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A broad class of  signal processing problems leads to the deconvolution problem that is solved by 
the Fourier Transform combined with Tikhonov's regularization. This approach uses the minimal a priori 
information on  the smoothness of the solution. Processes with small signal to noise ratio or stochastic 
processes, for instance, turbulence, result in large frequency  oscillations, and limit the accuracy of the 
recovery. We use a natural additional smoothness property of  the solution in the frequency domain. The 
possibility are appeared to generalize the regularization technique in time-frequency domains 
simultaneously. The suitable inversion procedure  is carried out, and developed in detail for spectral 
analysis (SA) of stochastic wide-band stationary processes. Some results of the modified SA applications 
for hydrodynamic basin are described. The modified SA procedure displays a high computing efficiency, 
and allows to improve the SA accuracy, or,  to reduce the full  SA sampling at 7 - 10 times under 
comparable SA accuracy. It is important for on-line data processing. 
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1. GENERALIZED  REGULARIZATION  TECHNIQUE   
 

Many  problems of data processing [1-3] lead to the deconvolution problem 

us (t) = Kt  u0 (t) = ,                                      (1) 

where  k(t) is the kernel of the integral system operator,  us (t), u0 (t) are the measured and, respectively, 
unknown functions.  Applying the Fourier Transform (FT) to (1)  leads to the equation on frequency domain 
 

 Us (ω) =   K(ω) U0 (ω).                                                  (2) 
 

Here  U0(ω),  Us (ω) are the FTs of the unknown and measured functions, K(ω) is a frequency 
response function of the dynamic system.  Sometimes  K(ω) can be evaluated as  two FTs ratio of the 
measured functions (some blind systems, or the comparison method at the metrology  [3,4]). 

It is well-known the successful application of the usual Tikhonov regularization (where the 
smoothing functional is formed on time domain) to solve the deconvolution problems [1-4]. This procedure 
is equivalent to low-pass filtering (in the frequency domain), correlative processing, and  tuning under the 
system operator [5]. Stochastic phenomena or processes with the small signal/noise ratio lead to additional 
random oscillating noise of U0(ω) in the  frequency domain. It causes the additional loss of the accuracy of 
the signal restoration. Usually, we cannot apply the efficient stochastic restoration procedures (Wiener, 
Kalman, etc) as we have not the necessary full information. 

As, we generalize Tikhonov regularization on the combined time-frequency domains and develop 
the corresponding restoration procedure. Thus,  inversion procedure has the following stages : 

It is assumed the smoothness of regularizative solution, uα (t)  and its FT,  Uα(ω).  Thus, we  form 
up the smoothing functional on  time and frequency domains together  
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Here  βm , k m   are arbitrary nonegative quantities, and  α is the numeral regularization parameter.   
     •   A minimization of functional (3) leads to the regularizative solution in the frequency domain.   
     •   The choice  of optimal regularization parameter  αop  (particular  strategy is discussed) leads to the 
approximated solution of initial problem.  
     •   The return in the time domain (if  it need ). 
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The proof  of this procedure is analogous to Tikhonov’s regularization for time domain.   Proposed 
method uses a natural a priori information on the smoothness of the solution and its FT.   Digitisation and  
realization of above algorithm reduce to linear algebraic band system. 
 
1.1. Usual Tikhonov’s regularization  does not assume the smoothness of Uα(ω), and corresponds to  km 
= 0 in the functional (3). A minimization of (3) leads to well-known equation for Uα(ω) [1,2] 
 

Uα(ω)=Us(ω)K*(ω)/{[K(ω)K*(ω)–1]+PN(ω)}, PN(ω)=1+α0
m
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Here  K*(ω)  is the complex conjugate function at  K(ω), and  the function PN

-1(ω) can be compared with the 
low-pass filtering function [5]. Thus, the smoothness of  the regularization solution uα(t) in time domain 
corresponds to low-pass filtering on frequency domain, correlative processing for output function  us(t), and 
tuning under the dynamic system operator  [5]. 
 
1.2.  Regularization on frequency domain  assumes  the solution smoothness on frequency domain (it 
corresponds  βm  = 0 ). In this case  a minimum of functional  (3)  leads to the equation for Uα(ω)  
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Here K*(ω) is the complex conjugate function at K(ω). It can be shown the solution smoothness on 
frequency domain gives low- pass filtering on time domain (limitation of sampling  time and the vanishing 
point to zero), and tuning under the system operator.     
 
