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Step-frequency  radar  may  be  employed  for  measuring  the  structure  of  the  one-dimensionally  

layered  media.  The  main  challenge  then  is  the  accurate  and  computationally  efficient  analysis  of  
the  data  acquired  by  the  radar.  If  multiple  reflections  may  be  ignored,  the  problem  reduces  to  the  
classical  inverse  problem  of  reconstructing  the  function  from  a  finite  number  of  its  Fourier  
coefficients  perturbed  by  noise.  The  minimum  norm  solution  given  by  the  discrete  Fourier  transform  
does  not  allow  resolving  of  the  features  closer  than  the  Raleigh  distance.  The  proposed  non-linear  
algorithm  employs  the  apparatus  of  Pad   approximations  and  orthogonal  polynomials  to  obtain  the  
iteratively  refined  spectrum  estimate.  The  published  error  analysis  for  the  certain  matrix  algorithms  
can  be  adapted  to  evaluate  the  influence  of  the  noise  on  our  method  of  signal  recovery.  
Computational  costs  are  low  enough  to  allow  the  reconstruction  in  real  time  on  inexpensive  
hardware. 
 

Statement of the problem 
Analysis of the data from the step-frequency radar in important special cases reduces to the 

trigonometric momentum problem, or the problem of recovery of the spectrum distribution )f(ν  from the 

discrete set of  moments 
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computable using fast (costing ( )νν NNO log  operations) linear algorithms. However, the resolution is 

limited by the Raleigh distance νπ N . Achieving greater resolution requires using more complex 

algorithms.  
 

Stieltjes moment problem and the Lanczos algorithm 
This section describes the widely known approach to estimating the unknown Stieltjes density )μ(x  (see, 

for instance [4, § 7.8]). Its essence consists in constructing the sequence of polynomials )(π xn  starting 

with 1π0 = , orthonormal with respect to the scalar product  

)μ()(π)(ππ,π xdxx lklk ∫= ,       (2) 

using the three-term Lanczos recurrence 
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The knowledge of the first 1+N  Stieltjes moments  

{ }Nnxdxmm n
nn  0,)μ(: == ∫        (4) 

suffices to compute the scalar products lk ππ ,  for any Nlk ≤+ ,  therefore enabling one to carry out 

the Lanczos iterations up to the order  2/max Nk = . It can be shown then that a Stieltjes density 

function concentrated in the nodes iu with the weights iµ ;  
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 has the first max2k  moments coinciding with the set { }nm  used to construct the set of polynomials 

{ }max1: kkk  =π , provided iu  are chosen equal to the eigenvalues of the tridiagonal matrix  
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and iµ proportional to the squared first components 
2
1ii sγµ =  of the corresponding eigenvectors 

( )T
kiii sss "21 . If the unknown Stieltjes density )(xµ  is , in fact, discrete with SK  points of 

increase, the residual norm kβ  becomes zero at iteration SKk = . 

 
From Stieltjes to trigonometric moment problem 

Comparison of (1) and (4) suggests that the Stieltjes density )μ(x  appear to parallel the unknown spectral 

density )F(ν : 
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( )πνcos=x  and ( ))arccos(cos)(T xnxn =  is the Chebyshev polynomial of the 1st kind. As 

Chebyshev polynomials form a complete basis in the space of all polynomials, knowledge of the moments 

ns  allows to compute the moments 
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and thus to carry out the Lanczos iterations (3). The eigenvalues and eigenvectors of the resulting 
tridiagonal matrix (6) enable one to form an approximation of the type (5)  to the unknown density )F(x . 

 
Actual spectrum and the approximated spectrum 
The approximation )μ(x  to the unknown spectral density )F(x  has been constructed, based on 

the knowledge of the moments (8) without making any a priory assumptions about it1, but it is an 
approximation of the particular kind. If the measured signal has the discrete line spectrum of the form (5), 

the Lanczos process (3) will terminate with 0=kβ  at the iteration maxkk = , recovering the 

unknown spectrum. Before the termination of the Lanczos process, or when the signal (1) has a continuous 
distribution )f(ν  (in this case the Lanczos process can be carried out to arbitrary number of iterations), 

connection between it and the approximation (5)  is given by the Chebyshev inequalities for the density 
function. Namely, theorem 3.2.1 of [1, Part 2, § 3.2] implies2 the inequality 

 )0μ()F()0μ( +≤≤− ii uxu ,       (9) 

where max1, kiui  = are the points of discontinuity of )μ(x . 

 
Influence of the noise 

If the moments ns  are obtained by some measuring device, they may be perturbed by the unknown 

random noise: nnn ss ε+→ . It is important to consider what influence this unknown perturbation of the 

input data will have on the described algorithm. Fortunately, there exist extensive literature concerning the 
numerical stability of Lanczos algorithm applied to the eigenvalue problem (See, for instance, [2 ], [3], [4, 

                                                 
1 Except that it is non-decreasing, thus ensuring that the norm induced by the scalar product (2) is nonnegative. 
In case )F(x  has the points of decrease, we carry out the bi-Lanczos process. 

2 In the special case w is equal to a root of )(]1[ zB MM +  which is not also a root of )(][ zB MM  



Международная Конференция «Датчики и Системы» 2002 

 
 - 3 - 

Ch. 13]). Those results concern the influence of the floating-point rounding errors. Rounding errors are 
analyzed as some unknown random perturbations of the Lanczos recurrence (3). Some of the results of the 
error analysis hold if rounding errors are replaced by the normally distributed random numbers with the 
standard deviation on the order of the machine ε  (this idea was used in [5] to improve the numerical 
properties of the Lanczos algorithm). It is demonstrated that the eigenvalues recovered by the perturbed 
Lanczos iterations lie in tiny intervals around the true eigenvalues. According to [3], proven bounds on the 

size of those intervals considerably overestimate them, and are on the order of 
41ε . Thus, we may expect 

that the described superresolution algorithm will recover the unknown frequencies present in the signal 

perturbed by noise with standard deviation ε with the error not exceeding 
41ε . This is confirmed by the 

numerical experiments. 
 

Numerical experiment  

The algorithm was applied to the sequence   

( ) ( ) ( ) ( ) nn nnnns εππππ +++−= 758.0cos5.0741.0cos0.141.0cos3.0154.0cos8.0 , 

321 =n , where nε  is a pseudorandom sequence with zero mean and standard deviation 0.01. The 

graph shows the approximation )μ(νd  of the spectral distribution )f(ν , as well as the discrete cosine 

transform of the sequence ns . 

 

 
 
Dotted vertical lines show the actual location of the spectral lines. Two spectral lines closer than the 

Raleigh distance 0.0313321 = are successfully resolved 
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