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Preface 

Time-Frequency Signal Analysis and Processing (TFSAP) is a collection of theory 
and algorithms used for analysis and processing of non-stationary signals, as found 
in a wide range of applications including telecommunications, radar, and biomedical 
engineering. This book brings together the main knowledge of TFSAP, from theory 
to applications, in a user-friendly reference suitable for both expert and non-expert 
readers. 

The con ten t s  of the book include: 

1. a comprehensive tutorial introduction to TFSAP, accessible to anyone who 
has taken a first course in signals and systems; 

2. more specialized theory and algorithms, concisely presented by some of the 
leading authorities on the respective topics; and 

3. studies of key applications, written by leading researchers, showing how to use 
TFSAP methods to solve practical problems. 

The m o t i v a t i o n  for producing this book was twofold: 

My original and widely used decade-old tutorial on TFSAP [1] needed up- 
dating in two respects. First, some of the advances of the last decade are 
sufficiently fundamental to warrant inclusion in an introductory treatment, 
while others are sufficiently important to demand coverage in any comprehen- 
sive review of TFSAP. Second, new applications have widened the range of 
disciplines interested in TFSAP, and thus reduced the common background 
knowledge that may be expected of readers. Part  I of this book addresses 
these needs. 

The need for a standard language of discourse became apparent in 1990 while 
I was editing the 23 contributions to the first comprehensive book in the 
field [2]. These seminal contributions to TFSAP led to further developments 
throughout the 1990s, including some significant advances in practical meth- 
ods suitable for non-stationary signals. These efforts continued apace as this 
book was being written. Such rapid progress produced a variety of new ter- 
minologies and notations that were in need of standardization and inclusion 
in an updated reference book. 

The o r g a n i z a t i o n  of this book uses five Parts, each Part  including several Chapters, 
and each Chapter comprising several Articles. Part  I introduces the basic concepts 
while Parts II to V cover more advanced or specialized areas. 
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viii Preface 

P a r t  I defines and explains the basic concepts of TFSAP, intuitively derives a 
variety of well-known time-frequency distributions (TFDs), and then reduces them 
to a common form. This leads to the general treatment of quadratic TFDs in 
Chapter 3, which should be regarded as the core of the book and as a prerequisite 
for the later chapters. 

P a r t  II  gives more details on some fundamental topics of TFSAP, such as TFD 
design and signal analysis in the (t, f)  plane. 

P a r t  I I I  describes specialized techniques used in implementation, measurement 
and enhancement of TFDs. 

P a r t  IV presents the key statistical techniques for TFSAP of noisy signals, includ- 
ing a full treatment of detection and classification methods. 

P a r t  V describes a representative selection of TFSAP applications, encompass- 
ing telecommunications, radar, sonar, power generation, image quality, automotive 
applications, machine condition monitoring, and biomedical engineering. 

Usability is enhanced by an updated consolidated bibliography (alphabetical by au- 
thor) and a two-level index (which also serves as a dictionary of abbreviations). 

Under the standard review procedure used for this book, each Article had two 
(usually external) reviewers concentrating on scientific rigor and accuracy, plus two 
anonymous internal reviewers concentrating on clarity and consistency. 

A c k n o w l e d g m e n t s  are due to a number of people who made possible the comple- 
tion of this book. Foremost among them are my two sons, who aided me to continue 
this work during and after my wife's final illness, thus contributing to my sense of 
balance and purpose during this difficult period. I thank all authors and reviewers, 
and the organizers of the Special Sessions on TFSAP at ISSPA conferences, for 
their expertise, timely effort and professionalism, and for facilitating the exchange 
of ideas between contributors to this book. I thank my research students and the 
SPRC staff for valuable assistance. In particular, Gavin Putland assisted with the 
technical editing of portions of Part I and was responsible for the final mix-down of 
the authors' I ~ ~  T M  and PostScript T M  files. 

Boualem Boashash, 
Editor. 
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Chapter 1 

Time-Frequency Concepts 

Time-frequency signal analysis and processing (TFSAP) concerns the analysis and 
processing of signals with time-varying frequency content. Such signals are best 
represented by a t ime- f requency  d i s t r ibu t ion  (TFD),  which is intended to show 
how the energy of the signal is distributed over the two-dimensional time-frequency 
space. Processing of the signal may then exploit the features produced by the 
concentration of signal energy in two dimensions (time and  frequency) instead of 
only one (time or frequency). 

The first chapter begins the introductory tutorial which constitutes Part I of 
the book. This tutorial updates the one given in [1] by including recent advances, 
refining terminology, and simplifying both the presentations of concepts and for- 
mulations of methodologies. Reading the three chapters of Part I will facilitate the 
understanding of the later chapters. 

The three sections of Chapter 1 present the key concepts needed to formu- 
late time-frequency methods. The first (Section 1.1) explains why time-frequency 
methods are preferred for a wide range of applications in which the signals have 
time-varying characteristics or multiple components. Section 1.2 provides the signal 
models and formulations needed to describe temporal and spectral characteristics 
of signals in the time-frequency domain. It defines such basic concepts as analytic 
signals, the Hilbert transform, the bandwidth-duration product and asymptotic 
signals. Section 1.3 defines the key quantities related to time-frequency methods, 
including the instantaneous frequency (IF), time-delay (TD) and group delay (GD). 

~ Boualem Boashash,  Signal Processing Research Centre, Queensland University 
of Technology, Brisbane, Australia. Reviewers: K. Abed-Meraim, A. Beghdadi, M. Mesbah, 
G. Putland and V. Sucic. 
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1.1 The Need for a Time-Frequency Distribution (TFD) 
The two classical representations of a signal are the time-domain representation s(t)  
and the frequency-domain representation S ( f ) .  In both forms, the variables t and f 
are treated as mutually exclusive: to obtain a representation in terms of one variable, 
the other variable is "integrated out". Consequently, each classical representation 
of the signal is non- loca l ized  w.r.t, the excluded variable; that is, the frequency 
representation is essentially averaged over the values of the time representation at 
all times, and the time representation is essentially averaged over the values of the 
frequency representation at all frequencies. 

In the time-frequency distribution, denoted by p ( t , f ) ,  the variables t and f 
are not  mutually exclusive, but are present together. The TFD representation is 
local ized in t and f .  

1.1.1 Representation of Three Real-Life Signals 
The usefulness of representing a signal as a function of both time and frequency is 
illustrated by considering three signals of practical importance: 

1. S inusoida l  F M  signal: Monophonic television sound, like monophonic FM 
radio, is transmitted on a frequency-modulated carrier. If the audio signal is 
a pure tone of frequency fm (the modulating frequency), then the frequency 
of the carrier is of the form 

f i ( t )  = fc + fd COS[27rfmt + r (1.1.1) 

where t is time, f i ( t )  is the frequency modulation law (FM law), fc is the 
mean (or "center") carrier frequency, fd is the peak frequency deviation, and 
r allows for the phase of the modulating signal. The amplitude of the carrier 
is constant. 

2. L inear  F M  signal: Consider a sinusoidal signal of total duration T, with 
constant amplitude, whose frequency increases from f0 to f0 + B at a constant 
rate a - B / T .  If the origin of time is chosen so that the signal begins at t -- 0, 
the FM law may be written 

f i ( t )  = fo + a t  ; O ~_ t ~_ T . (1.1.2) 

In an electronics laboratory, such a signal is called a l inear  f r equency  sweep,  
and might be used in an automated experiment to measure the frequency 
response of an amplifier or filter. In mineral exploration, a linear FM signal 
is called a chirp  or Vibrose is  signal, and is used as an acoustic "ping" for 
detecting underground formations [2, 3]. 

3. Mus ica l  pe r fo rmance :  A musical note consists of a number of "components" 
of different frequencies, of which the lowest frequency is called the fundamental 
and the remainder are called overtones [4, p. 270]. These components are 



The Need for a Time-Frequency Distribution (TFD) 5 

Fig. I . i . i :  An example of musical notation [5]. Roughly speaking, the horizontal dimension is time 
and the vertical dimension is frequency. 

present during a specific time interval and may vary in amplitude during that  
interval. In modern musical notation, each note is represented by a "head". 
The vertical position of the head (together with other information such as 
the clef and key signature) indicates the pitch, i.e. the frequency of the most 
prominent component (usually the fundamental). The horizontal position 
of the head in relation to other symbols indicates the starting time, and the 
duration is specified by the shading of the head, attached bars, dots, stem and 
flags, and tempo markings such as Allegro. The choice of instrument--each 
instrument being characterized by its overtones and their relationships with 
the fundamental--is indicated by using a separate stave for each instrument or 
group of instruments, or a pair of staves for a keyboard instrument. Variations 
in amplitude are indicated by dynamic markings such as mp and crescendo. 
Fig. 1.1.1 illustrates the system. By scanning a set of staves vertically, one can 
see which fundamentals are present on which instruments at any given time. 
By scanning the staves horizontally, one can see the times at which a given 
fundamental is present on a given instrument. 

Each of the three above signals has a time-varying frequency or time-varying 
"frequency content". Such signals are referred to as non-stationary. 

The three examples described above are comprehensible partly because our sense 
of hearing readily interprets sounds in terms of variations of frequency or "frequency 
content" with time. However, conventional representations of a signal in the time 
domain or frequency domain do not facilitate such interpretation, as shown below. 

1.1.2 Time-Domain Representation 
Any signal can be described naturally as a function of time, which we may write 
s(t). This representation leads immediately to the i n s t a n t a n e o u s  power ,  given 
by Is(t)l 2, which shows how the energy of the signal is distributed over time; the 
total signal energy is 

E = Is(t) l  2 dt. (1 .1 .3 )  
o o  
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But the time-domain description has limitations, as may be seen by applying it to 
the above three examples: 

1. The sinusoidal F M  signal whose frequency satisfies Eq. (1.1.1) may be writ- 
ten 

sl(t) = Acos (27rfct + y/-~m sin[27rfmt+r + r  (1.1.4) 

where A is the amplitude and r a phase offset; the fraction fd/fm is called the 
m o d u l a t i o n  index and is equal to the peak phase deviation (in radians) from 
27rfct. This equation, by itself, does not clearly show how the frequency varies 
with time. If we imagine a graph of sl (t) vs. t, it would give the impression of 
an oscillating frequency, but determining the frequency as a function of time 
from the graph would be a tedious and imprecise exercise. 

2. The l inear  F M  signal whose frequency satisfies Eq. (1.1.2) may be written 

s2(t) = Arect t-~r/2 cos (27r[fot + 7t ] +  r (1.1.5) 

where, again, A is the amplitude and r a phase offset. The rect function is 
a rectangular pulse of unit height and unit duration, centered on the origin of 
time; that is, 

1 if IT[_< 1/2;  (1.1.6) 
rect T = 0 otherwise. 

Hence the rect[...] factor in Eq. (1.1.5) is equal to unity for 0 _< t _< T, and 
zero elsewhere. But again it is not immediately apparent why Eq. (1.1.5) has 
the required FM law. 

The graph of s2(t) vs. t is shown on the left side of Fig. 1.1.2(a), for r = 0, 
T - 6 4 s ,  f0 = 0.1Hz and a = (3/640)Hzs -1. Although the graph gives a 
clear impression of a steadily increasing frequency, the exact FM law is not 
clearly and readily visible. 

3. A musical  pe r fo rmance  can be represented as (for example) an air pressure 
curve at a particular point in space. Each such curve is a time-varying pres- 
sure, and may be converted by a microphone and amplifier into an electrical 
signal of the form s3(t). Indeed, music is routinely recorded and broadcast 
in this way. However, the function s3(t) is nothing like the form in which 
a composer would write music, or the form in which most musicians would 
prefer to read music for the purpose of performance. Neither is it of much use 
to a recording engineer who wants to remove noise and distortion from an old 
"vintage" recording. Musical waveforms are so complex that a graph of s3(t) 
vs. t would be almost useless to musicians and engineers alike. 

These three examples show that the time-domain representation tends to obscure 
information about frequency, because it assumes that the two variables t and f are 
mutually exclusive. 
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Fig. 1.1.2: The importance of phase: (a) time-domain representation (left) and magnitude spectrum 
(right) of a linear FM signal [Eq.(1.1.5)] with duration 64 seconds, starting frequency 0.1Hz and 
finishing frequency 0.4 Hz; (b) time-domain representation and magnitude spectrum of another signal 
with the same magnitude spectrum as that in part (a). All plots use a sampling rate of 8 Hz. 

1.1.3 Frequency-Domain Representation 
Any practical signal s(t) can be represented in the frequency domain by its Fourier 
transform S(f), given by 

S(f) = ~:{s(t)} A J_~ = s(t)e-J2~:tdt. (1.1.7) 
( x )  

For convenience, the relation between s(t) and S(f) may be written "s(t) ~ S(f)" 

or simply "s(t)~ S(f)". The Fourier transform (FT) is in general complex; its 
magnitude is called the m a g n i t u d e  s p e c t r u m  and its phase is called the phase  
spec t rum.  The square of the magnitude spectrum is the energy  s p e c t r u m  and 
shows how the energy of the signal is distributed over the frequency domain; the 
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total energy of the signal is 

E - I S ( f ) l  2 df - S ( f )  S* ( f )d f  (1.1.8) 
c o  (:x) 

where the superscripted asterisk (*) denotes the complex conjugate. Although the 
representation S( f )  is a function of frequency only--t ime having been "integrated 
out"-- the  FT is a complete representation of the signal because the signal can be 
recovered from the FT by taking the inverse Fourier transform (IFT): 

/? s(t) - j : - i  {S(f)} - S( f )  eJ2~:tdf . (1.1.9) 
t.--- f O 0  

But the "completeness" of the FT representation does not make it convenient for all 
purposes, as may be seen by considering the same three examples: 

1. S inuso ida l  F M  signal:  If r = r = 0 in Eq. (1.1.4), the expression for sl(t)  
can be expanded into an infinite series as 

o o  

sl(t) = d y ]  J,(/3) cos27r(fr + nfm)t (1.1.10) 
? l ~ -  - -  (:X:) 

where ~ is the modulation index (~ = fd / fm) and Jn denotes the Bessel func- 
tion of the first kind, of order n [6, p. 226]. In the frequency domain, this 
becomes an infinite series of delta functions; one of these (the car r ie r )  is at 
the mean frequency fc,  and the remainder (the s i d e b a n d  tones) are separated 
from the carrier by multiples of the modulating frequency fm. Although the 
number of sideband tones is theoretically infinite, the significant ones 1 may 
be assumed to lie between the frequencies fc + (fd + fm) or, more conser- 
vatively, fc + (fd + 2fm). This information is essential if one is designing a 
tuning filter to isolate the TV audio carrier or separate one FM channel from 
adjacent channels. But it is inadequate if one is designing a modulator or 
demodulator, because its connection with the FM law is even more obscure 
than that of Eq. (1.1.4). 

2. The magnitude spectrum of the l inear  F M  signal:  Eq. (1.1.5) is shown 
on the right side of Fig. l . l .2(a),  for r  T = 6 4 s ,  f 0 = 0 . 1 H z  and 
a = (3/640) Hz/s. The graph shows that magnitude is significant in the band 
corresponding to the frequency sweep range (0.1 Hz < f < 0.4Hz), and fur- 
thermore that the energy is mostly confined to that band. However, the graph 
fails to show that  the frequency is increasing with time. In other words, the 

1 For more detail, see Carlson [6], pp. 220-37. The above description considers only positive 
frequencies; similar comments apply to the negative frequencies. Theoretically, the lower sideband 
tones belonging to the positive-frequency carrier extend into the negative frequencies, while the 
corresponding sideband tones belonging to the negative-frequency carrier extend into the positive 
frequencies; but such "aliased" components are negligible if fc and fd are appropriately chosen. 
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magnitude spectrum tells us what frequencies are present in the signal, but 
not the "times of arrival" of those frequencies (the latter information, which 
we call t i m e  delay,  is encoded in the phase spectrum). 

The shortcomings of the magnitude spectrum may be seen even more clearly 
in Fig. 1.1.2(b), which shows a signal whose magnitude spectrum (right) is 
identical to that  of the linear FM signal in Fig. 1.1.2(a), but whose appearance 
in the time domain (left) is very different from a linear FM. 2 

3. Similarly, the mus ica l  p e r f o r m a n c e  has a magnitude spectrum which tells 
us what frequencies are present, but not when they are present; the latter 
information is again encoded in the phase. The magnitude spectrum may 
exhibit as many as 120 peaks corresponding to the notes of the chromatic 
scale in the audible frequency range, and the relative heights of those peaks 
may tell us something about the tonality of the music (or whether it is tonal 
at all), but the timing of the notes will not be represented in the magnitude 
spectrum and will not be obvious from the phase spectrum. 

These three examples show that the frequency-domain representation "hides" the 
information about timing, as S(f)  does not mention the variable t. 

1.1.4 Joint Time-Frequency Representation 

As the conventional representations in the time domain or frequency domain are 
inadequate in the situations described above, an obvious solution is to seek a rep- 
resentation of the signal as a two-variable function or distribution whose domain 
is the two-dimensional (t, f )  space. Its constant-t cross-section should show the 
frequency or frequencies present at time t, and its constant-f  cross-section should 
show the time or times at which frequency f is present. Such a representation is 
called a t i m e - f r e q u e n c y  r e p r e s e n t a t i o n  ( T F R )  or t i m e - f r e q u e n c y  d i s t r i bu -  
t ion  (TFD) .  

As an illustration of what is desired, Fig. 1.1.3 shows one particular TFD of the 
linear FM signal of Eq. (1.1.5), for ~ = 0, T = 64s, f0 = 0.1 and c~ = (3/640) Hzs -1. 
The TFD not only shows the start and stop times and the frequency range, but also 
clearly shows the variation in frequency with time. This variation may be described 
by a function fi(t), called the i n s t a n t a n e o u s  f r e q u e n c y  (IF). A signal may have 
more than one IF; for example, Fig. 1.1.4 shows a TFD of a sum of two linear 
FM signals, each of which has its own IF. 3 These IF features are not apparent in 
conventional signal representations. 

Non-stationary signals for which a TFD representation may be useful occur not 
only in broadcasting, seismic exploration and audio, from which our three exam- 

2The signal in part  (b) of Fig. 1.1.2 was obtained from tha t  in par t  (a) by taking the FFT,  
setting the phase to zero, taking the inverse F F T  and shifting the result in time. It is n o t  the 
product  of a sinc function and a cosine function. 

3N.B.: In Fig. 1.1.4 and in all subsequent graphs of TFDs,  the labels on axes are similar to 
those in Fig. 1.1.3, but  may be more difficult to read because of space constraints.  
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Fig. 1.1.3: A time-frequency representation of a linear FM signal [Eq. (1.1.5)] with duration 65 sam- 
ples, starting frequency 0.1 and finishing frequency 0.4 (sampling rate I Hz). The time-domain repre- 
sentation appears on the left, and the magnitude spectrum at the bottom; this pattern is followed in 
all TFD graphs in Part l of this book. 

Fig. 1.1.4: A time-frequency representation of two linear FM signals with close parallel FM laws, 
duration 512 samples, frequency separation 0.04 (sampling rate 1 Hz). 

ples are taken, but also in numerous other engineering and interdisciplinary fields 
such as telecommunications, radar, sonar, vibration analysis, speech processing and 
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medical diagnosis. T i m e - f r e q u e n c y  s ignal  p r o c e s s i n g  ( T F S P )  is the processing 
of signals by means of TFDs. 

1.1.5 Desirable Characteristics of a T F D  

The use of a TFD for a particular purpose is inevitably based on particular as- 
sumptions concerning the properties of TFDs. To ensure that  the conclusions of 
the analysis are sound, these assumptions must be identified and verified. Gen- 
eralizing somewhat, we may say that  the desirable properties of a TFD are those 
on which the most likely applications of TFDs depend. The following applications 
illustrate some likely uses of TFDs: 

�9 Analyze the raw signal in the (t, f )  domain so as to identify its characteristics 
such as time variation, frequency variation, number of components, relatives 
amplitudes, etc. 

�9 Separate the components from each other and from the background noise by 
filtering in the (t, f )  domain. 

�9 Synthesize the filtered TFD in the time domain. 

�9 Analyze specific components separately: 

- Track the instantaneous amplitude; 

- Track the instantaneous frequency; 

- Track the instantaneous bandwidth (spread of energy about the IF). 

�9 Choose a mathematical model of the signal, showing clearly the significant 
characteristics, such as the IF. 

These applications can be carried out using a TFD with the following properties: 

l(a) The TFD is real (because energy is real). 

l(b) The integral of the TFD over the entire (t, f )  plane is the total energy of the 
signal (so that  energy is conserved). 

1(c) The integral over a rectangular region of the (t, f )  plane, corresponding to a 
finite bandwidth and finite time interval, is approximately the energy of the 
signal in that  bandwidth over that  interval, provided that  the bandwidth and 
interval are sufficiently large (see Section 1.2.5 for details). 

2 For a monocomponent FM signal, the peaks of the constant-time cross-sections 
of the TFD should give the IF law which describes the signal FM law. 

3 For a multicomponent FM signal, the dominant peaks of the TFD should 
reflect the components '  respective FM laws; and the TFD should resolve any 
close components, as in Fig. 1.1.4. 
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A simple measure of the resolution of a TFD is the concentration of energy about 
the IF law(s) of a signal [Article 7.4 and Chapter 10]. 

The linear FM signal, because of its simple FM law, is a convenient test signal 
for verifying the first four properties. Property 3 may be tested by a sum of linear 
FM signals. 

The above properties have further implications. For example, the resolution 
property (3) helps to ensure robustness in the presence of noise, while the last two 
properties (2 and 3) together allow discernment of the multiple IFs of multicompo- 
nent signals. 

1.2 Signal Formulations and Characteristics in the (t, f )  Domain 
1.2.1 Signal Models used in (t,f) Methods 
To represent signals such as the linear FM, several types of signal models are com- 
monly used in TFSAP. The choice of model depends on the number and nature 
of the parameters needed to describe the signal. For example, a single sinusoid 
with constant frequency and normalized amplitude and phase is described by the 
equation 

s4(t) = cos 27rfct, (1.2.1) 

in which the only parameter is the frequency fc. If the amplitude and phase are 
significant in the application, two more parameters are needed. A linear combination 
of such signals may be written in the form 

M 

s5(t) = E ak COS(27rfkt + r  (1.2.2) 
k--1 

which involves 3M parameters. 
Because s4(t) and s5(t) contain terms (or "components")of constant amplitude, 

frequency and phase, they are completely and clearly described by Fourier trans- 
forms; no time dependence is required. But a sinusoidal FM signal or chirp signal 
requires a TFD. A musical audio signal also calls for a form of TFD (as is suggested 
by the notation in which music is written), and the TFD should clearly resolve the 
multiple components. 

Further difficulties are raised by more complex signals such as 

+ w(t) (1.2.3) 

where ak(t) is the time-varying amplitude of the k TM component, fk(t) is the time- 
varying frequency of the k th component, and w(t) is additive noise. The analysis of 
such a signal requires the ability not only to distinguish the time-varying compo- 
nents from each other in spite of their varying amplitudes and frequencies, but also 
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to separate them from the noise. Such comments still apply if the amplitude of the 
k TM component is a multiplicative noise factor ink(t), as in the signal 

sT( t ) - - (~mk( t )eJ27r f~  + w ( t ) ' k = l  (1.2.4) 

In this case, an even more specialized analysis will be required. 

1.2.2 Analytic Signals 

It is well known that  a signal s(t) is real if and only if (iff) 

S ( - f )  = S*(f) , (1.2.5) 

where S(f)  is the Fourier transform of s(t). In other words, a real signal is one 
that  exhibits H e r m i t i a n  s y m m e t r y  between the positive-frequency and negative- 
frequency components, allowing the latter to be deduced from the former. Hence the 
negative-frequency components of a real signal may be eliminated from the signal 
representation without losing information. In the case of a real lowpass signal, 
removal of negative frequencies has two beneficial effects. First, it halves the total 
bandwidth, allowing the signal to be sampled at half the usual Nyquist rate without 
aliasing [7,8]. Second, it avoids the appearance of some interference terms generated 
by the interaction of positive and negative components in quadratic TFDs (to be 
treated in detail in Section 3.1.2). 

Def in i t i on  1.2.1: A signal z(t) is said to be a n a l y t i c  iff 

Z(I)  = 0 for f < 0 ,  (1.2.6) 

where Z( f )  is the Fourier transform of z(t). 

In other words, an analytic signal contains no negative frequencies; it may have a 
spectral component at zero frequency (DC). 

T h e o r e m  1.2.1: The signal 

z(t) = s(t) + jy(t) , (1.2.7) 

where s(t) and y(t) are real, is analytic with a real DC component, if and only if 

Y ( f )  = ( - j  sgn f )  S( f )  (1.2.8) 

where S( f )  and Y( f )  are the FTs of s(t) and y(t), respectively, and where 

- 1  if ~ < 0 ;  
sgn ~ ~ 0 if ~ - 0 ; (1.2.9) 

+1 if ~ > 0 .  

Proof: Take the FT of Eq. (1.2.7) and use Eq. (1.2.6). B 
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1.2.3 Hilbert Transform; Analytic Associate 
If the Fourier transforms of s(t) and y(t) are related according to Eq. (1.2.8), we 
say that y(t) is the H i l b e r t  t r a n s f o r m  of s(t), and we write 

y(t) = 7-/{s(t)}. (1.2.10) 

Hence we may restate Theorem 1.2.1 as follows: A signal is analytic with a real DC 
component if and only if its imaginary part is the Hilbert transform of its real part. 

By invoking the "if" form of Theorem 1.2.1 and restating the sufficient condition 
in terms of Eq. (1.2.7), we may now see the practical significance of the theorem 
and the Hilbert transform: Given a real signal s(t), we can construct the complex 
signal 

z(t) = s(t) + jTl{s(t)} (1.2.11) 

and know that z(t) is analytic. This z(t) is called the analytic signal "corresponding 
to" or "associated with" the real signal s(t). In this book, for convenience, we shall 
usually call z(t) the ana ly t ic  assoc ia te  of s(t). 

By taking the IFT of Eq. (1.2.8) and applying Eq. (1.2.10), we arrive at t he  
following concise definition of the Hilbert transform: 

Def in i t ion  1.2.2: The H i l b e r t  t r a n s f o r m  of a signal s(t), denoted by 7-/{s(t)}, 
is 

7-/{s(t)} = ~  --1~_, { ( - j s g n f ) ~ { s ( t ) } } .  (1.2.12) 

where ~{ . . . }  denotes the Fourier transform. 

In other words, the Hilbert transform of s(t) is evaluated as follows: 

1. Take the Fourier transform S(f )  of s(t); 

2. Multiply S(f )  by - j  for positive f,  by + j  for negative f ,  and by zero for 
f = 0; 

3. Take the inverse Fourier transform. 

According to step 2 of the above procedure, a Hilbert transformer introduces a 
phase lag of 90 degrees (as - j  = e-J~/2), producing a signal in q u a d r a t u r e  to the 
input signal. The effect is well illustrated by the following result, which is easily 
verified using Definition 1.2.2 and a table of transforms: 

E x a m p l e  1.2.1: If fo is a positive constant, then 

7-/{cos(27rf0t) } = sin(21rf0t) (1.2.13) 

7-/{sin(21rf0t) } = - cos(21rf0t). (1.2.14) 
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It would be convenient if the pattern of Example 1.2.1 were applicable to mod- 
ulated signals; so that  for example, we could say 

7-/{a(t) cos r - a ( t ) s i n  r , (1.2.15) 

which would imply that  the analytic associate of the real signal s ( t )  - a ( t ) c o s  r 
is 

z ( t )  - a ( t )  cos r + j T l { a ( t )  cos r 

= a( t )  cos r + j a ( t )  sin r 

= a ( t ) d  r (1.2.16) 

The condition under which Eq. (1.2.15) holds is that  the variation of a ( t )  is suf- 
ficiently slow to ensure "spectral disjointness", i.e. to avoid overlap between the 
spectrum of a( t )  and the spectrum of cos r 

Eq. (1.2.8) indicates that  the transfer function of a Hilbert transformer is 
- j  sgn f .  The corresponding impulse response is 

1 
9 r - 1  { - j  sgn f} - - - .  (1.2.17) 
t.---: rrt 

Using this result and applying the convolution property to Eq. (1.2.12), we obtain 
a definition of the Hilbert transform in the time domain: 

1 
7-/{s(t)} -- s ( t ) ,  - -  (1.2.18) 

7~t 

_1 p.v. dw 
7r o o t - - T  

(1.2.19) 

where p.v.{. . .} denotes the Cauchy p r i n c i p a l  va lue  of the improper integral [9], 
given in this case by 4 

lim d7  + & . (1.2.20) 
5--.0 oo t - -  T 5 t -- T 

1.2.4 Duration, Bandwidth, B T  Product 

1.2.4.1 Finite Duration and Finite Bandwidth 

In real life, signals are observed for finite periods of time and processed by devices 
with finite usable bandwidths. If a signal s ( t )  has the Fourier transform S( f ) ,  the 
d u r a t i o n  of the signal is the smallest range of times outside which s ( t )  - O, while 
the b a n d w i d t h  of the signal is the smallest range of frequencies outside which 
S ( f )  = 0. These definitions, as we shall see, lead to the conclusion that  a finite 

4In practice Eq. (1.2.18) is rarely used, because the FT properties make it easier to work in the 
frequency domain. 
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duration implies infinite bandwidth and vice versa. In practice, however, any useful 
signal must have a beginning and an end (finite duration) and its FT  must be within 
the frequency range of the measuring/processing equipment (finite bandwidth). 5 In 
practice, therefore, the strict definitions need to be relaxed in some way. 

A t i m e - l i m i t e d  signal ,  of d u r a t i o n  T centered at time t = 0, can be expressed 
as 

sT(t) = s(t) rect[t/T] , (1.2.21) 

where the subscript T indicates the duration [see Eq. (1.1,6)]. 
The FT  of sT(t) is 

ST( f )  = S ( f )  ~ T sine f T  (1.2.22) 

where �9 denotes convolution in frequency. Thus the bandwidth of ST( f )  is infinite. i 
If, in order to avoid the effects of discontinuities, we replace rect[t/T] with a 

smoother window w(t) of the same duration T, we can write 

sT(t) = s(t) rect[t/T] w(t) , (1.2.23) 

whose Fourier transform still involves a convolution with sine f T ,  giving an infinite 
bandwidth. 

In analogy to the time-limited case, a b a n d - l i m i t e d  s ignal ,  of bandwidth B 
centered at the origin, can be expressed in the frequency domain as 

SB( f )  = S ( f )  rect[f /B] (1.2.24) 

In the time domain, the signal is given by 

SB(t) = s(t) �9 B sine Bt  (1.2.25) 

which has an infinite duration. Thus, under the "usual" definitions of duration and 
bandwidth, a finite bandwidth implies infinite duration. 

1.2.4.2 Effective Bandwidth and Effective Duration 

If there is no finite bandwidth containing all the energy of the signal, there may 
still be a finite bandwidth containing most of the energy. Hence, for example, 
a bandwidth containing 99% of the signal energy might be accepted as a useful 
measure of the signal bandwidth. If the nominated fraction of the signal energy 
were confined between the frequencies fmin and fmax, the bandwidth would be 

B = f m a x - f m i n .  
A less arbi trary but more relaxed measure of bandwidth is the so-called effect ive  

b a n d w i d t h  Be, defined by 

F Be = ! f2lS(f)le df (1.2.26) 
Es cr 

5In practice, all acquisition and measuring systems are low-pass. 
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where S( f )  is the FT of the signal, and Es is the total energy of the signal, given 
by 

/? Es - IS(f)[ 2 df. (1.2.27) 
D o  

B 2 is the s econd  m o m e n t  of [S(f)[ e w.r.t, frequency, about the origin ( f -  0). 
For brevity, we call B 2 the "second moment of the signal w.r.t, frequency". As an 
aid to remembering the definition, note that  if f were a random variable and IS(f)[ 2 
were its probability density function (p.d.f.), then we would have Es = 1, so that B 2 
would be the variance of f if the mean of f were zero. Thus the effective bandwidth 
Be is analogous to the standard deviation of f .  When we consider how little of a 
typical probability distribution falls within one standard deviation, we realize that 
the effective bandwidth is only a mathematical construction and should not be used 
as an estimate of the bandwidth required for accurate measurement and processing 
of the signal. 

The definition of duration, like that of bandwidth, can be relaxed so as to ob- 
tain both finite bandwidth and finite duration. For example, one could define the 
duration T where a nominated fraction of the signal energy occurs. The so-called 
effect ive d u r a t i o n  Tr defined by 

/? 1 t2[s(t)[ 2 d t ,  (1.2.28) T~2 = E---s oo 

is the second moment of Is(t)[ 2 w.r.t, time, about the origin ( t -  0). For brevity, 
we refer to T [ as "the second moment of the signal w.r.t, time." The definitions of 
effective duration and effective bandwidth were proposed in 1946 by Gabor [10]. 6 

Slepian [11] has proposed definitions of duration and bandwidth based on the ac- 
curacy of the detecting and measuring apparatus. Let us define a "time truncation" 
of s(t) as a signal g(t) that  satisfies 

0 if t < t l  
~ ( t ) -  s(t) if tl <_ t <_ t2 (1.2.29) 

0 if t > t 2  

where t2 > tl, so that  the duration of ~(t) is t2 - tl. Let a "frequency truncation" be 
defined similarly in the frequency domain. Then the S l ep i an  d u r a t i o n  of s(t) is the 
duration of the shortest time-truncation g(t) that  the apparatus cannot distinguish 
from s(t), while the S lep ian  b a n d w i d t h  of s(t) is the bandwidth of the most 
narrow-band frequency-truncation S( f )  that the apparatus cannot distinguish from 

S(I) .  
Given suitable definitions of B and T, the b a n d w i d t h - d u r a t i o n  p r o d u c t  B T  

is self-explanatory. The B T  product also has a practical significance: because a 

6Dennis Gabor (1900-1979), a Hungarian-born electrical engineer who sett led in Britain, is 
best known for the invention of holography (1947-8), for which he was awarded the Nobel Prize 
for Physics in 1971. 
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signal of total bandwidth B can be reconstructed from samples at the sampling rate 
B, the total number of samples required to represent the signal--i.e, the number 
of degrees  of f r eedom in the signal--is equal to BT.  In other words, B T  is a 
measure of the information richness of the signal. This implies that there may be 
little point in attempting to extract large amounts of information from a signal with 
a small B T  product. 

E x a m p l e  1.2.2: For the Gaussian signal 

s(t) -- e -a2t2 

the effective duration is 

The FT  of s(t) is 

(1.2.30) 

s ( y )  = 

so that the effective bandwidth is 

From Eqs. (1.2.31) and (1.2.33), 

1 
Te = 2--~" (1.2.31) 

x/~ e -~2 f2/~2 , (1.2.32) 
c~ 

Be = ~-~. (1.2.33) 

1 
Be Te = 4---~" (1.2.34) 

It can be shown that the Gaussian signal is the only signal for which this equality 
[lO]. holds, and that for all other signals Be Te > 

1.2.5 Asymptotic Signals 
For signals with significant information content, it is desired to know not only the 
overall bandwidth B, but also the distribution of energy through the bandwidth, e.g. 
the frequencies present, their relative amplitudes, and the times during which they 
are significant. Similarly we may want to know not only the overall duration T, but 
also the distribution of energy throughout the duration, e.g. the times during which 
the signal is present, the relative amplitudes at those times, and the significant 
frequencies present during those times. Such signals may be modeled by the class 
of asymptotic signals. 

Def in i t ion  1.2.3: A signal s(t) is a s y m p t o t i c  iff it has the following properties: 

(a) The duration T, as defined by Slepian, is finite; 

(b) The bandwidth B, as defined by Slepian, is finite; 

(c) The product B T  is large (e.g. greater than 10); 
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(d) The amplitude is bounded so that 

? [s(t)[2dt 
c o  

is finite. 

(1.2.35) 

Asymptotic signals allow useful approximations for deriving simple signal models 
(e.g. to express analytic signals). 

1.2.6 Monocomponent vs. Multicomponent Signals 
A m o n o c o m p o n e n t  signal is described in the (t, f )  domain by one single "ridge", 
corresponding to an elongated region of energy concentration. Furthermore, inter- 
preting the crest of the "ridge" as a graph of IF vs. time, we require the IF of a 
monocomponent signal to be a single-valued function of time. Fig. 1.1.3 shows an 
example of a monocomponent signal. 

Such a monocomponent signal has an analytic associate of the form 

z(t) - a(t) e jr , (1.2.36) 

where r is differentiable, and a(t) is real and positive (being the instantaneous 
amplitude). If s(t) itself is real and asymptotic, it can be expressed as 

s(t) = a(t) cos r (1.2.37) 

A m u l t i c o m p o n e n t  signal may be described as the sum of two or more monocom- 
ponent signals. Fig. 1.1.4 shows an example of a multicomponent signal (composed 
of two components). 

1.3 Instantaneous Frequency and Time-Delay 
1.3.1 Instantaneous Frequency (IF) 
Def in i t ion  1.3.1: The instantaneous frequency of a monocomponent signal is 

1 r 
fi(t) = ~ (t) (i.3.1) 

where @(t) is the instantaneous phase of the signal. 

This formulation is justified below by considering first a constant-frequency signal, 
then a variable-frequency signal. 

Consider the amplitude-modulated signal 

x(t) = a(t)cos(2zrfct + ~b) (1.3.2) 

where fc and ~ are constant. As t increases by the increment 1/fc,  the argument of 
the cosine function increases by 27r and the signal passes through one cycle. So the 
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period of the signal is 1/fc,  and the frequency, being the reciprocal of the period, 
is ft. The same signal can be written as 

x(t) = a(t) cosr (1.3.3) 

where 

from which we obtain 

r = 27rf~t + r  (1.3.4) 

fc = ~_~ ~1 r (1.3.5) 

Although the left-hand side of this equation (the frequency) has been assumed 
constant, the right-hand side would be variable if r were a nonlinear function. 
So let us check whether this result can be extended to a variable frequency. 

Consider a signal whose analytic associate is 

z(t) = a(t) e jr (1.3.6) 

where a(t) and r are real and a(t) is positive; then a(t) is called the ins tan-  
t a n e o u s  a m p l i t u d e  and r is called the i n s t a n t a n e o u s  phase.  Let r be 
evaluated at t = tl and t = t2, where t2 > t l .  By the mean value theorem of el- 
ementary calculus, if r is differentiable, there exists a time instant t between tl 
and t2 such that 

r - -  r = (t2 - -  tl) r (1.3.7) 

Let p~ be the period of one particular oscillation of z(t), and let f~ = 1/p~. If 
t2 = tl + pi,  then r = r + 27r , so  that Eq. (1.3.7) becomes 

2Ir = pie'(t) ; (1.3.8) 

that is, 

r (1.3.9) 
2---7- 

Now t is an instant during a cycle of oscillation and fi is the frequency of that 
oscillation, suggesting that the right-hand side be defined as the i n s t a n t a n e o u s  
f r e q u e n c y  (IF) at time t, as in Definition 1.3.1 above. 

Comparing Eqs. (1.2.37) and (1.3.6), we see that 

s(t) = Re{z(t)}. (1.3.10) 

where Re{.. .} denotes the real part. Now let us define 

y(t) ~- Im{z(t)} = a(t) sin r (1.3.11) 

where Im{.. .} denotes the imaginary part. 
Using Eq. (1.3.1), we can easily confirm that the signals described by Eqs. (1.1.4) 

and (1.1.5) have the IFs given in Eqs. (1.1.1) and (1.1.2) respectively. 
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Definition 1.3.1 is strictly meaningful only for a monocomponent signal, while 
a multicomponent signal ought to have a separate IF for each component. In par- 
ticular, note that  the IF of the sum of two signals is not the sum of their two 
IFs. 

The IF is a detailed description of the frequency characteristics of a signal. This 
contrasts with the notion of "average frequency" defined next. 

Def in i t i on  1.3.2: The ave rage  f r e q u e n c y  of a signal is 

~ ~176 f 
fo - �9 (1.3.12)    ~176 f 

where S ( f )  is the Fourier transform of the signal. 

In other words, f0 is the first m o m e n t  of I s ( f ) l  2 w.r.t, frequency; that  is, we 
define the "average" frequency as if I s ( / ) l  2 were the probability density function of 
the frequency. 

Notice that if I s ( f ) l  2 were replaced by a TFD, f0 would become a function 
of time, suggesting that perhaps the first moment of a TFD w.r.t, frequency is 
a measure of IF. The conditions under which this is true will be explained in due 
course (and summarized in the table on p. 75). For the moment, we simply note that 
any reasonable time-frequency representation of a signal should contain information 
about the IF laws of the components. In particular, it would be most convenient if 
the crests of the ridges in the (t, f )  domain represented the IF laws. 

1.3.2 IF and Time Delay (TD) 
The IF of a signal indicates the dominant frequency of the signal at a given time. 
Let us now seek a dua l  or "inverse" of the IF, indicating the dominant time when 
a given frequency occurs. 

If z(t) is an analytic signal with the Fourier transform 

Z ( f )  - A 5 ( f  - k )  (1.3.13) 

where A is in general complex, the dominant frequency is fi. 
Taking the inverse FT of Z ( f )  gives 

z(t) - Ae j2~f't. (1.3.14) 

The instantaneous phase of z(t),  denoted by r is 

r - arg z(t) = 27rfit + arg A 

so that 
1 

f i  = ~ r  (1 .3.16)  
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Although this result has been obtained for constant frequency, the r ight-hand of 
Eq. (1.3.16) is also valid for a variable-frequency signal, as explained earlier. 

Now let us repeat the argument with the time and frequency variables inter- 
changed. The signal 

z(t) = a S ( t -  Td) , (1.3.17) 

where a is in general complex, is an impulse at time Td. If we ask what  is the "delay" 
of this signal, the only sensible answer is rd. The FT of this signal is 

Z(t) = ae -j2~/~d (1.3.18) 

and its phase, denoted by O(f), is 

O(f) = arg Z ( f )  = --27rfTd + arg a (1.3.19) 

so that  
1 O' T d - - - ~ - ~  (f) .  (1.3.20) 

Again, al though this result has been obtained for a constant Td, the r ight-hand side 
of Eq. (1.3.20) is well defined even if 0 ' ( f )  varies with f .  

D e f i n i t i o n  1.3.3:  If z(t) is an analytic signal with the Fourier transform Z( f ) ,  
then the t i m e  de l ay  (TO) of z(t), denoted by Td(f), is 

1 
Td(f) -- --~-~O'(f) , 

where O(f) = arg Z ( f )  

(1.3.21) 

Notice tha t  the definitions of Td and fi are similar, except tha t  time and fre- 
quency are interchanged and Eq. (1.3.21) has an extra minus sign; hence we say that  
time delay is the d u a l  of instantaneous frequency. 7 

Seeing that  the instantaneous frequency fi(t)  is a function assigning a frequency 
to a given time, whereas the time delay Td(f) is a function assigning a time to a 
given frequency, we may well ask whether the two functions are inverses of each 
other. Clearly they are not always inverses, because the IF function may not be 
invertible. So let us restrict the question to i n v e r t i b l e  signals, i.e. monocomponent  
signals whose IFs are monotonic functions of time. 

One example of an invertible signal is the generalized Gaussian signal, i.e. a linear 
FM signal with a Gaussian envelope. Let such a signal peak at time to, with peak 
amplitude A, center frequency fc,  sweep rate a and decay constant ~, and suppose 

7The term "time delay" is well established, but tautological. The term "instantaneous frequency" 
is a quantity with the dimensions of frequency modified by an adjective indicating localization in 
time. The dual of this term should therefore be a quantity with the dimensions of time modi- 
fied by an adjective indicating localization in frequency, e.g. "frequency-localized delay" or, more 
succinctly, "frequency delay". 
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that  the instantaneous frequency is positive while the envelope is significant. Then 
the analytic associate of the signal is 

z ( t ) -  Aexp (j27r [ f c [ t -  to] + ~+JZ [ t -  t012]) (1.3.22) 

and using Eq. (1.3.16) with a(t) - A exp (-Tr~(t - t0)2), its IF is 

fi(t) = fc + c~[t - to]. (1.3.23) 

To find the inverse function of f i ( t ) ,  we simply solve for t, obtaining 

f i ( t ) -  fr 
t = to + , (1.3.24) 

6~ 

which suggests that  the time delay 7d(f) of z(t) can be estimated by 

f - A  
7d(f) = to + ~ .  (1.3.25) c~ 

In general Td and "fd are not equal, but converge as the B T  product increases. As an 
example, Fig. 1.3.1 shows the IF (solid line) and TD (dotted line) of the generalized 
Gaussian signal z(t) for two values of BeTe,  where the subscript e means "effective". 
Note that  the two curves are closer for the larger BeTe. 

1.3.3 Mean IF and Group Delay (GD) 
Let z(t) be a bandpass analytic signal with center frequency fc. Let its Fourier 
transform be 

Z ( f )  - M ( f  - fc)e  j~ (1.3.26) 

where the magnitude M ( f -  fc) and phase tg(f) are real. If the signal has l inear  
p h a s e  in the support of Z ( f ) ,  i.e. if t0(f) is a linear function of f wherever Z ( f )  is 
non-zero, we can let 

O(f) = -27r~-pfc - 27rTg[f- fc] (1.3.27) 

where 7p and ~-g are real constants with the dimensions of time. Eq. (1.3.26) then 
becomes 

Z ( f )  - M ( f  - fc)e--J(27rTpfc+27rrg[f--f~]) (1.3.28) 

-- e -j27rf~rp M ( f  - fc)e-j27rrg[f-f~]. (1.3.29) 

Taking the IFT of Z( f ) ,  we find 

z(t) -- m( t  - 7g)e j2~ryc[t-~p] (1.3.30) 

where re(t) is the IFT of M ( f ) .  Now because M ( f )  is real, re(t) is Hermitian 
[i.e. m ( - t ) -  m*(t)],  so that  Im(t)l is even. Hence Tg is the time about which 
the envelope function is symmetrical; for this reason, 7g is called the g r o u p  de- 
lay [12, pp. 123-124]. The phase of the oscillatory factor is --27rfcTp, wherefore ~-p 
is called the p h a s e  delay.  These observations together with Eq. (1.3.27) lead to 
the following definition: 
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Fig.  1.3.1: Instantaneous frequency and time delay for a linear FM signal with a Gaussian envelope: 
(a) total duration T = 33 secs, BeTe = 0.1806; (b) T = 65 secs, BeTe = 0.3338. For each signal, 
the left-hand graph shows the time trace, spectrum and TFD [VVigner-Ville distribution, defined later 
in Eq. (2.1.17)], while the right-hand graph shows the IF (solid line) and time delay (dotted line). The 
vertical dotted segments are caused by truncation of the frequency range (to avoid finite-precision 
effects). 

