The RS-485 Unit Load and Maximum Number of Bus Connections	slla166
RS-485 for Digital Motor Control Applications	slla143
Control and Monitoring-Power and Logic	
Linear Products Brush Motor Control	slit110
TPIC6C596 Power Logic TM Shift Register Application	slia082
TPIC6595 Power Logic TM 8-Bit Shift Reg. w/ Low-Side Power	slpa004a
DMOS Switches (Rev. A)	·
RF	
Implementing a Bi-directional Frequency Hopping	swra041
Application with TRF6903 and MSP430	
Implementing a Bi-directional Wireless UART Application w/TRF6903 & MSP430) swra039
Designing with the TRF6900 Single-Chip RF Transceiver (Rev. D)	swra033d
Designing Switching Voltage Regulators with the TL494 (Rev. C)	slva001c
Power Management-Voltage References and Shunts	
Improved Voltage Reference Filter has Several Advantages	sbva010
Low Power Operation of REF102 10.0V Precision Voltage Reference	sbva008
Diode-Based Temperature Measurement	sboa019
Power Management Special Functions	
Closed Loop Temperature Regulation Using the UC3638 H-Bridge Motor (Rev. A	slua202a
DN-50 Simple Tech. for Isolating and Correcting Common App. Problems	slua182
U-102 UC1637/2637/3637 Switched Mode Controller for DC Motor Drive	slua137
U-112 A High Precision PWM Transconductance Amplifier for Microstepping	slua073
U-115 New Integ. Circuit Produces Robust, Noise Immune Sys. for Brushless	slua106
U-120 A Simpl. Approach to DC Motor Modeling for Dynamic Stability Analysis	slua076
U-130 Dedicated ICs Simplify Brushless DC Servo Amplifier Design	slua083
UC3717 and L-C Filter Reduce EMI and Chopping Losses in Step Motor	slua141

TI	Worldwide	Technical	Support
----	-----------	-----------	----------------

Internet

TI Semiconductor Product Information Center Home Page support.ti.com

TI Semiconductor KnowledgeBase Home Page support.ti.com/sc/knowledgebase

Product Information Centers

Americas	
Phone	+1(972) 644-5580
Fax	+1(972)927-6377
Internet	support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone				
Belgium (Eng	glish)	+32 (0) 27 45 55 32		
Finland (Engl	ish)	+358 (0) 9 25173948		
France		+33 (0) 1 30 70 11 64		
Germany		+49 (0) 8161 80 33 11		
Israel (Englis	h)	1800 949 0107		
Italy		800 79 11 37		
Netherlands	(English)	+31 (0) 546 87 95 45		
Russia		+7 (0) 95 7850415		
Spain Sweden (English)		+34 902 35 40 28		
		+46 (0) 8587 555 22		
United Kingd	lom	+44 (0) 1604 66 33 99		
Fax	+49 (0) 8	161 80 2045		
Internet	support.1	port.ti.com/sc/pic/euro.htm		

Japan

Internet

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and

conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no

liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information

regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

Internet

Fax International Domestic

International

Domestic

+81-3-3344-5317 0120-81-0036

> support.ti.com/sc/pic/japan.htm www.tij.co.jp/pic

Asia Phone			
Interna	tional	+886-2-23786800	
Domest	tic	<u>Toll Free Number</u>	
	Australia	1-800-999-084	
	China	800-820-8682	
	Hong Kong	800-96-5941	
	Indonesia	001-803-8861-1006	
	Korea	080-551-2804	
	Malaysia	1-800-80-3973	
	New Zealand	0800-446-934	
	Philippines	1-800-765-7404	
	Singapore	800-886-1028	
	Taiwan	0800-006800	
	Thailand	001-800-886-0010	
Fax	886-2-237	8-6808	
Email	tiasia@ti.com or ti-china@ti.com		

support.ti.com/sc/pic/asia.htm

D070804

Safe Harbor Statement

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These "forward-looking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TI or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook. objectives, plans, intentions or goals also are forward-looking statements. All such forwardlooking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

© 2004 Texas Instruments Incorporated

Technology for Innovators, the black/red banner, CommsDAC, e-trim, SWIFT, C2000, C28x, FilterPro, C64x, TMS320C64x, TMS320C6000, TMS320, TMS320C55x, TMS320C67x, PowerPAD, TMS320C28x, LinBiCMOS, OCHI-I vnx. PCII vnx. MicroStar BGA. Power+Logic. Predictive Gate Drive and Easy RF are trademarks of Texas Instruments. All other trademarks are the property of their respective owners

Printed in U.S.A. by ColorDynamics, Allen, TX on recycled paper

Texas Instruments Incorporated

14950 FAA BLVD Fort Worth, Texas 76155-9951

Address service requested