1.3.  Combined time-frequency regularization  corresponds the smoothness of the solution, and its FT  
similtaneousely. A minimization of common case of (3)  gives the following equation for  Uα(ω) 
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Equation (6) corresponds to low-pass filtering of regularization solution in frequency and time domains 
together, and  tunning under the system operator.   
      Time uniform sampling, digitisation,  the FFT applying, solving of  equation (6)  (its discrete option),  the 
choice of optimal regularization parameter,  αop , and the return  in time domain by  the inverse FT  are the 
full inversion procedure for  (1). Below, this technique is applied for stochastic stationary processes, where 
the smoothness in frequency domain is a natural  one's property.  Such processes are, for instance, the 
turbulence arised at submerged jet.  
      For  spectral and correlative analysis of stochastic processes the choice strategy of  optimal 
regularizative parameter  will be given on next part.  For general case of the equation (6),  choice strategies 
of αop  will be developed on subsequent analysis.  
     We use the equation (6) to estimate the FT  Us (ω) of  the noisy measured function, us(t). In particular, 
this problem arises at the use of comparison method in metrology to calibrate the unknown sensor by the 
standard sensor and uniform test signal, u0(t) which acts simultaneously on both sensors.  Such measuring 
technique leads to two integral equations : 
 

     ui(t) = ∫
∞

∞−

wi(t - ξ) u0(ξ) dξ ,           i = 1,2                               (7) 

 
where  wi(t) are impulse response for suitable sensor,  ui(t) are the measurands of sensors.  Applying the 
Fourier Transform gives the equation for the frequency response, W2(ω) of unknown sensor : 
 

  W2(ω) = W1(ω) U2(ω) / U1(ω) .                                        (8) 
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Thus we can define the frequency response of unknown sensor  by means of  the known frequency 
response, W1(ω) of standard sensor, and  the FTs of  the measured functions.   

The FT estimation of  the measured function, us(t)  corresponds to  K(ω)=K*(ω)=1 at (1)-(6), and 
leads to the following equation for  Uα(ω): 
 

Us(ω)PN
-1(ω)=Uα(ω)+α0PN
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Here  PN

-1(ω)  is low-pass filtering function.  
 
Optimal regularization parameter  αop is calculated by integral relation ||Uα(ω) - Us(ω)||2

2 =2π δ0
2. 

Here  δ0 is a prescribed residual (this procedure is equivalent to the residual method  [1,2]).  We could 
apply formulae (9) to solve the different engineering problems, for instance, some signal recovery problems 
[3,4], or, to speed the spectral and correlative analysis for wide-band processes.   
 

2. MODIFIED SPECTRAL ANALYSIS (SA) OF STOCHASTIC WIDE–BAND PROCESSES 
 

It is very important for practice to measure and to calculate the spectrum (or spectral density) of 
wide-band stochastic stationary processes which are used  widely on science and engineering [6-7]. The 
phenomenon nature and the lowest frequency of this process determine the sampling time of spectral and 
correlative analysis, and SA time can achive very large values. Applying of usual spectral analysis (SA) to 
solve this problem can cause to full sampling time (with the time average at samples) up to tens minutes. 
Below, we propose to use the spectrum smoothness to speed SA. 

Spectrum, S(ω) of stochastic stationary process is defined as  the limit  T → ∞ of  the ensemble 
average [1,6,7] of FT for finite time 

 

   Ss(ω) =  lim T-1 E{ |Us(ω)|2 },      Us(ω)= ,              (10) 

where E is a symbol of the ensemble average. For ergodic processes the ensemble average  is replaced 

by the time average at samples  S(ω) = lim T-1 2|)(| ωU . Also, the amplitude spectrum,  |U (ω)| = )(ωS  

is applied widely instead of the energy  spectrum S(ω).   
Usual  SA includes following stages to measure and to calculate the spectrum: 

-   the preliminary smoothing of signal by low-pass filters,  
-   time uniform sampling and digitisation of signal by analog/digital converter (ADC),   
-   the spectrum computation by FFT and the smoothing by different weight windows, 
-   averaging spectrum at  samples. 
 

This SA procedure for on-line processing gives small accuracy (with large random oscillations) of 
the spectrum recovery.  Our SA experience of  turbulent processes shows  the SA smoothing by  weight 
windows is inadequate.     

Really, we can assume the spectrum smoothness without the additional detailed information. It 
permits to improve the calculated accuracy of spectrum, or to reduce the SA sampling for the same 
accuracy. We have two different ways to compute the modified spectrum, Sα(ω)  .          

To evaluate the modified spectrum by the first way, we can use the equations  (9) with the 
replacement Us(ω), Uα(ω)  on suitable quantities |Us(ω)|,  |Uα(ω)|. The conclusion procedure of  (9) at the 
limited frequency compact [0, ωmax] uses the additional boundary conditions  
 

|Uα(0)|(1) = |Uα(0)|(2) = 0 ,   |Uα(ωmax)|
(1) = |Uα(ωmax)|

(2) = 0 . 
 

Here we use only two derivatives of functional (3), as usually it is applied. The time uniform 
sampling for the equation (9) gives the algebraic band  system, and the band width is equal nine for this 
case.  