Definition 1.3.4: If an analytic signal has the Fourier transform 

Z ( I )  - IZ(I)I e j~ , 

then the group delay (GD) of the signal is 

1 Ot T g ( / ) - -  ~-~ (f) 

(1.3.31) 

(1.3.32) 



Instantaneous Frequency and Time-Delay 25 

and the p h a s e  de lay  of the signal is 

1 
Tp(f) -- -- 2 7 ]  O(f). (1.3.33) 

Eq. (1.3.32) is found by differentiating Eq. (1.3.27) w.r.t, f ,  and Eq. (1.3.33) is found 
by putting fc = f in Eq. (1.3.27). Whereas Eq. (1.3.27) assumes linear phase, the 
above definition is meaningful whether the phase is linear or not. 

Further, Eq. (1.3.32) is the same as Eq. (1.3.21). But the physical interpretations 
are different; the time delay applies to an impulse, whereas the group delay applies 
to the envelope of a narrowband signal. 

Now consider the dual of the above argument. Let z(t) be a time-limited signal 
centered on t = tc, and let 

z(t) = a ( t -  t~) d r (1.3.34) 

where a(t) and r are real. If the signal has c o n s t a n t  i n s t a n t a n e o u s  f r e q u e n c y  
in the support of z(t), i.e. if r is a linear function of t wherever z(t)  is non-zero, 
we can let 

r = 27rfotc + 27r fruit - tel (1.3.35) 

where fo and fm are real constants with the dimensions of frequency. Eq. (1.3.34) 
then becomes 

z(t) = a(t - to)e j(2~/~ 

= e j27rf~ a ( t  -- t c ) e  j27rym[t-tc]. 

Taking the FT of z(t) ,  we find 

Z ( f )  = A ( f  - fro)e -j2"[/-/~ 

(1.3.36) 
(1.3.37) 

(1.3.38) 

where A ( f )  is the FT of a(t). Now because a(t) is real, A ( f )  is Hermitian, so that  
IA(f) l  is even. Hence fm is the frequency about which the amplitude spectrum is 
symmetrical; for this reason, fm is called the m e a n  IF.  Differentiating Eq. (1.3.35) 
w.r.t, t leads to the following definition: 

De f in i t i on  1.3.5- For the signal 

z ( t )  - Iz(t) l  e yr , (1.3.39) 

the m e a n  IF  is 
1 r  

fro(t) - ~ (t). (1.3.40) 

Thus the mean IF is the same as the IF defined earlier [Eq. (1.3.1)], but the 
physical interpretations are different. The IF has been derived for a tone (and 
earlier for a modulated sinusoid), whereas the mean IF applies to the spectrum of 
a short-duration signal. 



26 Chapter 1: Time-Frequency Concepts 

1.3.4 Relaxation Time, Dynamic Bandwidth 
For a linear FM signal, the instantaneous phase r is quadratic. So r can be 
expanded in a Taylor series about t = to: 

lr  2 r = r + r (to ) [ t -  to] + ~ (1.3.41) 

127rfi'(to)[t-to] 2. (1.3.42) = r  27rfi(to)[t-to] + 

The r e l axa t ion  t ime  Tr, as defined by Rihaczek [13, p. 374], is the duration over 
which the instantaneous phase deviates no more than r / 4  from linearity. Tha t  is, 

12~fi '(to)T2/4 ] = ~/4. (1.3.43) 

Solving this equation leads to the following definition: 

Def in i t ion  1.3.6: The r e l axa t ion  t ime  of a signal is 

Tr(t) = d f i ( t ) -1 /2  
dt (1.3.44) 

where fi(t) is the instantaneous frequency. 

The dual of relaxation time, known as d y n a m i c  b a n d w i d t h ,  is the bandwidth 
over which the phase spectrum, assumed to be a quadratic function of frequency, 
deviates no more than ~/4 from linearity. The result is as follows: 

Def in i t ion  1.3.7: The d y n a m i c  b a n d w i d t h  of a signal is 

d'rd (f) -1/2 
Bd(f) = df (1.3.45) 

where ~'d(f) is the time delay. 

As the relaxation time is a measure of the time needed to observe significant 
variations in IF, so the dynamic bandwidth is a measure of the bandwidth needed 
to observe significant variations in time delay. 

1.4 Summary and Discussion 

Clear rationales are developed for justifying the need to use joint time-frequency 
representations for non-stationary signals such as FM signals. 

An understanding of the concept of instantaneous frequency and its dual, time 
delay, is necessary for the interpretation of TFDs. The use of the analytic associate 
of a given real signal, rather than the signal itself, is useful for reducing the required 
sampling rate, and essential for obtaining an unambiguous instantaneous frequency. 

The analytic associate is obtained via the Hilbert transform. The notions of B T  
product and monocomponent signals are introduced. For monocomponent asymp- 
totic signals, analytic associates can be written using an exponential form. The 
next chapter introduces various formulations of time-frequency distributions and 
demonstrates the importance of using the analytic associate. 
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Chapter 2 

Heuristic Formulation of 
Time-Frequency Distributions 

Having established the basic signal formulations in the first chapter, we now turn 
to the problem of representing signals in a joint time-frequency domain. Given 
an analytic signal z(t) obtained from a real signal s(t), we seek to construct a 
time-frequency distribution pz(t, f )  to represent precisely the energy, temporal and 
spectral characteristics of the signal. We choose the symbol Pz in the expectation 
that  the TFD will represent an "energy density of z" in the (t, f )  plane. We would 
also like the constant-t cross-section of pz(t, f )  to be some sort of "instantaneous 
spectrum" at time t. 

In this chapter we examine a variety of ad hoc approaches to the problem, namely 
the Wigner-Ville distribution (Section 2.1), a time-varying power spectral density 
called the Wigner-Ville Spectrum (2.2), localized forms of the Fourier Transform 
(2.3), filter banks (2.4), Page's instantaneous power spectrum (2.5), and related 
energy densities (2.6). Finally (in Section 2.7), we show how all these distributions 
are related to the first-mentioned Wigner-Ville distribution, thus setting the scene 
for the more systematic t reatment  in the next chapter. 

The various distributions are illustrated using a linear FM asymptotic signal. 
The linear FM signal [Eq. (1.1.5)] is regarded as the most basic test signal for TFDs 
because it is the simplest example of a signal whose frequency content varies with 
time. It is clearly monocomponent, and is asymptotic if its BT product is large. 
The minimum requirement for a useful TFD is that  it clearly shows the IF law of 
an asymptotic linear FM signal, giving a reasonable concentration of energy about 
the IF law (which, for an asymptotic signal, is equivalent to the TD law). 

~ Boualem Boashash, Signal Processing Research Centre, Queensland University 
of Technology, Brisbane, Australia. Reviewers: K. Abed-Meraim, A. Beghdadi, M. Mesbah, 
G. Putland and V. Sucic. 
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2.1 Method 1: The Wigner-Ville Distribution 

For a monocomponent signal, it is reasonable to expect that  the TFD should take 
the form of a knife-edge ridge whose crest is a graph of the IF law in the (t, f )  plane. 
Mathematically we idealize the "knife edge" as a delta function w.r.t, frequency. 

2.1.1 Knife-Edge IF Indication 
Noting that  pz is a function of frequency f and represents a kind of spectrum, we 
may reasonably require pz to be the FT  of some function related to the signal. Let 
us call this function the s ignal  ke rne l  and give it the symbol K, .  So the signal 
kernel can be written as Kz( t ,  T), and the TFD is 

p~(t, f )  = J: {Kz( t ,  T)}. 
"r---* f 

(2.i.i) 

2.1.2 Formulation of the Signal Kernel 
To find a suitable form for Kz( t ,  T), for simplicity, let us first consider the case of 
the unit-amplitude monocomponent FM signal 

z(t)  = ~J~(~) (2.1.2) 

whose instantaneous frequency is 

r (21.3) f~(t)- 2--;- 

We would like the TFD of z(t)  at any given time to be a unit delta function at 
the instantaneous frequency, so that  the "instantaneous spectrum" reduces to the 
ordinary Fourier transform in the constant-frequency case; that  is, we want 

pz(t, f )  : 5 ( f  - f i ( t )) .  (2.1.4) 

Substituting this into Eq. (2.1.1) and taking the IFT,  we obtain 

Kz( t  , T) = ffZ'--I { 5 ( f  - f i ( t ) ) }  - e j2~$' ( t )*  
-r~-- I 

_ ejr (2.1.5) 

Because r in Eq. (2.1.5) is not directly available, we write 

r  = l im  r  + ~ )  - r  - } )  , ( 2 . 1 . 6 )  
v---*0 T 

and use the approximation 

1 

7" 
(2.~.7) 
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which is called the c e n t r a l  f i n i t e - d i f f e r e n c e  (CFD) approximation [1,2]. Substi- 
tuting Eq. (2.1.7) into Eq. (2.1.5) and using Eq. (2.1.2) gives the signal kernel 

K z ( t ,  7) - eJr ) e - J r  ) 

= z( t  + ~) z*( t  - ~ ) .  (2.1.8) 

2.1.3 The Wigner Distribution 
Substi tut ing Eq. (2.1.8) into Eq. (2.1.1), we obtain 

pz( t ,  f )  - ~ , { z ( t  + 2) z*( t  - 2)} (2.1.9) 

- z ( t  + ~ ) z * ( t -  -~)e-J2'~f 'dT. (2.1.10) 
(2O 

Eq. (2.1.10) is given the symbol Wz(t, f ) ,  and is called the W i g n e r  d i s t r i b u t i o n  
(WD) in honor of its discoverer, 1 who derived it in 1932 in a quantum-mechanical  
context [3]. 

The approximation in Eq. (2.1.7) is exact if r is a linear function of t, i.e. if r  
is constant; it is also exact if r is quadrat ic  [4, p. 298], i.e. if r  is linear. Thus 
the WD gives an "unbiased" estimate of the IF for a complex linear FM signal. 

The constant-frequency real signal 

s(t)  - cos 27rfct (2.1.11) 

leads to the signal kernel 

(t g (t, = + - 

= cos2 fc(t + cos2 A(t- 
_ 1 27rfcT + -~ COS -- 2 COS 1 2~V2fct. (2.1.12) 

Taking Fourier transforms w.r.t. 7 gives the WD 

1 1 
W~(t, f )  - ~ 5 ( f  - fc)  + ~ 5 ( f  + fc) 

1[cos 27r2At] 5 ( f ) .  (2.1.13) + 7  

The terms in 5 ( f  :F f~) are natural ly expected and arise because s( t )  may be ex- 
pressed as a sum of complex sinusoids at frequencies +fc.  The term in 5 ( f )  is an 
artifact arising because the n o n l i n e a r i t y  of the WD causes interaction between the 
positive- and negative-frequency terms. 

1 E. P. Wigner (1902-1995) was born in Hungary, studied chemical engineering in Germany and 
eventually settled in the United States, where he specialized in mathematical physics. He was a 
joint winner of the 1963 Nobel Prize for Physics for his many contributions to particle physics, 
including his law of conservation of parity and his work on the strong nuclear force. 
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Fig.  2.1.1: Wigner distribution (left) and Wigner-Ville distribution (right) of a real linear FM signal 
[Eq. (1.1.5)] with duration 65 samples, starting frequency 0.1 and finishing frequency 0.4 (sampling 
rate 1 Hz). Note the low-frequency artifacts in the Wigner distribution, caused by interaction between 
positive and negative frequencies. 

By a similar argument, we find that the non-windowed linear FM signal 

c~ 2 s(t) - A cos (27r[fot + gt  1) (2.1.14) 

leads to the signal kernel 

Ks(t,  ~-) _ 21 A9 cos 21rfi(t)r 

+ 7A cos27r +2f0t (2.1.15) 

where f i( t)  = fo + at. Taking Fourier transforms w.r.t. T gives the WD 

~A25(f  - f~(t)) + �88 + f~(t)) Ws(t,  f )  - 

+ �89  2] }. (2.1.16) 

The terms in 5( f  7: f i( t))  are naturally expected, while the last term in the signal 
kernel gives rise to a continuum of artifacts in the WD (see Fig. 2.1.1). 

These artifacts, which greatly diminish the usefulness of the WD for real signals, 
are removed by modifying the WD with the analytic signal in accordance with the 
following. 
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2.1.4 The Wigner-Vil le Distribution 

Def in i t ion  2.1.1" The W i g n e r - V i l l e  d i s t r i b u t i o n  ( W V D )  of a signal s(t), de- 
noted by Wz(t, f ) ,  is defined as the WD of its analytic associate, i.e. 

Wz(t, f )  = jz {z(t  + 2) z*(t - 2)} (2.1.17) 
r---* f 

where z(t) is the analytic associate of s(t). 

The name "Wigner- Ville distribution", as opposed to "Wigner distribution", em- 
phasizes the use of the analytic signal [5] and recognizes the contribution of Ville [6], 
who derived the distribution in a signal-processing context in 1948. Noting that a 
signal can have a time-dependent frequency content, Ville sought an "instantaneous 
spectrum" having the attributes of an energy density (property 1 in Section 1.1.5) 
and satisfying the so-called marg ina l  condi t ions:  2 

�9 the integral of the TFD pz(t, f )  w.r.t, frequency is the instantaneous power 
[z(t)]2; 

�9 the integral of the TFD pz(t, f )  w.r.t, time is the energy spectrum [Z(f)[ 2. 

By analogy with the conditional moments of a p.d.f., and using known relationships 
between the moments of a p.d.f, and its characteristic function, Ville was able to 
show that the distribution now known as the WVD had the desired properties [7, 
pp. 946-7]. Using Eq. (2.1.8), we obtain 

Wz(t, f )  - .F {Kz(t,  ~-)}. (2.1.18) 
-r--~ f 

The signal kernel Kz(t,  T) is also called the i n s t a n t a n e o u s  a u t o c o r r e l a t i o n  func- 
tion (IAF)of z(t). 

Furthermore, all TFDs in this Chapter, unless otherwise stated, are defined from 
the analytic associate of the signal, not from the real or "raw" signal. 

2.1.4.1 The WVD of a Linear FM Signal 

Eq. (2.1.2) describes a constant-amplitude, infinite-duration signal. We can allow 
for non-constant amplitude and finite duration using the form 

z(t) = a(t) e jr (2.1.19) 

where a(t) is real. For this signal we find 

Kz(t,  T) = Ka(t, 7") e/r (2.1.20) 

2The name "marginal"  can be explained wi th  reference to the discrete- t ime,  d iscre te-f requency 
case: if the  T F D  were wr i t ten  as a two dimensional  a r ray  of discrete  energies, each energy corre- 
sponding to a discrete t ime (vertical axis) and a discrete f requency (horizontal  axis), then  the sum 
over t ime for each frequency could be wr i t ten  in the horizontal  "margin"  of the  array, and the sum 
over frequency for each t ime could be wr i t ten  in the vertical  "margin".  
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where 

ga (t, T) = a(t + 2) a(t -- ~) (2.1.21) 

r  ~-) = r  + ~) - r  - }). (2.1.22) 

If r is quadrat ic  (i.e. if f i( t)  is linear), then the CFD approximation is exact and 
gives r  T) = r  = 27rfi(t)T, SO tha t  

gz(t ,  T) = Ka(t, T)e j2~A(t)~. (2.1.23) 

So Kz(t, T), considered as a function of ~-, has a constant frequency equal to fi(t);  
this reduction is called d e c h i r p i n g .  If we let W a ( t , f ) =  jz {Ka(t,T)} so tha t  

�9 r - - *  f 

Wa (t, f )  is the WD of a(t), and take the F T  of Eq. (2.1.23) w.r.t. T, we obtain 

Wz(t, f )  -- Wa(t, f )  * 5(f  - fi(t)) (2.1.24) 

= Wa(t, f - fi(t)). (2.1.25) 

Now Ka(t, T) is real and even in T. Hence ~Va(t, f )  is real and even in f ,  so tha t  
Wz(t, f )  is real and symmetr ical  about  f = f i( t)  �9 

Thus, even for a finite-duration linear FM signal, such as the one analyzed in 
Fig. 1.1.3, we expect the WVD to give a clear indication of the IF law. In fact, the 
T F D  shown in Fig. 1.1.3 is the WVD of a finite durat ion linear FM signal. 

2.1.4.2 The WVD in terms of the Spectrum 

The variables t, f and T are called time, frequency and lag, respectively. We now 
introduce the variable u, which represents frequency shift just  as T represents t ime 
shift; accordingly, u will be called D o p p l e r .  3 

Let 

kz(u, f )  = ,~  {Wz(t, f)}.  (2.1.26) 

Writ ing out the definitions of the FT  and the WVD and taking invariant factors 
inside the integral signs, we obtain 

kz(u, f )  = / / z ( t  + ~) z*(t - 2)e-J2~(f~+~t)dtdT (2.1.27) 

where the integrals are from - ~  to c~. If we write 

r _ z (2.1.28) x = t + ~ ;  y = t  2 

and solve for t and T, obtaining 

l ( x + y )  ; T = x - - y ,  (2.1.29) t - - ~  

3The well-known "Doppler effect" is actually a frequency scaling. But when the effect is used 
to measure velocity, the scaling factor is usually close to unity and the bandwidth of interest is 
usually narrow. Under these conditions, the frequency scaling is well approximated by a frequency 
shift proportional to the velocity. 
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then the use of the Jacobian yields 

dt dT -- dx dy. (2.1.30) 

With these substitutions, we find that Eq. (2.1.27) can be factored into 

/3z kz(u, f )  - (x) e-J2~[l+~/2]=dx �9 *(y) eJ2"[;-~/2]Ydy 

= Z ( I  + 2 ) Z * ( I -  ~) (2.1.31) 

where Z ( f )  - $'{z(t)}. Noting that kz(u, f )  has a similar form to K~(t, T) in the 
Doppler-frequency domain, we describe kz(u , f )  as the "spectral autocorrelation 
function". 

Substituting Eq. (2.1.31) into Eq. (2.1.26) and taking the IFT yields an expres- 
sion for the WVD in terms of Z(f)" 

Wz(t, f )  - Z ( f  + 2 ) Z * ( f  - 2)eJ2~tdu" (2.1.32) 
o o  

2.1.4.3 Effects of Time- and Frequency-Limiting 

A practical signal z(t) is often expected to be both time-limited and band-limited, 
despite theoretical constraints. Let us assume that z(t) is windowed in both time 
and frequency. 

For the time windowing, we can replace z(t) by 

Zw(t) = z(t) w(t - to). (2.1.33) 

The WVD of Zw(t) is 

W z , , , ( t , f ) -  z ( t + ~ ) w ( t - t o + ~ ) z * ( t - ~ ) w * ( t - t o - ~ ) e - J 2 ' ~ S r d r .  (2.1.34) 
o o  

Putting to - t gives 

where 

C Wz w (t, f )  = g2(v) Kz(t, T) e-J2~fr 
o o  

(2.1.35) 

g2(T) ---- W(2) W* (--2)" (2.1.36) 

If g2(~')= 0 for ITI > T/2 ,  then the limits of integration in EQ. (2.1.35) may be 
changed to +T/2.  Notice that Wz,,, (t, f )  differs from the WVD of z(t) in that the 
IAF is multiplied by g2(T) before being Fourier-transformed w.r.t.T. This g2(T) is 
thus the effective lag window corresponding to the sliding time window w(t - to). 
For the frequency windowing, we can replace Z( f )  by 

ZH(I)  = Z ( f )  g ( f  - fo). (2.1.37) 
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Using Eq. (2.1.32), we can take the WVD corresponding to ZH(f) and put f0 = f ,  
obtaining in a similar manner to the above: 

F Wz,(t , f )  - a~(u)Z(f + 2)Z*(f - 2)eJ2~tdu 
c o  

(2.1.38) 

where 

GI(u)-H(2)H*(-2) .  (2.1.39) 

If el (v)= O for > B/2, then the limits of integration in Eq. (2.1.38) may be 
changed to :I:B/2. Notice that WzH(t, f) differs from the WVD of z(t) in that 
the spectral autocorrelation function is multiplied by G1 (u) before being inverse- 
Fourier-transformed w.r . t .u .  This Gl(u) is the effective Doppler window corre- 
sponding to the sliding frequency window H ( f -  fo). 

The effects of time windowing and frequency windowing may be combined as 
multiplication by the factor 

(2.1.40) 

in the (u, ~) domain. If we consider time-limiting alone, the resulting TFD is given 
by Eq. (2.1.35) and is called the windowed  W V D  [8-10]. If we consider band- 
limiting alone, the resulting TFD is given by Eq. (2.1.38). We shall call this the 
f i l tered W V D .  The window shapes of G1 and g2 should be selected to ensure the 
properties 1 to 3 in Section 1.1.5 are verified. 

2.2 Method 2: Time-Varying Power Spectral Density 
2.2,1 Spectra of Non-Stationary Random Processes 
If z(t) is a complex random signal, its symmetrical au toco r r e l a t i on  function is 
defined as 

7~z(t, T) - -  s + ~)z*(t- ~)} (2.2.1) 

where ${. . .}  denotes the expected value. If z(t) is wide-sense stationary, then 
~z(t, T) is independent of t, and the limit 

t "  

Sz(f)/x lim s  1 
( 

Si{z(t) rect(t/T)} 
2} 

(2.2.2) 

is called the power  spec t ra l  dens i ty  (PSD) of the random process z(t), and 
describes the distribution of signal power over the frequencies. The PSD is related 
to the autocorrelation function by the W i e n e r - K h i n t c h i n e  t heo rem,  which states 
that 

Sz ( f ) -  jc {Tiz(t,T)}. (2.2.3) 
r - - .  f 
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If z(t) is not wide-sense stationary, the right-hand side of this equation depends on 
t, so that  the left-hand side also depends on t, suggesting the generalization 

Sz(t, f) ~- .~ {7~z(t, T)}. (2.2.4) 
-r - - .  f 

This S(t, f) may be called the time-varying spectrum or evo lu t ive  s p e c t r u m  (ES), 
and is interpreted as the "time-dependent PSD" of the non-stationary signal. The 
right-hand side of Eq. (2.2.4) may be expanded as 

F $" {7~ (t, T)} -- ${z(t + 2) z*(t -- 2)} e-J:~l~d7 
r - - - .  f O O  

} = x z ( t  + 
O 0  

Sz(t, f) = ${Wz(t, f )} .  

(2.2.5) 

(2.2.6) 

(2.2.7) 

Eq. (2.2.7) shows that the expected value of the WVD is the FT of the time- 
dependent autocorrelation function [11]; that  is, the ES is the expected value of 
the WVD. For this reason, the ES is also called the W i g n e r - V i l l e  s p e c t r u m .  

If z(t) is deterministic, Eq. (2.2.7) reduces to 

Sz(t, f) = Wz(t, f). (2.2.8) 

2.2.2 Estimating the Wigner-Ville Spectrum 
Eq. (2.2.7) refers to an ensemble average of the random process Wz(t,f).  If we 
have only one realization of this process, we may be able to assume that Wz(O, f) 
is locally ergodic on the interval t -  A/2  < 0 < t + A / 2 ,  where A is positive and 
independent of t. First we calculate an estimate of Wz(t, f) for the local values of 
z(t), yielding 

Wz(t, f)  - .~,{92('r) Kz(t, T)} (2.2.9) 

= Wz(t ,  f )  (2.2.10) 

where g2(~-), the effective analysis window, is real, even and time-limited, and 
G2(f) = JZ{g2(7)}. 

Then, to obtain an estimate of $~(t, f) ,  we replace the ensemble average over 

all realizations of W~(t, f) by a time average of Wz(t, f) over the interval A. We 
can calculate such an average using a real, even weighting function gl(t),  with the 
properties 

91(t) { _ > 00 otherwiseif It[ _< A/2  (2.2.11) 

7 9 1  (t) = . (2.2.12) dt 1 
(X) 
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The resulting estimate of Sz(t,  f )  is 

/? S~(t, f )  = g~ (0 - t) W~(O, f )  dO. (2.2.13) 
O 0  

Using the evenness of gl and substituting from Eq. (2.2.10), we have 

8~(t, f )  - gl (t) �9 Wz(t ,  f )  = gl (t) �9 G2(f)  * W~(t, f ) .  (2.2.14) 

This can be written 
S z ( t , f )  = 7(t f ) * *  Wz(t  f )  (2.2.15) 

( t , f)  

where 
"),(t, f )  = gl (t) G2(f)  (2.2.16) 

and the double asterisk denotes d o u b l e  convolu t ion .  
Eq. (2.2.15) defines a class of estimates for time-varying spectra obtained by a 

double convolution of the WVD with a 2D filter. This will be used in the next 
chapter to define quadratic TFDs with specific properties. 

2.3 Method 3" Windowed Fourier Transform (STFT, Spectro- 
gram & Gabor Transform) 

2.3.1 STFT and Spectrogram 
Consider a signal S(T) and a real, even window W(T), whose FTs are S ( f )  and 
W ( f )  respectively. To obtain a localized spectrum of S(T) at time T = t ,  multiply 
the signal by the window W(T) centered at time T = t ,  obtaining 

sw(t, ~') = S(T) W(T - t) , (2.3.1) 

and then take the FT w.r.t. T, obtaining 

F~(t ,  f )  = .~,{S(T)W(T - t)}. (2.3.2) 

F~(t ,  f )  is called the short-t ime Fourier transform (STFT) .  
The squared magnitude of the STFT, denoted by S~ (t, f ) ,  is called the spec-  

trogram: 

S~ ~ (t, f )  = IF~ (t, f)l 2 (2.3.3) 
2 

= ~ , { s ( r ) W ( T - - t ) }  (2.3.4) 

I = f - -  s ( r ) w ( r  - t) . (2.3.5) 
j _  O 0  

In the notation S~ ~ (t, f) ,  the upper-case S stands for "spectrogram", while the sub- 
script stands for the signal and the superscript for the filter. 
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Fig. 2.3.1: Spectrogram of a sinusoidal FM signal [Eq. (1.1.4)] with 65 samples (sampling rate 1Hz), 
A = 1, fc = 1/4, fm = 3/64, fd = 6 / 6 4 ,  rectangular window of length A samples: (a) A = 6 3 ;  
(b) A = 2 3 ; ( c )  A = 7 .  

The observation window w(T) allows localization of the spectrum in time, but 
also smears the spectrum in frequency 4 in accordance with the "uncertainty relation- 
ship" [12], leading to a trade-off between time resolution and frequency resolution. 
The problem is illustrated in Fig. 2.3.1, which shows the spectrogram of a sinusoidal 
FM signal for a rectangular window of three different lengths. If the window is long 
compared with the modulating signal, the frequency resolution is sufficient to show 
the sideband tones (the "multicomponent aspect" [13] of the signal), but the time 
resolution is insufficient to show the FM law (the "monocomponent aspect"). If 
the window is short compared with the modulating signal, the time resolution is 
sufficient to show the FM law but the frequency resolution is insufficient to show 
the sideband tones. 

The spectrogram is nonlinear; but the nonlinearity is introduced only in the fi- 
nal step (taking the squared magnitude) and therefore does not lead to undesirable 
artifacts present in other TFDs. This freedom from artifacts, together with sim- 
plicity, robustness and ease of interpretation, has made the spectrogram a popular 
tool for speech analysis (resolution of speech into phonemes and formants) since its 
invention in 1946 [14]. 

2.3.2 Optimal Window Length of the Spectrogram 
The spectrogram involves a compromise between time resolution and frequency res- 
olution: a longer window provides less localization in time and more discrimination 
in frequency. 

4 S m e a r i n g  is caused by the convolution operation. If an image (a function of two coordinates) 
is convolved with a confusion pa t te rn  (another function of the same two coordinates),  the result is 
a blurred image. If the confusion pa t te rn  is a line, we tend to describe the blurr ing as a "smearing". 
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Fig.  2.3.2: Spectrogram of a linear FM signal [Eq. (1.1.5)] with duration 65, starting frequency 0. i  and 
finishing frequency 0.4, for a rectangular window of length A: (a) A = 33; (b) A = 21 ; (c) A -- 11. 
The optimal window length according to Eq. (2.3.6) is 20.7. 

The purpose of the window is to obtain a time-slice of the signal during which 
the spectral characteristics are nearly constant. If the window is too long, it fails to 
capture the most rapid variations of spectral content. If it is too short, it smears the 
TFD in the frequency dimension without a commensurate improvement in detail in 
the time dimension. The more rapidly the spectral content changes, the shorter the 
window must be. 

Hence, for a monocomponent signal of constant amplitude, the optimal window 
duration is inversely related to the rate of change of the IF. More precisely, if the 
window is rectangular and has total duration A, it can be shown [15, 16] that the 
value 

A = v/2 dfi(t) -1/2 
dt (2.3.6) 

is optimal in the sense that it minimizes the half-height width of the resulting ridge in 
the (t, f)  plane. This optimal A is proportional to the relaxation time T~; compare 
it with Eq. (1.3.44). For a linear FM signal, the optimal window duration simplifies 
to A - v / 2 T / B ,  where T is the signal duration and B is the signal bandwidth [17]. 
Fig. 2.3.2 shows the spectrogram of a chirp signal (the same signal as in Fig. 1.1.3) 
for a rectangular window of three different lengths, one of which (A = 21) is optimal 
according to Eq. (2.3.6). 

Even for the optimal window length, the spectrogram is not a delta function 
describing the IF law. The use of this optimal window is inconvenient because it 
requires knowledge of the IF, and this knowledge might be obtainable only by some 
sort of time-frequency analysis. Moreover, if the IF law is nonlinear, the optimal 
window duration varies with time. In the case of the sinusoid FM signal of Fig. 2.3.1, 
the optimal window length is time-varying if the signal is considered as a modulated 
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carrier. Although it is possible to vary the spectrogram window length with time and 
even with frequency, such procedures have a cost in computational efficiency [18]. 
A recent iterative algorithm for matching the spectrogram window to the estimated 
IF, so that the spectrogram of a monocomponent signal is concentrated along the 
IF law, is described in [19] and in Article 10.1. 

2.3.3 S T F T  vs. Gabor Transform 

In 1946, while studying the requirements for efficient signal transmission, Gabor [12] 
noted that the (t, f)  plane can be divided into an array of rectangles using a bank of 
filters, each of which is switched on for a single interval of time and passes a single 
band of frequencies. Each rectangle was called a logon, and its dimensions were 
called the decay t ime  and the t u n i n g  wid th .  Gabor noted that the dimensions 
must satisfy the Heisenberg uncertainty relation 

1 
A t A f  > (2.3.7) 

- 4 ~  

where At and Af are the effective duration and bandwidth of the logon [12]. Gabor 
showed this relationship to be "at the root of the fundamental principle of commu- 
nication" [12], in that it puts a lower limit on the spread of a signal in time and 
frequency. 5 For the minimum elemental area, which is obtained in the case of a 
complex Gaussian signal, Eq. (2.3.7) becomes an equality as in Eq. (1.2.34). 

In Gabor's representation, each logon is assigned a complex coefficient cn,k, 
where n is the time index and k the frequency index. The signal s(t) is expanded 
in the doubly infinite series 

- C n , k  (2.3.S) 
n , k  

where the sum is over all integers n and k, and r is a function centered about 
time nAt  and frequency kAf .  To find the coefficients cn,k, let hn,k(t) and Cn,k(t) 
be related by 

/ { 1 if m - n  and l - k ;  (2.3.9) 
hm,z(t) ~n,k(t) dt - 0 otherwise 

(:X:) 

5Eq. (2.3.7) is perhaps best known for its corollary in quan tum mechanics. If we write x 
(position) for t, and k (wave number) for 27r f ,  we obtain 

A x A k  > 1/2.  

De Broglie's "mat ter  wave" relation may be wri t ten k -- 27rp/h,  where p is the momentum and h 
is Planck's  constant.  Making this subst i tut ion for k in the above equation, we obtain 

h 
A x A p  >_ 

47r ' 

which, for some readers, will be more familiar than  Eq. (2.3.7). 
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In other words, let hm,L(t) be orthogonal to every Cn,k(t) except Cm,l(t), or, equiv- 
alently, let Cm,l(t) be orthogonal to every h~,k(t) except hm,l(t); functions related 
in this way are called dual  functions.  Multiplying Eq. (2.3.8) by hmj(t ) and inte- 
grating w.r.t, t, we obtain an expression for C~,k: 

If we choose 

F Cn,k - S(T) h~, k (T) dT. (2.3.10) 
o o  

hn,k(z) - W(T - n a t ) e  j2~k~fr (2.3.11) 

where w denotes a real Gaussian function, then Eq. (2.3.10) becomes 

/? Cn,k -- S(T) W(T -- nAt)e--j2~kAfrdT (2.3.12) 
o o  

= ~ {S(T) W ( T - - n A t ) } .  (2.3.13) 
"r - 4  k A f 

Expression (2.3.13)is known as the G a b o r  t ransform.  When r is chosen 
as the dual function of h~,k(t), Eq. (2.3.8) gives the inverse G a b o r  t rans form.  
Eq. (2.3.13) has the same form as Eq. (2.3.2) except that t and f are discretized, 
wherefore the Gabor transform has been described as a sampled STFT. Suitable 
selections of r and h need to be made for the TFD to verify the properties 1 to 3 
in Section 1.1.5, at least approximately. 

Lerner [20] extended Gabor's work by allowing the elements of the (t, f)  plane 
to be non-rectangular. Helstrom [21] generalized the expansion by replacing the 
discrete elementary cell weighting with a continuous function ~(T,t, f ) .  Wavelet 
theory [22] was developed later as a further extension of Gabor's work, but choosing 
the partitions of the (t, f)  plane so as to give constant-Q filtering [23, 24]. 

2.4 Method 4" Filtered Function of Time 

2.4.1 Filter Banks and the Sonograph 
Whereas the spectrogram is conceived as a function of frequency with dependence 
on the timing of a window, the sonograph is conceived as a function of time with 
dependence on the tuning of a filter. Consider a signal s(t) with spectrum S(u), 
and a lowpass filter with the real impulse response h(t) and the transfer function 
H(u).  To extract the bandpass "component" of s(t) at frequency u = f ,  we shift 
the filter function in frequency so that it is centered at u = f ,  multiply the signal 
spectrum by the shifted filter function, and take the inverse FT w.r.t, u, obtaining 

BH(t ,  f )  -- ~_~ {S(u)H(u - f ) }  (2.4.1) 

where the "B" stands for "bandpass". This signal may be understood as the complex 
output of a bandpass filter with center frequency +f ;  the input s(t) may be recon- 
structed as the sum of the outputs of such filter banks  whose transfer functions 
add up to unity within the bandwidth of s(t). 
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The squared magnitude of B H (t, f )  is denoted by S~ H) (t, f )  and is called the 
s o n o g r a p h  or s o n o g r a m :  

S~ H) (t, f )  - B H(t, f)l 2 (2.4.2) 
2 

: ~2~ {S (v )H(v  - f)} (2.4.3) 

F - S (u )  H ( u  - f ) e J 2 ~ t d v  . (2.4.4) 
O 0  

For the sonograph, the optimal bandwidth of the band-pass filter is related to the 
time delay in the same way that  the optimal window length for the spectrogram is 
related to the instantaneous frequency. 

Like the spectrogram, the sonograph is nonlinear, but the nonlinearity is in- 
troduced only in the final step and does not lead to artifacts. Filter b a n k s u t h e  
practical realization of the sonographuhave long been used in music broadcast- 
ing, recording and even home entertainment, although the frequency division is 
not necessarily linear; for example, graphic equalizers and analyzers usually have 
logarithmic frequency division. 

2.4.2 Equivalence to Spectrogram 
T h e o r e m  2.4.1: The spectrogram and sonograph are equal i f  the window func t ion  
of  the spectrogram is real and even and equal to the impulse  response of  the sonograph 

f i l ter  for  f = O. 
Proof: Applying the inverse convolution property to Eq. (2.4.1), we obtain 

B H (t, f )  = s(t) �9 h(t)e j2~# (2.4.5) 

= S(T) h(t - T)eJ2rf(t-r)d7 " (2.4.6) 
o o  

= e~2" f t~ i {S (T  ) h( t  - ~-)} (2.4.7) 

which yields 

I 12 s(H)(t ,  f) = ~I{S(T)  h( t  - T)} . (2.4.8) 

Comparing Eqs. (2.3.4) and (2.4.8), we see that the spectrogram and sonograph are the 
same if 

h(t) = w ( - t )  , (2.4.9) 

which is the case if w(t) is even and equal to h(t). The condition that w(t) be real is 
redundant in the proof, but is assumed in the definition of the spectrogram. �9 

2.5 Method 5: Instantaneous Power Spectra 

2.5.1 Page Distribution 
This approach at tempts to define a kind of "running spectrum" by considering the 
variations of the signal spectrum as time t increases. 
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Given a signal s(t), let us define the r u n n i n g  t r a n s f o r m  S_ (t, f )  as the FT of 
the signal s up to time t. To do this, we first define the "auxiliary signal" st(O) as 

s(O) if O_<t (2.5.1) 
s t ( O ) -  0 if O > t .  

Then the running transform is simply 

S_(t ,  f )  - -  jz" {st(O)} - -  s(O) e-J2~f~ 
0----,$ O 0  

(2.5.2) 

As the normal energy spectrum is the squared magnitude of the FT, so the r u n n i n g  
e n e r g y  s p e c t r u m  up to time t, denoted by es(t, f ) ,  is the squared magnitude of 
the running transform: 

es(t, f )  -- IS-(t, f ) l  2 - S_(t ,  f )  S*__ (t, f ) .  (2.5.3) 

Differentiating each expression in this equation w.r.t, time, and denoting the time- 
derivative of es(t, f )  by Ps(t, f ) ,  we obtain 

0 2] 
Ps(t, f )  -- -~ [[S_(t, f)l  

o s* 0 [s_(t, f)] = S_ (t, f)  ~-~ [S*__ ( t , / ) ]  + (t, f )  ~-~ 

(2.5.4) 

(2.5.5) 

This Ps(t, f) ,  being the time-derivative of a time-dependent energy spectrum, may 
be understood as a kind of time-dependent power spectrum. It is now known as the 
P a g e  d i s t r i b u t i o n  in honor of its discoverer [25]. 

By substituting the right-hand expression of Eq. (2.5.2) into Eq. (2.5.4), we ob- 
tain 0[; 

Ps(t, f )  - -~ s(O) e-J2~Y~ (2.5.6) 
o o  

which is the usual definition of the Page distribution. Using Eq. (2.5.2) to evaluate 
the partial derivatives in Eq. (2.5.5), we obtain the alternative expression 

Ps(t, f )  - 2 R e { s * ( t ) S _ ( t , f ) e  j2~ft } (2.5.7) 

or, substituting from Eq. (2.5.2) and writing T = t -  0, 

{/0 } Ps(t, f )  - 2 Re s* (t) s(t - T) e j2~S~ dr . (2.5.s) 

If s(t) is real as Page assumed [25], Eq. (2.5.8) becomes 

~ o o  

Ps(t, f)  - 2 s(t) s(t - T)COS(27rfT) d~-. (2.5.9) 
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The Page distribution of a time-limited linear FM signal is shown in Fig. 2.7.1(c). 
Notice that  the distribution can take negative values, which are inconsistent with 
the notion of an energy distribution, but perfectly consistent with the notion of 
an energy gradient as defined in Eq. (2.5.6). As negative values compensate for 
earlier spurious positive values caused by the truncation of s(t) to produce st(O), 
the presence of negative values implies that energy is delocalized in the (t, f )  domain. 

2.6 Method 6: Energy Density 
2.6.1 Rihaczek's Complex Energy Density 
In search of a TFD localized in both time and frequency, Rihaczek [26] considered 
the energy of a complex deterministic signal over finite ranges of t and f ,  and allowed 
those ranges to become infinitesimal, obtaining what he called a c o m p l e x  e n e r g y  
dens i ty .  

Here we offer a simpler derivation than that  given by Rihaczek. The energy of 
a complex signal z(t), with Fourier transform Z( f ) ,  is 

:: /_ /_ z(,> /_ oo oo oo Z* ( f ) e-J2'qt df dt E - [z(t)[2dt - z(t) z*(t)dt - 
o o  ( x )  o o  

/:/: = Rz(t, f )  dt df (2.6.1) 
(x)  o o  

where Rz(t, f ) ,  the energy density function, is defined by 

R~(t, f )  - z(t) Z*( f )  e -j2'qt. (2.6.2) 

This Rz(t, f )  is the R i h a c z e k  d i s t r i b u t i o n  (RD). If we express Z ( f )  and hence 
Z* (f) in terms of z(A) and use the substitution r = t -- A, we obtain the alternative 
form /? a~(t, f )  - z(t) z*(t - r)e-J2~I"dr. (2.6.3) 

o o  

A distribution equivalent to Rihaczek's was derived earlier, in the context of 
quantum mechanics, by J .G.  Kirkwood [27], so that the RD is also called the 
K i r k w o o d - R i h a c z e k  d i s t r i b u t i o n  [28, p. 26]. 

From Eq. (2.6.2) it is easily verified that  

: ? R z ( t , -  Iz(t)l 2 (2.6.4) f) df 
o o  

: Rz(t, dt - IZ(f)l 2. (2.6.5) f) 
o o  

That is, the RD satisfies the m a r g i n a l  c o n d i t i o n s  [see the discussion following 
Eq. (2.1.17)]. 
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Integrating Eq. (2.6.4) w.r.t, t and Eq. (2.6.5) w.r.t, f ,  we obtain respectively 

fi ? Rz(t, f ) d f  dt = Iz(t) dt (2.6.6) 
o o  

Rz(t, f )  dt df - IZ(f)12df . (2.6.7) 
1 o o  1 

The right-hand side of Eq. (2.6.6) is the energy in the time interval between tl and 
t2, while the right-hand side of Eq. (2.6.7) is the energy in the frequency band 
between fl and f2. Together, the two equations indicate that Rz(t, f )  can be in- 
terpreted as an energy density over an arbitrary time interval and an arbitrary 
frequency band. 

In Eq. (2.6.2), the RD has the signal z(t) as a factor. It follows that the RD is 
zero at those times when z(t) is zero; this property is called s t r o n g  t ime  s u p p o r t .  
Similarly we see that the RD is zero at those frequencies for which the spectrum 
Z ( f )  is zero; this property is called s t rong  f r equency  s u p p o r t .  

2.6.2 Levin's Real Energy Density 
The Levin  d i s t r i b u t i o n  (LD) is simply the real part of the RD. It follows that 
the LD, like the RD, has strong time support and strong frequency support. Taking 
the real parts of Eqs. (2.6.4) to (2.6.5), we further conclude that the LD satisfies 
the marginal conditions and their corollaries. 

Let the LD of the complex signal z(t) be denoted by Lz(t, f) .  Taking the real 
part of Eq. (2.6.2), we obtain the definition 

f )  = a {z(t) z * ( / )  . (2.6.8) 

Taking the real part of Eq. (2.6.3) yields the alternative expression 

{:2 z } Lz(t, f )  - -  Re (t) z*(t - T)e-J2•$rdT . (2.6.9) 

If z(t) is replaced by a real signal s(t), Eq. (2.6.9) reduces to the cosine form obtained 
by Levin [29]. 

Historically, the distribution obtained by Levin was a modification of the Page 
distribution and a precursor of the RD. But it was first discovered in a quantum- 
mechanical context by Margenau and Hill [30]; so it is also called the M a r g e n a u -  
Hill d i s t r i b u t i o n  [28, p. 26]. 

2.6.3 Windowed Rihaczek and Levin Distributions 
Because energy is a real quantity, the real part of the RD is more significant than 
the imaginary part or the magnitude. Hence a "plot of the RD" is usually a plot of 
the real part, i.e. the LD. Fig. 2.7.1(d) shows such a plot for a time-limited linear 
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FM signal. Although Eqs. (2.6.6) and (2.6.7) indicate that  the energy of the TFD is 
well localized in the time and frequency dimensions separately, i.e. in strips parallel 
to the f and t axes, it does not follow that  the energy is well localized in both 
dimensions at once. Indeed Fig. 2.7.1(d) shows that  the peaks of the TFD are not 
confined to the IF law, but show many spurious features. The WVD of this signal 
[Fig. 2.7.1(a)] is much cleaner. Because the RD/LD performs so poorly on such a 
simple signal, it must be regarded as only of theoretical interest. 

By comparison with the RD, the spectrogram is remarkably free of artifacts. 
Recall that  the spectrogram is the squared magnitude of the STFT.  So one way to 
reduce artifacts in the RD is to introduce the STFT as a factor [31] instead of the 
spectrum Z( f ) ,  in Eq. (2.6.2). The resulting distribution, which might be called the 
w i n d o w e d  R i h a c z e k  d i s t r i b u t i o n ,  is 

(2.6.10) 

where w is the window function of the STFT. As the real part  of the RD is the LD, 
we might as well designate the real part  of the windowed RD as the w i n d o w e d  
Lev in  d i s t r i b u t i o n .  A windowed LD of a time-limited linear FM signal is shown 
in Fig. 2.7.1(e); note the reduction in artifacts compared with the conventional LD. 

From the form of Eq. (2.6.10), we see that  the windowed RD and the windowed 
LD have strong time support. Other properties of these distributions will emerge 
in later sections. 

2.7 Relationship between TFDs 
So far, we have considered six different approaches to defining a TFD. All the 
approaches seem natural  and reasonable, and yet lead paradoxically to at least five 
different definitions of a TFD, all of them quadratic in the signal. Using the "signal 
kernel" approach [Eq. (2.1.1)],  we may write for any TFD pz(t, f):  

pz(t, f )  = .~,{Rz(t ,  w)}. (2.7.1) 

where Rz(t,T) is found simply by taking the inverse FT  of pz(t , f )  w . r . t . f .  In 
the case of the WVD, Rz (t, 7-) is the instantaneous autocorrelation function (IAF), 
denoted by Kz(t, r). In other cases we shall call R~(t, ~-) the s m o o t h e d  I A F .  The 
reason for this term will become apparent as we relate Rz(t, T) to K~(t, T) for each 
of the TFDs that  we have defined. 