Second way reduces to more economical calculated procedure. As the low-pass filtering,  PN
-1(ω) is 

conducted by electronic devices at spectral analysis, we can form the smoothing functional for the 
spectrum of  measured function, Ss(ω), and the modified spectrum, Sα(ω) in frequency domain    
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  Φα  = ∫
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Time uniform sampling  and minimization of  (11) leads to linear algebraic band system  with matrix, B 
(band width  is equal (2 (N + 1 )), and  h  is the frequency step:  
 

B Sαααα = Ss ,  Sαααα={Sα(ωn )},  Ss ={Ss (ωn)},  B={bn,m},  ωn  = n h .         (12) 
 
The simplest three-diagonal system gives the first order of  the functional (11)   
 

bn,n = 1 + γ1 + α0 ,  n=1;    bn,n =  1 + 2 γ1 + α0 , n= max,2 n  ; 

bn,n-1 =  0 , n=1;                 bn,n-1 =  - γ1 , n= max,2 n  ; 

bn,n+1 =  0, n=nmax;             bn,n+1 = - γ1 , n= 1,1 max −n ;   γ1 = α0 k1/h
2.    (13) 

 
Matrix, (13)  allows to calculate the smoothing spectrum by economic iterative  procedure [8]. 
       Optimal parameter,  αop  is calculated from an integral natural relation 

  αop  ⇒   ∫
∞

0

Sα(ω) dω = ∫
∞

0

Ss(ω) dω .                               (14) 

Formulas (10)–(14) describe relations for amplitude spectrum after the replacement S(ω)⇒ |U (ω)|. 
 

3.  SA APPLICATIONS FOR HYDROPHYSICAL MEASUREMENTS. 
  

Various Ocean investigations (physical, biological, etc) make it necessary to provide the metrology 
of various hydrophysical probes. Optimal way to provide the uniformity and reliability of measurements in 
statistical hydromechanics is the application of a “standard” turbulent model stream used as an input effect 
to define dynamic parameters of hydrophysical probes such as spatial and time resolutions, conversion 
factors, amplitude and frequency responses, etc. The use of submerged turbulent jet (for temperature and 
speed) in self-preservation region makes it possible.    

Such  standard turbulent water flow raised  temperature fluctuations had been performed by free 
large submerged jet into hydrodynamic basin to calibrate various hydrophysical probes on wide frequency 
band, and to determine its amplitude-frequency responses. The calibration set-up, which uses the 
submerged turbulent jet after the water heating, had performed in D.I. Mendeleyev Institute of Metrology.  
As result, we have wide-band stochastic stationary ergodic speed and temperature signals. 

Up-to-date we performed needed service and researchs to provide the calibration of temperature 
sensors.  There are exist two problems: 
- the research of random temperature fluctuations, 
- the calibration of temperature sensors (determination of its amplitude-frequency response).  

 
The modified SA procedure had been realized by the set of devices  (two temperature sensors, 

amplifiers, low-pass filters, multiplexer, PC-card including multiplexer and ADC, PC)  to measure the 
temperature turbulent processes into the  chamber volume.  Measurements and computations of amplitude 
spectrum of temperature fluctuations were conducted to research the set-up.  Figure 1  represents the 
results of one measurement.  Curves  correspond to usual SA with different number of samples, 100 
(approximately  minutes 27), and the modified SA with the samples number, 100.  Increasing number of 
samples (for usual SA) up to  800  (approximately  minutes 205) leads to the same result. Thus, the 
application of modified SA permits to reduce samples at  8 times.  
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Initial and smoothed amplitude spectrum of turbulent water pulsation 
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Fig. 1. Some results of usual and modified application for amplitude spectrum of turbulent water 
temperature pulsation  in hydrophysical calibration set-up. 
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Fig. 2 . Comparison between usual and modified SA for computing of amplitude-frequency response of the 
temperature sensor versus frequency. 

 
The second problem for the hydrophysical set-up is the calibration of temperature sensors 

(computation of  amplitude-frequency  response).  Instead of formulae (8), we can calculate amplitude-
frequency response of sensor by the relation: 

                        |W2(ω)| = |W1(ω)|   S2(ω) / S1(ω)                                     (15) 
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Figure 2 displays the calibration result of some temperature sensor determined by various techniques (with 
and without the smoothing of the formulae (15)).  
 

CONCLUSIONS. 
 

Results of  measurements and computing  proved  the reduction of  the measurement uncertainty 
(accuracy) at 3-4  time for  the calculating spectrum on the same sampling, or, the reduction of  full SA time 
(at 8-10 times) at the comparable SA accuracy.     

The  combined time-frequency inversion displays high computing efficiency  of data processing for  
wide-band stochastic processes as turbulence. We  wait this technique can be applied efficiently to solve 
different engineering and science problems described as the deconvolution problems. 
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