2.7.1 Spectrogram 
From Eq. (2.3.4), the spectrogram with window function w can be rewritten in the 
generalized notation as 

[ ]* pz(t, f )  - .-+,$" {Z(T)W(T--t)) r W(T--t)} . (2.7.2) 
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Taking the IFT (f  - ,  T) of both sides gives 

n ~ ( t ,  ~) - [ z ( ~ ) ~ ( ~ - t ) ]  �9 [ z * ( - ~ ) ~ * ( - ~ - t ) ]  

- z(:~) ~ ( ~ - t )  z*(:~-~-)~*(~-~-- t )  d:~ 
CO 

/ 7" 7" T 7. = z(u+~) w ( u - t + ~ )  z* (u -~ )w*(u - t - -~ )  du 
(X)  

(2.7.3) 

7" where A - u + ~ is the dummy variable in the convolution. Exploiting the evenness 
of w, this can be written 

/ 7" 7" 7" 7" R~(t, T) - w*(t-u+-~) w ( t - u - ~ )  z(u+~) z*(u--~) du 
CO 

= G(t, 7) �9 ez ( t ,  T) (2.7.4) 

where 

G(t,T) --w*(t + 2 ) w ( t -  ~) (2.7.5) 

and K~(t,~-) is given by Eq.(2.1.8). G(t,T) is called the t i m e - l a g  kernel .  6 
Eq. (2.7.4) defines the time-lag kernel as that which must be convolved in time with 
the IAF to obtain the smoothed IAF; the word "smoothed" refers to the convolution. 
We shall adopt this definition for all TFDs given by Eq. (2.7.1). 

Eq. (2.7.5) gives the time-lag kernel for the spectrogram. As w is real, we may 
interchange w and w*, leading to the conclusion that the time-lag kernel for the 
spectrogram is simply the IAF of the observation window function. 

2.7.2 Wigner-Ville Distribution 
The "smoothed IAF" for the WVD is 

Rz(t, ~-) - Kz(t, 7) = 5(t) �9 Kz(t, T) 

so that 

c ( t ,  ~) - ~(t). 

In this trivial case, the "smoothing" makes no difference. 

(2.7.6) 

(2.7.7) 

2.7.3 Rihaczek Distribution 

Eq. (2.6.3) may be written 

p~(t, f )  - r - T)}. (2.7.8) 

6The term "kernel" was used in this sense by Claasen and Mecklenbr~iuker [32]. To minimize 
the risk of confusion between the "time-lag kernel" G(t, T) and the "signal kernel" Kz(t, T), the 
latter is usually called the IAF in this book. 
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Taking the IFT gives 

Rz(t ,  ~) = z(t)  z*(t - ~) 

= 5(t - ~) �9 [z(t + ~) z* (t - ~)1 

= 5 ( t -  2 ) *  Kz( t ,  T) 

(2.7.9) 

(2.7.10) 

(2.7.11) 

so that  
G(t, ~-) - 5 ( t -  ~). (2.7.12) 

2.7.4 Levin Distribution 
Using Eq. (2.7.8) as the definition of the Rihaczek distribution, and taking the real 
part, we obtain for the Levin distribution 

pz(t, f )  = R e { , ~ s { z ( t )  z*(t -- T)}}  (2.7.13) 

(2.7.14) 

Taking the IFT, we obtain 

( ~ 1 z ( t ) z * ( t  -- T) _~_ I z * ( t ) z ( t  -~- T) Rz,t ,  7, - ~ 

-- !5( ~) * Kz(t ,  T) _]_1_~ 5(t+ -~) * Kz(t ,  T) 

_ 115(t + r) + 5(t - r ) ] ,  Kz(t ,T)  - -  ~ ~ 

(2.7.~5) 

(2.7.16) 

so that  
- l [ 5 ( t  + ~)  + 5(t  - ~)] .  c ( t , ~ )  ~ ~ (2.7.17) 

2.7.5 Windowed Rihaczek Distribution 
Eq. (2.6.10) can be written 

pz ( t , f )  -- z(t) ~s{Z*( - -T)W*(- -T-  t ) }e  -j2~ft 

= z ( t ) ~ j { z *  (t -- v) w* (--7)}. 

(2.7.18) 

(2.7.19) 

Taking the IFT gives 

Rz(t,T) -- z ( t ) z * ( t -  7)W*(--T) 

= [5(t -- ~) �9 Kz(t, r w * ( - ~ )  

= [ w * ( - T ) 5 ( t -  ~ ) ] , K z ( t , 7 )  

(2.7.20) 

(2.7.21) 

(2.7.22) 

so that  

c ( t ,  ~) - ~* ( - ~ )  ~(t - ~ ). (2.7.23) 
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Because w is real and even, this reduces to 

a(t ,  T) = W(T) 5(t - ~). (2.7.24) 

Comparing Eqs. (2.7.11) and (2.7.22), we see that the smoothed IAFs of the RD 
and the windowed RD differ by the factor w*(--T); that is, the distributions differ 
by a windowing operation in the lag domain prior to Fourier transformation from 
T to f [31]. 

2.7.6 Windowed Levin Distribution 
From Eq. (2.7.19), the real part of the windowed RD is 

1 - * ( - ~ ) }  + ~ z*(t) { z * ( t - ~ )  ~ * ( - ~ ) }  . 2 z ( t )~ , { z* ( t  T) W 1 (2.7.25) 

Taking the IFT, we find that the smoothed IAF of the windowed LD is 

SO that 

1 z(t)z*(t T) W* l Z* Rz(t, T) = ~ - (--T) + ~ (t) z(t + T) W(T) 

_-- 21 [(~(t-- ~) �9 Kz(t,  T)] W* (--T) + ~1 [5(t+ ~) �9 Kz(t,  T)] W(T) 
1 -r 7" = ~ [W(T) 6(t+ ~) + W*(--T) 5(t-- ~)] * Kz(t,  T) (2.7.26) 

O(t, T) = ~1 [W(T)6(t+ ~) + W*(--T)5(t-- ~)]~" (2.7.27) 

or, because w is real and even, 

~ ( ~ )  [5(t + ~) + 5(t  - ~ G(t ,  ~) = ~ ~ ~)] (2.7.28) 

Comparing Eqs. (2.7.16) and (2.7.26), and noting that w is real and even, we see 
that the smoothed IAFs of the LD and the windowed LD differ by the factor W(T); 
that is, the distributions differ by a windowing operation in the lag domain [31]. 

2.7.7 Page Distribution 
Rewriting Eq. (2.5.8) using the unit step function u(t), we obtain for the Page 
distribution 

) pz(t, f)  - 2 Re *(t) z(t-A)u()~)eJ2~Y~d/k . (2.7.29) 

With the substitution T = --A, this becomes 

pz( t , f )  = 2 R e { ~ { z * ( t ) z ( t  +T)U(--T)}} (2.7.30) 

(2.7.31) 
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Taking the IFT, we obtain 

Rz(t, T) = z*(t) z(t+7) u(-7) + z(t) z*(t-T) u(7) 
: u(-~-)[5(t+2),  Kz(t, T)] + U(~')[5(t--2), Kz(t, T)] 

-- [ U ( - - W ) 5 ( t + } )  + U(r)a(t--~)] * K~(t, r) 

so that 

(2.7.32) 

(2.7.33) 

(2.7.34) 

a(t, ~) = u(-~) 5(t + ~) + u(~) 5 ( t -  ~) 

- 5 ( t -  I~1). 

(2.7.35) 

(2.7.36) 

2.7.8 Relationship between the WVD and Other TFDs 
By taking the FT of Eq. (2.7.4) w.r.t. T and using specific forms for G(t, T), all the 
considered TFDs can be written in the same form as Eq. (2.2.15)" 

pz(t, f )  -- 7(t, f )  (*,*) Wz(t ,  f )  (2.7.37) 

where 
,~(t, y) - :r {a(t ,  ~)} 

"r --* f 
(2.7.38) 

is the TFD time-frequency kernel. 
This then suggests that  all the TFDs naturally introduced so far can be consid- 

ered to be smoothed WVDs. This observation led to the design or rediscovery of 
several other TFDs that  are briefly discussed next. 

2.7.9 Other Popular TFDs 
Having derived some TFDs by intuitive methods and then determined their time- 
lag kernels, let us now define a few more TFDs directly in terms of their time-lag 
kernels. 

Name 

Windowed WVD (w-WVD) 

Sinc or Born-Jordan (B J) 

Exponential or Choi-Williams (CW) 

Windowed sine or Zhao-Atlas-Marks (ZAM) 

B-distribution (BD) 

Modified B-distribution (MBD) 

G(t,7-) 

5(t)w(~) 
1 t 

]2a.rl rect 2C~T 

~-5 ot~ l~ ~ 
IT[ e - ~ 2  

t W(T) rect 

IT[ z cosh -2~ t 

c o s h -  2~ t 
f-~oo c o s h -  2~ ~ d~ 

In the above table, the parameters a, or, a and/3 are real and positive, and W(T) is a 
window function. The CW distribution was defined in [33] and the ZAM distribution 
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in [34]. The BJ distribution, called the "sinc distribution" in [28, p. 26], was defined 
in [7, 35] using an operational rule of Born and Jordan [36, p. 873]. Observe that  the 
BJ distribution is a special case of the ZAM with a - 1/~ and W(T) = a/127 I. These 
distributions are illustrated for a linear FM signal in Fig. 2.7.1, parts (f)-(i). The 
BD, w-WVD, and MBD kernels are "separable", while the w-WVD kernel is also 
"Doppler-independent" and the MBD kernel is also "lag-independent"; these con- 
cepts are discussed later, especially in Article 5.7. In Fig. 2.7.1 parts (j)-(1) we have 
respectively plotted a Doppler-independent, a lag-independent, and a separable- 
kernel TFD of a linear FM signal. We shall see [e.g. in Table 3.3.3 on p. 77] that  
the separable and Doppler (lag)-independent kernels have been introduced in order 
to obtain certain desired TFD properties. 

For convenience, Table 2.7.1 collects and tabulates the definitions of the TFDs 
that  have been derived heuristically in this chapter, and of the six TFDs that  have 
just been defined in terms of their time-lag kernels. 

2.8 Summary and Discussion 
Constructing a quadratic TFD from the analytic associate of a given real signal, 
rather than from the signal itself, avoids spurious terms caused by interference 
between positive-frequency and negative-frequency components. 

Every TFD that we have derived heuristically is quadratic in the signal; that  is, 
if the signal is scaled by a factor k, the TFD is scaled by a factor k 2. This is to be 
expected because 

(a) Each TFD considered so far is related to some sort of energy density. For 
example, the Page distribution is defined as a gradient of energy, hence ac- 
commodating for the negative values that occur in the TFD. 

(b) The signal has been assumed to be an effort variable or a flow variable (ex- 
amples of effort variables are voltage, force, and pressure; the corresponding 
flow variables are current, linear velocity, and volume velocity), and power is 
proportional to the product of an effort variable and the corresponding flow 
variable, hence (in a linear system) to the square of the effort variable or of 
the flow variable. 

(c) We have seen in Section 2.7 that  every TFD considered in this chapter can be 
written as the FT of a smoothed IAF [Eq. (2.7.1)], which is the convolution of 
an auxiliary function (the time-lag kernel filter G(t, T)) and the ordinary IAF 
Kz(t, T), which in turn is quadratic in the signal. 

Eq. (2.7.4) effectively defines a TFD in terms of its time-lag kernel and is the key 
to the theory and design of quadratic TFDs, as will be detailed in the next chapter. 
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T a b l e  2 .7 .1 :  Special forms of selected quadratic TFDs (3rd column), together with their time-lag 
kernels (2nd column). The window W(T) is assumed to be real and even. Integrals, unless otherwise 
noted, are from -oo  to oo. The forms involving double integrals are obtained by direct substitution of 
the time-lag kernel into Eq. (3.2.9). The w-WVD may also be so obtained. Other forms are quoted 
from this chapter. 

Distribution 

Wigner-Ville 

Levin 

Born-Jordan 

Modified B 

w-WVD 

w-Levin 

ZAM 

Rihaczek 

w-Rihaczek 

Page 

Choi-Williams 

Spectrogram 

G(t, ~) 

a(t) 

1 [(~(t-~- r )  q_ (~(t-- -r )] 
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nel, gl (t) = 9-point Hanning, g2(T) = 29-point Hamming. 
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Chapter 3 

Theory of Quadratic TFDs 

The quadratic time-frequency distributions (TFDs) introduced in the last chapter 
represent the majority of the methods used in practical applications that deal with 
non-stationary signals. In this chapter, which completes the introductory tutorial, 
we show that these particular quadratic TFDs belong to a general class of TFDs 
whose design follows a common procedure, and whose properties are governed by 
common laws. This quadratic class may be considered as the class of smoothed 
Wigner-Ville distributions (WVDs), where the "smoothing" is described in the (t, f)  
domain by convolution with a "time-frequency kernel" function v(t, f) ,  and in other 
domains by multiplication and/or convolution with various transforms of 7(t, f).  
The generalized approach allows the definition of new TFDs that are better adapted 
to particular signal types, using a simple and systematic procedure as opposed to 
the ad hoc methods of Chapter 2. 

The first section (3.1) extends Section 2.1 by enumerating in detail the key 
properties and limitations of the WVD. Thus it motivates the introduction of general 
quadratic TFDs (Section 3.2) and prepares for the discussion of their properties 
(Section 3.3). In Section 3.2, using Fourier transforms from lag to frequency and 
from time to Doppler (frequency shift), the quadratic TFDs and their kernels are 
formulated in four different but related two-dimensional domains. One of these, 
namely the Doppler-lag (~, T) domain, leads to the definition of the "ambiguity 
function" and allows the smoothing of the WVD to be understood as a filtering 
operation. In Section 3.3, the list of properties of the WVD is supplemented by 
mentioning some desirable TFD properties not shared by the WVD. The various 
TFD properties are then expressed in terms of constraints on the kernel, so that 
TFD design is reduced to kernel design. Three tables are provided showing the 
kernel properties equivalent to various TFD properties, the kernels of numerous 
popular TFDs in the various two-dimensional domains, and the properties of those 
same TFDs. 

~ Boualem Boashash, Signal Processing Research Centre, Queensland University 
of Technology, Brisbane, Australia. Reviewers: K. Abed-Meraim, A. Beghdadi, M. Mesbah, 
G. Putland and V. Sucic. 
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3.1 The W V D  

3.1.1 Properties of the WVD 
We have seen that  the WVD has the simplest time-lag kernel (see Eq. (2.7.7)), and 
that  each of the other TFDs can be written as a filtered WVD using a specific time- 
lag kernel filter (see Eq. (2.7.37)). In this sense the WVD is the basic or prototype 
TFD and the other TFDs are variations thereon. Moreover, we see in Fig. 2.7.1 that  
the WVD gives the sharpest indication of the IF law of a linear FM signal. These 
are some of the reasons why the WVD is the most widely studied TFD and deserves 
a further detailed description of its properties, as listed below. 

�9 R e a l n e s s  (RE) :  Wz(t, f )  is real for all z, t and f.  

�9 T i m e - s h i f t  inva r i ance  (also called t i m e  covar iance) :  A time shift in the 
signal causes the same time shift in the WVD; that  is, if 

z (t) = z ( t -  to) ,  (3.1.1) 

then 

W~ (t, f )  - W~ (t - to, f) .  

�9 F r e q u e n c y - s h i f t  i nva r i ance  (also called f r e q u e n c y  covar iance) :  A fre- 
quency shift in the signal causes the same frequency shift in the WVD; that  
is, if 

zr(t) = z(t) e j2~y~ , (3.1.3) 

then 

Wz~ (t, f )  = Wz (t, f - fo). (3.1.4) 

�9 T i m e  m a r g i n a l  ( T M ) :  Integration of the WVD over frequency gives the 
instantaneous power: 

~ w ~ ( t ,  I ) d f  - tz(t)l 2. (a.l.a) 

�9 F r e q u e n c y  m a r g i n a l  (FM) :  Integration of the WVD over time gives the 
energy spectrum: 

~Wz( t ,  f )d t  = IZ(f)l 2. (3.1.6) 
( x )  

�9 G loba l  ene rgy :  Integration of the WVD over the entire (t, f )  plane yields 
the signal energy Ez: 

f_~ / '~  Wz(t, f )  dt df = E~. (3.1.7) 
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�9 I n s t a n t a n e o u s  f r equency  (IF):  For an analytic signal, the first moment 
[i.e. the mean] of the WVD w.r.t, frequency is the IF: 

f_~fWz (t, f)df 
f~o~W~(t,f)df 

1 d [argz(t)]. (3 1.8) 
27r dt 

�9 T i m e  delay  (TD) :  The first moment of the WVD w.r.t, time is the TD: 

f_~176 W~(t, f )d t  _ _ 1 d [arg Z( f ) ] .  (3.1.9) 
f -~oo W~ (t, f )  dt 27r df 

where Z ( f ) i s  the FT of z(t). 

�9 T i m e  s u p p o r t  (TS):  The time support of Wz(t, f )  is limited by the duration 
ofz(t) ;  that is, if z ( t )=O for t < t l  and for t > t 2 ,  then W z ( t , f ) = O  for 
t < t l  and for t > t 2 .  

�9 F r e q u e n c y  s u p p o r t  (FS):  The frequency support of Wz(t, f )  is limited by 
the bandwidth of z(t); that is, if $'{z(t)} = Z ( I ) =  0 for f < fl and for 
f > f2, then W~(t, f)  = 0 for f < fl and for f > f2. 

�9 C o n v o l u t i o n  invar iance:  The WVD of the time-convolution of two signals 
is the time-convolution of the WVDs of the two signals; that is, if 

z3( t )  -~ Zl( t )* t  z2( t )  , (3.1.10) 

then 

Wza (t, f )  = W~ 1 (t, f )  �9 W~ 2 (t, f).  (3.1.11) 

�9 M o d u l a t i o n  invar iance:  The WVD of the frequency-convolution of two 
signals is the frequency-convolution of the WVDs of the two signals; that is, 
if 

z3(t) = zl (t) z2(t) , (3.1.12) 

then 

Wza (t, f )  - E 1  (t, f )  ~ Wz2 (t, f).  (3.1.13) 

�9 Inver t ib i l i ty :  If Wz(t, f )  is the WVD of the signal z(t), it may be shown [1, 
pp. 223-4] that 

? Wz(t/2, f)  z(t) (0). (3.1.14) ej27rf t d f  z* 
CX) 

Putting t = 0 in this result yields the magnitude, but not the phase, of z(0). 
Hence a signal z(t) may be recovered from its WVD up to a phase factor. 
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�9 I n n e r - p r o d u c t  invariance: The WVD is a u n i t a r y  transformation; that  
is, it preserves inner products: 

c ~  c o  o o  2 S- S- W'i (t' f) Wz'(t' f)dtdf - S- z,(t)z~(t)dt . (3.1.15) 
oo oo 

The above properties are not independent; for example, it is a trivial exercise to 
show that  either of the marginals (TM or FM) implies the global energy condition. 

A more comprehensive list of the WVD properties is given in [1]. These either 
follow directly from the definition, or are proven in [2]. 

A notable omission from the above list is pos i t iv i ty ;  the WVD can assume 
negative values, and indeed does so for almost every signal. 

Applicability: Many properties of the WVD are desirable in applications; for 
example, realness is consistent with the notion of energy density in as much as 
energy is real, while convolution invariance and modulation invariance make the 
WVD partly compatible with linear filtering theory. Nevertheless, the WVD was 
not applied to real-life problems until the late 1970s, when it was implemented for 
the purposing of processing linear FM signals used in seismic prospecting [3]. 

3 .1 .2  Limitations of the W V D  
Despite its many desirable properties, the WVD has some drawbacks. It may assume 
large negative values. Further, because it is b i l inea r  in the signal rather than linear, 
it suffers from spurious features called a r t i f ac t s  or cross - terms ,  which appear 
midway between true signal components in the case of multicomponent signals as 
well as non-linear mono- and multicomponent FM signals [see Article 4.2]. 

3.1.2.1 Nonlinear Monocomponent FM Signals and Inner Artifacts 

Consider a monocomponent signal z ( t )=  a(t)e jr . In the case of a linear FM 
signal, the WVD gives an accurate representation of the IF law (Fig. 1.1.3) because 
the CFD approximation to r is exact, so that  the signal kernel is a dechirped 
function of T [see Eqs. (2.1.19) to (2.1.25)]. In the case of a nonlinear FM signal, the 
CFD approximation is not exact and the signal kernel (i.e. the IAF) is not dechirped. 
This results in the formation of inner artifacts ,  which arise from "within" a single 
component. 

An example of a nonlinear FM signal is the h y p e r b o l i c  F M  signal with rect- 
angular amplitude a(t) and the phase given by 

r = 27rfo In I1 + atl. (3.1.16) 
C~ 

The IF is 

r (t) fo (3 1 17) 
f i ( t ) =  27r = 1 + a t "  "" 

For the time interval 0 < t < T ,  the starting frequency is fo - fi(0). The finishing 
frequency is fmaz = fi (T) = fo / (1 + c~T). 
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Fig. 3.1.1: WVD of (a) hyperbolic FM signal with starting frequency 0.I and finishing frequency 
0.4 Hz; (b) linear FM signal with starting frequency 0.4 and finishing frequency 0.1Hz. Both plots are 
for a duration of 65 samples (sampling rate 1 Hz). 

Fig. 3.1.1(a) shows the WVD of a hyperbolic FM signal with duration 65 samples, 
f0 - 0 . 1  and fmax = 0.4. While the crest of the WVD seems to be a reasonable 
approximation to the IF law, the energy concentration is poorer. The many spurious 
ridges are the inner artifacts. They alternate in sign as we move normal to the IF 
law in the (t, f)  plane; this is a characteristic feature of inner artifacts. 

For comparison, Fig. 3.1.1(b) shows the WVD of the linear FM signal with the 
same duration and the same frequency limits (with falling frequency). Note the 
superior energy concentration for the linear FM case, and the more attenuated 
artifacts distributed on both sides of the main ridge. 

Artifacts caused by nonlinear FM laws can be reduced by windowing the IAF in 
T before taking the FT, leading to the w indowed  W V D .  This procedure, however, 
causes a loss of frequency resolution [4]. 

3.1.2.2 Multicomponent Signals and Outer Artifacts 
If z(t) is a multicomponent signal, the algebraic expansion of Kz(t ,T)  contains 
cross-product terms which, when Fourier-transformed, give rise to spurious features 
in the WVD. These are the ou t e r  a r t i fac t s  or c ross - t e rms .  To explain these, 
consider the signal 

z(t) = zl(t) + z2(t) (3.1.18) 

where z(t), zl (t) and z2(t) are analytic. Expanding the IAF, we obtain 

Kz(t,  ~') = Kz~ (t, T) + Kz2 (t, T) + Kz~z2 (t, T) + Kz2z~ (t, T) (3.1.19) 

where Kzlz2(t, T) and Kz2zl (t, T) are the "signal cross-kernels" or instantaneous 
cross-correlation functions (e.g. Kzlz2 (t, T) = zl (t + ~ ) z ~ ( t -  2))" Taking FWs of 
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Fig. 3.1.2: The WVD of the sum of two linear FM signals with frequency ranges 0.1-0.2 and 0.3-0.4 
Hz, unit amplitudes, and a duration of 65 samples (sampling rate 1 Hz). 

Eq. (3.1.19)w.r.t.  T [using Eq. (2.1.18)], we find 

Wz (t, f)  = Wz~ (t, f)  + Wz2 (t, f)  + 2Re{Wz~ z2 (t, f )  } (3.1.20) 

where Wzl (t, f)  and Wz2 (t, f)  are the WVDs of Zl(t) and z2(t), and Wzlz2 (t, f)  is 
the c r o s s - W i g n e r - V i l l e  d i s t r i b u t i o n  (XWVD) of zl (t) and z2(t), defined by 

F _ �9 _ r dT. Wzx z2 (t, f)  Zl (t -~- 2) Z2 (t "~ ) e -j27rf T 
cxD 

(3.1.21) 

Thus the WVD of the sum of two signals is not just the sum of the signals' WVDs, 
but also of their XWVDs. If zl (t) and z2(t) are monocomponent signals, Wzl (t, f)  
and Wz2 (t, f )  are the auto-terms, while 2ae{Wzlz2 (t, f )}  is a cross-term. 

Fig. 3.1.2 shows the WVD of the sum of two parallel linear FM signals. There 
seem to be three components rather than two; the "extra" component at the mean 
frequency of the expected components has a large oscillating amplitude, and occurs 
in a region of the (t, f )  plane where we expect no energy at all. Fig. 3.1.3(a) shows 
the WVD of the sum of two FM signals crossing over in frequency. A large number 
of undulations appear in addition to the two main ridges. In both examples, the 
cross-terms alternate in sign as we move parallel to the expected features in the 
(t, f )  plane; this is a characteristic feature of cross-terms. 

3.1.2.3 Suppression of Cross-Terms 
Cross-terms can make the WVD difficult to interpret, especially if the components 
are numerous or close to each other, and the more so in the presence of noise; cross- 
terms between signal components and noise exaggerate the effects of noise and 
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Fig. 3.1.3: Suppression of cross-terms in the sum of a rising hyperbolic FM signal (frequency range 
0.1 to 0.4 Hz) and a falling linear FM signal (frequency range 0.4 to 0.1Hz), with unit amplitudes and 
a duration of 05 samples (sampling rate 1Hz): (a) WVD; (b) spectrogram with 21-point rectangular 
window; (c) masked WVD, being the product of (a) and (b). 

cause rapid degradation of performance as the SNR decreases. For such reasons, 
cross-terms are often regarded as the fundamental limitation on the applicability 
of quadratic time-frequency methods, and the desire to suppress them has led to 
several approaches such as: 

I. If we multiply the WVD by the spectrogram, we obtain the so-called masked 
WVD [5], which combines the cross-term suppression of the spectrogram with 
the high resolution of the WVD. To illustrate the effect, Fig. 3.1.3 shows the 
WVD, spectrogram and masked WVD of the sum of two crossed FM signals; 
observe that the masked WVD is "cleaner" than the WVD and has better 
resolution than the spectrogram. 

2. Eq. (3.1.21) indicates that  the XWVD of zl(t) and z2(t') is linear in z2(t). If 
z~ (t) is a reference signal and z2(t) is the signal under analysis, there will be 
no cross-terms between components of z2(t). This observation inspired efforts 
to displace the WVD with the XWVD in relevant areas of application. A 
reference signal is readily available in optimal detection [6], sonar and radar [7], 
and seismic exploration [8]. In applications where reference signals are not 
available, a filtered version of the observed signal is used as a reference signal. 
The filtering procedure may use the IF as a critical feature of the signal; for 
example, the data-dependent TFDs defined in [9] use, as a reference signal, 
the signal component that  maximizes the energy concentration in the TFD. 

3. All quadratic TFDs in Chapter 2 can be identified by a time-lag kernel, includ- 
ing the spectrogram which suppresses cross-terms. By analyzing the properties 
of time-lag kernels, we can define and design TFDs that  attenuate cross-terms. 
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A quadrat ic  TFD in which the cross-terms are a t tenuated  relative to the auto- 
terms is often called a r e d u c e d - i n t e r f e r e n c e  d i s t r i b u t i o n  ( R I D ) .  

This chapter concentrates on the RID approach for defining quadrat ic  TFDs  with 
the proper ty  of cross-terms suppression. 

3.2 Formulations of Quadratic TFDs 

3.2.1 Time-Lag Formulations and Other Domain Definitions 
Given an analytic signal z(t), the instantaneous autocorrelation function (IAF) was 
defined in Eq. (2.1.8) as 

K~(t, T) = z(t + ~) z*(t - ~) (3.2.1) 

The IAF K~(t, T) is a function of 2 t ime variables: the actual  t ime t and the t ime 
lag T. By taking the dual domain of t and T in frequency, we obtain the frequency 
variables v and f .  This allows for four domains of representation: 

(t,T) 

( t , f )  

(u, f )  

Start ing with the IAF, we define the Wigner-Ville distr ibution (WVD) by taking 
the FW (T ~ f) :  

W~(t, f )  = jz {Kz(t, T)}. (3.2.2) 
"r ---* f 

The F T  (t ~ u) of the WVD defines the spectral autocorrelat ion function (SAF) 
[Eq. (2.1.26)] as 

f )  = y) ) .  (3.2.3) 

The F T  (t ~ v) of the IAF K~(t, T) equals the IFT  (T ~- f )  of the SAF k~(v, f ) ,  
and defines the symmetr ical  a m b i g u i t y  f u n c t i o n  (AF) as: 

Az(v, T) = ~ {Kz(t, T)} = j : - I  {kz(u, f )}  
t - ~ u  ~*--f 

(3.2.4) 

where ~ { . . . }  represents the forward (direct) Fourier transform, and .)~---1{...} its 
inverse. 1 

1 Many authors define the symmetrical ambiguity function using an inverse transform from t 
to u, with the result that the arrows in the "diamond diagrams" [e.g. Eq. (3.2.5)] point upwards 
instead of to the right (this affects only the lower-left and upper-right arrows). Here we choose 
our definitions so that transforms from a time variable (t or r) to a frequency variable (u or f) 
are always forward. 
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If we represent Fourier transformations by arrows labeled with the participating 
variables, Eqs. (3.2.2)to (3.2.4) may be combined into the single graphical equation 

Wz(t,f) 

Kz(t, 7) kz(v,f). 

/ 
A (u,r) (3.2.5) 

This single graphical representation of several equations is very useful in that it links 
several known methods by simple FT operations. The knowledge of FT properties 
then allows to use characteristics of a method in one domain and transfer them 
to another domain. We can so relate radar methods in the Doppler-lag domain to 
(t, f )  methods and to cyclostationary methods. 

Now let us represent similarly the TFD kernel in these four domains by taking 
various FTs of the t ime- lag  kernel  G(t, T): 

7(t,f) 

G(t,T) G(v, f).  

/ 
g(~,,T) (3.2.6) 

We refer to g(~,T) as the Dopp le r - l ag  kernel ,  to G(v,f)  as the Dopp le r -  
f r equency  kernel ,  and to 7(t, f)  as the t i m e - f r e q u e n c y  kernel .  

3.2.2 Time-Frequency Formulation 
We have defined the smoothed IAF as 

Rz(t, T) = G(t, T) �9 Kz(t, T) (3.2.7) 

where G(t, ~-) is the time-lag kernel. Following Eq. (2.7.1), we define a class of 
q u a d r a t i c  T F D s  (which are smoothed WVDs) as 

pz(t ,  f )  = (3.2.8) 

Substituting Eq. (3.2.7) into Eq. (3.2.8), writing out the convolution and the trans- 
form, and substituting from Eq. (3.2.1), we obtain 

I_ I? p~(t, f) = O(t-u,  T) z(u+~) Z*(U--2) e-J2~frdudT (3.2.9) 
( x )  o o  
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which defines the general class of quadratic TFDs in terms of the signal and the 
time-lag kernel. The class of TFDs of this form is called the quadra t i c  class. 2 

Eq. (3.2.8) is included in the graphical equation 

pz(t,f) 

Rz(t,T) rz(~,f) 

yy 
Az(U,r) (3.2.10) 

which assigns symbols to the various FTs of the smoothed IAF [11, p. 436]. By 
analogy with Eqs. (3.2.3) and (3.2.4), we call rz(V, f) the "generalized SAF" and 
A~(v, T) the "generalized ambiguity function" (GAF) 3 or more precisely f i l tered 
amb igu i ty  function; note the distinction between the normal A in Eq. (3.2.5) and 
the calligraphic .,4 in Eq. (3.2.10). 

Using Eq. (3.2.7) and the lower two arrows in Eq. (3.2.10), together with the 
convolution properties of the FT, we obtain in sequence 

A~(v, T) -- g(v, T) A~(~, T) (3.2.11) 

rz(V, f) - G(v, f) ~ k~(~, f) (3.2.12) 

Then, using Eq. (3.2.7) and the upper left arrow in Eq. (3.2.10), together with the 
convolution properties, we obtain 

pz(t, f)  = 7(t, f )  ** Wz(t, f )  
( t , f )  

(3.2.13) 

where the double asterisk denotes double convolution in t and f (cf. [11], 
pp. 437,475). 

Eq. (3.2.13) defines the quadratic class of TFDs in terms of the WVD and the 
time-frequency kernel. For this reason we regard the WVD as the "basic" or "pro- 
totype" quadratic TFD, and all other quadratic TFDs as filtered versions thereof. 

2The q u a d r a t i c  c lass  as defined here satisfies the time-shift- and frequency-shift-invariance 
properties. Most current authors seem to equate " C o h e n ' s  class" with the quadratic class. In 
addition, some authors apply the term "quadratic time-frequency representation" or "QTFR" to 
all time-frequency representations that  are quadratic in the signal (whether they have the form of 
Eq. (3.2.9) or not) so that  "Cohen's class" becomes a subset of the "QTFRs". However, the class 
originally defined by Cohen in a quantum-mechanical context [10] differs from the quadratic class 
[Eq. (3.2.9)] in that  the marginal conditions must be satisfied, while the kernel may depend on the 
signal (in which case the TFD is not  quadratic in the signal). We shall see (e.g. in Table 3.3.3) 
that  many useful quadratic TFDs do not satisfy the marginals, so that  they are not members of 
"Cohen's class" as originally defined. 

3The term g e n e r a l i z e d  a m b i g u i t y  f u n c t i o n  is also used with a different meaning in connec- 
tion with polynomial TFDs; see Article 5.5. 
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Eq. (3.2.13) also suggests a method of suppressing cross-terms in the WVD. Be- 
cause inner artifacts alternate as we move in the frequency direction, they can be 
attenuated by choosing a 7(t, f )  with a sufficient spread in the frequency direction. 
Similarly, because cross-terms (outer artifacts) alternate as we move in the time 
direction, they can be attenuated by choosing a 7(t, f)  with a sufficient spread in 
the time direction. 

Eqs. (3.2.10) and (3.2.11) show how one quadratic TFD can be transformed to 
another by a linear transformation. 

3.2.3 Doppler-Lag Formulation and TFD Design 
Substituting for Kz(t, T) in Eq. (3.2.4) and writing out the transform, we obtain 

Az(~, ~-) - z(t + ~) z*(t - 2)e-J2~tdt  (3.2.14) 
( x )  

= z(t + ~) [ z ( t -  ~)eJ2~t] * dt. (3.2.15) 
o o  

The expression in square brackets can be obtained by delaying z(t + ~) in time by 
~- and shifting it in frequency by ~/, indicating that Az(L,, T) is the correlation of the 
signal with a time-delayed and frequency-shifted version of itself. This correlation 
is well known in radar theory as the Sussman ambiguity function [12]; the name 
"ambiguity" arises from the equivalence between time-shifting and frequency-shifting 
for linear FM signals, which are frequently used in radar. Hence the Doppler-lag 
(L,, 7-) domain is also called the a m b i g u i t y  domain .  

Eq. (3.2.10) indicates that the quadratic TFD is a 2D FT (half inverse, half 
forward) of the filtered ambiguity function. Writing out the transforms gives 

p~(t, f )  = g(,, T) Az(, ,  v)eJ2"(~t-f~)d~, dr. (3.2.16) 
o o  ( x )  

Then writing the dummy u for t in Eq. (3.2.14) and substituting the result into 
Eq. (3.2.16) gives 

pz(t, f )  = / / / g ( ~ , T ) z ( u + ~ ) z * ( u - ~ ) e J 2 r ( v t - v u - f r ) d u d ~ d T  (3.2.17) 

where the integrals are from - o c  to oc; this defines the quadratic TFD in terms of 
the Doppler-lag kernel g(~, T). 

From the lower left side of Eq. (3.2.6), the relationship between the time-lag 
kernel and the Doppler-lag kernel is 

g(,,  T) -- , ~  {a(t ,  T)}. (3.2.18) 

Using this equation, the time-lag kernels determined in Section 2.7 may be converted 
to Doppler-lag form. For example, using Eq. (2.7.7), we find that the Doppler-lag 
kernel for the WVD is g(u, 7 ) =  ,~  {5(t)} = 1. 
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Eq. (3.2.13) and its 2D FT Eq. (3.2.16) express that a quadratic TFD can be 
designed using basic filter design principles. As in 1D filter design, the filter specifi- 
cations are best given in the domain where the filtering operation is expressed as a 
multiplication as in Eq. (3.2.11), rather than in the dual domain with a convolution 
as in Eq. (3.2.13). 

If the Doppler-lag kernel g(v, T) has the separable form G1 (v)g2(T), multiplica- 
tion by this kernel may include the combined effect of time windowing and frequency 
windowing (see the discussion of Eq. (2.1.40)). 

We can use the same process to define a filter which attenuates cross-terms in 
quadratic TFDs. The cross-terms in the (t, f)  domain tend to be highly oscillatory, 
so that the corresponding terms in the dual (v, T) domain tend to be far from 
the origin (high-pass). The auto-terms in the (t, f)  domain tend to be smooth 
and well delineated, so that the corresponding terms in the dual (v, r) domain are 
concentrated about the origin or "pass through" the origin (low-pass). This behavior 
is well known in the field of radar [13,14]. Hence the cross-terms in the ambiguity 
domain can be "filtered out" by selecting a kernel filter 4 g(v, T) that deemphasizes 
information far from the origin in the Doppler-lag domain. 

Various authors [10,15,16] have shown that other desirable TFD properties are 
equivalent to constraints on the kernel filter, and we shall see that most of these 
constraints are conveniently expressed in the Doppler-lag domain. For all the above 
reasons, the design of the TFD kernel filter is usually performed in the Doppler-lag 
domain. Often, the resulting kernel is then described in the time-lag domain for 
ease of TFD implementation, as given by Eq. (3.2.9). 

3.2.4 Doppler-Frequency Formulation 
From Eqs. (3.2.10) and (3.2.12) we have 

(3.2.19) 

or, writing out the transform and convolution, 

/?/) pz(t, f )  -- G(u, f - rl) kz(u, rl)eJ2~Vtdv du (3.2.20) 
o (  o o  

Writing rl for f in Eq. (2.~.3~) and substituting the result into Eq. (3.2.20), we obtain 

/?/? pz( t , f )  -- G(v , f  -rl)Z(~?+2)Z*(rl-2)eJ2"Vtdvdv.  (3.2.21) 
( x )  o o  

This defines quadratic TFDs in terms of the Doppler-frequency kernel G(v, f)  and 
the signal spectrum. The interest of this formulation is that TFDs of narrow-band 
signals expressed by their spectra may be more efficiently computed in this form. 

4The term "kernel filter" is used to reinforce the idea that designing quadratic TFDs essentially 
reduces to filter design with specific constraints. 
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3.2.5 Examples of Simple TFD Formulations 
3.2.5.1 Separable Kernels 
A simple way to design kernel filters for quadratic TFDs is to consider the special 
case of a separable kernel (see Article 5.7): 

If we let 

and 

then Eq. (3.2.11) becomes 

= a l  (3.2.22) 

G1 (u) - ~,{91 (t)} (3.2.23) 

a2( f )  - .~s{g2(T)}, 

A~(u, T) = a l  (u) g2(7) Az(u, T). 

Then, using Eqs.(3.2.10), (3.2.23), and(3.2.24), we obtain 

(3.2.24) 

(3 .2 .25)  

3.2.5.2 Doppler-Independent Kernels 
A D o p p l e r - i n d e p e n d e n t  (DI) kernel is a special case of a separable kernel ob- 
tained by putting 

G1 (I,') = 1 (3.2.28) 

in Eqs. (3.2.22) and (3.2.23), which then become 

g(tJ, T) = 92(7") (3.2.29) 

9 (t) = (3 .2 .30)  

Making these substitutions in Eqs. (3.2.25) and (3.2.26), we obtain 

A~(u, T) = ge(T) Az(u, T) (3.2.31) 

pz(t, f )  -- G2(I) ~ Wz(t, f ) .  (3.2.32) 

The last result shows that a DI kernel is obtained by applying only 1D filtering and 
causes smearing of the WVD in the frequency direction only. 

g(u, T) = g3(UT). (3.2.27) 

pz(t, f )  - gl (t) �9 Wz(t, f )  ~ G2(f). (3.2.26) 

Eq. (3.2.25) shows that the design of the kernel filter G1 (/])g2(T) is greatly sim- 
plified as the 2D filtering operation is replaced by two successive 1D filtering op- 
erations. Equivalently, in Eq. (3.2.26), the two convolutions can be evaluated in 
either order, indicating that the Doppler-dependent and lag-dependent factors in 
the separable kernel g(u, 7) lead to separate convolutions in time and frequency, 
respectively. 

A separable kernel is not to be confused with a p r o d u c t  kernel,  which is a 
function of the product uT, e.g. 
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3.2.5.3 Lag-Independent Kernels 
A l a g - i n d e p e n d e n t  (LI) kernel is another special case of the separable kernel, 
obtained by putting 

in Eqs. (3.2.22) and (3.2.24), which then become 

= 

a (f) = 

Making these substitutions in Eqs. (3.2.25) and (3.2.26), we obtain 

Az(~, T) = a~ (v) Az(~, T) 

pz(t, f )  = gl(t) * Wz(t, f ) .  

(3.2.33) 

(3.2.34) 

(3.2.35) 

(3.2.36) 

(3.2.37) 

The last result shows that an LI kernel is obtained by applying only 1D filtering 
and causes smearing of the WVD in the time direction only. 

The kernel of the WVD is g(~, ~-) = 1, which is both Doppler-independent and 
lag-independent. The windowed WVD kernel, however, is Doppler-independent. 

Article 5.7 provides an in-depth treatment of such separable kernels, including 
examples of quadratic TFDs obtained by this simple kernel filter design procedure. 

3.3 Properties of Quadratic TFDs 
3.3.1 Desirable Properties 
Some quadratic TFDs verify desirable properties that are not shared by the WVD, 
and vice versa. Later we shall relate the properties of a TFD to the constraints 
of its kernel, and tabulate properties for selected TFDs. But first we discuss some 
properties that have been promoted [17-19] as fundamental for a wide range of 
applications. 

1. C o n c e n t r a t i o n  of local energy:  The energy in a certain region R in the 
(t, f )  plane, denoted by EzR, is given by the integral of the TFD over the 
region R; for example, if R is the region within a time interval At and a 
frequency band A f,  the energy within R is 

t / 

2. I F / T D  visual iza t ion:  The TFD of a monocomponent signal directly depicts 
the instantaneous frequency fi(t) and time delay Td(/) as a range of peaks 
along the curve representing the FM law in the (t, f)  plane. That is, if z(t) is 
a monocomponent signal and pz(t, f )  is its TFD, then 

max pz(t, f )  = fi(t). (3.3.2) 
Y 
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3. R e d u c e d  in te r fe rence  (RI):  The TFD attenuates or suppresses inner and 
outer artifacts (cross-terms) relative to the signal components (auto-terms). 

Another condition considered by some authors is pos i t iv i ty ,  or more precisely 
n o n - n e g a t i v i t y  (NN),  defined as: 

pz(t, f )  >_ 0 V z, t, f . (3.3.3) 

Among quadratic TFDs, only sums of spectrograms possess NN. This means that 
the Doppler-lag kernel of a "positive" TFD is a sum of ambiguity functions, which 
makes the NN property incompatible with both the IF property (see Table 3.3.1) 
and IF visualization [20]. Hence NN is usually considered non-essential because its 
cost is excessive. 

A subclass 7 ) of quadratic TFDs comprises those TFDs which satisfy the re- 
alness, time marginal, frequency marginal, instantaneous frequency, time support 
and frequency support properties. Researchers have shown much interest in TFDs 
of this class, and especially RIDs of this class. To some extent the design of RIDs 
is the art of "improving" on the spectrogram by 

�9 sacrificing NN, 

�9 improving resolution, and 

�9 retaining sufficient reduced-interference ability for the application. 

The result is usually a compromise between the spectrogram and the WVD, involv- 
ing a time-frequency kernel filter less extensive than that of the spectrogram. The 
compromise may involve sacrificing one or both of the marginal properties (time or 
frequency). Although the marginals are critical in the field in quantum physics [10], 
they seem to be less important in signal processing. As evidence of this we may cite 
the following: 

�9 The spectrogram does not satisfy the marginals and yet has always been re- 
garded as a very useful TFD. 

�9 Attempts to improve on the spectrogram are most often motivated by the 
need for higher resolution (see e.g. [21]) rather than any desire to satisfy the 
marginals. 

�9 If the marginal conditions do not hold, it is still possible that the integral forms 
thereof [Eqs. (2.6.6) and (2.6.7)] are approximately true over sufficiently broad 
time intervals or frequency bands. 

For these reasons it is suggested that :P is not necessarily appropriate for signal- 
processing applications, and an alternative class pl ,  which comprises reduced- 
interference distributions satisfying the realness, global and local energy, IF vi- 
sualization and components resolution properties, would be more relevant. Note 
that the properties of class 7 )I are the same as the properties listed at the end of 
Section 1.1.5. 
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3.3.2 TFD Properties & Equivalent Kernel Constraints 
Using some properties listed in [22], the relevant kernel constraints were adapted 
for separable, DI and LI kernels. The results are collected in Table 3.3.1. 

The proofs of these kernel constraints use Eq. (3.2.13), which states that  the 
quadratic TFD is the WVD convolved in t and f with the time-frequency kernel 

7(t, f):  
pz(t, f)  = 7(t, f )  ** Wz(t, f). (t ,I)  

Using this relation, we can find su]ficient conditions under which certain properties 
of the WVD carry over to pz(t, f). For example: 

�9 Realness holds if 7(t, f )  is real. 

�9 Because 2D convolution is shift-invariant, time- and frequency-shift invariance 
hold for any fixed 7(t, f) .  

�9 Time support and time extent hold for a DI kernel, which does not redistribute 
the WVD in time, whereas frequency support and frequency extent hold for 
an LI kernel, which does not redistribute the WVD in frequency. 

�9 The IF moment property holds for a DI kernel if G2(f) has a first moment 
(mean frequency) of zero, so that  convolution w.r.t, f does not change the 
first moment of the WVD w . r . t . f .  Similarly, the GD property holds for an 
LI kernel if g~ (t) has a first moment (mean time) of zero, so that  convolution 
w.r.t, t does not change the first moment of the WVD w.r . t . t .  

Some further proofs of kernel constraints are given by Cohen [23]. 

3.3.3 Examples of TFDs with Specific Properties 
For the TFDs defined so far, Table 3.3.2 lists their kernels in various domains, and 
Table 3.3.3 shows their properties. 

Note: A time-lag kernel satisfying the time-support constraint is described as a 
b u t t e r f l y  f unc t i on  [11] or c o n e - s h a p e d  kerne l  [24]; that  is, the nonzero values 
of the kernel are confined to the interior of a two-dimensional cone in the (t, T) plane 
(see the entry in the "General" column of Table 3.3.1). The Born-Jordan and ZAM 
distributions have kernels of this type. 

Inspection of Table 3.3.1 confirms that the WVD satisfies all of the listed prop- 
erties except reduced interference (Pd). The reduced-interference capabilities of sep- 
arable kernels warrant special attention. Because the inner artifacts alternate as we 
move normal to the components, they also alternate in the frequency direction and 
can be suppressed by convolution with a sufficiently long G2(f) [see Eq. (3.2.32)], 
which corresponds to a sufficiently short g2(T). This is possible for a DI kernel but 
not an LI kernel. Because the cross-terms (outer artifacts) alternate as we move 
parallel to the components, they also alternate in the time direction and can be 
suppressed by convolution with a sufficiently long gl (t) [see Eq. (3.2.37)], which cor- 
responds to a sufficiently short G1 (~). This is possible for an LI kernel but not a 
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Table 3.3.1: TFD properties and associated constraints on the Doppler-lag kernel for general, sep- 
arable, Doppler-independent and lag-independent kernels. The asterisk in "WVD only*" means that 
the WVD may be multiplied by a scale factor. Abbreviations for properties: NN--non-negativity; 
RE = realness; T I -  time-shift invariance (or time covariance); F I -  frequency-shift invariance (or fre- 
quency covariance); T M - -  time marginal; F M -  frequency marginal; IF - -  instantaneous frequency; 
T D  = time delay; TS = time support; FS = frequency support; R I - -  RID capability. 

Property 

NN: 

RE: 

TI: 

FI: 

TM" 

FM- 

IF" 

TD" 

TS" 

FS" 

RI" 

KERNEL CONSTRAINTS 

General 

G(t, T) is a 
sum of IAFs. 

g ( - , ~ )  

= g* ( -u , - -T) .  

g(u, T) does not 
depend on t. 

g(u, T) does not 

i depend on f.  

g(u, O) = l Vu 

g(O, T) = l VT 

g(u, 0) = const. 
~[  =0 Vu. 0r r=0 

9(0, T) = const. 
~ =0 Yr. Ou v=0 

G(t,r) = 0  
if Irl < 21tl. 

O ( f , . ) = 0  
if lul < 2lf[. 

Unrestricted 

Separable 

gl  (t) g2(T) is a 

sum of IAFs. 

= a l  ( -~)  g~ ( -~) .  

G1(/2) g2(T) does 
not depend on t. 

G1 (u) g2(T) does 
not depend on f.  

G1 (//) g2(0)  = 1 Vu 

GI(O)  g2(7") = 1 V r  

G1 (u) g2(0) = const. 
g~(0) = o. 

G1 (0) g2(T) = const. 
a l  (0) - 0. 

DI only 

LI only 

Unrestricted 

DI 
g ( u , T ) -  g2(T) 

Never 

G2(f) is real. 

g2 (T) does not 
depend on t. 

g2(T) does not 
depend on f.  

g2(0) = 1 

WVD only 

g~(0) = 0 

WVD only* 

Always 

WVD only* 

Inner x-terms 

LI 
g(U,T) = G1 (u) 

Never 

gl (t) is real. 

GI(U) does not 
depend on t. 

G1 (u) does not 
depend on f.  

WVD only 

G1 (0) = 1 

WVD only* 

a l  (0) = 0 

WVD only* 

Always 

Outer x-terms 

DI kernel. A general  separable  kernel wi th  sufficiently short  G1 (u) and g2(T) can 

therefore a t t enua te  both  kinds of artifacts;  a T F D  with such a kernel is shown in 

Fig. 2.7.1 par t  (1) for a linear FM signal. 

Proper t ies  of separable  kernels and their special cases, such as the B-dis t r ibut ion  
and Modified B-dis t r ibut ion,  are discussed fur ther  and i l lus t ra ted on examples  in 
Article 5.7. Design of RIDs is discussed more general ly in Article 5.2. 
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Tab le  3.3.2: Kernels of selected TFDs in the time-lag, Doppler-lag, and (where possible) Doppler- 
frequency domains. The window w(t) is assumed to be real and even. Its FT and AF are W(f) and 
Aw(u, r), respectively. The prefix "w-" means "windowed". 

Distribution 

Wigner-Ville 

Levin 

Born-Jordan 

Modified B 

w-WVD 

w-Levin 

ZAM 

Rihaczek 

w-Rihaczek 

Page 

Choi-Williams 

Spectrogram 

KERNEL 

c(t,~) 

5(t) 

l [ (~( tq -2)  q- ($(t 2)]  

1 rect t 12arl 2ar 
c o s h -  2~ t 

�9 [-~c~ c~ ~ d~ 

5(tlw(~') 

w(r)2. [(~(tq r)~. -+-(~(t 2)]  

g(..r) 

1 

cos (~-.~-) 

sine (20~VT) 

r2(~) 

~(~) 

~(~) cos (~.~) 

G(u, f) 
.~(:) 

~[~(f+~) +~(f  ~1] 
1 f 12~1 rect 2a~ 

Ir(~+J'~)l ~ 5(f) r~(~) 

W(f )  

~ [w(f +~) + w(f--~)] 

W(T) rect t 2r/a  

~(t ~) 

~(~-)~(t ~) 

~(t I~1) 

~ r ~  e-rr2 at2 / r z  

Irl ~ cosh -=~ t 

~(t  + ~) ~(t  ~) 

a 2vr W(T) 2--- ~ sine a 

e -- j Tr v'r 

w ( T l  e--J ~rvr 

--v2r2/~ 
e 

I~1 ~ I r ( m + ~ ) l  2 
21-2fl F(2~) 

Aw(V,T) 

5(f + ~) 

w ( f  + ~) 

115(f-+-2) + 5 ( f  2)] 7 
+ ju/[27r(fl-u2/4)] 

V'-~e_,~2 ,,12 /v 2 I~1 

w ( f  + ~) w ( f  ~) 

3.4 Summary, Discussion and Conclusions 
This chapter ends the tutorial introduction to TFSAP constituted by Par t  I of this 
book. In essence, the main message and findings of this chapter are as follows. 
For a monocomponent linear FM signal, the WVD is optimal for energy concentra- 
tion about the IF and for unbiased estimation of the IF. If a signal has nonlinear 
frequency modulation and/or  multiple components, the WVD suffers from inner ar- 
tifacts and/or  outer artifacts (cross-terms), respectively; in either case, some form 
of reduced interference quadratic TFD (RID) is to be preferred over the WVD. The 
design of RIDs is best undertaken by designing the desired kernel filter in the am- 
biguity domain, and using Fourier transforms to see the effects in the time-lag and 
time-frequency domains. To be a useful tool for practical applications, quadratic 
TFDs are expected to be real, to satisfy the global and local energy requirements, 
and to resolve signal components while reflecting the components' IF laws through 
the peaks of their dominant ridges in the (t, f )  plane. Several RIDs were designed 
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Tab le  3.3.3: Properties of the TFDs whose kernels are listed in Table 3.3.2. The window w(t) is 
assumed to be real and even. An exclamation (!) means that the property is always satisfied, while an 
asterisk (*) means that the property is satisfied subject to normalization of the window (for TM) or the 
value of the parameter (for TS and FS). Comments on the kernel type are in parentheses (thus). 

Distribution 

Wigner-Ville 

Levin (product kernel) 

Born-Jordan (product kernel) 

Modified B (LI kernel) 

w-WVD (DI kernel) 

w-Levin 

ZAM 

Rihaczek (product kernel) 

w-Rihaczek 

Page 

Choi-Williams (product kernel) 

B (separable kernel) 

Spectrogram 

PROPERTY 

RE T M  FM IF TD TS FS 

! I I I 1 I ! 
. . . . . . .  

I I 1 I I I I 
. . . . . .  

I I I I I * * 
�9 . . 

1 I I I 

I * 1 I 

I * I 1 

�9 

I l I I 

* 1 

I I I 1 l 

1 I I l I 

using simple separable kernels, demonstrating the procedure to construct quadratic 
TFDs that meet the above requirements. Special-purpose quadratic TFDs can be 
easily designed to meet the specifications of particular applications (as we shall see 
in several articles in the following chapters). In general, however, the WVD and 
various RIDs are the most useful TFDs; the spectrogram, which has been widely 
used, is at best subsumed by quadratic RIDs (of which it is a special case), and at 
worst made obsolete by them. 

The remaining four Parts of the book elaborate on these issues, discuss advanced 
design methods for TFDs, and present a wide selection of methodologies, algorithms, 
and applications that demonstrate how to use time-frequency methods in practice. 
In particular, questions and issues such as how to select a TFD for a particular ap- 
plication, how to implement it and how best to apply it are covered. These chapters 
constituting the remaining four Parts include a number of Articles which tend to 
cover more advanced and detailed material, complementing and supplementing the 
tutorial introduction of Chapter 1. 

Part II of the book gives more details on some fundamental topics of TFSAP 
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such as TED design and signal analysis in the (t, f )  plane. It includes two chapters 
(4 and 5). Chapter 4 presents some advanced concepts for TF signal analysis, TF 
signal processing and TF system analysis. Chapter 5 presents a number of methods 
for designing WEDs, including a treatment of the ambiguity function. 

Part III of the book describes specialized techniques used in implementation, 
measurement and enhancement of WEDs. It includes three chapters (6, 7 and 8). 
Chapter 6 deals with the implementation and realization of WEDs; in particular, the 
formulation of discrete-time quadratic TFDs is presented and computation issues are 
described. Chapter 7 presents quality measures for TFDs and methods for perfor- 
mance enhancement. Chapter 8 describes methods and algorithms for multi-sensor 
and time-space processing used in applications such as sonar and telecommunica- 
tions. 

Part  IV presents the key statistical techniques for TFSAP of random signals. It 
includes four chapters (9 to 12). Chapter 9 presents time-frequency methods for ran- 
dom processes and noise analysis; Chapter 10 describes methods for instantaneous 
frequency estimation; Chapter 11 deals with the field of time-frequency synthesis 
and filtering, including time-varying filter design; and Chapter 12 presents time- 
frequency methods for signal detection, classification and estimation. 

Part  V describes a representative selection of TFSAP applications encompass- 
ing a wide range of fields and industries. It includes three chapters (13 to 15). 
Chapter 13 presents time-frequency applications in telecommunications; Chapter 14 
describes time-frequency methods in radar, sonar and acoustics; and chapter 15 de- 
tails a number of time-frequency methods for diagnosis and monitoring used in a 
wide range of diverse applications. 

A detailed description of the contents of each chapter can be found in the table 
of contents of the book and in the introduction to each chapter. For a more detailed 
search of a topic needed, e.g. for the explanation of an advanced concept, the reader 
is referred to the detailed index at the end of the book. 

For various reasons such as space limitations and publication delays, a num- 
ber of recent references could not be included in the relevant chapters. They are 
sufficiently important to be listed here for the sake of completeness. They include 
new theoretical developments on a range of topics discussed elsewhere in this book 
such as WEDs with complex argument [25], rotated (t, f )  kernel filters [26], Gabor 
analysis [27], detection [28], spectrogram segmentation [29], time-frequency plane 
decomposition in atoms [30], the issue of positivity [31, 32], IF estimation [33, 34], 
feature extraction [35], an illustration of the concept of BT product [36], polyspec- 
tra [37] and Volterra series [38]. 

References 
[1] T. A. C. M. Claasen and W. F. G. Mecklenbr~iuker, "The Wigner DistributionDA 
tool for time-frequency signal analysis; Part 1: Continuous-time signals," Philips J. of 
Research, vol. 35, no. 3, pp. 217-250, 1980. 

[2] N. G. de Bruijn, "A theory of generalized functions, with applications to Wigner distri- 



Summary, Discussion and Conclusions 79 

bution and Weyl correspondence," Nieuw Archief voor Wiskunde (3), vol. 21, pp. 205-280, 
1973. 

[3] B. Bouachache, "Representation temps-frequence," Tech. Rep. 373/78, Soc. Nat. ELF- 
Aquitaine, Pau, France, 1978. 56 pp. 

[4] B. Ristic, Some aspects of signal dependent and higher-order time-frequency and time- 
scale analysis of non-stationary signals. PhD thesis, Signal Processing Research Centre, 
Queensland University of Technology, Brisbane, Australia, 1995. 

[5] B. Barkat and B. Boashash, "Higher order PWVD and Legendre based time-frequency 
distribution," in Proc. Sixth IEEE Internat. Workshop on Intelligent Signal Processing 
and Communication Systems (ISPACS'98), vol. 2, pp. 532-536, Melbourne, Australia, 
5-6 November 1998. 

[6] B. V. K. Vijaya Kumar and C. W. Carroll, "Performance of Wigner distribution func- 
tion based detection methods," Optical Engineering, vol. 23, pp. 732-737, November- 
December 1984. 

[7] H. H. Szu, "Two-dimensional optical processing of one-dimensional acoustic data," 
Optical Engineering, vol. 21, pp. 804-813, September-October 1982. 

[8] P. J. Boles and B. Boashash, "Application of the cross-Wigner-Ville distribution to 
seismic data processing," in Time-Frequency Signal Analysis: Methods and Applications 
(B. Boashash, ed.), ch. 20, pp. 445-466, Melbourne/N.Y.: Longman-Cheshire/Wiley, 
1992. 

[9] D. L. Jones and T. W. Parks, "A high-resolution data-adaptive time-frequency repre- 
sentation," IEEE Trans. Acoustics, Speech, ~ Signal Processing, vol. 38, pp. 2127-2135, 
December 1990. 

[10] L. Cohen, "Generalized phase-space distribution functions," J. of Mathematical 
Physics, vol. 7, pp. 781-786, May 1966. 

[11] B. Boashash, "Time-frequency signal analysis," in Advances in Spectrum Analysis 
and Array Processing (S. Haykin, ed.), vol. 1, ch. 9, pp. 418-517, Englewood Cliffs, NJ: 
Prentice-Hall, 1991. 

[12] S. M. Sussman, "Least-squares synthesis of radar ambiguity functions," IRE Trans. 
Information Theory, vol. 8, pp. 246-254, April 1962. 

[13] G. F. Boudreaux-Bartels, Time-frequency signal processing algorithms: Analysis and 
synthesis using Wigner distribution. PhD thesis, Rice University, 1983. 

[14] P. Flandrin, "Some features of time-frequency representations of multicomponent 
signals," in Proc. IEEE Internat. Conf. on Acoustics, Speech and Signal Processing 
(ICASSP'84), vol. 3, pp. 41B.4.1-41B.4.4, San Diego, 19-21 March 1984. 

[15] L. Cohen, "Introduction: A primer on time-frequency analysis," in Time-Frequency 
Signal Analysis: Methods and Applications (B. Boashash, ed.), ch. 1, pp. 3-42, Mel- 
bourne/N.Y.: Longman-Cheshire/Wiley, 1992. 

[16] J. Jeong and W. J. Williams, "Kernel design for reduced interference distributions," 
IEEE Trans. Signal Processing, vol. 40, pp. 402-412, February 1992. 

[17] B. Boashash, "Wigner analysis of time-varying signals--Its application in seismic 
prospecting," in Proc. European Signal Processing Conf. (EUSIPCO-83), pp. 703-706, 
Niirnberg, September 1983. 



80 Chapter 3: Theory of Quadratic TFDs 

[18] B. Boashash and B. Escudie, "Wigner-Ville analysis of asymptotic signals and appli- 
cations," Signal Processing, vol. 8, pp. 315-327, June 1985. 

[19] B. Bouachache, Representation temps-frequence. Thesis for diplome de docteur inge- 
nieur, Institut National Polytechnique de Grenoble, France, May 1982. 164 pp. In French. 

[20] B. Boashash, L. B. White, and J. Imberger, "Wigner-Ville analysis of non-stationary 
random signals (with application to turbulent microstructure signals)," in Proc. IEEE 
Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP'86), vol. 4, pp. 2323- 
2326, Tokyo, 7-11 April 1986. 

[21] E. F. Velez and H. Garudadri, "Speech analysis based on smoothed Wigner-Ville dis- 
tribution," in Time-Frequency Signal Analysis: Methods and Applications (B. Boashash, 
ed.), ch. 15, pp. 351-374, Melbourne/N.Y.: Longman-Cheshire/Wiley, 1992. 

[22] W. J. Williams and J. Jeong, "Reduced interference time-frequency distributions," in 
Time-Frequency Signal Analysis: Methods and Applications (B. Boashash, ed.), ch. 3, 
pp. 74-97, Melbourne/N.Y.: Longman-Cheshire/Wiley, 1992. 

[23] L. Cohen, "Time-frequency distributionsmA review," Proc. IEEE, vol. 77, pp. 941- 
981, July 1989. Invited paper. 

[24] Y. Zhao, L. E. Atlas, and R. J. Marks II, "The use of cone-shaped kernels for gener- 
alized time-frequency representations of non-stationary signals," IEEE Trans. Acoustics, 
Speech, ~ Signal Processing, vol. 38, pp. 1084-1091, July 1990. 

[25] L. StankoviS, "Time-frequency distributions with complex argument," IEEE Trans. 
Signal Processing, vol. 50, pp. 475-486, March 2002. 

[26] M. J. Bastiaans, T. Alieva, and L. Stankovi5, "On rotated time-frequency kernels," 
IEEE Signal Processing Letters, vol. 9, pp. 378-381, November 2002. 

[27] H. G. Feichtinger and T. Strohmer, Advances in Gabor Analysis. Birkhafiser, 2002. 

[28] C. Richard, "Time-frequency-based detection using discrete-time discrete-frequency 
Wigner distributions," IEEE Trans. Signal Processing, vol. 50, pp. 2170-2176, September 
2002. 

[29] C. Hory, N. Martin, and A. Chehikian, "Spectrogram segmentation by means of sta- 
tistical features for non-stationary signal interpretation," IEEE Trans. Signal Processing, 
vol. 50, pp. 2915-2925, December 2002. 

[30] R. Adelino and F. da Silva, "Atomic decomposition with evolutionary pursuit," Digital 
Signal Processing: A Review Journal, vol. 13, pp. 317-337, April 2003. 

[31] M. Davy and A. Doucet, "Copulas: A new insight into positive time-frequency distri- 
butions," IEEE Signal Processing Letters, vol. 10, pp. 215-218, July 2003. 

[32] L. Knockaert, "A class of positive isentropic time-frequency distributions," IEEE Sig- 
hal Processing Letters, vol. 9, pp. 22-25, January 2002. 

[33] L. Angrisani and M. D'Arco, "A measurement method based on a modified version of 
the chirplet transform for instantaneous frequency estimation," IEEE Trans. Instrumen- 
tation ~ Measurement, vol. 51, pp. 704-711, August 2002. 

[34] A. Papandreou-Suppappola and S. B. Suppappola, "Analysis and classification of 
time-varying signals with multiple time-frequency structures," IEEE Signal Processing 
Letters, vol. 9, pp. 92-95, March 2002. 



Summary, Discussion and Conclusions 81 

[35] E. Grall-Maes and P. Beauseroy, "Mutual information-based feature extraction on the 
time-frequency plane," IEEE Trans. Signal Processing, vol. 50, pp. 779-790, April 2002. 

[36] N. Stevenson, E. Palmer, J. Smeathers, and B. Boashash, "The BT product as a signal 
dependent sample size estimate in hypothesis testing: An application to linear/nonlinear 
discrimination in bandwidth limited systems," in Proc. Seventh Internat. Syrup. on Signal 
Processing and its Applications (ISSPA '03), pp. 551-554, Paris, 1-4 July 2003. 

[37] A. Hanssen and L. L. Scharf, "A theory of polyspectra for nonstationary stochastic 
processes," IEEE Trans. Signal Processing, vol. 51, pp. 1243-1252, May 2003. 

[38] N. Sang-Won and E. J. Powers, "Volterra series representation of time-frequency dis- 
tributions," IEEE Trans. Signal Processing, vol. 51, pp. 1532-1537, July 2003. 



This Page Intentionally Left Blank



P a r t  II  

Fundamenta l  Principles of 
TFSAP 



This Page Intentionally Left Blank



Chapter 4 

Time-Frequency 
Analysis 

Signal and System 

This chapter extends the material described in Chapter 1. It presents advanced 
key principles underlying and justifying the use of time-frequency methods in signal 
and system analysis problems and applications. The topic is covered in nine focused 
articles with appropriate internal cross-referencing to this and other chapters. The 
issues and techniques described in this chapter were selected to provide different 
facets and perspectives to allow for a deeper insight into the foundations of the 
field. 

The chapter begins with an alternative presentation of the concepts of analytic 
signal and IF with emphasis on the physical constraints leading to the mathematical 
model that is used to define the analytic signal (Article 4.1). Then, the key issue 
of cross-terms generation is described in detail for a better understanding of their 
localization in the time-frequency domain for a given signal. The quadratic super- 
position principle is used to explain the mechanism generating the cross-terms and 
the subsequent trade-off between cross-term reduction and increased localization 
(4.2). This is followed by an examination of the covariance property of TFDs for 
important signal transformations like (t, f)  shifts or scaling, an important character- 
istic for signal processing applications (4.3). Another key aspect of time-frequency 
methods is that the (t, f)  uncertainty relations determine the issue of lower bounds 
in achievable (t, f)  resolution (4.4). Using methods such as coordinate change meth- 
ods, we can also define joint distributions of other variables than t and f that may 
be better suited for specific applications (4.5). Having calculated and plotted the 
time-frequency representation of a given signal, we wish to make precise measure- 
ments and estimate signal parameters directly from the (t, f)  plane. Formulations of 
measures such as spread measures are provided (4.6). Time-frequency methods can 
also be used to describe linear time-varying input-output relationships (4.7). The 
relationships between time-frequency methods such as the WVD and the fractional 
FT is described using the Radon-Wigner transform (4.8). Finally, a decomposition 
of the WVD via the Gabor expansions is able to link the spectrogram and the WVD 
(4.9). 
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4.1 ANALYTIC SIGNAL & INSTANTANEOUS FREQUENCY ~ 

4.1.1 The Problem 
Instantaneous frequency (IF) is the basic concept used in numerous everyday sys- 
tems like frequency modulation transmitters or receivers. However, even if this 
concept is easy to introduce intuitively [see Article 1.3], its rigorous mathematical 
definition leads to numerous difficulties. 

In order to understand this point let us start from the very beginning. A purely 
monochromatic signal x(t) = a cos(wt + r  has an amplitude a, an angular frequency 
w and an initial phase r Its instantaneous phase r is wt + r which is a linear 
function of time, and the frequency is the derivative of the phase. It is obvious that  
such a signal cannot transmit information, and for this purpose some modulation 
procedure is required. By multiplying the carrier monofrequency signal cos(wt) 
by the positive function re(t) we obtain the signal re(t)cos(wt), and it is quite 
natural to admit that its instantaneous amplitude is re(t). Similarly, considering 
the signal a cos[r it is natural to say that  its instantaneous amplitude is a and 
its instantaneous phase is r Its IF is obtained by differentiation of r 

Even if the previous intuitive definitions appear quite natural and are widely 
used in practical applications dealing with signal modulation, we immediately note 
that  they cannot be satisfactory. Indeed starting from a given signal x(t) it is 
possible to introduce an infinite number of pairs [a(t), r such that  

x(t) = a(t) cos[r . (4.1.1) 

This leads to the conclusion that  the definitions given previously, even though they 
are widely used, are not coherent and must be reformulated. Indeed starting from a 
pair of functions [a(t), r one can introduce by (4.1.1) a well-defined signal x(t). 
But we also have to solve the inverse problem, i.e. to obtain a well-defined pair 
from the real signal x(t), and this cannot be done without additional conditions. 

There are numerous ways to realize this task. However for various reasons that  
cannot be discussed here, the most classical procedure makes use of the analytic 
signal (AS), which introduces the concept of canonical pair. The purpose of this ar- 
ticle is to clearly introduce these concepts and to explore some of their consequences 
concerning the definitions and properties of IF presented in Article 1.3. 

4.1.2 Analytic Signal and Canonical Pair 
4.1.2.1 Mathematical Definitions 
As said before, the problem is to realize a one-to-one correspondence between a real 
signal x(t) and its canonical pair. This pair defines the instantaneous amplitude 
and phase of the signal and differentiating with respect to the time of the phase 

~ B e r n a r d  Picinbono,  Laboratoire des Signaux et Systbmes, Sup@lec, Plateau de 
Moulon, 91190 Gif-sur-Yvette, France (bernard.picinbono@lss.supelec.fr). Reviewers: M. Benidir 
and P. Flandrin. 
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yields the IF. The principle of the method is to realize a one-to-one correspondence 
between x(t) and a complex signal z(t), and to deduce the pair of functions as being 
the modulus and the argument of z(t). The procedure makes use of the analytic 
signal (AS) defined as follows. 

Let X (f)  be the Fourier transform (FT) of the signal x(t). As x(t) is real, X( f )  
satisfies the Hermitian symmetry X( f )  = X * ( - f )  which means that  the negative 
frequencies in the spectrum do not get new information with respect to the positive 
frequencies. This is the basis of the definition of the AS which is deduced from x(t) 
by suppression of these negative frequencies. 

More precisely, let Z(f)  be the function defined by 

Z(f)  = 2u(f)X(f) ,  (4.1.2) 

where u(.) is the unit-step signal. The AS z(t) of x(t) is defined as being the IFT 
of Z(f).  Conversely we have x(t) = (1/2)[z(t)+ z*(t)]. Indeed the FT  of z*(t) is 
Z*( - I )  and using (4.1.2) and the Hermitian symmetry of X(I )  yields that  the FT  
of (1/2)[z(t)+ z*(t)] is Z( f ) [u ( f )+  u ( - f ) ]  = X(I) .  This shows the one-to-one 
correspondence between any real signal x(t) and its AS z(t). 

Another way to introduce the AS is to make use of the Hilbert Transform (HT). 
To any real signal it is possible to associate its HT y(t) = H[x(t)] defined as being 
the IFT of Y(f )  = - j Sg ( f  )X (f ), where Sg(.) means the sign function. It is clear 
that  y(t) is also real and furthermore it results from (4.1.2) that  z(t) = x(t)+ jy(t), 
which means that  the HT y(t) of x(t) is the imaginary part  of its AS. 

It is worth pointing out that  z(t) and y(t) are deduced from x(t) by linear filters 
with frequency responses 2u(f)  and - j S g ( f ) ,  respectively. 

As z(t) cannot be a real function because its Fourier transform Z(f)  is zero for 
f < 0, it can be written as 

z(t) = a(t) exp[jr  , 

where the phase r is defined modulo 2~ and a(t) is non-negative. As a conclusion, 
using the AS makes it possible to associate with any real signal a unique pair 
[a(t), r called in what follows its canonical pair [1]. 

It results from the definition that  any complex signal the F T  of which is zero 
for negative frequencies is an AS, and more precisely the AS of its real part. The 
class of AS is therefore defined by this property of the FT. A direct consequence of 
this definition is that  the sum and the product of two ASs is still an AS. This is 
evident for the sum because FT  is a linear operation. This comes from an obvious 
calculation of convolution for the product. 

There is a long literature on the AS starting from the original papers [2,3]. There 
are some questions concerning the physical meaning of the AS, and some of them 
are mentioned and discussed in the review paper [4]. Furthermore it is shown in [5] 
that,  starting from some a priori physical assumptions, the only possible definition 
of the instantaneous amplitude and phase is the one given just above. However it 
is worth pointing out that  other physical conditions lead to other definitions that  



88 Chapter 4: Time-Frequency Signal and System Analysis 

are not discussed below [6]. Nevertheless the use of the AS introduces the only 
definition allowing easy calculations and interpretations. 

Once the definition is given, the question which immediately follows is to char- 
acterize a canonical pair. Indeed, there is no reason for a given pair [a(t), r to 
be canonical, and therefore amplitude and phase of signals cannot be arbitrary. 

4.1.2.2 Characterization of a Canonical Pair 

It results from our definitions that a pair of real functions [a(t), r is canonical if 
and only if the complex function z(t) defined by (4.1.3) is an AS which means that  
its FT Z(f)  is zero for negative frequencies. This is apparently a weak condition, but 
this intuition is wrong. On the contrary, the complex functions having this property 
are rather specific on a mathematical point of view, and the physical consequences 
of these properties will be analyzed in what follows. 

As the characterization of an AS is deduced from spectral conditions (zero FT 
for negative frequencies) it is tempting to translate the same idea for a(t) and r 
This can only be partially realized. 

However, as the most general cases for applications of amplitude and frequency 
modulation concern narrow-band signals, it is appropriate to separate the contri- 
bution of the carrier frequency and to use, instead of (4.1.1), a signal in the form 

x(t) = a(t)cos[w0t + r , (4.1.4) 

In this case the complex signal w(t) = a(t)exp[jr is called the complex envelope 
of x(t). Therefore the question is to know under which conditions on [a(t), r it 
is possible to ensure that w(t)exp(jwot) is an AS. 

There is an elementary answer [7] introducing the concept of asymptotic AS 
discussed below. The idea is that any physical signal w(t) is approximately band- 
limited. So, as multiplication by exp(jw0t) introduces a translation of the spectrum 
towards the high frequencies, the FT of w(t) exp(jwot) becomes approximately zero 
for negative frequencies when coo increases. This means that  any signal in this form 
becomes approximately an AS for a sufficiently high value of the carrier frequency. 

This reasoning based on spectral considerations is not without interest, but 
requires a more detailed mathematical analysis. For this purpose let us first consider 
the case of amplitude modulation. The corresponding pair is [a(t), wot +r It is easy 
to verify that  this pair of functions is canonical if and only if a(t) is a positive band- 
limited signal, which means that  its FT A(f) is zero for If[ > B, where B = co0/2rr. 
This is a very simple spectral characterization of a canonical pair and this shows 
that  for amplitude modulation the general reasoning presented just before can be 
rigorously applied. 

It is therefore tempting to try to use spectral methods for the characterization 
of more general pairs of functions [a(t), r Unfortunately this is more difficult. 

Saying that  a(t)exp[jr is an AS is equivalent to saying that  the Hilbert 
transform of a(t) cos[r is equal to a(t)sin[r It is therefore appropriate to use 
the so-called Bedrosian theorem [8] dealing with the Hilbert transform of a product 
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of two real functions Xl( t )  and x2(t). A very simple derivation of this theorem and 
some extensions can be found in [9]. The main result is as follows: let X1 (f) and 
X2(f)  be the FTs of xl (t) and x2(t) respectively. If x l ( t )  and x2(t) are low and 
high frequency (B) signals respectively, or if X1 (f) = 0 for f > B and X2(f)  = 0 
for f < B, then 

H[xl  (t)x2(t)] = xl  (t)H[x2(t)] . (4.1.5) 

A direct application of this result is that  if a(t) is a low-frequency signal (B) 
and cos[r a high-frequency signal (B), or if their spectra do not overlap, then 

H{a( t )  cos[r = a(t)H{cos[r . (4.1.6) 

However this does not at all imply that  

H{cos[r = sin[r (4.1.7) 

as frequently admitted. In fact this equation would imply that  z(t)  = exp[jr 
is an AS or that the pair [1, r is canonical. We shall see that  this requires very 
specific properties of the structure of the phase r which cannot be characterized 
by spectral considerations only, as for amplitude modulation. 

It results from this discussion that amplitude modulation can easily be treated by 
spectral considerations, but that  this is no longer the case for frequency modulation. 
As this article is mainly devoted to IF, we shall consider signals with constant 
amplitude, or phase signals more in detail. 

4.1.3 Phase Signals, Regular Case 
4.1.3.1 General Structure 
Phase signals (PSs) are the basic elements of phase or frequency modulation and 
this shows their importance. They are real signals with constant instantaneous 
amplitude. They are characterized by a canonical pair [1, r or by a unique 
function r such that  exp[jr is an AS. This means that  (4.1.7) is satisfied. 
For such signals all the information is contained in the instantaneous phase (or 
frequency). 

The condition that exp[jr is an AS requires very specific properties on the 
phase r These properties have been analyzed in the framework of the study of 
analytic functions and for example in Chapter 17 of [10]. 

The most general structure of the AS of a regular phase signal is 

z(t)  = b( t )exp[ j (wot  + 0)], (4.1.8) 

where 0 is arbitrary, w0 is non-negative and b(t) is a Blaschke function defined by 

N 

b(t)- l i  t -  t . , zk E P + ,  (4.1.9) 
k=l - -  z k  
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P+ being the half-plane of the complex plane defined by Im(z) > 0. The quanti ty 
w0 is the carrier angular frequency and can be equal to zero. The expression regular 
(or nonsingular) especially means that  the number N of factors in  the product 
is finite. The interpretation of (4.1.9) is very simple. In order to b e  an AS the 
function b(t) for complex values of t must have all its poles in the lower half-plane 
Im(z) < 0 because, as seen below, this ensures that  its FT  is zero for negative 
frequencies. In order to have a modulus equal to one each pole must be associated 
with a corresponding zero symmetric to this pole with respect to the real axis. This 
procedure is well known in filter theory: stable phase filters have the same number 
of poles and zeros and these zeros are symmetric of the poles with respect to the 
imaginary axis. The stability and causality conditions imply that  all t h e  poles are 
in the left half-plane of the complex plane. 

It is obvious that  Ib(t)l = 1, which implies that  Iz(t)l = 1. Let us now explain 
why z(t) is an AS. For this we must analyze the structure of the FT  B( f )  of b(t). 
As N is finite, b(t) is a rational function in t. If all the zk's are distinct we can write 

N 

E Ck (4.1.10) b(t) = I + t * ' 
k = l  -- zk  

where ck = limt--.z~ ( t -  z~)b(t). As a consequence we have 

N 

B( f )  = 6(f) + E Ck(f) , (4.1.11) 
k = l  

where Ck(f) is the FT  of c k ( t -  z~) -1. Because of the localization of z~ in the 
complex plane, we deduce that  Ck(f) = 0 for f < 0, which implies that  B( f )  - 0 
for f < 0, and ensures that  b(t) is an AS. Finally, as w0 > 0, z(t) also is an AS. 
The reasoning can be extended without difficulty when some poles Zk are no longer 
distinct. 

Of course the phase of b(t) is 

Cb(t) = Arg[b(t)], mod(21r), (4.1.12) 
and, as a result, we can say that  any phase signal can be written as (4.1.1) where 
a ( t ) -  1 and r must have the form 

r - 0 + wot + Cb(t), mod(27r). (4.1.13) 
In practice the continuity of the phase leads to suppressing the term mod(2~) and 
this convention is adopted in all that  follows. 

This most general phase is defined by N complex parameters zk and 2 real 
parameters w0 and 0. Furthermore it is obvious that  the phase Cb(t) is the sum of 
the N phases of the factors appearing in the product (4.1.9). Let Ck(t) be the phase 
of ( t -  Zk) ( t -  Z;) -1. This gives 

N 

r - 0 + wot + ~ r (4.1.14) 
k--1 
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By introducing the real and imaginary parts of Zk, or Zk = ak + jbk, one obtains 

bk 
Ck(t) = 2 a r c t a n ~  --7r/2 < Ck(t) < I r /2 .  (4.1.15) 

a k - - t  ' -- -- 

In conclusion the signal cos[r is regularly phase modulated only if its phase 
takes the form (4.1.13), and, as this is generally not the case, its amplitude is not 
constant. 

4.1.3.2 Properties of Regular Phase Signals 
PSs have numerous specific properties analyzed in [1]. We shall only outline the 
most significant. The first point to note is that  PSs do not have a finite energy and, 
as a consequence, the calculation of their FT  requires some care, often due to the 
presence of Dirac distributions characterizing spectral lines. 

In reality (4.1.8) and (4.1.11) show that  the AS of a PS has only one spectral 
line located at the carrier frequency f0 = wo/2~r and its FT  is zero for frequencies 
smaller than f0. As a consequence PSs are high frequency (f0) signals. Furthermore 
the functions Ck( f )  appearing in (4.1.11) that  are zero for negative frequencies, are 
also bounded and cannot be equal to zero for positive frequencies. This means that  
a PS cannot be a low-frequency signal except when it is monochromatic. 

It is now interesting to study the structure of the IF of a PS. It is obtained 
by differentiating the instantaneous phase. The most general form of this phase is 
given by (4.1.14) and (4.1.15), and differentiating this equation yields the angular 
IF 

= + = + 2 

N 

bk (4.1.16) 
E b 2 + ( a k _ t )  2 " 
k = l  

As the coefficients bk are positive, because of the localization of the zeros Zk, we 
deduce that  the IF w(t) is always greater than w0. This is another illustration of 
the fact that  the FT  of x(t) is zero for f < f0 and this also shows that  the IF w(t) 
belongs to the frequency domain of this FT. 

It is worth pointing out that  the information carried by the IF of a phase signal 
is entirely in the term win(t) where the index m means the modulation term. We 
note that  this function tends to zero when Itl --~ c~. This means that  win(t) cannot 
be a periodic function, and this is related to the fact that  a regular phase signal 
cannot have spectral lines, except those coming from the carrier frequency f0. 

Furthermore we note that  win(t) is a rational function in t. The polynomials 
appearing in the numerator and the denominator have the degrees 2 N -  2 and 2N, 
respectively. As N is arbitrary, we deduce that  by using the 2N parameters ak 
and bk it is possible to approximate a large class of functions. The most limiting 
constraint on these functions comes from the necessary behavior for Itl --, c~. In 
fact win(t) decreases at infinity in It1-2, which is a strong restriction on the IF. 
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4.1.4 Singular and Asymptotic Phase Signals 
4.1.4.1 Infinite Products 
The simplest example of a Blaschke function with an infinite value of N is when 
the poles of (4.1.9) are Zk = kT  + jb, with T = 27r/w and b = (1/w)ln(1/a)  with 
0 < a < 1. In this case it can be shown that 

+oo _ _ ejWZ 

b ( z ) -  1-I Z - - Z k _  a (4.1.17) 
z * 1 - aeJ ~z " 

k = - o o  - -  z k  

This means that  the function 

a -- e j w t  

- (4.1.18) b(t) 1 - aeJ~t 

is the AS of a phase signal. This can immediately be verified because Iz(t)l - 1 
and the FT is zero for negative frequencies. In order to verify this point it suffices 
to note that  b(t) is periodic, and by using the geometric series one sees that  the 
Fourier coefficients Fn are zero for n < 0 and furthermore we have F0 - a and 
Fn = - ( 1  - a2)a n-1. 

The corresponding IF is 

l - -  a 2 

w ( t )  = wo -Jr- w 1 - 2a c o s ( w t )  -F a 2 " (4 .1 .19 )  

Note the analogy with (4.1.16). Most of the properties of PSs indicated previously 
are verified, except those using the point that N is finite. In this singular case phase 
signals contain only spectral lines, but their number is infinite. There are various 
examples of phase signals that can be generated from (4.1.18) by products of AS of 
various phase signals of the previous form. 

4.1.4.2 Poles on the Real Axis 
By using arguments that cannot be presented here (see theorem (17-15)in [10]) one 
can show that the function z(t) - e x p ( - j / t )  is an AS. This means that  the signal 
x(t)  - cos(1/at),  a > 0, is a PS and its Hilbert transform is - s i n ( 1 / a t ) .  These 
signals are called hyperbolic phase chirps and have a strongly oscillatory behavior 
in the neighborhood of the origin of time. It is interesting to note that  the explicit 
expression of its FT can be obtained. 

4.1.4.3 Asymptotic Phase Signals 
We have seen that if w(t) is band-limited, the signal w(t )exp( jwot )  becomes an AS 
for w0 sufficiently high. This situation can appear for completely different reasons 
an we shall discuss the particular example of the so-called parabolic phase chirp. 
Let us therefore consider the signal x(t) - cos[w0t + a2t2]. It is not a PS, because 
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its phase does not have the s tructure analyzed above. This means tha t  its AS 
is not v(t) = exp[w0t + a2t2]. Indeed this function is not an AS because its F T  is 
V ( f )  = k e x p [ - j b ( f - f o ) 2 ] ,  which is not zero for negative frequencies. Fur thermore 
it does not decrease for large values of Ill. As this decreasing behavior is the 
argument  indicated in [7] and mentioned above to say tha t  w(t)exp(jo:0t) can be 
an AS for •0 ~ ~ ,  this argument  cannot be used here. However the character 
of asymptot ic  AS is nevertheless true, but for completely different reasons. The 
FT  V ( f )  satisfies IV(f)l  2 = Ikl 2, but makes very rapid oscillations for negative 
frequencies and large values of f0, in such a way tha t  even if it is never vanishing, 
its mean value in any frequency interval is approximately zero. In other words v(t) 
can never be considered as an AS, as defined previously, but in any integration in 
the frequency domain it has the same properties as an AS. This reasoning can be 
extended to other cases that  cannot be presented here. 

4.1.5 Summary and Conclusions 
The analytic signal is the most convenient theoretical means to introduce the con- 
cept of instantaneous frequency of signals. However its mathemat ica l  s t ructure 
introduces some constraints,  especially for phase signals used in frequency modula- 
tion. Most of these constraints are presented and discussed. 
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4.2 CROSS-TERMS & LOCALIZATION IN Q U A D R A T I C  
T I M E - F R E Q U E N C Y  D I S T R I B U T I O N S  0 

4.2.1 Identifying Cross-Terms 
4.2.1.1 Cross-Terms in Spectrum Analysis 
Let x(t) and y(t) be any two signals, and a and b any two complex numbers. If 
X ( f )  := .~t-~/{x(t)} stands for the Fourier transform of x( t ) - -wi th  a similar nota- 
tion for y( t ) - - ,  we then have 

IJzt~s{ax(t) + by(t)}l 2 -laE21x(f)a 2 + Ibl2JY(f)l 2 + 2Re{ab*X( f )Y*( f ) } .  (4.2.1) 

This means that  the spectrum energy density of the sum of two signals doesn't re- 
duce to the sum of the individual densities (unless the signals are spectrally disjoint), 
but satisfies a quadratic superposition principle involving a third term, referred to 
as a cross-term. While this situation is, mathematically speaking, a necessary by- 
product of the quadratic nature of the transformation and of the elementary identity 
(a + b) 2 = a 2 + b 2 + 2ab, it also corresponds to a physical reality in terms of inter- 
fering waves. This can be illustrated by the simple example where a delayed replica 
is superimposed to a given waveform. Assuming the model y(t) = x ( t -  7"), with 
a = b = 1, we get: 

I~t- . f{x(t)  + x(t - T)}I 2 -- 4 (COS ~Tf) 2 IX(f)l 2, (4.2.2) 

and the existence of a cross-term is instrumental in the creation, in the composite 
spectrum, of "fringes" whose periodicity in f is controlled by the delay T: it is in 
fact the basis of interferometry. 

4.2.1.2 Cross-Terms, from Spectrograms to the Wigner-Ville Distribution 
Switching to time-frequency distributions, similar considerations apply naturally to 
spectrograms defined by Sx (t, f )  "-  IFx (t, f)12, with 

F~(t, f )  : :  9~_~y{x(s) h*(s - t)}, (4.2.3) 

where h(t) is a short-time analysis window. We get in this case 

Sax+by(t, f )  -- lal2Sx(t, f )  + Ibl2Sy(t, f )  + 2Re{ab*Fx(t, f )F~(t ,  f)},  (4.2.4) 

and cross-terms show up as long as the (essential) time-frequency supports of the 
short-time Fourier transforms Fx(t, f )  and Fy(t, f )  overlap (see Figure 4.2.1). A 
similar situation is observed with the scalograms (i.e. the squared modulus of the 
wavelet transform). 

~ Patrick Flandrin, Laboratoire de Physique (UMR 5672 CNRS), Ecole Normale 
Supdrieure de Lyon, 46 all4e d'Italie, 69364 Lyon Cedex 07, France (flandrin@ens-lyon.fr). Re- 
viewers: F. Hlawatsch and W. J. Williams. 
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Fig .  4.2.1:  C r o s s - t e r m s  in t h e  t i m e - f r e q u e n c y  a n a l y s i s  o f  t w o  s h i f t e d  G a u s s i a n  w a v e  
p a c k e t s .  In the spectrogram case (top row), cross-terms are only present when the effective supports 
of the individual contributions overlap, and they fade out when the distance between the components 
increases. In the Wigner-Ville case (bottom row), cross-terms persistently exist as an oscillating con- 
tribution located midway between the two components, with an increasing oscillation rate when the 
inter-components distance increases. (In all diagrams, time is horizontal, frequency is vertical, and 
isocontours of the (positive parts of the) distributions are displayed.) 

As squared linear transforms, spectrograms happen however to be a restricted 
version of quadratic transforms. In fact, they only correspond to a special case of the 
more general Cohen's class, 1 which consists of all quadratic time-frequency energy 
distributions covariant to time and frequency shifts, and whose most prominent 
member is the Wigner-Ville distribution (WVD) [1]: 

Wx(t, f ) :=  ~__.f{x(t + T/2)x*(t -- T/2)}. (4.2.5) 

The WVD itself satisfies a quadratic superposition principle according to which 

Wax+by(t, f)  -- lal2W~(t, f )  + Ibl2Wy(t, f)  + 2Re{ab*Wx,y(t, f)}, (4.2.6) 

with 

Wx,y(t, f ) :=  J:~_~f{x(t + T/2)y*( t -  T/2)}. (4.2.7) 

As compared to spectrograms, the situation is, however, drastically changed in 
the sense that increasing the (time-frequency) distance between the components no 

1That is, the quadratic class; see p. 68n. 
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longer implies a vanishing of the cross-term controlled by (4.2.7). More precisely, if 
we let 

x+(t) := xo(t T At/2)exp{: t : i2~(Af/2) t} ,  (4.2.8) 

we get (see Figure 4.2.1): 

Wx++=_(t,f) = Wxo(t-At/2,  f - A f  /2)+W~o(t+At/2, f + A f  /2)+I(t , f ) ,  (4.2.9) 

with 
I(t, f )  = 2W~ o (t, f )  cos[2~(tAf - f a t ) ] .  (4.2.10) 

This simplified situation exemplifies the general rules which control the inter- 
ference geometry of the WVD [2, 3], whose cross-terms: 

1. are located midway between the interacting components; 

2. oscillate proportionally to the inter-components' time-frequency distance; 

3. have a direction of oscillation orthogonal to the straight line connecting the 
components. 

4.2.2 Reducing Cross-Terms 
In the case of multicomponent signals of the form 

N 

x(t) -- E Xn(t), (4.2.11) 
n = l  

WVD cross-terms are created in between any two components, leading to a com- 
binatorial proliferation that quickly hampers readability. Cross-terms reduction is 
therefore an important issue in many applications. Since cross-terms appear be- 
tween any two contributions, at positive as well as negative frequencies, a first 
recipe is to compute WVDs on analytic signals rather than on real-valued ones. 
The reason is that  the recourse to the analytic signal forces spectrum contributions 
to be zero on the real half-line of negative frequencies, thus suppressing, de facto, 
cross-terms stemming from interactions between negative and positive frequencies. 

4.2.2.1 The Ambiguity Domain Interpretation 
A further way of reducing WVD cross-terms amounts to identifying them as os- 
cillating contributions (as opposed to the smoother variations attached to "signal 
terms"), thus suggesting to make use of a low-pass smoothing. The spectrogram case 
discussed above is in fact a first instance of such a procedure, since it is well-known 
(see, e.g., [1]) that: 

S=(t,f) - Wx(s,~) Wh(s - t , ~ -  f)dsd~, (4.2.12) 
(X3 
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with the low-pass nature of the window h(t) carrying over to its WVD Wh(t, f). 
More generally, replacing in (4.2.12) Wh(t, f) by some (almost) arbitrary function 
v(t, f)  defines Cohen's class [1]: 

px(t,f;?) "- f f ff f) dsd , (4.2.13) 

and offers a versatile framework for achieving cross-terms reduction. 
Among the many possible parameterizations of Cohen's class, one that proves 

most powerful for the considered problem operates in the so-called ambiguity plane, 
obtained by Fourier duality from the time-frequency plane (cf. Section 3.2.1 and 
Article 5.1). Starting from the general form (4.2.13) of Cohen's class with (time- 
frequency) kernel 7(t, f) ,  we obtain by a 2D Fourier transformation that 

px(t, f; 7) = A~(-, T; g) := g(L,, T) Az(L', T), (4.2.14) 

with g(~, T) the 2D inverse Fourier transform of "),(t, f )  and 

Az(y, T) :=  ~t_~_~{x(t + T/2)x*(t- T/2)} (4.2.15) 

the ambiguity function (AF) of x(t): in the ambiguity plane, Cohen's class is nothing 
but a weighted ambiguity function. 

In the case of the two-component signal (4.2.8), we have 

A~+ +x_ (~, T) = 2A~ o (~, T) cos[Tr(~At + TAr)] + J(~, 7), (4.2.16) 

with 
J ( , ,  ~') = Ax o ( ,  + A f, T -  At) + Axo ( " -  A f, T + At). (4.2.17) 

In accordance with the interpretation of the" AF as a time-frequency correlation 
function (cf. Article 5.1), it thus appears that signal terms are mainly concentrated 
in the vicinity of the origin of the ambiguity plane, while cross-terms are (symmet- 
rically) located at a distance from the origin which is equal to the time-frequency 
distance between the interacting components. 

4.2.2.2 Kernel Design for Reduced Interference 

The above AF interpretation [4] offers an alternative distinction between "signal 
terms" and "cross-terms", and is the clue for a possible reduction of the latter: 
according to (4.2.14), it suffices to choose a kernel function g(~, ~-) so as to keep the 
AF as unchanged as possible in the vicinity of the origin, while suppressing as much 
as possible contributions off the origin. In a first approximation, the kernel function 
has therefore to be of low-pass type, thus guaranteeing that it equivalently operates 
a smoothing in the time-frequency plane. In this respect, a versatile solution is 
to make use of a separable kernel function of the form 7(t, f )  = k(t)H(f). The 
associated distribution is referred to as a "smoothed pseudo-WVD" [1], and it allows 
qualitatively for a smooth transition between the WVD (no smoothing, i.e., 7(t, f )  = 
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Fig.  4.2.2: Cross-terms reduction by time-frequency smoothing. Using a smoothed pseudo- 
WVD with a separable kernel allows for a continuous transition between a W V D  (left) and a spectrogram 
(r ight). 

5(t) 5(f)) and spectrograms (lower bounded smoothing, 7( t , f )  = Wh(t, f)) ,  see 
Figure 4.2.2. 

More elaborate approaches have been developed, either by incorporating spe- 
cific constraints to be satisfied by "reduced interference distributions" (see [5] and 
Article 5.2) or by making the kernel signal-dependent (see [6] and Article 5.3), so 
as to reject at best cross-terms contributions located off the origin in the ambiguity 
plane. 

4.2.3 Cross-Terms and Localization 
As presented so far, cross-terms could be thought of as being specific of "multi- 
component" situations. However, the notion of a multicomponent s ignaluas it is 
modeled in (4.2.11)uis somehow artificial, in the sense that any signal can always 
be, at will, split into arbitrary parts. This is especially the case for frequency 
modulated signals that intuition (and physics) would like to identify as monocom- 
ponent, even if any arbitrary chopping is expected to create cross-terms between 
the so-created "components". In such a situation, cross-terms are referred to as 
"inner interference terms", in contrast to "outer interference terms" resulting from 
the interaction between contributions attached to time-frequency domains that are 
essentially disconnected [2,3]. 

4.2.3.1 Localization from Interference 

Iterating ad infinitum the procedure of chopping a signal into more and more ele- 
mentary parts leads to a pointwise application of the WVD cross-term construction 
rules enounced before. In a nutshell, if we admit to describe a chirp signal by 
means of its instantaneous frequency trajectory in the time-frequency plane, inner 
cross-terms are created midway of the chord between any two points located on 
this trajectory, with a possible reduction when applying suitable smoothings (see 
Figure 4.2.3). 

While a more refined description of this mechanism can be obtained on the 
basis of stationary phase arguments, a companion viewpoint is given by Janssen's 
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F i g .  4 .2 .3 :  Inner interference terms in the t ime-frequency analysis  o f  a chirp signal, in 
the WVD case (left), cross-terms appear midway between any two points belonging to the instantaneous 
frequency trajectory (middle). As for the "outer" interference terms of Figure 4.2.2, these "inner" 
interference terms can be reduced by using a smoothed pseudo-WVD (right). 

interference formula: 

W2(t, f )  - W=(t + T/2, f + u/2) W=( t -  T/2, f -- u/2)dT du, (4.2.18) 
OG 

according to which a non-zero value of the WVD at a given time-frequency point 
results from the superposition of all values of the very same distribution that are 
symmetrically located with respect to the considered point. This means that the 
WVD is indeed the result of some "holographic" construction that, in some sense, 
makes impossible a clear-cut distinction between "signal terms" and "cross-terms". 

As a further consequence, localization of the WVD for linear chirps [1] can also 
be viewed as a by-product of interference. The geometric explanation of this well- 
known property is as follows: if a signal is to have a WVD which is perfectly localized 
on a given time-frequency curve of the plane, it is then necessary--by application 
of the interference geometry principle--that all of the mid-points between any two 
points located on the curve belong themselves to the same curve. It follows that 
linear chirps are the only admissible solutions in the WVD case, since straight 
lines are the only curves of the plane that  are the geometric locus of all of their 
mid-points (see Figure 4.2.4). This principle ("a signal term is nothing but the 
emergence of coherent cross-terms") is very general and can be extended to other 
types of quadratic time-frequency distributions (e.g., affine) equipped with suitably 
modified geometries, thus justifying geometrically their localization on nonlinear 
chirps [7]. 

4.2.3.2 The Interference/Localization Trade-Off 
In ordinary Fourier analysis, and therefore in spectrogram analysis, there exists a 
necessary trade-off between the resolution in time and the resolution in frequency. 
In the more general framework of Cohen's class, the situation has to be interpreted 
differently, with a new trade-off between the joint resolution (in both time and fre- 
quency) on the one hand and the level of cross-terms on the other hand. This clearly 
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Fig .  4 .2 .4:  L o c a l i z a t i o n  f r o m  i n t e r f e r e n c e .  The localization property of the WVD on straight 
lines of the time-frequency plane can be seen as resulting from a constructive interference process. 
Cross-terms of the WVD being located midway between any two interacting components (see Fig- 
ure 4.2.1), it is here shown how an increasing number N of aligned wave packets creates an increasing 
number of cross-terms that are aligned too. In the limit where N -~ c~, this leads to a perfect 
localization of the distribution along the line, which is the geometric locus of all of its mid-points. 

appears in the examples of Figures 4.2.2 and 4.2.3, where a fading out of cross-terms 
(be they "inner" or "outer") is achieved only at the expense of spreading out signal 
terms, i.e., a resolution loss. It is worth noting that overcoming such a trade-off is 
possible to some extent, by using reassignment techniques (cf. Article 7.2). 

4.2.4 Summary and Conclusions 
Quadratic time-frequency distributions satisfy a quadratic superposition principle 
which necessarily results in the existence of cross-terms. On the one hand, such 
cross-terms may be considered as troublesome since, in the case of a signal com- 
posed of many (time-frequency disjoint) components, their combinatorial prolifera- 
tion hampers readability; on the other hand, in the case of individual components 
like chirps, the interferential generation of cross-terms may guarantee an improved 
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localization as compared to linear transforms. Understanding the mechanism un- 
derlying cross-terms is therefore a key for trading-off interference reduction and 
increased localization in quadratic time-frequency distributions. 
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4 . 3  THE COVARIANCE THEORY OF TIME-FREQUENCY 
ANALYSIS o 

4.3.1 The Covariance Principle 
Many important classes of linear and bilinear/quadratic time-frequency representa- 
tions (TFRs) can be defined by a covariance property. For example, the family of 
short-time Fourier transforms [1,2] 

/? F)(t,  f )  - x(t') h* ( t ' - t )  e -j2'~st' dt' (4.3.1) 
c ~  

(where t and f denote time and frequency, respectively, x(t) is the signal under 
analysis, and h(t) is a function that does not depend on x(t)) consists of all linear 
TFRs L that are covariant to time-frequency (TF) shifts according to 

Ls~,~(t, f )  - e -j2~(f-~)~ L~(t--T, f - - v ) .  (4.3.2) 

Here, Sr,~ is the TF shift operator defined as (S~,~x)(t) = x ( t -  T)e j2~t.  Thus, 
among all linear TFRs, the short-time Fourier transform is axiomatically defined 
by the TF shift covariance property (4.3.2). Similarly, Cohen's class (with signal- 
independent kernel h(tl,t2)), given by [1] 

FF C~,y(t, f )  = x(tl) y*(t2) h*( t l - t ,  t 2 - t )  e -j2~f(tl-t2) dtldt2 , 
c o  o o  

(4.3.3) 

comprises all bilinear/quadratic TFRs B that are covariant to TF shifts according 
to 

Bs,,~x,s,.~y(t, f)  = Bx,y(t--T, f - -u ) .  (4.3.4) 

Similar covariance-based interpretations and definitions can be given for many other 
important classes of linear TFRs (e.g., wavelet transform, hyperbolic wavelet trans- 
form, and power wavelet transform [2-4]) as well as bilinear/quadratic TFRs (e.g., 
affine, hyperbolic, and power classes [1,3-6]; see also Articles 5.6, 7.1, and 15.3). 

In this article, we present a unified covariance theory of TF analysis that allows 
the systematic construction of covariant TFRs [7-9]. (See [10] for a much more 
detailed treatment.) Covariance properties are important in TF analysis since spe- 
cific unitary signal transformations often occur in practice---e.g., time shifts and 
frequency shifts as described by the TF shift operator Sr,~ correspond to the delays 
and Doppler shifts, respectively, encountered in radar and mobile communications. 

~ F. Hlawatsch, Institute of Communications and Radio-Frequency Engineer- 
ing, Vienna University of Technology, Gusshausstrasse 25/389, A-1040 Vienna, Austria 
(email: fhlawats@pop.tuwien.ac.at, web: http://www.nt.tuwien.ac.at/dspgroup/time.html) and 
G. Taub6ck, Telecommunications Research Center Vienna (FTW), Tech Gate Vienna, Donau- 
City-Strasse 1, A-1220 Vienna, Austria (email: tauboeck~ftw.at, web: http://www.ftw.at). Re- 
viewers: J.-P. Ovarlez and A. Papandreou-Suppappola. 
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4.3.2 Time-Frequency Displacement Operators 
A key element of our covariance theory is the concept of TF displacement operators 
(DOs), which are operators that  displace signals in the TF  plane. The DO concept 
generalizes the T F  shift operator ST,~, for which the TF  displacements are simple 
shifts (translations), to other types or geometries of TF  displacements. 

Group fundamentals. In what follows, we will need some fundamentals of groups. 
A set G together with a binary o p e r a t i o n ,  that  maps G • G to G is called a group 
if it satisfies the following properties: 

1. There exists an identity element go E G such that  g ,  go -- go * g - g for all 
go6.  

2. To every g C G, there exists an inverse element g-1 C G such that  g *  g-1 = 
-1  g * g - g o .  

3. Associative law: gl * (g2 * g 3 ) -  (gl * g2)* g3 for all gl, g2, g3 c G. 

If, in addition, gl * g2 - g2 * gl for all gl, g2 C ~, the group is called commutative 
or A belian. An elementary example of a commutative group is (R, +) for which 
gl  * g2 -- g l  + g2, go --  0, a n d  g - 1  = _ g .  T w o  g r o u p s  ( G , * )  a n d  ( ~ , 0 )  a r e  

said to be isomorphic if there exists an invertible mapping ~b : G ~ T/such  that  
r  * g2) = r  0 r for all gl, g2 E G. 

Definition and examples of DOs. We are now ready to give a formal definition 
of DOs. A DO is a family of unitary operators D~,Z indexed by a 2-D "displace- 
ment parameter" (c~, fl) that  belongs to some group (7:), o). This operator family 
{D~,z}(~,Z)ez) is supposed to satisfy the following two properties: 

1. A displacement by the group identity parameter  (c~0, rio) is no displacement, 
i.e., 

D~o,Zo = I ,  

where I is the identity operator. 

2. A displacement by (O/1, ]~1) followed by a displacement by (a2, g2) is equivalent 
(up to a phase factor) to a single displacement by (a l ,  gl)  o (a2, g2), i.e., 

with (~(O~1, ~1; 0/2, ~2) being a continuous function. 

v e 

(4.3.5) 

More precisely, stated in mathematical  terms, a DO Da,z is an irreducible and faith- 
ful projective representation of a group (7:), o); the function e jr is known 
as the cocycle. For e jr _- 1, Da,Z is a unitary group representation [10]. 



104 Chapter 4: Time-Frequency Signal and System Analysis 

Two basic examples of a DO are the following: 

�9 The TF shift operator Sr,~. Here, (a, f l ) =  (T, ~) and (/), o) is  the commuta- 
tive group (IR 2, +) with operation (rl, L,1) o (r2, ~2) = (T1 +T2, Vl +V2); further- 
more (r0, ~0 )=  (0,0), (r ,~) -1 = (--T,--V), and r Vl;T2,Z/2)= --27rvlr2. 

twT" x(-;-) The TF scaling/time shift operator Rr defined as (Rr - ~ 

Here, (a, fl) = (a, T), (/9, o ) i s  the noncommutative affine group with /) = 
IR + x IR and group operation (hi, ~-1)o (a2, r2) = (ala2, 71a2 +T2); furthermore 
(ao, To) = (1, 0), (a, w) -1 = ( l / a , - - T / a ) ,  and r  T1; a2, r2) -- 0. 

Additional  structure of  DOs. The interpretation that  a DO Da,~ performs TF 
displacements motivates certain topological assumptions which can be shown [10] 
to imply that  (/9, o) is a simply connected 2-D Lie group. This, in turn, can be 
shown to have the following two important  consequences [10]: 

1. The group (/), o) underlying Da,Z is either isomorphic to the group (JR 2, +) 
underlying S~,. or isomorphic to the affine group underlying Ro,r (see the 
examples above). 

2. The DO D~,Z is separable (possibly up to a phase factor) in the follow- 
ing sense: there exists an isomorphism r : (a, ~) ~ (a ~, 13') such that  the 
parameter-transformed DO Dr (briefly written as D~,,Z, hereafter) 
can be factored as [10] 

Da,,Z, = e jt'(~'z') BZ, Aa , .  (4.3.6) 

Here, Am, and BZ, (termed partial DOs) are indexed by I-D displacement 
parameters a '  C (A,-)  and ~' E (B, .),  respectively, where (,4, .)  and (B, .)  
are commutative groups that  are isomorphic to (R, +). For example, 

S~,~ = F~T~ and R~,~ = T ~C~ ,  

with the time-shift operator T~, frequency-shift operator F~, and TF scaling 
operator Co defined as (T~x)(t) = x ( t -  ~-), (F~x)(t) = x(t)e j2~t,  and 

1 t ( C o x ) ( t ) -  ~ x (~) ,  respectively. 

4.3.3 Covariant Signal Representations: Group Domain 
We shall now discuss the construction of TF representations that  are covariant to 
a given DO D~,Z. This construction is a two-stage process: first, we construct 
covariant signal representations that  are functions of the displacement parameter  
(i.e., the group variables) (a, ~). Subsequently (in Sections 4.3.4 and 4.3.5), we will 
convert these covariant (a,/3) representations into covariant TF representations. 
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Covariance in the group domain. A linear (a,/~) representation Lx(a,/3) is called 
covariant to a DO D~,Z if 

LD.,~,z(c~,/~) -- e jr176 L~((c~,/3)o (c~',/~')-1), (4.3.7) 

for all signals x(t) and for all (a, ~), (a ~, fl') E 79 [10]. Similarly, a bilinear/quadratic 
(c~,/3) representation B~,y(c~,/3) is called covariant to a DO D~,~ if 

BD.,,,x,D~,,,y(C~,/3) - B~,y((C~,/3) o (c~', f l ' ) -~) ,  (4.3.8) 

for all signal pairs x(t), y(t) and for all (c~,/3), (c~ ~, fl') c 79 [9, 10]. Note that the 
"linear" covariance property (4.3.7) differs from the "bilinear" covariance property 
(4.3.8) in that it contains a phase factor. 

For example, for S~,. the covariance properties (4.3.7) and (4.3.8) become 

Ls~,, ,x(r,  u) - e - j2"(~- ' ' ) r '  L ~ ( r - r ' ,  u - t / )  

- 

which are seen to be identical to (4.3.2) and (4.3.4), respectively. For Ro,r, we 
obtain 

( a  m - r ' )  
LRo,,~,x((7, 7) -- L~ a" a' 

( a  r - r ' )  
B R ~ , , ~ , x , R ~ , , r , y ( ~ 7  , T )  - -  B x , y  7 '  if# " 

Construction of covariant (c~,/3) representations. It can be shown [10] that all 
linear (c~,/3) representations covariant to a DO Da,Z as defined in (4.3.7) are given 
by 

Lx((~, Z) - (x, D~,~h) - ./r x(t) (D~,zh)* (t) dt, (4.3.9) 

where h(t) is an arbitrary function and Z is the time interval on which Da,~ is 
defined. Similarly, all bilinear/quadratic (a,/~) representations covariant to a DO 
Da,~ as defined in (4.3.8) are given by [9,10] 

~ x , y ( O ~ , / ~ )  - -  (x,D~,~HD2,1~ y) - -  jZ jfzX(tl) y*(~2) [e~,f~UO2,1~J*(tl,t2) dtldt2 , 
( 4 . 3 . 1 0 )  

where H is an arbitrary linear operator and [Da,zHD~,~] (tl, t2) denotes the kernel 

of the composed operator D~,zHD~,~. The equations (4.3.9) and (4.3.10) provide 
canonical expressions for all covariant linear and bilinear/quadratic (c~,/~) represen- 
tations. 

For example, for S~,v these expressions yield 

Lx(r, ~) - x(t) h* ( t - r )  e -j2~€ dt 
oo 

171? Bx,y(m,~) - x(tl) y*(t2) h*(tl--T, t2--T) e -j2~ru(,'-`:) dtldt2 , 
(x) oo 
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which are seen to be the short-time Fourier transform in (4.3.1) and Cohen's class in 
(4.3.3), respectively. Similarly, for R~,r we obtain time-scale versions of the wavelet 
transform and the affine class [1]: 

1 // L=(a,r) = ~ ~ x ( t ) h * \  t-r(----~)dt 

_:/:/: ( ) �9 dt dt . S='Y(a'T)-- la I ~ o0 a ' a 

4.3.4 The Displacement Function 
The covariant (c~, fl) representations constructed above can be converted into co- 
variant TF representations (ultimately, we are interested in TF representations and 
not in (a, fl) representations). This conversion uses a mapping (c~, fl) --~ (t, f )  that  
is termed the displacement function (DF) since it describes the TF displacements 
performed by a DO Da,z in terms of TF coordinates [10]. 

The DF concept is based on the following reasoning. If a signal x(t) is TF 
localized about some TF point (tl, f l) ,  then the transformed ("displaced") signal 
(Da,z x)(t) will be localized about some other TF point (t2, f2) that  depends on 
(tl, f l )  and a, ft. We can thus write 

( t2,  f2 )  = eD(tl,fl;ce, 13), 

with some function eD(t, f;  a, fl) that  will be called the extended DF of the DO 
Da,z. For S~,, and Ro,~, for example, it can easily be argued that  the extended 
DF is given by 

es(t, f;  T, V) = (t + T, f + V), ert(t , f ;a,T)--  ( a t + r , f ) .  (4.3.11) 

Construction of the extended DF. In general, the extended DF cannot be found 
"by inspection," and therefore we need a systematic method for constructing the 
extended DF of a given DO D~,Z [10]. The expression 1 D~,Z - e j~(~'~) BzA~ 
(see (4.3.6)) states that  Da,z is, up to a phase factor, the composition or series 
connection of A~ and BZ. Hence, eD(t, f;  ~, fl) can be obtained by composing the 
extended DF of the partial DO A~, eA (t, f; c~), and the extended DF of the partial 
DO B~, eB (t, f;  fl), according to 

eD(t,f;a, fl) = eB(eA(t,f;a); fl). (4.3.12) 

Using this expression, the task of constructing eD(t, f ;ce,~) reduces to the task 
of constructing eA(t , f ;a)  and eB(t,f;fl). We will explain the construction of 
cA(t, f; a) [10]; the construction of eB(t, f; fl) is of course analogous. 

1 For simplicity of notation,  we assume tha t  the parameter  t ransformat ion r  (a, fl) ---, (a ' , /3 ' )  
described in Section 4.3.2 has already been performed, and we write a ,  fl instead of cd, fl~. 



The Covariance Theory of Time-Frequency Analysis 107 

A S  ~ 

~ t  

F ig .  4.3.1" Construction of the extended DF of A s .  

We first recall the "definition" of cA(t, f; c~): If x(t) is localized about (tl, f l) ,  
then (A~x)(t) will be localized about (t2,f2) - eA(tl , f l;a).  In order to find 
(t2, f2), we consider the (generalized) eigenfunctions u~(t) of As .  These are defined 
by ( A s u ~ ) ( t )  o (u~( t )  and indexed by a parameter b c (A, ~), where (.4, ~)is again 
a commutative group isomorphic to (1~, +). The TF locus of u~(t) is characterized 
by the instantaneous frequency f i{u~}(t)or the group delay Tg{U~}(f), whichever 
exists. 2 Here, e.g., we assume existence of fi{u~}(t). Let us choose bl such that  
the TF curve defined by fi{u A bl }(t) passes through (tl, f l ) ,  i.e., 

fi{u~ }(tl) - f l .  (4.3.13) 

This is shown in Fig. 4.3.1. Now since (Aau~) ( t )  o< UbA(t), Aa preserves the TF 
locus of uA(t) Therefore, under the action of As,  all TF points on the curve bl " 

fi{u~}(t)--including (tl ,fl)--are mapped again onto TF points on fi{u~}(t). 
Hence, (t2,f2) - eA(tl,fl;o~) must lie on fi{u~}(t) (see Fig. 4.3.1), i.e., there 
must be 

fi{u~ }(t2) - ]'2. (4.3.14) 

In order to find the exact position of (t2,f2) on the TF curve defined by 
fi{u~ }(t), we use the fact that  to any partial displacement operator As  there ex- 

ists a dual operator tka with & E (A, ~) that  is defined by the "almost commutation 
relation" AaA~  - e j2~r162 As-&a [10, 11]. For example, the dual operator 

k of T~ is F~ and vice versa. Let u~, (t) with b E (A, .)  denote the (generalized) 

eigenfunctions of Aa and assume, e.g., that  the group delay Tg {u b } (f)  exists. Let 

us choose/~1 such that  the TF curve defined by 7g {u~ }( f )passes  through (tl f l )  
bl ' ' 

i.e. (see Fig. 4.3.1) 

7g{u[,A }(fl)  - t l .  (4.3.15) 
~ 

Now assuming suitable parameterization of u~(t), it can be shown [10] that  

for all a, b c (A, . ) .  (4.3.16) 

1 d arg{x( t )} ;  it ex- 2The ins tan taneous  frequency of a signal x ( t )  is defined as f i { x } ( t )  -- ~ ~-i 
ists if a rg{z( t )}  is differentiable and x ( t )  =/: 0 almost  everywhere.  The  group delay of x(t)  is 

1 d a r g { X ( f ) }  with X ( f )  oo -- fc_o o x ( t ) e - J 2 ~ f t d t ;  it exists if a r g { X ( f ) }  defined as Tg {x}( f )  ---- 2-r df 

is differentiable and X ( f )  =/= 0 almost  everywhere.  
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Thus, As maps all TF points on Tg {Ugi }(f)-- including (tl, f l ) - -on to  TF points on 

Tg{u~ }(f)  So (t2 f2) - cA(t1 f l"a) must lie on ~-g{Ugi.~}(f) (see Fig. 4.3.1) 
bl ,,c~ " ' ' ' 

i.e., 

Tg { u -~ (4.3 17) 

The construction of eA can now be summarized as follows (see Fig. 4.3.1): 

1. For any given (tl, f l) ,  we calculate associated eigenfunction parameters bl c 
(A, i) and bl E (.,4, .) as the solutions to (4.3.13) and (4.3.15), respectively: 

f i { u ~ I ( t l ) -  f l  ~'g{u-h } ( f l ) -  tl (4.3.18) 
' b l  " 

2. The extended DF eA is defined by the identity (t2, ]'2) - cA(t1, fl;  a), where 
(t2, f2) is obtained as the solution to the system of equations (4.3.14), (4.3.17): 

f i{u~}(t2) = f2 Tg{U~ }(f2) = t2 (4.3.19) 
' b l . a  " 

h A similar construction of eA can be used if, e.g., ~g{Ubn}(f) and fi{u~, }(t) exist 
k instead of f i{u~}(t)  and 7g{ug }(f).  An example for this case will be provided in 

Section 4.3.6. 
After construction of the extended DF of As  as detailed above, the extended DF 

of B# is constructed by means of an analogous procedure, and finally the extended 
DF of Da,# is obtained by composing eA and eB according to (4.3.12). 

The DF. The above discussion has shown how to construct the extended DF 
eD(t, f; a, fl). We go on to define the DF dD(a, fl) by fixing t, f in eD(t, f; a, fl): 

d D ( O Z , / 3 )  _A e D ( t O ,  f o ;  0~, f l )  with to, f0 arbitrary but fixed. 

The DF is a mapping (a, fl) + (t, f) ,  i.e., from the displacement parameter (or 
group) domain to the TF domain. If the inverse DF dD 1 (t, f )  exists, then it can be 
shown [10] that the extended DF can be written as 

eD(t, f; a,/3) -- dD (dD l(t, f )  o (a,/3)) . (4.3.20) 

Examples. Application of the construction explained above to the DOs S~,~ and 
R~,~ yields the extended DEs es(t, f; T, u) = (t + T, f + U) and eR(t, f; a, T) = 
(at + T, ~). Note that this agrees with (4.3.11). Corresponding DEs are obtained 
by setting, e.g., t = f = 0 in es(t, f; T, u) and t = 0, f = f0 r 0 in eR(t, f; a, T): 

d s  = 
o" 

A further example will be discussed in detail in Section 4.3.6. 
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4.3.5 Covariant Signal Representations: Time-Frequency Domain 
In Section 4.3.3, we derived covariant linear and bilinear/quadratic signal represen- 
tations that were functions of the displacement parameter (a,/3). Using the inverse 
DF mapping (a,/3) = dDl(t, f),  these covariant (a,/3) representations can now be 
converted into covariant TF representations (TFRs). 

Covariance in the TF domain. A linear TFR Lx(t, f )  is called covariant to a DO 
D~,Z if 

LD~, , ,~( t , f )  -- e j*(d31(t'f)~ Lx(eD( t , f ; (a~ ,~ ' ) - l ) )  , (4.3.21) 

for all x(t) and for all (a~,/~ ') E 79 [10]. Similarly, a bilinear/quadratic TFR 
/)z,y(t, f)  is called covariant to a DO Dc~,Z if 

[~D~,z,x, Do,,,y(t, f )  -- [~,y(eD(t,  f; (CJ,/~t)-l)), (4.3.22) 

for all x(t), y(t) and for all (c~ ~,/3') E 79 [10]. With (4.3.20), it is seen that these 
covariance properties are simply the (a,/3)-domain (group-domain) covariance prop- 
erties (4.3.7) and (4.3.8) with the transformation (a,/3) - dDl(t, f ) .  

For example, for ST,, the covariance properties (4.3.21) and (4.3.22) become 

Ls~,,.,~(t, f )  - e -j2~(:-"')~' L x ( t - T  ~, f - v ' )  

/)s~,,,,x,S,,,,y(t, f )  - B x , y ( t - T  ~, f - v ' )  . 

These relations are equivalent to (4.3.2) and (4.3.4), respectively. For R~,~, we 
obtain 

LR~ (t, f) - ( t -  
O..I 

,.<,,sl - , ,. ., ,.'s). 

Construction of covariant TF representations. It has been observed above that 
the TF covariance properties (4.3.21) and (4.3.22) are equivalent to the (c~,/3)- 
domain covariance properties (4.3.7) and (4.3.8), respectively, apart from the trans- 
formation (ct,/3) = dDl(t, f ) .  From this equivalence, it follows that  all covariant 
linear TFRs Lx(t, f)  are obtained from corresponding covariant linear (a,/3) repre- 
sentations Lz(a,/3) as given by (4.3.9) simply by setting (a,/3) - dDl(t, f) .  Conse- 
quently, all linear TFRs covariant to a DO D~,~ are given by 

[ , = ix Dd31 h) _ r/.r x(t ')(Dd31 h)* (t ')dt '  Lx(t, f )  - Lx(a,  /3). (~,~)=d3 (t,f) ' (t,f) ~ (t,y) , 
(4.3.23) 

where h(t) is an arbitrary function and Z is the time interval on which D~,~ is 
defined. Similarly, all covariant bilinear/quadratic TFRs /)x,u(t, f )  are obtained 
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from corresponding covariant bilinear/quadratic (c~,#) representations Bz,y(a,#) 
as given by (4.3.10) by setting (a,/~) - dDl(t,f).  Thus, all covariant bilin- 
ear/quadratic TFRs are given by 

I = (x, DdD1 --1 y> /3x,y(t,/) - Bx,u(a, #)(~,#)=d~,l(t,I) (t,i)HDdG~(t,i) 

J z f z  D -1 * t2)dtldt2, (4.3.24) -- X(tl)y*(t2) [DdDX(t,f)H dDl(t,f)] (tl, 

where H is an arbitrary linear operator. The equations (4.3.23) and (4.3.24) provide 
canonical expressions for all covariant linear and bilinear/quadratic TFRs [10]. 

For example, the classes of all linear and bilinear/quadratic TFRs covariant to 
S~,~ follow from (4.3.23)and (4.3.24) as 

J? L~(t, f )  = x(t') h*(t ' - t )  e -j2'~ft' dt' 
o o  

/ / / /  [3z,y(t, f)  = x(tl) y*(t2) h*( t l - t ,  t2 - t )  e -j2~ry(t'-t2) dtldt2 ; 
o o  o o  

they are seen to be the short-time Fourier transform in (4.3.1) and Cohen's class in 
(4.3.3), respectively. Similarly, the classes of all linear and bilinear/quadratic TFRs 
covariant to Ro,~ are obtained as 

( ) f x(t') h* f L~(t, f )  - To ~ ~ ( t ' - t )  dt' 

/_ j /  ) f oo (tl) y* (t2) h* (tl - t ) ,  Too /}~,y(t, f)  - Too oo oo x f ( t 2 - t )  dtldt2 ; 

they are TF versions of the wavelet transform [2] and the affine class [1,5]. Thus, the 
short-time Fourier transform, the wavelet transform, Cohen's class, and the affine 
class have all been obtained by means of the systematic construction provided by 
covariance theory. 

4 .3 .6  Example: Hyperbolic Wavelet Transform and Hyperbolic 
Class 

So far, we have considered the elementary DOs ST,v and Ra,r as illustrative ex- 
amples. Let us now apply our covariance theory to a situation that  is a little less 
elementary. We consider the DO V,,7 defined by 

1 t ].(t/to) t>O, a>O,'1, E~. 
1 t Here, Ca is the TF scaling operator defined by (Cax)(t) - ~ x ( y )  with 

a > O; furthermore, C...y is the hyperbolic frequency-shift operator defined by 
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(G~x)(t) = x( t )  e j2~?ln(t/t~ with to > 0 arbitrary but fixed. Note that Co and 
G~ are dual operators since G~Ca = e j2r~l"~ CaGe.  Comparison of the relation 
Vo2,~V~z,~ ~ = e - j 2 , ~  1.o2 V ~ 2 , ~ + ~ :  with (4.3.5) shows that (o., 7) belongs to the 
commutative group (R + • R, o) with group law (o-1,71) o (o.~, V:) = (o-lo-2, 71 + 72), 
identity element (1, 0), and inverse elements (o., 7) -1 = ( 1 / o . , - 7 ) .  This group is iso- 
morphic to the group (I[(2, +). Furthermore, we see that the cocycle phase function 

is given by (P(O' I ,  71; o'2, 72) -- -27r711n 0"2. 

We now begin our construction of TFRs covariant to the DO Vo,.y. In the (o., 7) 
domain, the covariance properties (4.3.7) and (4.3.8) read as 

- L= (~--;, 7 - 7 ' )  Lv,,,~,=(o., 7) e-J27r(-y--/) l n a '  (7 

Bvo, ~,~,vo, ~,~(~, ~) - B~,~ - j ,  ~ - ~ '  , 

and the covariant linear and bilinear/quadratic (o., 7) representations are obtained 
from (4.3.9) and (4.3.10)as 

Lz(o., 7) - v~ ~ x( t )  h* ~t e--j27r~/ln(t/t~ dt , o. > 0 

_1 x ( t l ) y * ( t 2 )  h* _tl t2 �9 ln(tz/t2) d t l d t  2 , o . > 0 .  

Next, we construct the DF of Vo,~ = G~Co. We first consider the extended DF 
of Co. Although clearly ec(t,  f; o.) - (o.t, f / o . ) ,  we shall derive ec ( t ,  f ;  o.) using 
the systematic construction procedure from Section 4.3.4. The eigenfunctions of Ca 

c(t)  - 7t  eJ27r'yln(t/t~ with instantaneous frequency f i { u C } ( t )  - 7 / t .  The are u~ 

eigenfunctions of the dual operator G.y are given by u~(t)  - 5 ( t -  s), with group 
delay "rg{uG}(f)  -- s. (It can be verified that (4.3.16) is satisfied: (Cou~)( t )  - 

G V / - ~ 5 ( t -  O.S) (X Uas(t).  ) T h u s ,  (4.3.18) b e c o m e s  ")'l/t1 - f l  a n d  Sl - t l ,  w h i c h  
yields the eigenfunction parameters associated to the TF point (tl, fz) as ")'1 --- t l f l ,  
Sl = tl. Similarly, (4.3.19) becomes 71/t2 -- f2 and slo. = t2, which yields t2 = 
slo. = o.tz and f2 = 71/(Slo.)  = f�92 Hence, the extended DF of Co is finally 
obtained as 

( f l )  
e c ( t l , f l ; o - )  -- (t2, f2)  -- o-t1, T " 

The extended DF of G~ is obtained similarly. The eigenfunctions of G~ are 
u ~ ( t )  - 5 ( t -  s), with group delay T g { U ~ } ( f )  -- S. The eigenfunctions of the dual 

c(t)  - 7t  eJ2~'yln(t/t~ with instantaneous frequency f i { u C } ( t )  = operator Ca are u~ 

7/t .  (We verify that (4.3.16) is satisfied: (G~,u c)  (t) - ~t  eJ2~'Y ln(t/to) eJ2~' ln(t/to) 

C (t))  Thus, (4.3.18) (with the roles of instantaneous frequency and group O( U T + . y ,  . 
delay as well as time and frequency interchanged) becomes Sl = tl and 71 / t l  = f l ,  
which yields the eigenfunction parameters Sl = tl, 71 = t l f l .  Similarly, (4.3.19) 
(with the same interchange of roles) becomes Sl = t2 and (71 + 7)/t2 = f2, whence 
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t2 = Sl = tl and f2 = (')'1 -~-")')/81 -- fl + "y/t1. Hence, the extended DF of G~ is 
obtained as 

e G ( t l , f l ; ' ~ ' ) -  (t2, f 2 ) -  Ctx , f l - J r -~ l  ) �9 
/ t % 1  \ 

The extended DF of Vo,~ = G~Co can now be calculated by composing 
ec(t, f; a) and ca(t, f; 7) according to (4.3.12), which yields 

ev(t, f ;  a, 7) - eG(ec(t, f ;  or); 7) - (at, f + ~ I / t )  . a 

Finally, the DF (and inverse DF) of Vo,~ follow upon setting t = to > 0 and f = 0: 

With the DF at our disposal, we are ready to pass from the (a, 3') domain into 
the TF domain. The TF covariance properties (4.3.21) and (4.3.22) become 

~ t,(71 Lv:,,,,x(t, f)  - e -j27r(tf-~/') lna' L x  -~ f - - T  

/)V.,,~,x,V,,~,y(t,f) -- D~,y j ,  f -  , 

and the covariant linear and bilinear/quadratic TFRs are obtained from (4.3.23) 
and (4.3.24) as 

L x ( t ,  f )  -- - -  x ( t  r h* to e - j 2 r r t f l n ( t ' / t ~  d t  # , t > 0 

- t o f O O [  oo 
B~,y(t, f)  - T Jo Jo x(tl)y*(t2) h*(to T ,  t oT )  e -j2'nsln(t~/t~) dtldt2 , t > O. 

These TFRs are analogous to (respectively) the hyperbolic wavelet transform and 
the hyperbolic class introduced in [4], the difference being that in [4] the hyperbolic 
time-shift operator was used instead of the hyperbolic frequency-shift operator G~. 

4.3.7 Summary and Conclusions 
Time-frequency representations (TFRs) that are covariant to practically important 
signal transformations--like time and frequency shifts, time-frequency scaling (di- 
lation/compression), or dispersive time and frequency shifts--are of great relevance 
in applications. We have presented a unified and coherent covariance theory of 
TFRs that allows the systematic construction of TFRs covariant to two-parameter 
transformations. We note that a much more detailed and mathematically rigorous 
discussion with many additional references is provided in [10], where also the ex- 
tension to groups not isomorphic to (R, +) is outlined. Furthermore, relations of 
covariance theory with the principle of unitary equivalence are discussed in [10,12] 
(cf. also Article 4.5). 
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4.4 UNCERTAINTY IN TIME-FREQUENCY ANALYSIS~ 
In 1946, Gabor [1] introduced the Heisenberg uncertainty relations to the signal 
processing community, with the simple but powerful inequality 

1 (4.4.1) 

where at and af are the time and frequency standard deviations of the signal s(t). 
That is (we will assume unit energy signals, centered at zero time and frequency)" 

at = f _ ~  t21s(t)l 2 dt, (4.4.2) 

a f  -- L~c~ f2iS(f)12 df , (4.4.3) 

S( f )  being the Fourier Transform of s(t). The impact of this result in the field of 
spectrum estimation was immediate, since it seems to imply the existence of bounds 
on the achievable frequency resolution when analyzing finite length segments of 
data. Satisfaction of (4.4.1) implies that, for any given (non-zero) at, there will 
be a minimum af.  However, some care must be exercised when following this line 
of reasoning, since standard deviations are not, in general, acceptable measures of 
broadness, and do not bear an easy relation with the concept of resolution. As an 
example, consider a long rectangular window. This window has a spectrum with 
a very thin main lobe and is, thus, capable of high frequency resolution. However, 
the standard deviation of its power spectrum is c~, as can be seen using S( f )  - 
s in(a f ) / (a f )  in (4.4.3). This example shows that (4.4.1), being a limit on standard 
deviations, does not, de per si, necessarily limit the achievable frequency resolution. 
High resolution waveforms may have large standard deviations. Other limitations of 
the use of standard deviations as measures of broadness can be found in [2] and [3]. 
We will introduce a different measure of broadness, which avoids these limitations. 

With the development of joint time-frequency analysis, the issue of uncertainty 
and/or frequency resolution has to be rethought. In time-frequency analysis, we 
often deal with a single bivariate function ps(t, f) ,  desirably representing the dis- 
tribution of energy in the time-frequency plane. For acceptance of a given ps(t, f )  
as a valid time-frequency distribution (TFD), one often requires satisfaction of the 
time and frequency marginal conditions [see p. 33]" 

f _ ~  p~(t, f ) d f  - Is(t)[ 2 (4.4.4) 

f _ ~  p~(t, f ) d t  = IS(f)l 2. (4.4.5) 

The Heisenberg-Gabor relations (4.4.1) will imply limits to the joint behavior of 
the marginals, [s(t)l 2 and IS(f)l 2. But they do not imply limits on ps( t , f )  at 
other time-frequency locations [4]. Do such limits exist? Are there uncertainty 
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Reviewers: M. G. Amin and X.-G. Xia. 
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Fig. 4.4.1: Example of a thin ps(t, f) with broad marginals. 

limits within the time-frequency plane, or can we achieve infinite time-frequency 
resolution, under the constraint that the marginals must satisfy (4.4.1)? To fully 
appreciate the scope of the question, let us consider an hypothetical ps(t, f ) ,  consti- 
tuted by an infinitely narrow time-frequency ridge (see Fig. 4.4.1). Even though the 
marginals are broad, and, for any given at can always be made to satisfy (4.4.1) by 
adjusting the frequency slope of the ridge, such a ps(t, f )  possesses an infinite time- 
frequency concentration capability, which allows us to know the exact frequency 
that the signal occupied at any precise time (f0 and to, in the example figure). The 
question to be answered thus becomes: is such a ps(t, f )  physically acceptable? Is 
infinite time-frequency concentration capability an achievable goal? And is infinite 
time-frequency resolution (the ability to separate two closely spaced components) 
also an achievable goal? Or are there limits (certainly other than (4.4.1)) to the 
concentration and/or resolution of any physically acceptable p~(t, f)? 

4.4.1 The Time-Frequency Plane 
Several attempts have been made to obtain uncertainty relations applicable to re- 
gions of the time-frequency plane other than the marginals. Each one of these at- 
tempts starts by defining a concentration/dispersion measure in the time-frequency 
plane (Atf). Examples of such measures are [5], [6] (for arbitrary T): 

Atf - ~ + T2 f 2 ps(t, f )  dt df , 

f f (1--e-(t~/T2+T2f2)) P~(t,f) d td f  �9 

Atf - I f  t2f 2 ps(t, f )  dt df, 

- f f t2(f  - f~(t)) 2 p~(t, f )  dt df . 

(4.4.6) 

(4.4.7) 

(4.4.8) 

(4.4.9) 
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All these measures turn out to imply a particular set of uncertainty relations when 
ps(t, f)  is taken as being the Wigner-Ville distribution (p. 33) or, more generally, one 
of the bilinear distributions from Cohen's class (p. 68n and refs. [5, 6]). A different 
and promising approach can also be found in [6], where the Slepian-Landau-Pollack 
approach is extended to ellipsoidal regions (axis-aligned) in the time-frequency 
plane. However, careful analysis of these measures will show that  none of them 
is still an appropriate measure of the concentration capabilities of a general p~ (t, f) .  
Let us take (4.4.6), as an example. When applied to the Wigner-Ville distribution, 

1 it implies that  At /  _> ~ [6]. However, this distribution is known to generate in- 
finitely thin ridges in the time-frequency plane for linear chirps. This shows that  a 
given ps(t, f)  can have the infinite time-frequency location capabilities of Fig. 4.4.1, 
even if it is lower bounded by measure (4.4.6). Furthermore, the known uncertainty 
relations implied by (4.4.6)-(4.4.9) have been obtained for particular time-frequency 
distributions, and cannot be interpreted as general physical laws. 

To avoid this restriction of the results to the scope of the particular time- 
frequency tool being used to derive them, we will take a different approach, based on 
the general concept of spectral information. This approach leads to general results 
that  are not specific to any one time-frequency distribution. 

4.4.2 Information and Spectral Estimation 
In the following discussion, let us assume that  we have a second degree ensemble 
view. That  is: we will assume that,  by observing the signal at time tl,  we apprehend 
the expected value of the ensemble of signals (E{S(tl)}), and not only the value 
of one particular realization; by also observing the signal at time t2, we now not 
only apprehend the value of E{s(t2)}, but also Rs(tl,t2) = E{s(tl)s*(t2)}. Since 
we are, under this assumption, directly observing expected values, and not mere 
realizations of the process, we may, in what follows, safely ignore the practical 
aspects of real estimators, such as variance. This idealization will enable us to focus 
only on the aspects which are, for our purposes, most relevant. 
�9 S t a t i o n a r y  s ignals .  From this idealized point of view, let us now consider 
the estimation of the power spectrum of a stationary signal. To perform the esti- 
mate, one must extract the needed information out of the signal. But how much 
information must we collect? How much observation time do we need? At first, 
increasing the observation time will provide better and better estimates, in a pro- 
cess converging to the true power spectrum. But, after convergence (assuming it 
ever happens), will further increases in observation time provide more information 
about the power spectrum? It clearly doesn't. Once this convergence process is 
essentially completed, no further observation time is needed, because no further 
information is required. The total amount of information that  must be obtained 
for proper spectral estimation will be referred to as the spectral complexity of the 
signal (C s). The point to be made here is that, if the observation time available to 
us is less than the time needed to reach C~, our spectral estimate will be degraded, 
since we will be missing part  of the information needed for a correct estimate. On 
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the other hand, if the observation time available is greater than the time needed to 
reach Cs, the last part of the signal will be informationless. Denoting by D(t) the 
density of information contained in the signal (the function D(t) depends on the 
type of estimator being used, an issue which we will not pursue here), and by I(t) 
the amount of collected information, the collection procedure can be summarized 
as follows (assuming that the observation started at to): 

f l fto4-TR 
I(t) - D(~) d~ <_ D(~) d~ - C~, (4.4.10) 

J to 

7-R being the time needed to reach complexity. This immediately raises the question 
of how to quantify Cs. There are good reasons (some of which will become apparent) 
to use a measure of spectral narrowness as a measure of spectral complexity. While 
any acceptable measure of narrowness is basically equivalent, leading to a rescaled 
version of the quantity, we must be careful to avoid the pitfalls of global measures 
of width such as the standard deviation, as previously discussed. Let us then define 

C ~ -  n ~ x - - ~ P ~ ( f )  , (4.4.11) 

where Ps(f) - E{IS( f ) I  2 } is the power spectrum density of the signal. This mea- 
sure, based on the Hessian of the power spectrum, relates directly to the idea of 
frequency resolution, and is closely related with the definition of Fisher information. 

From (4.4.11), the spectral complexity of a sinusoid is infinite. Even though an 
impulsive spectrum may seem simple, we must note that the perfect localization 
capability needed for a proper estimate does imply an infinite amount of informa- 
tion. Hence the infinite Cs. Also, we must consider the fact that  the spectrum of 
a pure sinusoid will always become narrower and narrower with increasing observa- 
tion time, without ever stabilizing. Additional observation time will always improve 
our spectral estimate and, thus, provide new information. Complexity will never be 
reached for finite observation times. This is thus the high end of spectral complexity, 
where all observation time becomes useful and brings additional information. In the 
low end, we have white noise. An instantaneous ensemble observation fully charac- 
terizes its very low complexity (zero, in fact) power spectrum. Further observation 
of the noise ensemble will not contribute with any new information concerning its 
spectrum. 

We must now address the next logical question: how do we determine TR? The 
amount of information needed to estimate the power spectrum is clearly the same 
amount of information needed to estimate its inverse Fourier Transform, the auto- 
correlation function. Hence, we only need to observe the signal for the amount of 
time needed to determine all (relevant) lags of its autocorrelation function. The 
time to reach complexity is thus the time support of the autocorrelation function. 
This is a very gratifying conclusion, since the spectral complexity (4.4.11) and the 
time support of the autocorrelation function R~(T) can be shown to be, in fact, 
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directly related to each other through yet another "uncertainty relation": 

1 1 
~s-~- " a R  >>_ - ~ ,  (4.4.12) 

where a~ = f-~c~ T2 IR~(T)I dr .  In general, signals with narrowband components 
(and, thus, of high spectral complexity) require a high collection time TR (the limit is 
again a phase randomized sinusoid, known to have an autocorrelation function with 
infinite time support [7, p. 33]). Signals without narrowband components (hence, of 
low spectral complexity) have small collection times (in the limiting case of white 
noise, the autocorrelation function has zero time support). In any case, observing 
the ensemble for periods longer than 7R is not useful, since no additional information 
about the power spectrum will be obtained. 
�9 N o n - s t a t i o n a r y  signals .  Let us now consider non-stationary signals, and as- 
sume that  we desire to estimate the power spectrum of a non-stationary signal at 
time t l. This instantaneous spectrum will have a given amount of spectral complex- 
ity (C t~), and to properly estimate it, we need to collect this very same amount of 
information about the spectrum (or the autocorrelation function) at time tl. But 
to represent time tl,  all we have is s(tl)  itself, and no finite amount of spectral 
information can be extracted from an instantaneous value of the signal, since it 
would imply the acceptance of an infinite information density. On the other hand, 
information collected at times other than tl will only be useful if and only if it is cor- 
related with the spectral information at time tl. In the previous case of stationary 
signals, the spectral information at any time was totally correlated with the spectral 
information at any other time. In the non-stationary case, however, we must weight 
the information collected at times t other than tl with the non-unitary correlation 
factor that  determines how useful the collected information is for estimates at time 
tl (we will denote this weighting factor by u t~ (t - tl)). We now have to distinguish 
between useful past and future (u tl ( t -  tl) ~: 0), and non-useful past and future 
(utl ( t -  tl) ~ 0). The collection procedure (4.4.10), using superscripts to denote 
the particular time for which the spectrum estimate is intended, becomes: 

I t~ (t)  - D ( ~ )  u t~ (~ _ t l )  d~, with 

/? I ( t )  _< = - t l )  
o o  

(4.4.13) 

The factor u tl ( t -  t l )  is thus just formalizing the fact that  observing a non- 
stationary signal n o w  does not tell us much concerning the spectrum of the signal 
a fortnight ago, and may even be misleading, and decrease our state of knowledge 
(in the case of negative u t~(t - t l ) ) .  The exception lies, of course, in the case 
of signals with deterministic and known frequency dynamics, since in these cases 
the information collected at any time can always be made useful, by taking the 
dynamics into proper account. Knowledge of the frequency dynamics thus makes 
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the utility factor constant and unitary, bringing the case of non-stationary signals 
to the very same situation one encounters with stationary signals. 

As an example, consider the estimation of the power spectrum of a constant 
amplitude linear chirp (let us assume a positive chirping rate), with uniformly dis- 
tributed random phase: 

s(t) - e j (a t2+O) .  

Its autocorrelation function is easily seen to be: 

To determine u(t) ,  we can now determine how correlated are the autocorrelation 
functions at times tl and t2, with t2 > tl. Due to the infinite energy of these 
autocorrelation functions, in the computation of their correlation factor we will 
limit the integration region to an arbitrarily large region (-1 to l) centered at the 
zeroth lag. That  is: 

u t l ( t 2 - - t l )  = R R ( t 2 ,  t l , 1 )  = 

= --  Rs(t2,  ~) R s (t~, ~) d~. 
21 z 

This means that, in our case, 

u tl (t2 - tl) - sin (2cd(t2 - t l ) ) .  (4.4.14) 
2a/(t2 - t l )  

The inclusion of urn(t2 - t x ) i n  (4.4.13) (in this case, a sinc function) will limit 
the amount of collectible information relative to time tl and, thus, will set an upper 
bound on the achievable spectral complexity and, hence, the achievable frequency 
resolution. 

This is thus the answer we have been trying to obtain. There are limits to 
the achievable frequency resolution within the Time-Frequency plane, due to the 
fact that the period of time during which one can collect information concerning 
the spectrum at a given time is decreasing as the spectral dynamics increase. For 
increasing dynamics (c~, in our example) the useful neighborhood (and, hence, the 
amount of useful information) will continuously decrease, and so will the achiev- 
able spectral complexity and, consequently, the achievable spectral resolution. This 
namely means that the faster a chirp moves, the broader it becomes in the t-f plane. 
This predicted broadening of the power spectrum (and consequent decrease in res- 
olution capabilities) with the increase of the chirping rate is, in fact, observed in 
most bilinear TFDs. To illustrate it, we computed the Margenau-Hill distribution 
of a cubic chirp. The results can be seen in Figure 4.4.2, were the broadening of 
the main lobe of this Time-Frequency distribution with the increase in chirp rate is 
clearly apparent. 

Let us now try to determine, for the case of the chirp, the best observation time. 
From (4.4.14), we see that the best strategy is to limit the observation time to the 
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Frequency 

Fig. 4.4.2: Cubic Chirp. Margenau-Hill distribution. 

main lobe of the sinc function, since we will then avoid negative values of u tl ( t -  t l) .  
That  is, observe the signal between tl - T and tl -t- T, where T = lr/2c~l. But this 
implies that  ~- is the maximum lag of the observed autocorrelation function and, 
thus, 1 = T. Thus we conclude that  the best observation time for a linear chirp is 

~- - - , (4.4.15) 2~ 

fi(t) being the chirp instantaneous frequency (in this particular case, we may safely 
identify the concept of instantaneous frequency with the derivative of the phase 
function). With hindsight, it is now interesting to observe that: (a) (4.4.15) is 
the optimum observation time for short-time Fourier analysis of a linear chirp; (b) 
(4.4.15) is the effective time support of the optimum data independent smoothing 
window to use with the Wigner-Ville distribution [8]; (c) it is also basically the same 
quantity defined by Rihaczek as the signal's "relaxation time" [9]. These separate 
results can now easily be understood as particular manifestations of (4.4.15). 

A last comment must be made, concerning the use of models. Assuming a model 
for the frequency dynamics, such as the linear model implicit in the Wigner-Ville 
Distribution (or higher order models in the Polynomial Wigner-Ville Distribution 
[10]), is an a t tempt  to increase the size of what we called the "useful neighborhood", 
by projecting all collected spectral information to the time of interest, according to 
the spectral dynamics of the assumed model. If, by inspiration or mere chance, the 
assumed model is, in fact, the correct one, we will overcome the limits imposed by 
the non-stationarity, and fall within the traditional, stationary uncertainty relations, 
as previously discussed. If, on the other hand, the model is incorrect, we must be 
prepared to pay for the wrong assumption. We may have apparently improved our 
frequency resolution, but we must pay for it with bias and artifacts. Another, more 
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subtle, type of assumption, is made whenever we arbitrarily decide that  the "true" 
distribution is the one maximizing some chosen criteria. It may or may not be a 
sensible, supported assumption. It is an assumption, nonetheless. It may get us a 
better frequency resolution, but only if verified by the signal under analysis. This 
is exactly the type of trade-off one finds in parametric spectrum estimation. 

4.4.3 Summary and Conclusions 
This article addresses the issue of determining if there are lower bounds to the 
achievable time-frequency resolution within the Time-Frequency plane. The ap- 
proach based on the informational aspects of the estimation achieves results in- 
dependently of the specific joint power spectrum. The limits to the achievable 
time-frequency resolution are a direct consequence of the spectral dynamics of the 
signal and the implied decorrelation of the power spectrum from one moment to 
the next. Increasing spectral dynamics imply decreasing time-frequency resolution 
capabilities. The optimum observation time depends on the spectral dynamics of 
the signal and is tool-independent. Article 4.6 further explores these issues. 
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4.5 GENERALIZED TFRs VIA UNITARY TRANSFORMS~ 
Despite the broad applicability of time-frequency representations, there exist situ- 
ations where an analysis in terms of time and frequency coordinates is not appro- 
priate (see [1-3], for example). These problems require joint distributions of other 
variables. 

Joint distributions generalize single-variable distributions that  measure the en- 
ergy content of some physical quantity in a signal. Given a quantity a represented 
by the Hermitian (self-adjoint) operator A, we obtain the density [(IFAs)(a)I 2 mea- 
suring the "a content" of the signal s simply by squaring the projection of s onto 
the formal eigenfunctions 1 Ua A of .4 [5] 

I('F  f * dx (4.5.1) 

Classical examples of single variable densities include the time density ](]FTs)(t)] 2 -- 
]s(t)l 2 and frequency density I(IFj=s)(f)l 2 - IS(f)] 2 obtained by projecting onto 
the Dirac eigenfunctions of the time operator (Ts)(x)  - x s(x) and the sinusoidal 
eigenfunctions of the frequency operator (j~s)(x) - j2r (x). (We will use both S 

and IFs to denote the Fourier transform of the signal s.) 
Joint distributions at tempt to measure the simultaneous signal energy content 

of multiple physical quantities. Given two quantities a and b, a joint distribution 
(Pa,b s)(a, b) measuring the joint a-b content in the signal s has as marginals the 
respective j t  and B energy densities 2 

(Pa,b s)(a,  b) db - I(IFA s) (a) l  2 

/( Pa,b s)(a, b) da = I(IFB s)(b)l 2. 

(4.5.2) 

(4.5.3) 

The Wigner distribution from Cohen's class of time-frequency distributions [5] sup- 
plies a classical example of a joint distribution that  marginalizes to the time and 
frequency densities. 

Many different constructions have been proposed for generating joint distribu- 
tions. The various approaches fall into two broad categories: general methods and 
coordinate change methods. General methods can create distributions for every 

~ R i c h a r d  B a r a n i u k ,  Department of Electrical and Computer Engineering, Rice Uni- 
versity, 6100 Main Street, Houston, TX 77005, USA (richb@rice.edu; http://www.dsp.rice.edu). 
Reviewers: P. Flandrin and F. Auger. 

1 When the operator j t  is Hermitian, the eigenequation is merely algebraic, and the eigenfunc- 
tions are actually tempered distributions. More rigorously, we could employ projection-valued 
measures for the eigenfunctions [4]. 

2Alternatively, we can define joint distributions in terms of their covariance properties under 
certain unitary transformations. For more details, see [6, 7]. 
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possible pairing of physical quantities by working from first principles [5, 8, 9]. Co- 
ordinate change methods, on the contrary, sacrifice some flexibility for simplicity by 
bootstrapping existing distributions into new contexts using signal or axis transfor- 
mations [1,2, 8,10,11]. 

In the following, we review these two categories of joint distribution construc- 
tions and address their linkage. 

4.5.1 Three Approaches to Joint Distributions 

4.5.1.1 Cohen's General Method 

Given two operators A and B representing two arbitrary physical quantities a and 
b, Cohen forms the joint distribution of a and b as (see [5, 8] for more details) 

(Pa,b s)(a, b) - / / / s *  (x) (e j2~(~A+f~B) s)(x) e -j2~v(~ dx doL d~. (4.5.4) 

Cohen's construction is general, but it requires that  we solve a sometimes compli- 
cated operator equation to express the exponentiated operator e j27r(aA+B13). The 
time-frequency case is well understood; using the time and frequency operators T 
and ~" yields Cohen's class of time-frequency distributions [5, p. 136]. 

4.5.1.2 Axis Transformation Method 

Joint a-b distributions are easily obtained when we can functionally relate these 
variables to time and frequency by a = c~-l(t) and b = ~ - l ( f ) .  In this special 
case, we can derive an a-b distribution simply by warping the coordinates of a 
time-frequency distribution Pt , /  [8] 

(Pa,b s)(a, b) - I &(a) fl(b) [ (Pt,f s)[a(a), fl(b)l. (4.5.5) 

It is easily verified that  all Pa,b8 obtained in this way correctly marginalize 
to I(FAs)(a)l  2 - - I & ( a ) l  I(FTs)(oz(a))l 2 - - I & ( a ) l  Is(oz(a))l 2 and I(FBs)(b)I 2 = 
I~(b)! ](IF~s)(Z(b))[ 2 - [ f l ( b ) l  tS(Z(b))I 2. 

Example: Distributions Pt ,rs  of time t and "inverse frequency" r (represented 

by the operator 7~ - ~ )  can be constructed from Cohen's class time-frequency 
distributions !i.e. the quadratic class as defined on p. 68) through the change of 
variable r - fL [5, p. 238]. The resulting class of distributions, obtained as 

so 
(Pt,r s)(t, r) = ~ (P t , / s )  t , -  , (4.5.6) 

r 

marginalizes to time I s ( t ) l  2 and inverse frequency I ( I F n s ) ( r ) l  2 - IS(fo/r)l 2. 
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4.5.1.3 Signal Transformation Method (Unitary Equivalence) 
Joint a-b distributions are also easily generated when the quantities a and b are 
unitarily equivalent to time and frequency [1,10], with 

A = U - ~ T U ,  B =  U - ~ - U ,  (4.5.7) 

and U a unitary transformation. In this case, a joint a-b distribution can be ob- 
tained by preprocessing a time-frequency distribution with U 

(Pa,b s)(a, b) = (Pt ,f  Vs) (a ,  b). (4.5.8) 

The signal transformation U can be interpreted as "rotating" the coordinates of the 
time-frequency distribution to the new variables. 

All Pa,bS obtained in this way correctly marginalize to I(IFAs)(a)l 2 = 
I(IFTUs)(a)I 2 - I ( U s ) ( a ) l  2 and I(IFBs)(b)l 2 - I ( IF~Us) (b) l  2 = I(IFUs)(b)l 2 [1]. 

Example: Define the logarithmic time operator (s = log(x)s(x),  and 
1 (Tg~ + S'T).  (Cohen refers to 7/ as the "scale" define the Mellin operator 7 / -  

operator [5,12].) These operators are unitarily equivalent to 7" and .7" as in (4.5.7) 
with (Us)(x) = e z/2 s(eX). Therefore, we can construct distributions marginalizing 
to logarithmic time I(IFLs)(/)I 2 = le l/2 s(el)] 2 and Mellin transform 

2 
I(,F~s)(m)l 2 - f s(x)e -j27rm logx Ixl--~/2 dx (4.5.9) 

simply by preprocessing the signal by U before computing a time-frequency distri- 
bution [1,2,10,11]. 

4.5.2 Linking Signal and Axis Transformations 

Due to the individual limitations of the axis and signal transformation methods [13], 
only general operator methods can generate joint distributions for all possible op- 
erator pairs. However, when used in tandem, the axis and signal transformation 
methods yield a powerful method for generating a large number of joint distribu- 
tions [13]. By executing first a unitary preprocessing transformation on the signal 
and then an axis warping transformation on the distribution, we can remap time- 
frequency distributions to a large class of different joint distributions. 

Consider two variables a and b whose Hermitian operator representations A and 
B satisfy the following two conditions: 

1. A and B can be related to the time and frequency operators as 

.A : z - i ' V E ,  ~ = U - ~ - U ,  (4.5.10) 

with Z and U unitary transformations. 

2. The composition V - ZU -1 is an axis warping operator of the form 

(Vg)(x) - le(x)l 1/2 g[v(x)], (4.5.11) 

with v a smooth, 1-1 function. 
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In this case, a joint a-b distribution (Pa,bS)(a,b) can be constructed from any 
time-frequency distribution (Pt , f  s)(t, f )  through [13] 

(P~,D s)(a, b) - I~(a)l (Pt , f  Us)Iv(a) ,  b]. (4.5.12) 

The interpretation of (4.5.12) is simple: The transformation U rotates the (t, f )  
coordinates of the time-frequency distribution to the new coordinates (u, b). The 
transformation V then warps the rotated time axis u to align it with the quantity 
a.  

In other words, if A and B relate to T and $" as in (4.5.10) and (4.5.11), then we 
can obtain a large class of a-b distributions using a simple three-step procedure: 3 

1. transform the signal s H Us; 

2. compute a conventional time-frequency distribution of the transformed signal; 

3. warp the remapped time axis of the resulting distribution. 

The advantage of the double transformation method is that it breaks the severe 
restrictions placed on the quantities a and b by both the axis and signal transfor- 
mation methods described in Section 4.5.1. By allowing the choice of both U and 
Z, we gain access to a much larger class of distributions. However, completely free 
choice is still not possible, because U and Z must have the structural property of 
canceling modulo the warping operator V. 

4.5.3 Examples of Linked Signal/Axis Transformations 
Linked signal/axis transformations are especially useful for transforming time- 
frequency distributions to distributions of time versus a "warped frequency" variable. 
In this case, we set Z to the identity operator, choose U to be a warping operator 
based around the axis warping function v -1, and set V = U -1 to warp the rotated 
time axis back the time variable. The resulting distributions marginalize to time 

(Pt,b s)(t, b)db - [s(t)l 2 

and the integral transform 

(Pt,b s)(t, b) dt - s(x) e -j2=bv(~) IO(x)l ~/2 dx 

(4.5.13) 

(4.5.14) 

3If we define the  2-d t r ans fo rmat ion  V as the  area-preserving change of variables 

(VG) (x ,  y) = [~)(x)l G [v(a), b], 

then we can wri te  (4.5.12) in the  s t anda rd  form Pa,b = V P t , f U  found in [1]. However, whereas  [1] 

emphasized using V only to warp  bo th  axes of Pa,b s back to indicate  t ime and frequency, in this 

article we exploit  a range of different V.  
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Fig. 4.5.1: (a) Wigner time-frequency distribution of a synthetic test signal composed of two fre- 
quency modulated tones. (b) Warped Wigner distribution with time and "composite linear/sinusoidal 
instantaneous frequency" (variable "b" in (4.5.14)) marginals. The variable b measures the variation of 
the linear/sinusoidal instantaneous frequency path in time-frequency. 

that projects the signal onto the eigenfunctions of the operator U - 1 T U  [1] 

u ~ - I T U ( x ) -  (U-Io~-)(x) - ej2~rbv(x) l�9 (4.5.15) 

Each choice of v results in a different warped frequency transform matched to a dis- 
tinct class of instantaneous frequency characteristics. The Fourier, Mellin, and chirp 
transforms result from the choices v(x) = x, v(x) = log x, and v(x) = Ixl ~ aNn(x), 
respectively. 

To continue the example of Section 4.5.1.3, applying the warp U -1 to the log- 
arithmic time axis of the logarithmic time versus Mellin distribution remaps that 
axis back to true time. The resulting distributions lie in Cohen's class of time- 
Mellin distributions (time-scale in his terminology) [5,12]. This class contains the 
Marinovich-Altes (warped Wigner) distribution [11,14]. It is important to note that 
this class is out of the grasp of either signal or axis warping alone. 

In Figure 4.5.1, we show two distributions of a signal consisting of two com- 
ponents concentrated along composite linear/sinusoidal instantaneous frequencies. 
Since the Wigner time-frequency distribution does not match signals of this type as 
well as sinusoids, impulses, and linear chirps, it exhibits copious cross-components. 
Prewarping the signal to account for the form of the signal yields a postwarped dis- 
tribution that marginalizes to time and "composite linear/sinusoidal instantaneous 
frequency" content (corresponding to variable "b" in (4.5.14)) and therefore better 
matches the signal. 

Reversing the r61es of time and frequency in the warping procedure will yield 
frequency versus warped time distributions that match different classes of group 
delay (dispersion) characteristics. 



Generalized TFRs via Unitary Transforms 12"7 

4.5.4 Summary and Conclusions 
Signal and axis transformations provide a simple framework for studying certain 
distributions of variables beyond time-frequency and time-scale. When applicable, 
warping results turn the theory of joint distributions of arbi t rary variables into an 
easy exercise of coordinate transformation. 
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4.6 SIGNAL MEASURES IN THE TIME-FREQUENCY PLANE~ 
4.6.1 Time-Frequency Analysis 
The goal of time-frequency analysis has primarily been to characterize and visualize 
the behavior of nonstationary signals. This is achieved by distilling both the am- 
plitude and phase information of a signal's time series to present an image of the 
variation of the frequency content of the signal with respect to time. The resulting 
time-frequency distribution (TFD), which has many incarnations, desires to show 
this information with the highest possible resolution (energy concentration) and in- 
tegrity (correct boundaries in time and frequency). The one aspect of the TFD that 
has not been well understood (and thus utilized), however, is the derivation of useful 
measures and parameters from within the time-frequency plane itself. We seek here 
to provide an introduction to measurements in the time-frequency domain. 

4.6.2 Density Distributions and Energy Distributions 
Of the large number of TFDs that have been developed, most fall into and between 
two classes- the density distributions and the energy distributions. They may 
alternately be called (in a non-strict sense) the unsmoothed and smoothed TFDs. 
Density distributions are of the form 

FF P~z (t, f )  - Wz (t - t l ,  f - f l ) e  
o o  o o  

j2~rt  ] f I 1 
dtl df2, 0 <_ .y <_ -~ . (4.6.1) 

where Wz(t ,  f )  is the Wigner-Ville Distribution (WVD) and is expressed as 

Wz(t ,  f )  = z(t  + - ~ ) z * ( t -  )e -32~f~ dT . 
o o  

(4.6.2) 

The WVD is a member of the density class for ~ ~ 0 (which may be seen by taking 
32~r t l f  1 

the double Fourier transform of e ~ and then applying the limit). 
The other form, an energy distribution, is better known as a spectrogram, 

F iFh(t,  f)]2 = sh( t ,  f )  _ I z(T)h*(t  - T)e - j2~fr  dT 12 
(x)  

(4.6.3) 

where h(t) is the analyzing window. Energy distributions are obtained from density 
TFDs by smoothing with the (density) TFD of the window function. Many dis- 
tributions fall in between the two classes, e.g. the reduced interference distribution 
(RID) [1], and the Zhao-Atlas-Marks distribution (ZAM) [2]. In addition, there 
are many distributions that are signal dependent/adaptive (an example is provided 
later in this work and further dealt with in Article 5.3 of this book). 

~ G r a e m e  Jones ,  Sicom Systems Ltd., 67 Canboro Road, 2nd Floor Fonthill Ontario, 
LOS 1E0 Canada (gjones@sicomsystems.com). Reviewers: D. L. Jones and W. J. Williams. 
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A question that  naturally arises here is why such a distinction between TFDs 
should reasonably be made? The answer lies in our conventions of signal represen- 
tation. For a typical one-dimensional signal, the (complex) time series tell us much 
useful information about the composition of the signal (e.g. its phase), but it is 
often a poor way to visualize the signal itself. Power and spectral density plots are 
much more useful for such things. Examination of a signal in two dimensions raises 
similar concerns. The rest of the article looks to density TFDs as providing the fine 
organizational data about the signal, while viewing an energy TFD (spectrogram) 
as a convenient tool for visualizing it. 

4.6.3 Signal Measures in Time-Frequency 
To extend concepts of one-dimensional signals to two dimensions, we should find 
some natural extension of the way we characterize and measure them. At a very 
basic level, we often separate a signal into its amplitude and phase, and then pursue 
further measurements. For example, the instantaneous frequency is a common way 
to describe the phase variation. By providing a straight-forward extension to one- 
dimensional mathematical expressions of interest, 

/_~ / j  1 I d m 
f.~lZ(f)12df - [ z - ~ ( 2 - ~ ) m d - ~ z ( t ) ]  Iz(t)J2dt 

O 0  O 0  

/J = Fm(t)lz(t)] 2 dt 
O 0  

(4.6.4) 

and 

/__vO ? ~f__l)ndn tnfz(t)12dt - [Z ) ( 2 ~ j  d-~ Z(f)]  IZ(f)12df 
CX) O 0  

= T ~ ( I ) I Z ( I ) I  2 d f ,  
(X)  

(4.6.5) 

much is revealed about how measures in time-frequency can actually be derived. 
It is from expressions such as these above that  widely used quantities, like the 
instantaneous frequency and group delay (F 1 (t) and T l ( f )  in the equations above), 
have been defined. 

4.6.3.1 Extension of the Fourier Relations to Two Dimensions 

Providing two-dimensional relations in the form of equations 4.6.4 and 4.6.5 is 
straight-forward. Standard Fourier theory yields an expression of the form: 

? 
O 0  

/ ?  t~ fm[v(t, f)r 2 dt df 
oo 

( )n( 2~-~ 2 ~ - ~ -  1 1 )m co cr V* (tl f l )  cgtr ~ Of~ - - - - V ( t l ,  fl) dtl dfl ('/1.6.6) 
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where /?/? V ( t l ,  f l  ) -- v(t ,  f ) e  -j2~rty' e j2"$t' dt dr.  (4.6.7) 
o o  o o  

We now desire to incorporate within the above expression the classes of TFDs. 
Since equation 4.6.6 is based on an energy quantity (the absolute square of v(t, f ) )  
it makes sense to replace this with a spectrogram. Using Fourier relations for TFDs 
in two dimensions (see [3] for the complete derivation), local parameters in two 
dimensions can be derived as: 

TnF m ( t , f )  = fc~ f ~  f ( f ) ( f f )  df"-~176176176 (4.6.8) 

"/ f-~c~ f-~c~ P'y= (tl, fl  )fl-y~ (t - tl ,  f - f l )  dtl dfl 
1 

iFzh(t, f)l 2 ( )~(~-r-~ )m 
0 m 0 n 1 1 

[e-J~"teJ~:yh(t  + (-~ - 7)T, f + (~ + 7)T) 
0T m 

�9 1 1 
F )  (t - (~ + ~ ) ~ , / -  (~ - ~)~)] I(~,~)=(o,o) (4.6.9) 

where the short-time Fourier transform (STFT) has been defined here as: 

/ t t _ T)e_J21r f ~. dT Fh(t, f )  -- z(-~ + wlh*(-~ 
o o  

(4.6.10) 

In the limit h(t) --~ 6(t), the conventional one-dimensional quantities are extracted. 
For example, with n = 1, the following relation is produced for the above limit: 

L~ f~p~~ (t, f )d f  
T~ = f _ ~  p~. (t, f )  df " (4.6.11) 

When V = 0 and m = 1, the actual instantaneous frequency (Fl(t)  of equation 
4.6.4) is returned. This observation reinforces the notion that  these quantities are 
a two-dimensional extension of the one-dimensional local measures. 

4.6.3.2 Generation of Local Measurements in Time-Frequency 

We now concentrate on results based on the WVD (7 -- 0 in the above equations) 
due to the fact that  it is real. The theoretical relation of 4.6.8 prompts the following 
general expression for local time-frequency measures 

f-~c~ f_c~ tn fmwz( t l ,  f l )n(t , / )( t l ,  f l )dt ldf l  
TnFm~( t ' f )  = f_~ f_~ Wz( t l , f l )L ( t , / ) ( t , , f l ) d t l  dr1 " (4.6.12) 

L should be a function in time-frequency space that  is concentrated or localized in 
some way. This necessitates the use of a window function whose WVD has strong 
localizing properties. The next section reveals how the WVD of a Gaussian function 
is an ideal choice for this task, and also presents a special property of Gaussian- 
based local measures that  ultimately lead to their successful interpretation and 
application. 
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4.6.4 Properties and Interpretation of Local Measurements 
in Time-Frequency 

This section builds upon the quantities advanced as local time-frequency measures 
from the previous sections. Here we focus our attention on the set of first and 
second order measures, which we seek to associate with notions of signal extent and 
spread. In classical time-series analysis, the measures of extent for Fourier pairs are 
bounded by the Fourier (Heisenberg) uncertainty principle. There are a number of 
different ways of expressing these limits, of which two are given below [4]: 

{(t 2 _ ~)2)((f2 _ 7 ) 2 )  _ ({tf) - t f )  2 > 1 (4.6.13) 
- -  1 6 ~  "2 

[5] 
{(t - ~)2} + {(f _ ])2} > 1 (4.6.14) 

- 27r 

where {} represents the normalized average operator, and t and f are the time 
and frequency (magnitude squared) signal averages. These uncertainty principles 
provide bounds on how a signal is spread in the time and the frequency domain, 
and are satisfied with equality for Gaussian functions. 

When TFDs  are considered, no such equivalent relations are apparent. Some 
very interesting results (which relate to the concepts of spread and extent) can be 
revealed, however, when Gaussian windows are utilized. To develop such results 
in time-frequency, it is useful to employ orthogonal Hermite function expansions of 
the time signals, to derive expressions for the local moments. For example, Hermite 
function properties [6] allow expression of the scalar time operator as 

J ((2m + 2)�89 (t f )  (2m)�89 ( t , f )  tPmn (t, f )  - -~ 1,n , - -  1 , n  

+(2n)�89 - ( 2 n  + 2)-}Pm,n+l(t,f)) (4.6.15) 

where Pm~(t, f )  is the (cross) WVD of an ruth and nth order Hermite function. 
Other expressions for powers of t and f follow. By using relations such as 

/ _ ~  / _ ~  Pm~( t , f )Pqr ( t , f )d td f  - (hm, hq)(hn, hr) (4.6.16) 
O 0  O 0  

(the left hand side shows inner products of Hermite functions in L2(7r as well as 
the orthogonality of the Hermite functions 

( hn , hm ) - 0 Vm ~ n ,  (4.6.17) 

the local moments of a TFD may be derived. A very significant result is available 
when the WVD of a Gaussian signal, h(t) - e -~t2 (a zeroth-order Hermite function), 
is used as the localizing window to calculate the local parameters of equation 4.6.12. 
It is stated thus: 

[T2FO(t, f) _ T1FO(t, f)2] + [TOF2(t f) _ TOFl(t,f)2 ] = 1 v z(t), (h(t) = ~ - ~ )  
(4.6.18) 
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This result has been confirmed in experimental work, and a complete theoretical 
proof was given by the author in [3] (also showing the result holds for any linear 
FM Gaussian window). The implication of this simple result is quite profound. It 
may be observed that it is similar in form to the addition uncertainty principle of 
equation 4.6.14. This lends strong support to the notion that the Gaussian window 
is a credible localizing function. A remarkable property forthcoming from the above 
result is that it holds even if one of the time or frequency local spread measures is 
negative. 

One reason that measures in the time-frequency plane as well as conventional 
instantaneous quantities have been cited as non-intuitive is that they often yield val- 
ues that do not appear related to the physical reality (e.g. a negative instantaneous 
frequency for a signal that has no negative frequency content). The relation given 
above shows a logical balance exists within this measurement framework. The mea- 
sures do not just possess nice theoretical properties, however. To support this, the 
next section applies these local time-frequency measures to improve the resolution 
of the spectrogram. 

4.6.5 Application of Local Time-Frequency Measures to Energy 
Distributions (Spectrograms) 

Energy distributions are an important tool for displaying time-frequency signal 
content. Their main disadvantage is that they can often skew the actual time- 
frequency energy content, since they employ a window that necessarily possesses its 
own time-frequency signature. A window function that is circularly symmetric in 
the time-frequency plane is one solution, but this provides mediocre resolution in 
all directions at the expense of any smearing. 

A more appropriate solution would be to adapt the analyzing window so that 
it captures the local time-frequency character of the signal ( see [7-9] for some 
novel examples). There are a number of ways to adapt the window to the local 
time-frequency behavior. A Taylor series expansion of the signal's TFD about the 
region of interest is one approach, but there is no guarantee that the local window 
generated from the approximation will produce a valid energy distribution. 

Instead of matching the first few terms of a Taylor series, let us match the first 
couple of local moments, or in this case the bandwidth or spread measures. The 
quantities of" interest are the local time bandwidth, LTB (T2F~ f )  - T1F~ f)2), 
the local frequency bandwidth, LFB (T~ f ) -  T~  f)2), and the local cross 
time-frequency product LTF (T1FI(t,  f )) .  After applying a matching algorithm 
(described below), the resulting adaptive energy distribution would be of the form: 

FF S~ M (t, f )  = Wz(t l ,  f l )Wh( t  - tl, f - f l ,  t, f ) d t l  dfl 
o o  o o  

// = I I 
c o  

(4.6.19) 

(4.6.20) 

where Wh(tl ,  fl ,  t, f)  is the WVD of the location-dependent window function. 
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Fig. 4.6.1: Time-Frequency Distributions of a Humpback Whale Sound 

The matching process is simple, and yields excellent results. It uses the spread 
measures to determine the most appropriate values for c~ and ~ (of a Gaussian 
window, h( t )  - e - r a t 2 e j ~ Z t 2 )  at each point of interest. An iterative approach is 
used, relying on the local uncertainty result of equation 4.6.18. A full explanation 
of the algorithm appears in [3]. The following section provides an example of this 
window matching technique. 

4.6.6 Example Result for an Adaptive Energy Distribution 
The algorithm briefly described in the previous section will now be exercised. This 
example comprises a highly non-stationary real s ignal-  a sample from a Hump- 
back whale song. Its density TFD (Fig. 4.6.1(a)) is uninterpretable. Although the 
circularly symmetric spectrogram of Fig. 4.6.1(b) improves the visualization, the 
information is highly smoothed. For comparison, a ZAM distribution is provided 
(Fig. 4.6.1(c)), which is in the class of TFDs that fall in between the density and 
energy distributions. The final figure, Fig. 4.6.1(d), displays the adaptive energy 
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distribution (AED), revealing a level of detail not seen in the previous two plots. 

4.6.7 Summary and Conclusions 
A primer on the use of quantities derived from the time-frequency plane has been 
presented here. It was shown that  basic Fourier relations, used to define mea- 
sures such as instantaneous frequency, can be extended (albeit with some care) to 
time-frequency distributions. The tools for deriving and analyzing these local time- 
frequency measures were introduced, and an interesting property of the second-order 
measures was presented. An example was provided to demonstrate potential appli- 
cations of these local measures in the time-frequency plane. Article 4.4 complements 
this material with a discussion on the uncertainty principle in time-frequency anal- 
ysis. 

References 
[1] H.-I. Choi and W. J. Williams, "Improved time-frequency representation of multi- 
component signals using exponential kernels," IEEE Trans. Acoustics, Speech, ~ Signal 
Processing, vol. 37, pp. 862-871, June 1989. 

[2] Y. Zhao, L. E. Atlas, and R. J. Marks II, "The use of cone-shaped kernels for generalized 
time-frequency representations of non-stationary signals," IEEE Trans. Acoustics, Speech, 

Signal Processing, vol. 38, pp. 1084-1091, July 1990. 

[3] G. Jones and B. Boashash, "Generalized instantaneous parameters and window match- 
ing in the time-frequency plane," IEEE Trans. Signal Processing, vol. 45, pp. 1264-1275, 
May 1997. 

[4] C. W. Helstrom, The Statistical Theory of Signal Detection. New York: Oxford Uni- 
versity Press, 1968. 

[5] T. W. Parks and R. G. Shenoy, "Time-frequency concentrated basis functions," in 
Proc. IEEE Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP'90), 
pp. 2459-2462, Albuquerque, NM, 3-6 April 1990. 

[6] S. Thangavelu, Lectures on Hermite and Laguerre Expansions. Princeton, N J: Prince- 
ton University Press, 1993. 

[7] R. G. Baraniuk and D. L. Jones, "A signal-dependent time-frequency representation: 
Optimal kernel design," IEEE Trans. Signal Processing, vol. 41, pp. 1589-1602, April 
1993. 

[8] R. N. Czerwinski and D. L. Jones, "Adaptive cone-kernel time-frequency analysis," 
IEEE Trans. Signal Processing, vol. 43, pp. 1715-1719, July 1995. 

[9] D. L. Jones and R. G. Baraniuk, "A simple scheme for adapting time-frequency repre- 
sentations," IEEE Trans. Signal Processing, vol. 42, pp. 3530-3535, December 1994. 



Time-Frequency Transfer Function Calculus of Linear Time-Varying Systems 135 

4.7 TIME-FREQUENCY TRANSFER FUNCTION CALCULUS 
OF LINEAR TIME-VARYING SYSTEMS 0 

4.7.1 Linear Time-Varying Systems 
Due to their generality, linear t ime-varying (LTV) systems (which can equivalently 
be viewed as linear operators [1]) have important advantages over linear time- 
invariant (LTI) systems. Applications of LTV systems include mobile communi- 
cations (see Articles 9.5, 13.2, and 13.3), machine monitoring (see Articles 15.2 and 
15.6), and nonstationary statistical signal processing (see Articles 9.2, 9.4, 12.1, 
and 12.4). An LTV system H maps the input signal x(t)  to an output signal y(t) 
according to 

y(t) - (Hx)(t) = h(t, t') x( t ' )  d t ' ,  (4.7.1) 
o o  

where h(t, t') is the kernel (impulse response) of H. LTI systems and their dual, 
linear frequency-invariant  (LFI) systems, are special cases of LTV systems. For an 
LTI system, y(t) - (Hx)(t)  - f _ ~  g(t - t') x( t ' )  dt' and thus h(t, t') - g(t - t'). For 
an LFI system, y(t) = (Hx)(t) = w(t) x(t)  and thus h(t, t') = w(t)  5(t - t'). 

For LTI and LFI systems, there exist physically intuitive and numerically effi- 
cient analysis and design methods that are based on the spectral transfer function 
G ( f )  - f _ ~  g(~-)e - j2~/r  dr  and on the temporal transfer function w(t),  respec- 
tively. Unfortunately, a similar transfer function does not exist for LTV systems 
in general. However, in this article we will show that for the important class of 
underspread LTV systems, the generalized Weyl symbol constitutes an approximate 
time-frequency (TF) transfer function. We note that other TF symbols are discussed 
in Article 9.2. 

4.7.2 The Generalized Weyl Symbol 
The generalized Weyl symbol (GWS) of an LTV system H is a family of linear TF 
representations defined as [2] 

F L ~ ) ( t ,  f )  ~- h(a)(t, r ) e -J2"YrdT  
o o  

with (1)) 
h(~) (t, T) ~-- h t +  -~ - a T, t -- -~ + a T , (4.7.2) 

where c~ is a real-valued parameter. The GWS reduces to the ordinary Weyl symbol 
[3-6] for c~ = 0, to Zadeh's t ime-varying transfer funct ion [7] for c~ = 1/2, and to 

~ G. Matz and F. Hlawatsch, Institute of Communications and Radio- 
Frequency Engineering, Vienna University of Technology, Gusshausstrasse 25/389, 
A-1040 Vienna, Austria (email: g.matz@ieee.org, fhlawats@pop.tuwien, ac. at, web: 
http://www.nt.tuwien.ac.at/dspgroup/time.html). Reviewers: S. Barbarossa and A. Papandreou- 
Suppappola. 
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Bello's frequency-dependent modulation function [8] (also known as Kohn-Nirenberg 
symbol [3]) for c~ = - 1 / / 2 :  

S:( L ) ( t , f )  = h t +  7 , t -  dr 
O 0  

i L~I/2) (t, f )  - h(t, t - r) e - j2" f"  dr 
O 0  

1 L(H-1/2)(t,f) -- h(t + r , t ) e  -y2'~f" dr .  
O 0  

In what follows, c~ will be considered fixed. 

The GWS L(Ha)(t, f )  is a linear TF representation of the LTV system H. It 
contains all information about H since the kernel of H can be recovered from the 
GWS: 

I ? (  ' ) 
Also, the input-output relation (4.7.1) can be reformulated in terms of the GWS. 
This reformulation becomes especially simple for c~ = +1//2: 

I :: y(t) - L ~ 1 2 ) ( t , f ) X ( f ) d  2~f, df, r ( f )  - L(H- '12)( t , f )x( t )e  - j2"st  dt. 
(X)  (X)  

For a rank-one system with impulse response h(t, t') - u(t) u* (t'), L (~) (t, f )  reduces 
to the generalized Wigner distribution [9] of the signal u(t). Other interesting 
properties of the GWS can be found in [2, 5,10] and for a = 0 in [3, 4, 6]. 

Next, we consider the GWS of some simple specific systems. The results obtained 
suggest that  (under appropriate assumptions to be discussed later) the GWS can be 
interpreted as a "TF transfer function" that  characterizes the "TF weighting" pro- 
duced by the LTV system H, i.e., the way in which a component of the input signal 

x(t) located about some TF point (t, f ) i s  attenuated (IL(a)(t, f)l < 1), amplified 

(IL(~)( t, f)l > 1), or passed without attenuation or amplification (IL~i)(t, f ) l -  1) 
by H. 

�9 The GWS of the identity operator I with kernel h(t, t') = 5 ( t -  t') is given by 

L~ ~) (t, f )  - 1 (i.e., no attenuation/amplification anywhere in the TF plane). 

~(a) defined by 1 (w x) (t) - x( t  - �9 The GWS of the TF shift operator ~v,r V~T 

~-) e j2rvt e j2rw-(a-1/2) is a two-dimensional complex sinusoid, 2 L (a) (t, f )  - 

1The parameter  a in ~(a) corresponds to the infinitely many ways of defining a joint TF  shift D//1T 

by combining time shifts and frequency shifts. In particular,  ci - 1/2 corresponds to first shifting 
in t ime and then shifting in frequency, whereas ci = - 1 / 2  corresponds to first shifting in frequency 
and then in time. 

2Note tha t  the GWS parameter  a is chosen equal to the parameter  ci in g(a) D V l T  " 
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e j 2 ~ ( v t - T f )  and thus IL (a) (t, (i.e. no , w f)[ - 1 , attenuation/amplification any- 

where in the TF plane). 

The GWS of an LTI system with kernel h(t, t') = g ( t -  t') reduces to the 

ordinary transfer function G(f )  for all t, i.e., L ~  ) (t, f )  - G( f ) .  

The GWS of an LFI system with kernel h(t, t') = w(t) 5(t - t') reduces to the 

temporal transfer function w(t) for all f ,  i.e., L(H ~) (t, f )  -- w(t). 

The last two examples show the GWS's consistency with the conventional transfer 
functions. 

In what follows, we shall investigate the conditions under which the GWS can 
be interpreted as a TF transfer function. The key element in this investigation is an 
analysis of the TF shifts produced by H. For this analysis, we need another linear 
TF representation of H, to be discussed next. 

4.7.3 The Generalized Spreading Function 
Besides a TF-dependent weighting, LTV systems can also introduce TF shifts of var- 

ious input signal components. Here, the TF shift operator w mentioned above--  V~T 

with ~ denoting frequency (Doppler) shift and 7 denoting time shift/delaymis an 
elementary example. A joint description of the TF shifts introduced by a linear 
system H is given by the generalized spreading function (GSF) [2] 

s(. ")(., 
(X) 

h (a) (t, 7) e -j2~vt dt, 

with h(a)(t,T) as in (4.7.2). Like the GWS, the GSF S(Ha)(~,T)is a linear TF 
representation of the LTV system H, and it contains all information about H since 
the kernel of H can be recovered from the GWS. The input-output relation (4.7.1) 
can be reformulated in terms of the GSF according to 

O0 O0 

S(H ~) (~, T) (~;(")x)(t) d~ dT oV~T 

This represents the output signal y(t) = (Hx)(t) as a weighted superposition of 

TF shifted versions (o(a)~u,rx)(t) ~ --  x ( t  -- T)  e J 2 r v t  e j 2 n u r ( a - 1 / 2 )  of the input signal 
x(t). The (~,~-)-dependent weights in this superposition are given by the GSF, 
thus establishing the GSF's interpretation as a "TF shift distribution" of H. The 

(~)(,, 7-) about the origin of the (~, T) plane indicates the amount extension of S H 

of TF shifts caused by H. In particular, a large extension of S(Ha)(~, T) in the 
direction indicates large frequency/Doppler shifts (equivalently, fast time variation) 

and a large extension of S(H~)(~, 7) in the 7 direction indicates large time shifts 
(delays). 
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(a) (b) (c) (d) 

r v /] 

Fig. 4.7.1: Schematic representation of the GSF magnitude of some (classes of) linear systems: (a) 
identity operator, (b) TF shift operator, (c) LTI system, (d) LFI system. 

GSFs with different a values differ merely by a phase factor, i.e., 

s(. (., - 

Therefore, the GSF magnitude is independent of a, IS(al)(U,T)I -- IS(Ha2)(U,T)I, 
and thus we may simply write ISH(u, T)I. The GSF is related to the GWS by a 
two-dimensional Fourier transform, 

55 S (~) (u, T) -- L(H ~) (t, f )  e -j2~(~t-~f) dt df. (4.7.3) 
O 0  O 0  

Further properties of the GSF are described in [2, 5,10]. 
Again, it is instructive to consider a few examples (see Fig. 4.7.1): 

�9 The GSF of the identity operator I is given by S~ ") (u, T) = 5(u)5(r), which is 
zero for (u, T) 7(= (0, 0) (i.e., neither frequency shifts nor time shifts). 

~(") ' r)  5(u �9 The GSF of a TF shift operator w is obtained as o(~) tu, - - 
a v  0 ,*r 0 

~0) 5 ( T -  7O), which is zero for (u, T) r (U0, T0) (i.e., no frequency and time 
shifts other than by Uo and To, respectively). 

The GSF of an LTI system H with kernel h(t , t ' )  = g ( t -  t') is given by 

S(H ~) (u, T) -- 5(u)g(~') (i.e., only time shifts whose distribution is characterized 
by the impulse response g(T)). 

�9 The GSF of an LFI system H with h(t , t ' )  = w ( t ) 5 ( t -  t') is given by 

S(a)(u, T) -- W(u)5(T),  where W(u) is the Fourier transform of w(t) (i.e., 
only frequency shifts whose distribution is characterized by W(u)). 

4.7.4 Underspread LTV Systems 
Using the GSF, we now define the class of underspread LTV systems [5, 10] for 
which, as we will see in Section 4.7.5, the GWS acts as a "TF transfer function." 
Conceptually, an LTV system is underspread if its GSF is well concentrated about 
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the origin of the (u, T) plane, which indicates that the system introduces only small 
TF shifts, i.e., the system's time variations are slow and/or  its memory is short. In 
contrast, systems introducing large TF shifts are termed overspread [5,10]. 

There are two alternative mathematical characterizations of the GSF extension 
and, in turn, of underspread systems. The first characterization [10] requires that 

the support of the GSF S(H ~) (~, 7-) is confined to a compact region GH about the ori- 

gin of the (~, T) plane, i.e., ISH(/], T ) I -  0 for (~, "1-) r ~ H .  Let/]H A max(~,~)eg H i~ I 

and 7" H - -  ~ max(~,r)~GH 17-1 denote the maximum frequency shift and time shift, re- 
spectively, introduced by the system H. We define the Doppler-delay spread of H A 
as aH -- 4UHTH, which is the area of the rectangle [--UH, UH] • [--TH, ~'H] enclosing 
GH. Underspread LTV systems are then defined by the condition aH << 1. 

Unfortunately, the GSF of practical LTV systems rarely has compact support. 
An alternative, much more flexible characterization of the GSF extension and of 
underspread systems that does not require a compact support assumption is based 
on the normalized weighted GSF integrals 3 [5] 

/_=x~ /_=x~ (~(/2, T)'SH(/],T)] db'dT" 

~  - -  

ISH(" ,T ) Id"dT  
o o  o o  

Here, r  T) is a nonnegative weighting function that satisfies r T) > r 0) = 0 
and penalizes GSF contributions lying away from the origin. We also define the 

~,(k,t) A m(HCk,~) GSF moments  "~ as special cases of m(H r using the weighting func- 
tions r 7) --],ILITI k with k, l c N0. Thus, without the assumption of compact 
GSF support, a system H can now be considered to be underspread if suitable 
GSF integrals/moments are "small." While this is not a clear-cut definition of un- 
derspread systems, it has the advantage of being more flexible than the previous 
definition that was based on the area of the (assumedly) compact support of the 
GSF. It can be shown that if the GSF of H does have compact support with max- 

(k,L) < "~I TkH and imum frequency shift /]H and maximum time shift 7"H, then m H _ 

~(k,k) < (CH//4)k Thus, LTV systems that are underspread in the in particular, "~H -- 
compact-support sense can be considered as a special case of the extended under- 
spread framework based on weighted GSF integrals and moments. 

Examples of various types of underspread systems are illustrated in Fig. 4.7.2. 
It should be noted that the concept of underspread systems is not equivalent to that 

of slowly time-varying (quasi-LTI) systems. A quasi-LWI system (i.e., small m ~  'l)) 
_(k,0) may be overspread if its memory is very long (i.e., very large "tH ), and a system 

( 0 , z )  with faster time-variations (i.e., larger m H ) may be underspread if its memory is 
_(k,0) 

short enough (i.e., very small "~H )" Finally, note that according to (4.7.3), the 
GWS of an underspread LTV system is a smooth function. 

3Other definitions of weighted GSF integrals and moments can be found in [5]. 
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(1,1) Fig .  4.7.2:  GSF magnitude of (a) an underspread system with small m H , (b) an underspread 
(1,0)__(0,1) system with small m H -,,~g , (c) a "r underspread system [5], (d) a quasi-LTI system (slowly 

(0,1) (1,0) time-varying; small m H ), (e) a quasi-LFI system (short memory; small m H ). 

4.7.5 Time-Frequency Transfer Function Calculus 
For underspread LTV systems as defined in the previous section, the GWS acts 
as an approximate "TF transfer function" that generalizes the spectral (temporal) 
transfer function of LTI (LFI) systems. Indeed, if specific weighted GSF integrals 

m(r and/or moments m(H k't) n are small, one can show the validity of several trans- 
fer function approximations [5, 10], some of which are discussed in the following. 
Applications of these approximations include time-varying spectral analysis, linear 
TF filter design, and detection/estimation of nonstationary random processes (for 
references see Section 4.7.6). 

Adjoint system. For an LTI system H with transfer function G(f) ,  the trans- 
fer function of the adjoint H + is G*(f). A similar correspondence holds for LFI 
systems. For general LTV systems, the GWS of the adjoint H + (with kernel 
h+(t,t  ') = h*(t',t) [1]) is not equal to the conjugate of the GWS of H unless 
a = 0. However, for an underspread LTV system H this is approximately true: 

(") (t f )  .~ [L(H~)(t, f)] * H+ ' (4.7.4) 

Indeed, it can be shown [5] that the associated approximation error is upper bounded 
as  

I r(~l~"H+ (t, f ) -  [L(H~l(t,f)]*[ <_ 47rla I IISn[[1 m~ '1), (4.7.5) 

with [[SHIll -- L~c~ L~cx)]SH(/] ,  T)[ du dT. Thus, for an underspread system where 

(1,1) is small, the approximation (4.7.4) will be quite good. It follows from (4.7.4) mI-i 
that the GWS of a self-adjoint, underspread LTV system is approximately real- 
valued: 

H + = H  [L(~)(t, f)] * ~ L(H~>(t, f )  , ~3{L~)(t, f ) }  ~ O. 

In addition, if the underspread LTV system H is positive (semi-)definite [1], then 

~{L (a) (t, f )} ~ L (a) (t, f)  is approximately nonnegative. 
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F i g .  4 . 7 . 3 :  Transfer function approximation of the Weyl symbol (GWS with c~ = 0) for a composition 
of underspread systems: (a) Weyl symbol of HI ,  (b) Weyl symbol of H2, (c) Weyl symbol of H2H1, 
and (d) product of the individual Weyl symbols L (~ (t, f )  and L (~ (t, f ) .  Note the similarity of (c) 

H1 H2 
and (d). In this and subsequent simulations, time duration is 128 samples and normalized frequency 
ranges from - I /4  to 1/4. 

Composition of systems. The transfer function of a composition (series connec- 
tion) of two LTI systems with transfer functions Gl(f)  and G2(f) is given by the 
product G~ (f) G2(f). An analogous result holds for the composition of two LFI sys- 
tems. This composition property of transfer functions is the cornerstone of many sig- 
nal processing techniques. Unfortunately, a similar composition property no longer 
holds true for the GWS in the case of general LTV systems. However, the GWS of 
the composition H2H1 of two jointly underspread [5] LTV systems H1 and H2 is 
approximately equal to the product of their GWSs, i.e., 

L (~) (t f)..~ L(~)(t , f )L(~)(t , f )  (4.7.6) H 2 H 1  ~ H1  H 2  " 

An upper bound on the associated approximation error (similar to (4.7.5)) can again 
be provided [5]. Combining (4.7.4)with (4.7.6), we furthermore obtain 

(~) (t f)  ~ r(a) (t f ) ~  [L(Ha)(t f)l 2 H H +  ' ~ H + H  ' , " 

Fig. 4.7.3 shows an example illustrating the approximation (4.7.6) for a = 0. In this 

example, the maximum normalized error maxt,flL (~ (t f ) - L  (~ (t, f)  L (~ (t, f ) l /  H 2 H 1  ~ H1  H 2  

maxt,flL (~ (t f)l is 0.045, which means that the approximation is quite good. H 2 H 1  

Approximate eigenfunctions and eigenvalues. The response of an LTI system 
with transfer function G(f) to a complex sinusoid e j2~fot is G(fo)e j2~f~ and the 
response of an LFI system with temporal transfer function w(t) to a Dirac impulse 
5(t-to) is given by w(to)5(t-to).  Hence, complex sinusoids and Dirac impulses are 
the eigenfunctions of LTI and LFI systems, respectively, with the eigenvalues given 
by corresponding values of the transfer function, G(fo) and w(to). In contrast, the 
eigenfunctions of general LTV systems are not localized or structured in any sense. 
However, for underspread LTV systems, well TF localized functions are approxi- 

mate eigenfunctions and the GWS L (~) (t, f)  constitutes an approximate eigenvalue 
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Fig. 4.7.4: Eigenfunction/eigenvalue approximation of the Weyl symbol (GWS with a = 0) of an 
underspread LTV system: (a) Wigner distribution [12] (top) and real and imaginary parts (bottom) 
of input signal Sto,$o (t), (b) Weyl symbol of H, (c) output signal (t]Sto,fo)(t), and (d) input signal 
Sto,$o (t) multiplied by LH(t0, f0). Note the similarity of (c) and (d). 

distribution over the TF plane (for related results see [11] and Article 13.3). Indeed, 
consider the following family of signals, 

= - t o )  

where s(t) is a signal well TF localized about t = 0 and f = 0. Evidently, Sto,Io (t) 
is well TF localized about t = to and f = fo. For an underspread LTV system H, 
one can show [5] 

(Hsto,:o)(t) ~ L(")(toH , fo) Sto,/o(t) , (4.7.7) 

i.e., the signals Sto,fo(t) are "approximate eigenfunctions" of H, with the associ- 

ated "approximate eigenvalues" given by the GWS values L(H a) (to, fo). Eq. (4.7.7) 
shows that a signal well TF localized about some TF point is passed by H nearly 
undistorted; it is merely weighted by the GWS value at that point, thus corrob- 
orating the GWS's interpretation as a TF transfer function. An example illus- 
trating the approximation (4.7.7) for the case c~ = 0 is shown in Fig. 4.7.4. In 

this example, the normalized error [IHsto,/o - L~ ) (to, .to) Sto,:o [12//llHsto,/o 1[ 2 (with 
Ilxll 2 = f _ ~  Ix(t)] 2 dt) is 0.06. 

Approximate uniqueness of the GWS. For an underspread LTV system H, it can 
furthermore be shown [5] that the GWS is only weakly dependent on the parameter 
a. That is, 

L(H a~) (t, f)  ~ L (a2) (t, f )  

for moderate values of lal -a2[ .  This means that the TF transfer function provided 

by the GWS is approximately unique. In particular, the Weyl symbol L(~)(t, f) ,  
Zadeh's time-varying transfer function r (1/2) (t f),  and Bello's frequency-dependent "JH 
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Fig. 4.7.5: Violation of the eigenfunction/eigenvalue approximation of the Weyl symbol in the case 
of an overspread LTV system: (a) Wigner distribution (top) and real and imaginary parts (bottom) 
of input signal Sto,/o (t), (b) Weyl symbol of H, (c) output signal (Hsto,/o)(t), and (d) input signal 
Sto,/o(t) multiplied by LH(t0, f0). This figure should be compared with Fig. 4.7.4; note that now 
the signals in (c) and (d) are very different. The overspread character of H is indicated by the rapid 
oscillation of the Weyl symbol in (b) and by the factmevident upon comparison of (a) and (c)--that 
the signal Sto,/o (t) is partly TF shifted by the system H. 

modulation function L(H-1/2)(t, f) will be approximately equivalent for an under- 
spread LTV system H. 

Discussion. As mentioned before, the above approximate relations (more can be 
found in [5, 10]) extend analogous (exact) relations satisfied by the conventional 
transfer function of LTI/LFI  systems. In this sense, the GWS is an approximate 
TF transfer function of underspread LTV systems. As a mathematical underpinning 
of these approximations, explicit upper bounds on the associated approximation er- 
rors have been developed [5,10]. These bounds are formulated in terms of the GSF 

parameters ~- (r --(k'l) "~ , ~ H  or CrH defined in Section 4.7.4. If specific such parame- 
ters are small (indicating that  H is underspread), the upper bounds on specific 
approximation errors are small and thus the respective approximation will be good. 

On the other hand, we caution that the above approximations and, thus, the 
GWS's interpretation as a TF transfer function are not valid for overspread LTV 
systems. This is illustrated in Fig. 4.7.5. 

4.7.6 Summary and Conclusions 
While general linear, time-varying systems are fairly difficult to work with, we 
have shown that for the practically important class of underspread systems a very 
simple and intuitively appealing time-frequency transfer function calculus can be 
developed. Indeed, the generalized Weyl symbol can be used as an approximate 
time-frequency transfer function in a similar way as the conventional transfer func- 
tion of time-invariant systems. Applications of this time-frequency transfer function 
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calculus to nonstat ionary signal analysis and processing are considered in Articles 
9.4, 11.1, and 12.4. Finally, an extension to random systems/channels  is considered 
in Article 9.5. 
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4.8 WIGNER DISTRIBUTION AND FRACTIONAL FOURIER 
TRANSFORM ~ 

4.8.1 Time-Frequency Representations 
A Fourier transformation maps a one-dimensional time signal x(t) into a one- 
dimensional spectrum denoted (in the notation to be explained in this article) by 
X~/2(f). A shortcoming of the Fourier transform (FT) is that  it does not give an 
obvious indication of the time location of the spectral components, which is an im- 
portant characteristic of non-stationary or time-varying signals. To describe such 
a signal we may use a time-frequency representation (TFR),  which maps a one- 
dimensional time signal into a two-dimensional function of time and frequency. In 
this article we consider the fractional FT, which belongs to the class of linear TFRs,  
and establish its connection to the Wigner distribution (WD), which is one of the 
most widely used quadratic TFRs  in electrical engineering. In particular we use the 
Radon-Wigner transform (RWT), which relates projections of TFRs  to the squared 
modulus of the fractional FT, and we show that  all frequently used moments of the 
WD can be obtained from the RWT in an optimal way. Moreover, we introduce 
some fractional FT moments that  can be useful for signal analysis. 

4.8.2 Wigner Distribution and Ambiguity Function 
The Wigner distribution is defined (see Section 2.1.3) as 

f ~ (t exp(--j27r f T) Wx(t, f) - x(t -Jr- -~T)I X* -- 1T)  dT 
cx )  

(4.8.1) 

~ T a t i a n a  Al ieva  and M a r t i n  J.  B a s t i a a n s ,  Technische Universiteit Eindhoven, 
Faculteit Elektrotechniek, Postbus 513, 5600 MB Eindhoven, Netherlands (M.J.Bastiaans@tue.nl). 
Reviewers: G. Faye Boudreaux-Bartels and LJubi~a Stankovid. 

5 ( f  - It/) exp (j27~ut) du, - X~/2(f + ~u) X~/2. 
o o  

where x(t) is a time signal and X~/2(f) its FT. The WD is always real-valued, 
but not necessarily positive; it preserves time and frequency shifts, and satisfies 
the marginal properties, which means that  the frequency and time integrals of the 
WD, f Wx(t, f )d f  and f Wx(t, f)dt,  correspond to the signal's instantaneous power 
x(t)l 2 and its spectral energy density ]X~/2(f)] 2, respectively. The WD can roughly 

be considered as the signal's energy distribution over the time-frequency plane, 
although the uncertainty principle prohibits the interpretation as a point time- 
frequency energy density. 

If in Eqs. (4.8.1) the integrations are carried out over the common variable (t 
or f )  instead of over the difference variable (T or u), we get the ambiguity function 
A~(7-, u), which is related to the WD by means of a Fourier transformation [1]: 

A~(r, u) - W~(t, f) exp[-j27r(ut - IT)] dt df . (4.8.2) 
o o  o o  
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The ambiguity function (AF) is another widely-used quadratic TFR.  

4.8.3 Fractional Fourier Transform 
The fractional Fourier transform of a signal x(t) is defined as [2, 3] 

F X~(u)  = 7r ~ Ix(t)] (u) = K(a ,  t, u) x(t) dt, 
o o  

(4.8.3) 

where the kernel K ( a ,  t, u) is given by 

�89 ( (t2 + u2) cos ol - 2ut ) 
K(c~, t, u) - exp(j  exp jTr - = K ( a ,  u t). (4.8.4) 

v/j sin c~ sm a ' 

The fractional FT  with parameter  a can be considered as a generalization of the 
1 1 ordinary FT; thus the fractional FT  for c~ = ~ and a - - ~  reduces to the ordi- 

nary and inverse FT,  respectively. For a - 0 the fractional FT  corresponds to the 
identity operation, Xo(u) = Ti~ = x(u), and for ~ = • to the axis reversal 
operation, X+~(u) - Ti+~[x(t)](u) - x ( - u ) .  With respect to the parameter  c~, the 
fractional FT  is continuous, periodic [7~ ~+2~n = 7~ ~, with n an integer] and additive 
[ ~ 7 r  z - TC~+Z], and has the symmetry  relation Ti~[x*(t)](u) = {Tr *. 
The inverse fractional FT  can thus be written as 

F z ( t )  = R (t) = t, u) X (u) du. 
o o  

(4.8.5) 

Since the Hermite-Gauss functions ~n( t )  = (2n-1/2n!) -1/2 exp(-~rt  2) Hn(v/~'~t), 
with Hn (t) the Hermite polynomials, are eigenfunctions of the fractional FT  with 
eigenvalues e x p ( - j n a ) ,  and since they compose a complete orthonormal set, it is 
possible to write the fractional FT  kernel in the alternative form 

o o  

K ( a ,  t, u) = E e x p ( - j n a )  q~n(t) q~n(U). 
n - - 0  

(4.8.6) 

The important  property of the fractional FT, which allows us to establish a 
connection between it and the WD, the AF, and other members of Cohen's class [1] 
of quadratic TFRs,  is that  a fractional Fourier transformation produces a rotation 
of these functions in the time-frequency plane [2]: 

x(t) ~. ~. Wx(t, f )  and Az(T,~) 

i fractional FT rotation of WD and AF 

X~(t)  - Tr ~ [x] , , W x ~ ( t , f )  = W z ( t c o s a -  f s i n a ,  t s i n a + f c o s a )  and 
Ax~ (T, v) = Az (T COS c~ -- v sin c~, T sin c~ + v cos a).  
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T a b l e  4 .8 .1"  Fractional Fourier transform properties 

Linearity: 
T~ ~ lax(t) + by(t)] (u) - aT~ ~ [x(t)] (u) + bT~ ~ [y(t)] (u) 

Parseval's equality: 

/? J? x(t) y* (t) dt - X~ (u) Y2 (u) du 
o o  o o  

Shift theorem (real T)" 
T~ ~ [x(t - 7)] (u) - Xa(u  - 7cosa)  exp [ j~ s ina  (T 2 COSa -- 2UT)] 

Modulation theorem (real v)" 
7~ ~ Ix(t) exp(j2~vt)] (u) - X~(u  - vs ina )  exp [ - j ~  cosa (v2 s ina  - 2uv)] 

Scaling theorem (real c and 3, where tan/3 - c 2 tan a)" 

7~ ~ [z(ct)] ( u ) -  <: : : /3a exp ( j a  2 ~ ) e x p  [ j~u2co ta  (1 

x X / u s i n / ~  
~ ~ , c s i n a J '  

cos 2/3)]  

c o s  2 oL 

Hence, we conclude that Wx~ (u, v) - Wx(t,  f ) ,  where the coordinates (u, v) in the 
rotated frame are related to (t, f )  via the matrix relationship 

( u ) _ (  cosa s ina  ) ( t  ) (4.8.7) 
v - s ina  cosa f " 

A similar relation holds for the AF. 
The main properties of the fractional FT are listed in Table 4.8.1, and the 

fractional FT of some common functions are given in Table 4.8.2. 

4.8.4 Fractional Power Spectrum and Radon-Wigner Transform 
If we introduce the fractional power spectrum IX (t)l the squared modulus of 
the corresponding fractional FT, we obtain that these fractional power spectra are 
the projections of the WD upon a direction at an angle a in the time-frequency 
plane [4], 

/? I X~ (t) l 2 _ Wx~ (t, f )  df = Wx (t cos a - f sin a, t sin a + f cos a) dr, 
(x)  o o  

(4.8.8) 
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Table 4.8.2: Fractional Fourier transforms of some common functions 

x(t) x~(~) 

5(t- ~) 

exp(j27rt~) 

exp (jcTrt 2 ) 

Hn(v/~-~t) exp(-Trt 2) 

exp (-cTrt 2) (c >_ O) 

e x p ( j l a )  

v/j sin a 
exp 

j ( r  2 + u 2) cos a -  2 u r  
71" 

sin a 

l e t )  exp(j~ 

COS OZ 
exp [-jTr(u 2 + u 2) tan a + j27ruu sec a] 

( ) exp(j ~ exp jTru 2 c - tan a 
v/cos a + c sin a 1 + c tan a 

Hn (v/~u)  exp(-Tru 2) exp(- jna) ,  
Hn are the Hermite polynomials 

let) [' j ( c 2 -  1)cot a -  ccsc 2 a ]  exp(j7 exp 7ru 2 
v/COS a + jcs in  a c 2 + cot 2 a 

and that  they are related to the AF by a Fourier transformation: 

/? Ix~( t ) l  2 -  A = ( f s i n a , - f c o s a )  exp(-j27rft)df. (4.8.9) 
oo 

The set of fractional power spectra for the angles a E [0, 7r) is called the Radon- 
Wigner transform, because it defines the Radon transform [5] of the WD. The WD 
can be obtained from the RWT by applying an inverse Radon transformation. Note 
also that  the AF can be reconstructed from the RWT by a simple inverse Fourier 
transformation, see Eq. (4.8.9), and that  other members of Cohen's class of TFRs 
can be constructed subsequently. 

The RWT can be considered as a quadratic T F R  of x(t), which has very ad- 
vantageous properties. It is positive, invertible up to a constant phase factor, and 
ideally combines the concepts of the instantaneous power Ix(t)l  2 and the spectral 
energy density Ix~/2(f)l 2. The association of the RWT with the power distribu- 
tions allows its direct measurement in optics and quantum mechanics, which opens 
new perspectives for optical signal processing and quantum state characterization. 

4.8.5 Fractional Fourier Transform Moments 
The application of the different TFRs often depends on how informative their mo- 
ments are and how easily these moments can be measured or calculated. The 
established connection between the WD and the RWT permits to find an optimal 
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way for the calculation of the known WD moments  and to introduce fractional F T  
moment s  tha t  can be useful for signal analysis. 

By analogy with time and frequency moments  [6], 

l/ t ~ [x(t)l 2 dt - t~Wx( t ,  f )  dt df  
o o  o o  oo  

f~ IXTr/2(f)l 2 df - f n W x ( t , f ) d t d f  - t n W x . / 2 ( t , f )  d td f ,  
(DO (DO (NO O0 (NO 

the fractional FT  moments  can be introduced: 

F (  1 t~ 0 
(47rj) m ~ Otl 

i rlt 

O X ~ ( t l ) X ~ ( t 2 )  
Ot2 

t~=t2=t 

F F  dt ~ m - t f W x o ( t , f ) d t d f .  
(x) (Do 

The zero-order fractional F T  moment  E, 

F F F  F E - Ix~( t ) l  2 dt - Wxo  (t, f )  dt df  - [x(t)l 2 dt, 
(DO O0 O0 O0 

(4.8.10) 

is invariant under  fractional Fourier t ransformation,  which expresses the energy 
conservation law of a uni tary  t ransformation,  also known as Parseval 's  relation. 

The normalized f irst-order fractional F T  moment  rna, 

1 F 2 1FF - t Wx~  (t, f )  dt dr, rn~ -E t lX~(t)l d r -  -~ 
o o  o o  

(4.8.11) 

is related to the center of gravity of the fractional power spectrum. One can write 
the simple connection 

rn~ = m0 cos a + m~/2 sin a (4.8.12) 

between the first-order fractional FT  moments.  It is easy to see tha t  the pair 

(rn~,rn~+~/2) is connected to (mo, m~r/2) through the ro ta t ion  t ransformat ion  
2 771,2 __ T/~2 _~_ Tyt2 (4.8.7), and tha t  m s + ~+~/2 ~/2 is invariant under  fractional Fourier 

t ransformation.  The fractional domain corresponding to the zero-centered fractional 
power spec t rum can be found as tan a = - m o / m ~ / 2 .  

The normalized second-order central fractional FT  moment  p~, 

i (t - ma)  2 IXa(t)l 2 dt -- I p~ - ~ ~ ~ ~ (t - m~) 2 Wx~ (t, f )  dt df  
o o  

/?/ I o0 t 2 W x o  (t, f )  dt df  - m a 
E o o  o o  

is related to the effective width of the signal in the fractional F T  domain.  The 
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normalized mixed second-order central fractional F T  moment  #a is given by 

I F  1 c~ (t - ms )  ( f  - ma+r /2 )  W x ~  (t, f )  dt df  ~ - - ~  ~ 

= -E ~ 0o t f W x ~  (t, f )  dt df  - m~m~+,~/2 (4.8.14) 

[ox (t) c O X ~ ( t ) l t d t _ m a m a + ~ / 2 "  
= 47rjE ~ Ot X ~ ( t )  - X a ( t )  Ot 

The following relationships between the second-order fractional F T  moments  
hold: 

Pa = P0 cos 2 c~ + P~/2 sin2 a + #o sin 2c~ (4.8.15) 
1 (Po - P~/2) sin 2c~ + #o cos 2c~. #~ = - ~  

In general all second-order moments  pa and pa can be obtained from any three 
second-order moments  p~ taken for three different angles a from the region [0, 7r). 

1 (po +P~/2)  +P~/4 The mixed moment  #0, for instance, can be expressed as #o = - 7  
From Eqs. (4.8.15) we conclude tha t  the sum of the signal widths in the t ime 

and the frequency domain is invariant under fractional Fourier transformation: 

P~ + Pa+Tr/2 - Po + PTr/2. (4.8.16) 

Note also tha t  the fractional domain corresponding to the ex t remum signal width 
p~ can be found by solving the equation t a n 2 a  = 2 # o / ( p o - P , / 2 ) ,  i.e., #~ = 0. Due 
to the invariance relationship (4.8.16), the solution of this equation corresponds to 
the domain with the smallest p~ and the largest Pa+~/2, or vice versa. 

For the product  of the signal widths we find 

1[( ~ 1 P~P~+./2 = PoP./2 + ~ Po - P~/2) - 4 .  sin 2 2(~ - 7/zo (Po - P~r/2) sin4c~, 

(4.8.17) 
which expression is, in general, not invariant under fractional Fourier transforma- 
tion; invariance does occur, for instance, in the case of eigenfunctions of the Fourier 

1 t ransformation,  g(t) ,  say, for which Ga+r/2( t )  - e x p ( - j n 7 7 r  ) Ga( t )  [cf. the eigen- 
values e x p ( - j n a )  in Eq. (4.8.6)], in which case p~ = P0 = P~/2 and #~ = 0. Note 

1 The fractional F T  that ,  due to the uncertainty principle, we have paP~+~/2 >_ ~. 
domain where the product  PaP~+,/2 has an ext remum value can be found by solving 

the equation tan 4a  - 4#0(P0 - P~/2)/[(Po - P , /2 )  2 - 4p2]. 
From Eqs. (4.8.15) we finally conclude the following property for the mixed 

moment  #a: 
_ 1 . ( 4 . 8  18) #a -~(Pa+Tr/4 - Pa-Tr/4) -- --#a+Tr/2 

The fractional FT moments may be helpful in the search for the most appropriate 
fractional domain to perform a filtering operation; in the special case of noise that is 
equally distributed throughout the time-frequency plane, for instance, the fractional 
domain with the smallest signal width is then evidently the most preferred one. 
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Instead of global moments, which we considered above, one can consider local 
fractional FT  moments, which are related to such signal characteristics as the in- 
stantaneous power and instantaneous frequency (for a = 0) or the spectral energy 

1 density and group delay (for a - 77r) in the different fractional FT  domains. 
The local frequency in the fractional FT  domain with parameter  a is defined as 

/ f Wxo (t, f ) d f  1 f ~  OIXz(T)[ 2 
= / _  sgn (7 - t) d~-. Ux. (t) - / o o  2 IX~(t)l 2 0r 

Wx~ (t, f ) d f  o~ 
J_ (x )  

(4.8.19) 
The local frequency Ux. (t) is related to the phase ~ ( t )  = a rgX~( t )  of the frac- 
tional FT  X~(t) through Ux~ (t) = (1/27r)d~a(t)/dt. This implies that  the deriva- 
tive of the fractional power spectra with respect to the angle a defines the local 
frequency in the fractional domain, and that  it can be used for solving the phase 
retrieval problem by measuring intensity functions only. 

We finally mention the relationship between the central local fractional second- 
order moment and the instantaneous power in the fractional FT  domain: 

/ ~ [f - Ux~ (t)] 2 Wx~ (t, f )  df d 2 In IX~(t) l  2 
1 

Vx~ (t) - / / W x ~  (t, f ) d f  = 4 dt 2 �9 (4.8.20) 

o o  

We conclude that  all frequently used moments of the WD can be obtained from 
the RWT. 

4.8.6 Applications 
The fractional FT  and the WD are applied in such diverse fields as quantum me- 
chanics, optics, and signal processing [1,4-7]. 

The wide application of the fractional FT  in optics is based on the fact that  - in 
the paraxial approximation of the scalar diffraction t h e o r y -  it describes the optical 
field evolution during propagation through a quadratic refractive index (lens-like) 
medium. The RWT, associated with the intensity distributions, is used in particular 
for the reconstruction of the WD and subsequently of the complex field amplitude 
(in the case of coherent light) or the two-point correlation function (in the case of 
partially coherent light). 

In signal processing the RWT was primarily developed for detection and classi- 
fication of multi-component linear FM signals in noise [7]. Since the fractional FT  
of the chirp-type signal exp( - jTr t2 / t an  fl) reads 

exp(j �89 v/sin fl/sin(fl - a) exp[-jT~u2/tan(fl - a)], 

it becomes proportional to a Dirac-function 5(u) for a ~ fl, and it can be detected 
as a local maximum on the RWT map. Analogously, in order to remove chirp-type 
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noise, a notch filter, which minimizes the signal information loss, can be placed at 
the proper point of the corresponding fractional FT  domain [4]. 

Instead of performing, as usual, filtering operations in the frequency or the time 
domain, it can be done in a more appropriate fractional domain, for instance, the 
one that  corresponds to the best signal/noise time-frequency separation [4]. 

The complexity of computation for the fractional FT  is O(N log N) [8], where 
N is the time-bandwidth product of the signal. 

4.8.7 Summary and Conclusions 
We have described the relationship between the fractional Fourier transform and 
the Wigner distribution by using the Radon-Wigner transform, which is a set of 
projections of the Wigner distribution as well as a set of squared moduli of the 
fractional Fourier transform. We have introduced the concept of fractional Fourier 
transform moments and have proposed a way for the calculation of the well-known 
global and local moments of the Wigner distribution, based on the knowledge of 
a few fractional power spectra. The application of the results in optics and signal 
processing has been discussed briefly. Article 5.8 further explores the relationship 
between the fractional Fourier transform and quadratic TFDs. 
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4.9 GABOR SPECTROGRAM~ 

4.9.1 Power Spectrum 
For more than a century, the Fourier transform based power spectrum has been one 
of the most popular and powerful tools for engineers/scientists to analyze and char- 
acterize the natural events whose features are not obvious in the time domain. The 
success of the application of the Fourier-transform-based power spectrum largely 
hinges on whether the associated signal's frequency contents evolve over time. As 
illustrated in Section 1.1.1, the conventional Fourier transform is only suitable for 
a signal whose frequencies do not change during the period of observation. It is 
inadequate for signals whose frequencies are not constant, such as those encoun- 
tered in Doppler phenomena and seismology. To overcome this drawback, we may 
extend the classical time-independent power spectrum to a time-dependent power 
spectrum. 

4.9.2 Gabor Spectrogram 
For a signal s(t) = a(t)e jr with a Fourier transform S( f ) ,  intuitively, a desirable 
time-dependent power spectrum ps(t, f )  should possess the following properties: 

/_§ 
oo ps(t, f )d t  - JS(f)l 2 (4.9.1) 

/_ § ps(t, f ) d f  - I s ( t ) l  2 = l a ( t ) l  2 (4.9.2) 
CO 

f_+~ f ps(t, f ) d f  f_+~ f p~(t, f ) d f  
= - r (t) (4.9.3) 

f _ L  ~ ps(t, f ) d f  la(t)l 2 

where the first derivative of the phase, r (t), called the (angular) instantaneous 
frequency, describes how the signal's frequencies evolve over time [see Article 1.3]. 
It is worth noting that  properties (4.9.1) to (4.9.3) are all related to the average of 
ps( t , f ) .  

Over the years, many approaches have been proposed to evaluate the time- 
dependent spectrum. Among them, the most widely used may be the spectrogram 
based on the STFT (short-time Fourier transform). It is simple, but it cannot simul- 
taneously meet the properties (4.9.1) to (4.9.3). On the other hand, the Wigner-Ville 
distribution satisfies conditions (4.9.1) to (4.9.3), but its application has been lim- 
ited due to the so-called crossterm interference. One effective approach to reducing 
the crossterm interference is to apply a two-dimensional lowpass filter to the Wigner- 
Ville distribution. The resulting class of representations is called Cohen's class (or 
the quadratic class; see the note on p. 68). It has been found that  a certain type 

~ Shie Qian, National Instruments Corp., Austin, TX 78759, USA (shie.qian@ni.com). 
Reviewers: X.-G. Xia and Flemming Munk. 
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of two-dimensional filter can rearrange crossterms without destroying the desirable 
properties possessed by the Wigner-Ville distribution (see [1] and Article 4.2). 

As an alternative, we can also first write the signal in terms of the Gabor ex- 
pansion and then take the Wigner-Ville distribution. The resulting Wigner-Ville 
distribution then is a superposition of concentrated, symmetrical, and oscillat- 
ing two-dimensional Gaussian functions. The energy (computed by averaging a 
two-dimensional Gaussian function) contained in each individual two-dimensional 
Gaussian function is inversely proportional to the rate of its oscillation. The higher 
the oscillation, the smaller the energy (or average). Since the desirable proper- 
ties are all computed by averaging ps(t, f ) ,  the highly oscillated Gaussian functions 
have limited influence on the properties (4.9.1) to (4.9.3). On the other hand, the 
highly oscillated Gaussian functions have significant contribution to the crossterm 
interference. Consequently, we can remove the highly oscillated terms, without sig- 
nificantly altering desirable properties, to lessen the crossterm interference. The 
resulting representation was named the Gabor spectrogram to distinguish it from 
the spectrogram computed from the STFT [2, 3]. In what follows, we shall give a 
more detailed discussion about the Gabor spectrogram. 

For a given signal s(t), the Wigner-Ville distribution is defined as 

F c~  T T 

Ws(t, f )  = s(t + -~)s*(t - -~)e-J2~IrdT (4.9.4) 
o o  

When s(t) is the time- and frequency-shifted Gaussian function hm,n(t), i.e., 

s(t) = hm,n(t) = (a~)-0.25 exp{-  
( t -  roT) 2 

2c~ 
+ j 2 ~ n ~ t }  (4.9.5) 

the corresponding Wigner-Ville distribution has the form 

Wh(t, f) = 2 exp{-- (t -- roT) 2 _ a(2~)2(f _ na)2} (4.9.6) 

which is non-negative and symmetric about the point (mT, n~t). The contour plot 
of (4.9.6) forms conic ellipses. Because expression (4.9.6) is a WVD, it satisfies 
conditions (4.9.1) to (4.9.3). Since at any time instant there is only one frequency 
tone, we can consider the signal in (4.9.5) as a monotone signal. 

As mentioned in the preceding section, the major deficiency of the Wigner- 
Ville distribution is the crossterm interference. For example, when s(t) contains 
multiple monotone signals, such as multiple Gaussians with different time- and 
frequency-shifts, then we will observe some components which are not expected. 
In this case, the resulting Wigner-Ville distribution still possesses the properties 
(4.9.1) to (4.9.3), but the unwanted crossterm can destroy the features in which we 
are interested. Since the crossterm always occurs midway between two monotone 
signals, one way of reducing the crossterm is to decompose the analyzed signal as 
monotone components. 
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For example, we can decompose an arbitrary signal s(t) as the sum of monotone 
time- and frequency-shifted Gaussian elementary functions hm,n(t) in (4.9.5), via 
the Gabor expansion, i.e., 

s(t) - (a~) -~ E E Cm,nhm,n(t) (4.9.7) 
m n 

where Cm,n is traditionally named the Gabor coefficient. It can be computed by the 
STFT with a dual function of 7(t). If the dual window function 7(t) is concentrated 
at (0, 0), the origin of the joint time-frequency plane, then the Gabor coefficients 
cm,n describe the signal's behavior in the vicinity of (mT, ngt). 

Taking the Wigner-Ville distribution of both sides of (4.9.7) yields 

Ws (t, f) - ~ ~ Crn,nC*,,n, W h ,  h, (t, f) 
rn,m' n ,n  ~ 

(4.9.8) 

The function Wh,h,(t, f )  denotes the cross-Wigner-Ville distribution of elementary 
functions hm,n(t) and hm,,n,(t). It is a two-dimensional Gaussian function, 

r n + m  I 
~ T )  2 - a(27r)2(f Wh,h, (t, f )  = 2 exp{--o~-l(t -- 

• exp{j27r[(n-  n')Ftt-  ( m -  m ' )T ( f  

Its amplitude is symmetrical and concentrated about the point 

n + n  ~ 
2 

n + n  ~ 
2 

(4.9.9) 

(m + m ' n + n ~ 
2 T, 2 a).  

Moreover, it is also oscillating. While the rate of oscillation in the frequency domain 
is determined by ( m -  m')T, the rate of oscillation in the time domain is dependent 
on ( n -  n ' )~.  Therefore, the further hm,n(t) and hm,,n,(t) are apart, the higher 
the oscillation. If the Wigner-Ville distribution is thought of as the signal's energy 
distribution, then (4.9.9) can be considered as an energy atom. Equation (4.9.8) 
shows that  the Wigner-Ville distribution is a linear combination of an infinite num- 
her of energy atoms. Finally, Wh,h,(t, f )  and Wh,,h(t, f )  form a pair of complex 
conjugates, i.e., 

Wh,h,(t, f )  + Wh,,h(t, f )  = 2Re[Wh,h,(t, f)] (4.9.10) 

Recall that  all desired properties are related to the average of the Wigner-Ville 
distribution. Hence, the slowly oscillating energy atoms would have more contri- 
bution to the desired properties than that  of fast-oscillating energy atoms. This is 
because the average of energy atoms is inversely proportional to the rate of oscil- 
lation. The higher the oscillation, the smaller the energy (or average). Moreover, 
we also know that  the rate of oscillation is completely determined by the distance 
between two elementary functions. Hence, the energy atom whose corresponding 
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elementary functions hm,n(t) are close to each other dominates the desirable prop- 
erties. The term whose elementary functions are further apart  causes crossterm 
interference, but has limited contribution to the useful features. 

Based on these observations, we re-group (4.9.9) into a new representation, 
named as the Gabor spectrogram, i.e., 
GSD(t,f) = 

E Cm,nCm,,n, 2exp{_c_l(  t _ rn + m' 2 T) 2 _ a(27r)2( f n + n'  
2 

] m - m ' [ + [ n - n ' [ < _ D  

exp{j27r[(n-  n ' ) T t -  ( m -  m')T(w 
rt + n ~ ~ g t ) ] }  (4.9.11) 

where the parameter D denotes the order of the Gabor spectrogram. Note that  
the Gabor spectrogram (4.9.11) can be effectively computed by separable two- 
dimensional multi-rate filters [4]. 

When D = 0, (4.9.11) reduces to 

GSo(t, f)  - 2 E Icm,nl2 e x p ( - a - l ( t  - rnT)2 - a ( 2 7 r ) 2 ( f  - nft)2) 
m , n  

(4.9.12) 

which is non-negative and has no crossterm interference. However, it does not have 
the desired properties (4.9.1) to (4.9.3) either. As the order D increases, however, 
the Gabor spectrogram is more and more similar to the Wigner-Ville distribution. 
In other words, it is closer to the properties (4.9.1) to (4.9.3). Meanwhile, crossterms 
would be introduced. Since the higher oscillated energy atoms are directly related 
to the crossterms but have limited contribution to the desired properties, by adjust- 
ing the order of the Gabor spectrogram we could find a good compromise between 
crossterm interference and the desired properties. For example, when D = 4, the 
error between the Gabor spectrogram based results (4.9.1) to (4.9.3) and the ex- 
pected values are usually less than 1%, whereas the crossterms are negligible in 
most applications. 

4.9.3 Numerical Simulations 
Figure 4.9.1 shows the 4th order Gabor spectrogram of a bat sound. Corresponding 
0th and 2nd order Gabor spectrograms are plotted in Figure 4.9.2. As shown, the 
time-frequency resolution improves as the order increases. The Gabor spectrogram 
eventually converges to the Wigner-Ville distribution. Compared to the Gabor 
spectrogram, the STFT-based spectrogram in Figure 4.9.3 has poor time-frequency 
resolution but without the crossterm interference that  appears in the Wigner-Ville 
distribution. 
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Fig. 4.9.1: Fourth order Gabor spectrogram of bat sound. 

Fig. 4.9.2: Zeroth (left) and second (right) order Gabor spectrogram of bat sound. 

Fig. 4.9.3: STFT-based spectrogram (left) and Wigner-Ville distribution of bat sound. 
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4.9.4 Summary and Conclusions 
As an alternative to the STFT and the ordinary Wigner-Ville distribution, a 
Wigner-Ville distribution decomposed via the Gabor expansion is introduced. The 
resulting representation is known as the Gabor spectrogram. One of its major ad- 
vantages is that  by altering the order, we can easily balance the resolution and 
crossterm interference. The Gabor spectrogram is closer to the STFT-based spec- 
t rogram for lower orders, but converges to the Wigner-Ville distribution as the order 
tends to infinity. Article 6.3 further explores these notions. 
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Chapter 5 

Design of Time-Frequency 
Distributions 

This chapter describes in detail specific examples of design of Time-Frequency Dis- 
tributions (TFDs), extending the material described in Chapters 2 and 3. This 
topic is covered in eight articles with appropriate cross-referencing. 

Ambiguity functions are traditionally used in radar and sonar. As duals of TFDs 
by a 2D Fourier transform, they are shown to be a key basis for TFD kernel design 
methodologies (Article 5.1). One of the first TFDs constructed on this basis is 
the Gaussian kernel distribution (or Choi-Williams distribution), a TFD designed 
for its reduced interference properties (5.2). To better adapt to the signal under 
analysis and achieve higher resolution and concentration performance, we can design 
adaptive TFDs using optimization theory (5.3). TFDs can also be designed and 
adapted to a specific class of signals such as polynomial FM signals, leading to 
the formulation of polynomial WVDS (5.4). The design of such methods can be 
related mathematically to the theory of polynomial derivatives, thus allowing for a 
revised design procedure (5.5). Another example of TFDs adapted to a particular 
class of signals is that of TFDs adapted to signals with dispersive group delay (5.6). 
Another step by step methodology for the design of a specific TFD is provided using 
separable kernels (5.7). Finally, the class of generalized marginal TFDs is related 
to the fractional Fourier transform, allowing further design possibilities (5.8). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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5.1 A M B I G U I T Y  FUNCTIONS~ 

5.1.1 The Radar/Sonar Problem 
Let us consider the typical radar/sonar  problem in which the detection of a target 
(and the estimation of its relative range d and velocity v with respect to the emit- 
ter/receiver) is achieved from the analysis of the returning echo r(t) associated to 
a given emitted waveform x(t). Assuming a perfect reflection in the echo formation 
process and a constant radial velocity between the emitter/receiver and the target, 
r(t) can be modeled as an attenuated replica of x(t), up to a (range encoding) round 
trip delay, a (velocity encoding) modification due to the Doppler effect and some 
observation noise. On the basis of various criteria (maximum likelihood, Neyman- 
Pearson strategy, maximum contrast , . . .  ), it is known [1] that a basic ingredient for 
solving the detection problem is a measure of (linear) similarity, in the L2-sense of a 
correlation, between the signal to detect and the actual echo ("matched filter" prin- 
ciple). Given the assumed model, it is therefore natural to compare the received 
echo with a battery of templates (Td,,~,x)(t), where Td,,~, stands for the range- 
velocity transformation attached to the candidate pair (d', v'), so that estimates of 
d and v can be inferred from: 

(d, ~)) := arg max ](r, Td,,v,x)]. 
(d',v') 

(5.1.1) 

As far as the deterministic part of the above inner product is concerned, the 
ideal situation would be to deliver zero values for all range-velocity pairs except for 
(d', v') = (d, v). This, however, proves not to be achievable (as justified below), 
leading to a joint determination of range and velocity which is intrinsically ambigu- 
ous: this is the reason why a quantity of the type (x, Td,vX) is loosely referred to 
as an ambiguity function (AF). 

5.1.2 Definitions of Ambiguity Functions 
In order to be more specific in defining AFs, care has to be taken to physical 
considerations about the Doppler effect, which accounts for a time stretching of the 
returning echo. 

N a r r o w b a n d  a m b i g u i t y  func t ions .  In the general case, the Doppler factor 
expresses as ~ := (c + v ) / ( c -  v), where c stands for the celerity of the propagating 
waves in the considered medium. In the radar case, the celerity of electromagnetic 
waves is c = 3 • l0 s m/s  and, even if we assume a relative target velocity as large as 
v = 3,600 km/h,  we end up with a Doppler factor such that U-  1 = 6.66 • 10 -6 << 1, 
thus justifying the approximation r /~  1 + 2v/c. It follows that, if the emitted signal 
is of the form x(t) := ~(t)exp{i27rfot}, where ~(t) is a complex envelope that 

~ Pa t r i ck  Flandr in ,  Laboratoire de Physique (UMR 5672 CNRS), Ecole Normale 
Supdrieure de Lyon, 46 all6e d'Italie, 69364 Lyon Cedex 07, France (flandrin@ens-lyon.fr). Re- 
viewers: J. P. Ovarlez and A. Papandreou-Suppappola. 
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is narrowband with respect to the carrier f0, the deterministic part  rd(t) of the 
returning echo r(t) admits the approximation rd(t) ~ x ( t -  T) exp{i27rvt}, with T a 
round trip delay such that ~- := 2d/v and L, a Doppler shift such that  ~ := 27rfov/c. 
The corresponding inner product 

/_4-~ 
(x, rd) oc x(t) x* (t -- T) e -i2€ dt (5.1.2) 

0 0  

is therefore proportional to a quantity referred to as the narrowband AF of x(t). 
Whereas this formulation is the one initially introduced by Woodward [2], it often 
proves useful to rather make use of an inverse Fourier transform and to adopt the 
following symmetrized definition: 

f_+oo 
Az(~,, 7 ) " -  x (t + v/2)  x* ( t -  7/2) e i2~t  dt. (5.1.3) 

O 0  

W i d e b a n d  a m b i g u i t y  func t ions .  The above definitions (5.1.2)-(5.1.3) are based 
on approximations that may prove not to be relevant in contexts different from 
radar. This is especially the case in airborne sonar, where the celerity of acoustic 
waves is c = 340 m/s,  thus leading to r] ~ 1.2 for relative radial velocities v ~ 100 
km/h.  A similar situation can also be observed (although to a smaller extent) in 
underwater sonar, where the sound celerity in water c = 1500 m/s  and typical 
relative velocities v ~ 2.6 m/s  lead to ~ ~ 1.034. In such cases, the previous 
approximation of a Doppler shift is no longer valid for wideband signals, and the 
more general form 

Ax(~, 7) "-  
O 0  

x(t) x* (~(t - ~-)) dt (5.1.4) 

has to be preferred as a definition of a wideband AF [3]. 
Such a wideband definition naturally reduces to the narrowband one when the 

analyzed signal is narrowband. 

A m b i g u i t y  f u n c t i o n s  a n d  t i m e - f r e q u e n c y  d i s t r i b u t i o n s .  AFs can be viewed 
as two-variable generalizations of correlation functions. In this respect they are 
duals of energy distributions. As seen in Sections 3.2.1 and 3.2.3, it follows from 
the definition (5.1.3) that 

//_ ~ Ax(~, T) dr d7 - Wx(t,  f) ,  (5.1.5) c--i27r(ut+T f) 
OG 

where Wx(t,  f )  is the Wigner-Ville distribution (WVD). 1 More generally, the whole 
Cohen class of quadratic time-frequency distributions can be obtained as the 2D 
Fourier transform of weighted (narrowband) AFs g(, ,  T)Ax(-,  v) (see, e.g., [5]). 

l i t  is worth noting tha t  the symmet r i zed  AF  (5.1.3) has in fact been pioneered by J. Ville [4] 
as a form of " t ime-frequency character is t ic  function". 
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Similarly, a properly symmetrized version of the wideband ambiguity function 
(5.1.4) can be shown [6] to be in Mellin-Fourier duality with a wideband time- 
frequency distribution, referred to as Altes' Q-distribution Qx(t, f). More precisely, 
if we let 

F 
c o  

ftz(?7, T) "-- X ( r } - l / 2 ( t  + T/2))x*(r}+l/2( t  -- T/2 ) )d t  = Ax(Tl,  r / -1/2r) ,  (5.1.6) 
c o  

we have [6] 

fo+O~ /_+oo A~(~, T)e -i2~Ir 71 i2~t-1 &l dT = Q~(t, f), 
c o  

(5.1.7) 

with the warping equivalence Qz(t,f) =- W~(t, logf), if X ( f ) : =  X(ef). 
Another interesting connection can be pointed out between AFs and linear time- 

frequency (or time-scale) representations. In fact, the right-hand side of (5.1.2) can 
be viewed as the short-time Fourier transform of x(t), with window h(t):= x(t); in 
the same respect, (5.1.4) is nothing but the wavelet transform of x(t), with wavelet 
r  := x(t) (and scale a := l/r/). In both cases, the AF is exactly identical to the 
reproducing kernel of the corresponding linear transform [5]. 

5.1.3 Properties of Narrowband Ambiguity Functions 
I n v a r i a n c e s  a n d  covar iances .  Whereas members of Cohen's class 2 are covariant 
with respect to time and frequency shifts, the squared modulus of the AF (a quantity 
referred to as the ambiguity surface (AS)) is invariant to such transformations (i.e., 
lAy(u, T)I  2 - -  lAx(u, T)[  2 for any shifted version y(t) := z(t-O)exp{i2rr~t} of a given 
signal x(t)). In a similar way, the AF inherits--by Fourier duali ty--from a number 
of properties satisfied by the WVD, such as covariance with respect to dilations, 
rotations or chirp modulations [5, 7]. 

C ros s - s ec t i ons .  As it has been mentioned, the narrowband AF can be seen as 
a correlation function with respect to time and frequency shifts. As such, it is 
hermitian symmetric: Ax(-u,--T) -- A~(u, T), and it satisfies the inequality 

IA~(u, T)I < IA~(0 0)1- Ilxll 2 ~ 2* (5.1.8) 

Although this interpretation cannot be pushed too far (in particular, the AF is 
not a non-negative definite quantity, since its 2D Fourier transform--namely, the 
WVD--can  attain negative values), cross-sections of the AF are meaningful 1D 
correlation functions, since we have: 

Ax(0, r)  - x (t + r /2 )  x* ( t -  T/2) dt 
(2O 

2That is, the quadratic class; see p. 68n. 
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Fig. 5.1.1: A m b i g u i t y  func t ions  as t i m e - f r e q u e n c y  c o r r e l a t i o n  func t ions .  Subplots (b) 
to (d) display the ambiguity surfaces attached respectively to the three signals plotted in (a), namely 
(from top to bottom): two Gabor logons, a linear chirp and a sample of white Gaussian noise. All 
three surfaces share the common property of attaining their maximum value at the origin of the plane, 
with values off the origin that reveal correlations in the signal structure, with respect to both time and 
frequency shifts (referred to as delay and Doppler). 

and 

f o o  

A~(~, 0) - X (f + ~/2) X* ( f -  ~/2) df. 
( x )  

(5.1.10) 

This idea of a time-frequency correlation function (which is illustrated in Fig- 
ure 5.1.1) is instrumental in the design of reduced interference distributions within 
Cohen's class (cf. Article 4.2). 

Volume invar iance and  se l f - t rans format ion .  Using Parseval's relation and 
Moyal's formula [5], we readily get that, for any two signals x and y, 

// + ~  Ax(~, T) A~(~, 7)d~ dT -- 
o o  F ~ 

o o  

(5.1.11) 



164 Chapter 5: Design of  Time-Frequency Distributions 

Setting y - x  in this equation, it follows that  

+ ~  IA~(~, T)I 2 dv dT -- I1~11 ~ 2, (5.1.12) 

i.e., that  the AS has an invariant volume that  is only fixed by the signal's energy. 
More remarkably, (5.1.12) is just a special case of Siebert's self-transformation prop- 
erty [8]: 

//_ ~oo IA~(~, r)l 2 = lAx( f ,  (5.1.13) ei27r(vt + r f ) du dT t)l 2, 
o o  

from which it can be inferred that  an AF is a highly structured function. 

U n c e r t a i n t y  p r inc ip les .  If we combine the "correlation" inequality (5.1.8) and 
the "volume invariance" property (5.1.12), it is clear that  an AS cannot be perfectly 
concentrated at the origin of the plane. This limitation, that  is sometimes referred 
to as the radar uncertainty relation [9], admits a more precise LP-norm formulation 
(p > 2) as follows [10]: 

f f_~oo 2 2p G(p) - IAx(~, w)l p d~ dr <_ - Ilxl12, (5.1.14) 
oo P 

with equality if and only if x is a linear chirp with a Gaussian envelope. A sim- 
ilar result holds on the basis of an entropic measure of sharpness, leading to the 
inequality 

s~  := - IA~(u, r)l  2 log IA~(u, r)l  2 dv dT > 1 (5 .1 .15)  
(x:) 

for unit energy signals. 
The common interpretation of those inequalities is that  an AS cannot be zero 

everywhere except at the origin of the plane. In the case where all of the AS is 
supposed to be concentrated around the origin, it has necessarily to extend over 
a domain (whose area is non-zero) which defines the joint accuracy of any delay- 
Doppler measurement [1,11]. However, ASs which are more sharply peaked at the 
origin can be found, provided that  non-zero values are accepted somewhere off the 
origin in the plane: for unit energy signals, ASs with null values except in (0, 0) can 
be obtained on convex domains whose clear area cannot however be greater than 
4 [12]. An example is given in Figure 5.1.2. 

D e l a y / D o p p l e r  e s t i m a t i o n .  The best achievable performance in joint estimation 
of delay and Doppler is bounded. The actual Cram4r-Rao bounds on variances and 
covariances can be derived from the Fisher information matrix of the problem, 
whose terms can themselves be expressed as partial derivatives of the AS, in the 
case of additive white Gaussian noise [1]. Since the AS is basically the maximum 
likelihood estimator for delay and Doppler, and since this estimator can be shown to 
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Fig .  5.1.2:  S h a r p e n i n g  t h e  c e n t r a l  p e a k  o f  a n  a m b i g u i t y  s u r f a c e .  Whereas a single Gaussian 
pulse has an ambiguity surface whose central peak cannot have an effective area Y[ smaller than a limit 
fixed by the "radar uncertainty principle" (left), a signal defined by the superposition of a number of 
replicae of such a pulse, periodically shifted in time and frequency, may guarantee a sharper central 
peak (right). This has however to be paid at the price of auxiliary peaks off the origin, with a "clear 
area" of the order of A. 

be asymptotically efficient, it thus follows that the AS geometry is a direct indicator 
of the expected accuracy in the estimation. Roughly speaking, variances in delay 
and Doppler estimation are given by the effective widths of the central peak of the 
AS. 

Signal  des ign .  In active problems, in which the emitted signal can be freely chosen 
(up to a certain extent), an important issue is to design waveforms with a prescribed 
AF (or AS), so that  some desired performance can be guaranteed. From a purely 
theoretical point of view, a signal is entirely determined (up to a pure phase term) 
by its AF, since we can invert the definition (5.1.3) according to: 

S_ x ( t )  - x*(0) Co Ax(u, T)e - i ~  du. (5.1.16) 

Unfortunately, as it has been said before, an AF is a highly structured function 
and an arbitrary 2D function has in general no reason to be admissible, i.e., to be the 
actual AF of some signal. Different approaches have been proposed to overcome this 
limitation. One can first think of looking for the signal 2(t) whose AF approaches at 
best a given time-frequency function F(u, w), according, e.g., to a L2-distance [13]: 

fl ~(t) - arg min lAx (u ,  "r) - F ( u ,  T)l 2 du dr .  (5.1.17) 
c o  

One can also rely on the physical interpretation of the AF as a time-frequency 
correlation function and promote waveforms with adapted time-frequency charac- 
teristics. In this respect, a large bandwidth (resp., a long duration) is required 



166 Chapter 5: Design of Time-Frequency Distributions 

for an accurate estimation of delay (resp., Doppler). The simultaneous considera- 
tion of these two design principles advocates the use of chirp signals with a large 
bandwidth-duration (BT) product (see [11] and Section 1.2.4). 

5.1.4 Remarks on Wideband Ambiguity Functions 
In many respects, properties of the wideband AF can be seen as natural generaliza- 
tions of the narrowband case (although some properties, such as volume invariance, 
may no longer be satisfied), reducing to them in the narrowband limit. 

In parallel with what has been previously mentioned in the narrowband case, 
the best achievable performance in the joint estimation of delay and Doppler can be 
expressed, in the wideband case, in terms of geometrical properties of the wideband 
AS [14]. 

A companion problem is that  of Doppler tolerance, which consists in obtain- 
ing an unbiased estimate of delay in the presence of any unknown Doppler [15]. 
Doppler acting as a stretching on the emitted signal, the condition for no bias can 
be translated into the fact that  the effective time-frequency structure of the emitted 
waveform is invariant under stretching. It turns out that  the hyperbola is the only 
curve of the plane which is invariant under dilation/compression transformations: 
in terms of chirps, assumed to be conveniently described on the plane by a time- 
frequency skeleton, this justifies [5] the use of logarithmic phases, i.e., of hyperbolic 
chirps resembling those commonly observed in natural sonar systems (bats) [15]. 

Finally, it must be pointed out that  computing an AF proves more involved in 
the wideband case than in the narrowband case. Efficient solutions, based on the 
Mellin transform, have been proposed in [14]. 

5.1.5 Summary and Conclusions 
Ambiguity functions measure the degree of similarity that  exists between a signal 
and its delayed and dopplerized versions: as such, they are central in the evaluation 
and design of radar/sonar  systems. Since they are basically (two-dimensional) time- 
frequency correlation functions, ambiguity functions also offer a dual perspective on 
quadratic time-frequency distributions that proves especially useful for kernel design 
issues. 
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5.2 REDUCED INTERFERENCE TIME-FREQUENCY 
DISTRIBUTIONS ~ 

5.2.1 Nonstationarity, Resolution and Interference 
Much background material required for understanding the present article may be 
found in Chapter 3 and Articles 4.2 and 5.1. These contributions can consider- 
ably augment or replace the citations in the present article, which have a historical 
importance for the topic at hand. This article presents the concept and design 
methodology for Reduced Interference Distributions or RIDs. It has been quite 
difficult to handle nonstationary signals such as chirps satisfactorily using concep- 
tualizations based on stationarity. The spectrogram represents an attempt to apply 
the Fourier transform for a short-time analysis window, within which it is hoped 
that the signal behaves reasonably according to the requirements of stationarity. By 
moving the analysis window along the signal, one hopes to track and capture the 
variations of the signal spectrum as a function of time. However, the spectrogram 
often presents serious difficulties when used to analyze rapidly varying signals. If 
the analysis window is made short enough to capture rapid changes in the signal it 
becomes impossible to resolve frequency components of the signal which are close 
in frequency during the analysis window duration (see Sections 2.3.1 and 2.3.2). 

The Wigner distribution (WD) has been employed as an alternative to overcome 
this shortcoming. The WD was first introduced in the context of quantum mechan- 
ics and revived for signal analysis by Ville [1] and for this reason is sometimes called 
the Wigner-Ville distribution (WVD). In this book, the WVD is assumed to use 
the analytic form of the signal (see Sections 2.1.3 and 2.1.4). The WD has many 
important and interesting properties [1]. It provides a high resolution representa- 
tion in time and in frequency for a nonstationary signal such as a chirp. However, 
its energy distribution is not non-negative and it often possesses severe cross terms, 
or interference terms, between components in different (t, f)  regions, potentially 
leading to confusion and misinterpretation. An excellent discussion on the geom- 
etry of interferences has been provided by Flandrin in Article 4.2. RIDs effect a 
desirable compromise, which retains a number of desirable TFD properties, yet pro- 
vides reduced cross-term interference, making then a good choice for the analysis 
of nonstationary signals. 

Both the spectrogram and the WD are members of the quadratic class of dis- 
tributions [1]. For these distributions a time shift in the signal is reflected as an 
equivalent time shift in the (t, f)  distribution and a shift in the frequency of the 
signal is reflected as an equivalent frequency shift in the (t, f)  distribution. The 
spectrogram, the WD and the RID all have this property. Different distributions 
in the quadratic class can be obtained by selecting different kernel functions (see 
Article 2.7). 

~ William J. Williams, Department of Electrical Engineering and Computer Sci- 
ence, University of Michigan, Ann Arbor MI 48109, USA (wjw@eecs.umich.edu). Reviewers: 
B. Boashash and P. Flandrin. 
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Desirable properties of a distribution and associated kernel requirements were 
extensively investigated by Claasen and Mecklenbr~uker in the early 1980s [1]. 
Boashash provided a comprehensive study of the WVD in the early 1990s [2]. Com- 
prehensive comparisons of TFDs, including the newer methods, were provided in 
the early 1990s [3]. 

Choi and Williams introduced one of the earliest "new" distributions [4], which 
they called the Exponential Distribution or ED. This new distribution overcomes 
several drawbacks of the spectrogram and WD, providing high resolution with sup- 
pressed interferences [4, 5]. The method used in developing the ED is very general 
and is the basis of this article. 

5.2.2 The Reduced Interference Distribution 
5.2.2.1 Ambiguity Function Relationships 
The key to understanding (t, f)  relationships and manipulations is a thorough un- 
derstanding of the ambiguity domain. Let Z(f) be the FT of the signal z(t)" 

Z(f) - F[z(t)] - /z(t)e-J2~ftdt (5.2.1) 

and 

z ( t ) -  F - I [ z ( f ) ] -  f Z(f)eJ27rftdf (5.2.2) 

Let Rz(t, 7) be the instantaneous autocorrelation of a complex signal z(t); that is, 

Rz(t,  ~) - z(t  + ~ / 2 ) z * ( t -  ~/2) (5.2.a) 

where z* denotes the complex conjugate of z. The Wigner distribution of z(t) is 
the Fourier Transtbrm (FT) of Rz(t, w) with respect to the lag variable ~-: 

Wz(t, f) - Fr[z(t + T/2)z*(t- T/2)] 

= F. [Kz( t , . ) ] .  (5.2.4) 

Similarly, but with a different physical meaning, the symmetrical ambiguity function 
(AF) is defined as the Inverse Fourier transform (IFT) of Rz(t, w) with respect to 
the first variable: 

Az(L,.'r) -- -1 z* Y , _ ~ [ z ( t  + ~/2)  ( t -  ~/2)] 
-- F-lt--..[Rz(t. 7-)] (5.2.5) 

Thus, Wz(t, f) and Az(u, 7) are related by the two-dimensional (2-D) FT: 

Wz(t, f) = / / A z ( u ,  T)e-J2"(t~+fr)du dT. (5.2.6) 
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Equation 5.2.6 may be altered with a kernel to show that  pz(t, f ,g) may be 
found by 

pz(t, f, g) - . / . /g (v ,  T)Az(tJ, T)e-J2r(tv+:fr)dtJ dT (5.2.7) 

which is an expression of the quadratic class of distributions, in general. Thus, 
while the WD may be found from the symmetric ambiguity function by means of a 
double Fourier transform, any member of the quadratic class of distributions may be 
found by first multiplying the kernel g(~,, 7) by the symmetric ambiguity function 
and then carrying out the double Fourier transform. The generalized ambiguity 
function, g(~, T)Az(,, T) [1], is a key concept in (t, f )  which aids one in clearly 
seeing the effect of the kernel in determining pz(t, f, g) �9 

The kernel for the WD is unity, so the generalized ambiguity function is iden- 
tical to the ambiguity function, and its (t, f )  representation (the double Fourier 
transform) preserves both the auto-terms and the cross-terms. The kernels of the 
spectrogram and the RID emphasize the auto-terms and deemphasize the cross 
terms, but in very different ways. 

5.2.2.2 The Exponential Distribution 
Each TFD discussed is valuable under certain conditions. The ED, developed 
by Choi and Williams [4], is an a t tempt  to improve on the WD. It has a kernel 

g(~, 7) - exp(-~:  r2 ), and it proves to be quite effective in suppressing the interfer- 
ences while retaining high resolution. A comparison of the kernels of the spectro- 
gram, the WD and the ED are shown in Fig. 5.2.1. 

Interference terms tend to lie away from the axes in the ambiguity plane, while 
autoterms tend to lie on the axes. The spectrogram kernel attenuates everything 
away from the (0, 0) point, the WD kernel passes everything, and the ED ker- 
nel passes everything on the axes and attenuates away from the axes. Thus, the 
ED generally attenuates interference terms. This provides its reduced interference 
characteristic. The spectrogram reduces interference also, but at a cost to the au- 
toterms. Reduced interference may be achieved while maintaining a number of 
very nice mathematical  properties with just a few constraints. The ED is just one 
example of the RID class. A methodology which guarantees a RID yet allows a 
considerable flexibility in design is discussed in the following section. 

5.2.3 Kernel Selection for RID 

A more formal description of RIDs is appropriate at this point. RID requirements 
and properties will be discussed in comparison with the WD. The unity value of 
the WD kernel guarantees the desirable properties of the WD. However, it is not 
necessary to require the kernel to be unity for all v in order to maintain most of its 
desirable properties. It is sufficient to ensure that  the kernel is unity along v - 0 
and T = 0 and that  the kernel is such that  g*(L,, T) = g(--v,--T), the later property 
ensuring realness. The RID kernel is cross-shaped and acts as a low pass filter in 
both v and T. The spectrogram has the virtue of suppressing cross-terms as does 
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Fig. 5.2.1: Comparison of (a) spectrogram, (b) WD and (c) ED kernels in the ambiguity plane 

the RID, and has the further advantage of being non-negative which is not the case 
for the WD and the RID. The RID possesses almost all of the desirable properties 
of the WD except for its unitary property (]g(v, T)]=I for all ~,T). 

It is quite desirable for a distribution to possess the time and frequency sup- 
port property. This property ensures that the distribution does not extend beyond 
the support of the signal in time or the support of its Fourier transform in fre- 
quency. The time and frequency support property may be maintained for the RID 
by insuring that 

~b(t, 7) - / g(u, r)e-J2~'tdu = 0 if ]T 1 < 2It ]. (5.2.8) 

This forms a "cone-shaped" region in (t, T). The WD obviously satisfies this support 
property since the Fourier transform of unity is an impulse function, clearly staying 
within the (t, 7) limits. The form of the kernel in (u, f)  is also cone shaped, ensuring 
the frequency support property. Zhao, Atlas and Marks [6] suggest a cone shaped 
kernel for nonstationary signal analysis, but they impose restrictions such that time 
support only is ensured. The ED can be brought into the RID requirements by 
imposing a RID window as suggested above. The RID is not a totally new distri- 
bution since the Born-Jordan kernel, g(v, 7-) - sinc(vT) = s i n ( ~ r u r )  meets all of the 

7I 'VT 

RID requirements [1]. 
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Table 5.2.1: Distribution properties and associated kernel requirements. 

P0. nonnegativity : pz(t, f; g) >_ 0 Vt, f 
R0. g(u, T) is a positively weighted sum of ambiguity functions. 
P1. realness: pz(t, f; g) c R 
R1. g(u, 7) = g * ( - u , - 7 )  
P2. time shift:  s(t) = z(t - to) =v ps(t, f; g) = pz(t - to, z; g) 
R2. g(u, T) does not depend on t. 
P3. frequency shift:  s(t) = z(t)e j2=y~ =~ ps(t, f; g) = pz(t, f - fo; g) 
R3. g(u, ~) does not depend on f. 
P4. time marginal:  f pz(t, f )d f  = z(t)z*(t) 
R4. g(u, O) = 1 Vu 
Ph. frequency marginal:  f pz(t, f ;g)dt  = Z ( I ) Z * ( I )  
Rh. g(0, ~) = 1 V~ 

P6. instantaneous frequency �9 f Ipz(t,Y;g)dl 
f pz( t , f ;g)df  --  s  

R6 R4 and ag(-,~)]~=0 - 0 Vu 
�9 oqT 

group delay : ~jftp=(t,f;g)dt P7. p=(t,f;g)dt : tg(f)  
and og(~,,r) - 0 VT 

, 1  

R7. R5 a~ [~,=o 
P8. time suppor t :  z(t) = 0 for It[ > tc ~ pz( t , f ;g)  = 0 for Itl > tc 

R8. r 7) A= f g(u, T)e-J2~tdu -- 0 for ITI < 2It I 

P9. frequency suppor t :  Z ( f ) =  0 for Ill > fc =~ pz(t, f ;g )  = 0 for Ill > fc 
a9.  f g (u ,  T ) e J 2 ~ v f T d 7  --- 0 for lul < 21/I 
P10. Reduced interference 
R10. g(u, T) is a 2-D low pass filter type. 
P l l .  Scale: s(t) - , ~  z(at) ~ ps(t, f; g) = pz(at, f /a ;  g) 

V I , 

R l l .  g(u, T) = g(u7) is a product kernel. 

Table 5.2.1 summarizes desirable properties (P) and related kernel requirements 
(R) of distributions. No known, practical distribution with a fixed kernel (not 
dependent on the signal or time) is able to meet all of these requirements. 

Table 5.2.2 illustrates how several common distributions satisfy the desirable 
properties. Two distributions whose kernels meet the RID requirements (Born- 
Jordan and windowed ED) are included. Note that  the RID exhibits time-shift, 
frequency-shift and scale covariance [7]. Some prefer to call this invariance because 
the TFD signature does not change in shape under these transformations. Fig. 5.2.2 
illustrates the ED for a succession of signals consisting of a dolphin click, its 2:1 
scaled and energy-corrected version, and its frequency-shifted version. This shows 
the time-shift, frequency-shift and scale covariance of the ED. Any true RID would 
exhibit similar covariance properties. 
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5.2.3.1 Design Procedures for Effective RID Kernels 

There is much more that can be done in terms of kernel design. It is possible to 
bring much of the work that  has been done on windows and digital filters to bear 
in designing effective RID kernels [8]. The starting point for the kernel design is 
to consider a primitive function h(t). This function is designed to have unit area 
( f  h(t)dt = 1) and is symmetrical; i.e. h(- t )  = h(t). It is limited such that  h(t) = 0 
for Itl > 1/2, and is tapered so that it has little high frequency content; that  is, it 
is a low-pass impulse response. Then the kernel is 

g(L,, 7-) = H(~T) (5.2.9) 

where H(~) is the Fourier transform of h(t). It can be shown that H(~T) satisfies 
the RID requirements. Desirable characteristics of h(t) have been the subject of 
intensive study in terms of windows in time domain terms or filters in frequency 
domain terms. All of this knowledge can be used to select effective RID kernels. 
Note that in the (t,~-) domain the form of the RID kernel is ! h  t Irl ([7[)" In order 

to compute the RID, one convolves this form of the kernel with K(t, T) along the 
t dimension and then Fourier transforms that result. Thus the kernel is scaled 

1 for each ~- This is a wavelet-like characteristic. The in t and normalized by IV[ 

RID thus exhibits time-shift, frequency-shift and scale covariance--unlike wavelets, 
which commonly exhibit only scale and time-shift covariance, and many other time- 
frequency distributions which exhibit only time-shift and frequency-shift covariance. 

5.2.3.2 Optimum and Adaptive RIDs 

The RID constraints are mild enough to permit a considerable amount of flexibility 
in RID kernel design. Several TFDs which are full fledged RIDs have been proposed. 
In other cases some of the properties in Table 5.2.1 have been abandoned or relaxed 
in order to achieve a more specific effect for a narrow class of signals. Space does not 
permit a full discussion of these variations on the theme, but a more comprehensive 
discussion is available elsewhere [9]. RID kernels may also be adapted to minimize 
the entropy of the resulting TFD with nice results [10] 

5.2.3.3 Discrete RID Kernels 

Requirements for discrete forms of the RID are similar to those of the discrete WD. 
The discrete RID may be formed by 

( x )  

RIDz(n, f )  = E K~(n, m) *n r  m)e -j2€ (5.2.10) 
? T ~ - -  - -  (X:) 

where 
o o  

g(m, f)  -- E ~b(n, ra)e -j27rfn (5.2.11) 
n - - - c o  
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Table 5.2.2: Comparison of properties for several distributions. The Born-Jordan distribution and the 
windowed ED are RIDs. Aw(v, T) is the ambiguity function of the spectrogram window w(t). W(u) is 
the Fourier transform of rect(t). 

D i s t r i b u t i o n  g ( v , T )  P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 9  P 1 0  P l l  

W i g n e r  1 x x x x x x x x x x 

R i h a c z e k  e j ~  x x x x x x x 
--v2r2/2a 

E x p o n e n t i a l ( E D )  e x x x x x x x x x 

S p e c t r o g r a m  A w ( v , ' r )  x x x x x 

B o r n - J o r d a n  sin(ur/2) v'r / 2  X X X X X X X X X X X 

W i n d o w e d - E D  e - u 2 / 2 a  , W ( u ) l u = v r  x x x x x x x x x x 

C o n e ( Z A M )  g ( T ) I T I  ~ n ( ~ ' ' )  X X X X X X 
al /T  

Fig. 5.2.2: ED with original, scaled and frequency shifted dolphin click 
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is the discrete RID kernel. 
The discrete RID may thus be conveniently formed by obtaining the local auto- 

correlation Kz(n, rn), convolving it with r  rn) along n, and taking the D T F T  of 
the result with respect to rn. A fully discrete form of the kernel is more desirable. 
A very convenient discrete RID kernel has been discovered based on the binomial 
distribution [5]. The form of the kernel is 

G(n, rn) = 1 Ikmt k) + (5.2.12) 

The correlation shift index rn takes the values - o c . . .  - 1, 0, 1 , . . .  oc, and the time 
shift index n takes the values - o c . . .  - 1 , - . 5 ,  0, .5, 1 , . . .  oc. It can be shown that  
the signal structure of the discrete local autocorrelation and the discrete form of 
the kernel can be easily formulated to include the half-integers [11]. 

5.2.4 Comparisons of TFD Results 
A few comparisons of TFD results are warranted. The spectrogram, the discrete WD 
and the binomial distribution (BD) just described are chosen for this purpose. A 
synthetic signal composed of a low-frequency, frequency-modulated sinusoid (war- 
ble) and a rising chirp serves to illustrate some of the differences between these 
TFDs. The alias-free form of the discrete TFD was used in each case [11]. The 
sampling frequency was assumed to be one sample per second. 

One can readily see that  the chirp is evident in the spectrogram of Fig. 5.2.3(a), 
but rather smeared in frequency as one might expect when using a 512 point window. 
The warble is a continuous smear with little evident fine structure. The WD result 
is shown in Fig. 5.2.3(b). 

A 512 point analysis window was used for the WD. The resolution for the WD 
is dramatically better than is the case for the spectrogram, however. One can see 
that  the chirp is very well resolved and the frequency-modulated "warble" is also 
well resolved. However, there is an interlaced band of cross-term activity between 
the chirp and the warble. Finally, the BD result is shown in Fig. 5.2.3(c). Here, 
the warble and the chirp are well resolved with little evident cross-term activity 
between them, but there is still a bit of interlaced cross-term activity within the 
sinusoidal result. 

5.2.5 Summary and Conclusions 
The RID approach provides an advantage over the WD and the spectrogram. It may 
be efficiently computed, particularly in its discrete forms. The RID retains almost 
all of the desirable properties of the WD, but with considerably reduced interference. 
The RID has proved to be a useful investigative tool in many applications, revealing 
previously unobservable signal characteristics in many cases. Despite the constraints 
which guarantee the RID properties, the kernel retains a great deal of flexibility and 
may be tailored to specific applications with considerable benefit. 
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Fig. 5.2.3: Comparison of Binomial TFDs for a 512pt. window: (a) Spectrogram, (b) WVD, (r 
Binomial TFD. From [12]. 
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5.3 ADAPTIVE TIME-FREQUENCY ANALYSIS~ 
The lack of a single time-frequency representation (TFR) that is "best" for all ap- 
plications has resulted in a proliferation of TFRs, each corresponding to a different, 
fixed mapping from signals to the time-frequency plane. A major drawback of all 
fixed mappings is that, for each mapping, the resulting time-frequency representa- 
tion is satisfactory only for a limited class of signals. Adaptive TFRs tune their 
representation to each signal to offer good performance for a large class of signals. 

A natural way to approach tuning is via optimization; this requires an objective 
function or performance measure that expresses what we "want to see" and a class 
of representations to choose from. Below we overview several optimized TFRs. 
Broadly speaking, the approaches break into adaptive TFRs based on the linear 
short-time Fourier transform (STFT) and those based on the quadratic Wigner 
distribution. When properly tuned, a high precision representation results, as we 
see in Figure 5.3.1. 

5.3.1 Adaptive Short-Time Fourier Transforms 
The simplicity, efficiency, robustness, and generally good performance of the short- 
time Fourier transform (STFT) make it the primary tool for routine time-frequency 
analysis (see Section 2.3.1). However, in some cases, the spectrogram (its squared 
magnitude) shows considerably inferior concentration relative to more sophisticated 
quadratic time-frequency representations. Jones and Parks [1] have shown that 
inferior resolution in the spectrogram is primarily due to mismatch between the 
window and signal components; that is, the spectrogram performs best when the 
duration and orientation of the analysis window match those of the local signal 
components. When these are not known a priori or when they vary between multiple 
components in a complex signal, an adaptive-window STFT can adjust the window 
parameters over time and frequency to obtain near-optimal performance for all 
components. 

An adaptive-window STFT of the signal x takes the form 

S(t ,  w) - / x(7") wt,~(T -- t) e-J~rdT, (5.3.1) 

where the only difference between the adaptive-window STFT and the conventional 
STFT is the potential variation of the window w with time and frequency. A family 
of unit-energy Gaussian windows of the form 

Wt,w(T) -- (--2 Re[ct,~ol/Tr) 1/4 exp[ct,~o(T -- t) 2] e -j~~ (5.3.2) 

0Authors: Richard Baraniuk, Department of Electrical and Computer Engineering, Rice Uni- 
versity, 6100 Main Street, Houston, TX 77005, USA (richb@rice.edu, http://www.dsp.rice.edu), 
and Douglas L. Jones, Department of Electrical and Computer Engineering and Coordinated 
Science Laboratory, University of Illinois, 1308 West Main Street, Urbana, IL 61801, USA 
(jones@dsp.csl.uiuc.edu). Reviewers: P. Flandrin and F. Auger. 
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Fig. 5.3.1: Time-frequency analysis of 2.5 ms of an echolocation pulse emitted by the large brown bat, 
Eptesicus fuscus. Pictured are the (a) spectrogram, (b) Wigner distribution, and (c) adaptive radially 
Gaussian optimal-kernel distribution (Section 5.3.2.3). The 1/0 optimal-kernel distribution looks very 
similar. (Thanks to Curtis Condon, Ken White, and AI Feng of the Beckman Institute of the University 
of Illinois for this data and for permission to use it in this publication.) 
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is adopted in [2], where the real part of the window parameter ct,~ controls the 
effective time-duration of the window, and the imaginary part determines the chirp 
rate (or time-frequency tilt). 

The window parameter function c(t, f )  is adapted at each time-frequency loca- 
tion (t, f)  to maximize a measure of local concentration 

max f f  IS(u, v) a(t - u, f - v)l 2p dudv (5.3.3) 

c ( f f  [S(u ' v) a(t - u, f - v)l p du dv) 2' 

with ~(t, f)  a time-frequency window that tapers to zero away from (t, f)  = (0, 0) 
and p _> 1 ( [2] takes p = 2). Maximizing this concentration measure is equivalent 
to maximizing several other measures of sharpness, focus, peakiness, or kurtosis or 
minimizing a measure of R@nyi entropy [3]. 

A fairly efficient algorithm in [2] makes extensive use of FFTs both to compute 
the local concentration measure and the necessary STFTs. In essence, the algo- 
rithm computes in parallel a number of STFTs with fixed windows spanning the 
range of acceptable window parameters, computes the local concentration metric for 
each window at each time-frequency location via FFT-based fast convolution, and 
then selects at each time-frequency location the value corresponding to the STFT 
with the optimal window. The computational cost is approximately two orders of 
magnitude greater than a single fixed-window STFT. 

Support of both time and frequency adaptivity leads to a relatively expensive 
algorithm. Often, adaptation of the window with frequency is unnecessary. For such 
cases, a very efficient adaptive window spectrogram has been developed [4]. This 
method adjusts one or more window parameters (most commonly, window duration) 
with time to best match the local signal structure. The same local concentration 
measure (5.3.3) can be optimized. The efficient algorithm computes a few STFTs 
spanning the range of the adapting window parameter(s), computes the resulting 
concentration metric for each parameter, and interpolates this data to estimate the 
exact value of the parameter maximizing the concentration. A window with that 
optimal value is then applied at the current time to compute the optimal-window 
STFT using a single FFT. 

This simplified time-adaptive-window STFT performs well on many signals and 
often provides nearly all of the potential benefits of adaptive time-frequency analysis 
at a cost only a few times that of a conventional fixed-window spectrogram. A 
similar procedure creates an adaptive-wavelet continuous wavelet transform [4]. 

The adaptive spectrogram representation for speech signals developed by Glinski 
adapts the window based on a segmentation (provided by the user) of the signal 
into pitch periods [5]. 

5.3.2 Adaptive Quadratic Representations 
Quadratic TFRs from Cohen's class can be interpreted as filtered versions of the 
Wigner distribution. Taking Fourier transforms, this corresponds to weighting the 
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ambiguity function (AF, Article 5.1) A(O,T) of the signal by a two-dimensional 
kernel function r 7-). 

In an adaptive quadratic TFR, we adapt the form of the kernel to match the 
shape of the signal's components in the ambiguity domain. In particular, we typi- 
cally desire that r be close to 1 in the vicinity of the signal's auto-components and 
close to 0 in the vicinity of the signal's cross-components. Again optimization is a 
key tool. 

5.3.2.1 1/0 Kernel Method 

Given a signal and its AF, Baraniuk and Jones define the optimal 1/0 kernel as the 
real, non-negative function r that solves the following optimization problem [6]" 

max f f A(O T)r ~-)l 2 dO dT (5.3.4) 
r J J  ' , 

subject to 
r 0)  - ( 5 . 3 . 5 )  

r is radially nonincreasing (5.3.6) 

] j f  ir d0d  < 0 O~, > (5.3.7) 

The radially nonincreasing constraint (5.3.6) can be expressed explicitly as 

r >_ r V rl < r2, V ~, (5.3.8) 

where ri and ~ correspond to the polar coordinates radius and angle, respectively. 
The constraints (5.3.5)-(5.3.7) and performance measure (5.3.4) are formu- 

lated so that the optimal kernel passes auto-components and suppresses cross- 
components. The constraints force the optimal kernel to be a lowpass filter of 
fixed volume a; maximizing the performance measure encourages the passband of 
the kernel to lie over the auto-components (see Section 3.2.3 and Articles 4.2, 5.1 
and 5.2). Both the performance measure and the constraints are insensitive to the 
orientation angle and aspect ratio (scaling) of the signal components in the (0, ~-) 
plane. Analysis in [6] shows that the optimal kernel solving (5.3.4)-(5.3.7) takes on 
essentially only the values of 1 and 0. 

By controlling the volume under the optimal kernel, the parameter c~ con- 
trols the tradeoff between cross-component suppression and smearing of the auto- 
components. Reasonable bounds are 1 < c~ < 5. At the lower bound, the optimal 
kernel shares the same volume as a spectrogram kernel, while at the upper bound, 
the optimal kernel smooths only slightly. In fact, as c~ ~ c~, the optimal-kernel 
distribution converges to the Wigner distribution of the signal. 

Analyzing a signal with this optimal-kernel TFR entails a three-step procedure: 
(1) compute the AF of the signal; (2) solve the linear program (5.3.4)-(5.3.7)in 
variables Ir (a fast algorithm is given in [7]); (3) Fourier transform the AF-kernel 
product A(O, z-) (~opt (0, 7-) to  obtain the optimized TFR Copt(t, f). 
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5.3.2.2 Radially Gaussian Kernel Method 

Although the 1/0 kernel is optimal according to the criteria (5.3.4)-(5.3.7), its sharp 
cutoff may introduce ringing (Gibbs phenomena) into the optimized TFR, especially 
for small values of the volume parameter (~. For an alternative, direct approach 
to smooth optimal kernels, explicit smoothness constraints can be appended to the 
kernel optimization formulation (5.3.4)-(5.3.7). In [8], Baraniuk and Jones constrain 
the kernel to be Gaussian along radial profiles: 

_ ( o t 0 ) 2 + ( ~ / t 0 ) 2  

r T) = e 2~(r (5.3.9) 

with to a dimension parameter (typically to = ls). 
The term a(r represents the dependence of the Gaussian spread on radial 

angle ~p. Any kernel of the form (5.3.9) is bounded and radially nonincreasing and, 
furthermore, smooth if a is smooth. Since the shape of a radially Gaussian kernel is 
completely parameterized by this function, finding the optimal, radially Gaussian 
kernel for a signal is equivalent to finding the optimal function aopt for the signal. 
A hybrid gradient/Newton ascent algorithm solving the (nonlinear) system (5.3.4), 
(5.3.7), (5.3.9) is detailed in [8]. 

See Figure 5.3.1 for an example on a bat chirp signal. 

5.3.2.3 Adaptive Optimal Kernel (AOK) Method 

While the 1/0 and radially Gaussian TFRs generally perform well, they are block- 
oriented techniques that design only one kernel for the entire signal. For analyzing 
signals with characteristics that change over time; for real-time, on-line operation; 
or for very long signals, adaptive signal-dependent TFRs are required. 

Adaptation of the kernel to track the local signal characteristics over time re- 
quires that the kernel optimization procedure consider only the local signal char- 
acteristics. An ambiguity-domain design procedure such as the radially Gaussian 
kernel optimization technique described above does not immediately admit such 
time localization, since the AF includes information from all times and frequencies 
in the signal. This difficulty has been surmounted, however, by the development of 
a time-localized, or short-time, AF [9]. Application of the radially Gaussian kernel 
optimization procedure to the short-time AF localized at time to produces an op- 
timal kernel r T; to) and an optimal-kernel TFR frequency slice Copt(t0, f) at 
time to. Since the algorithm alters the kernel at each time to achieve optimal local 
performance, better tracking of signal changes results. 

5.3.2.4 Adaptive Cone-Kernel TFR 

The cone-kernel quadratic TFR of Zhao, Atlas, and Marks [10] has many desirable 
properties, including relatively good time-frequency resolution, good cross-term sup- 
pression, and global time-support and time-marginal preservation along with high 
computational efficiency. However, the performance and inner time-support behav- 
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ior depend on a cone-length parameter, and mismatch between this parameter and 
signal component duration can lead to poor resolution and cross-terms [11]. 

An adaptive cone kernel distribution has been developed that adjusts the cone- 
length parameter over time to best match the local signal structure according to 
a short-time energy metric [11]. This technique in effect computes cone-kernel 
representations with several cone lengths in parallel and determines the optimal 
cone length at each time (reminiscent of Section 5.3.1). A very efficient recursive 
algorithm allows the parallel computations to be performed with very little overhead 
relative to a single cone-length TFR. The net result is an adaptive algorithm with 
the same order of complexity as the standard short-time Fourier transform. The 
technique has shown excellent performance on many signals. 

5.3.2.5 Adaptive Reduced-Interference TFR 
Adaptive TFRs based on other approaches have also been developed. In [12], Krish- 
namachari and Williams design an adaptive kernel via a projection-based approach 
using generalized (chirp) time-frequency marginals (see Article 5.2). Cross-term- 
reduced marginals are generated from short-time Fourier transforms that are rela- 
tively free of cross terms. A cross-term-reduced distribution is then reconstructed 
from these marginals via tomographic principles. 

Nickel, Sang, and Williams [13] develop an "iterated projections distribution" by 
iteratively extracting the negative part of the current TFR, estimating the cross- 
term from it via a signal-dependent mask function that adaptively identifies cross- 
term regions in the ambiguity domain, and subtracting the current cross-term esti- 
mate from the current TFR estimate. The procedure iterates the above steps until 
sufficient convergence is achieved. The method shows excellent time-frequency con- 
centration and cross-term suppression in the examples in [13]. 

5.3.3 Summary and Conclusions 
The drive for higher TFR performance (resolution, concentration, etc.) will be sat- 
isfied only by adaptive techniques. Optimal TFRs rest on a well-grounded mathe- 
matical theory, and new performance metrics or required properties result in new 
optimization formulations and new TFRs. Moreover, many nonlinear TFRs, such as 
the reassignment method (Article 7.2), can be regarded as signal-dependent, opti- 
mized TFRs. The adaptive TFR concept has also been extended to random signals 
(Article 12.1). Finally, the same adaptivity principles can be applied to time-scale 
representations and continuous wavelet transforms. 
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5.4 POLYNOMIAL WIGNER-VILLE DISTRIBUTIONS~ 

5.4.1 Polynomial FM Signals 
A complex signal can be written in the form 

z(t) - a(t) d r (5.4.1) 

where the amplitude a(t) and instantaneous phase r are real. Let us define 

r (5.4.2) A(t)-  

This f~(t) is the instantaneous frequency (IF) of z(t) if z(t) is analytic. In this 
Article we simply use Eqs. (5.4.1) and (5.4.2) as definitions of z(t) and fz(t),  without 
assuming that  z(t) is analytic. Results concerning fz(t) will also be valid for the IF 
[usually written fi(t)] when z(t) is analytic. 

The factor a(t) allows amplitude modulation, phase inversion and time limiting. 
If r is a polynomial function of degree p, so that  fz(t) is a polynomial of degree 
p - 1 ,  then z(t) is a p o l y n o m i a l - p h a s e  or p o l y n o m i a l  F M  signal. If p > 2, then 
fz(t) is nonlinear, so that z(t) is an example of a n o n l i n e a r  F M  signal. 

Such nonlinear FM signals occur both in nature and in man-made applica- 
tions [1]. For example, the sonar systems of some bats use hyperbolic and quadratic 
FM signals for echo-location. Some radar systems use quadratic FM pulse compres- 
sion signals. Earthquakes and underground nuclear tests may generate nonlinear 
FM seismic signals in some long-propagation modes. The altitude and speed of an 
aircraft may be estimated from the nonlinear IF of the engine noise reaching the 
ground. Nonlinear FM signals also appear in communications, astronomy, teleme- 
try and other disciplines. As these examples suggest, the problem of estimating the 
IF of a nonlinear FM signal is of some practical importance. 

For a deterministic linear FM signal, the Wigner-Ville distribution (WVD) gives 
an unbiased estimate of the IF. To obtain the same property with higher-order 
polynomial FM signals, an extension of the WVD called the p o l y n o m i a l  W i g n e r -  
Vil le d i s t r i b u t i o n  ( P W V D )  was defined [2,3]. If the instantaneous phase r is 
a polynomial of degree not exceeding p, then the IF estimate based on a PWVD of 
order p is unbiased [4]. 

5.4.2 Principles of Formulation of Polynomial WVDs 
We seek a Time-Frequency Distribution of the form 

Pz( t , f )  - . ~ { R z ( t ,  ~-)} (5.4.3) 

~ Boua lem Boashash  and Gavin  R. Pu t l and ,  Signal Processing Research 
Centre, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia 
(b.boashash@qut.edu.au, g.putland@qut.edu.au). Reviewers: B. Barkat and LJ. Stankovid. 
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where nz( t ,  r), called the s ignal  kernel ,  1 somehow depends on z(t). If a(t) = 1, 
then, for the best possible representation of the IF law, we would like Pz(t, f )  to 
be equal to 5 ( f - f z ( t ) ) .  Making this substitution in Eq. (5.4.3) and taking inverse 
FTs, we find 

Rz(t,  T) -- e j2~rfz(t)r = e jr (5.4.4) 

So, while z(t) may have a variable frequency with respect to t, we want R~(t, T) to 
have a constant frequency w.r.t. T, namely fz( t) .  That  is, we want the signal kernel 
to d e c h i r p  the signal, yielding a sinusoid of constant frequency, for which the FT  
is the optimal representation and gives a delta function at f~(t). 

To estimate r (t) in Eq. (5.4.4), we use a central finite-difference (CFD) approx- 
imation of the form 

q 

A 1 ~ bz[r -- r (5.4.5) r (t) r  (t)  = -; 
/--1 

and choose the dimensionless 2 real coefficients bl and cz so that  the approximation 
is exact if r is a polynomial of degree p. Let that  polynomial be 

p 

r = E aiti (5.4.6) 
i=0 

so that  
P 

r = E iait i-l" (5.4.7) 
i----1 

A polynomial of degree p remains a polynomial of degree p if the argument is 
shifted and scaled. If we shift the time origin so that  t = 0 in Eqs. (5.4.5) to (5.4.7), 

we see that  if r contains only even-power terms, both r  and r are zero, 
so that  the even-power terms do not introduce any errors into the estimate. So we 
may assume that  p is even and consider only the odd-power terms in r There 
are p/2 such terms, hence p/2 degrees of freedom in the coefficients ai,  suggesting 
that  the CFD estimate can be made exact by using only p/2 finite differences in 
Eq. (5.4.5), with uniform sampling intervals. But we shall retain the generality of 
the sampling instants because we can do so without further algebraic complexity, 
and because the extra degrees of freedom turn out to be useful. With q - p/2, 
Eq. (5.4.5) becomes 

p/2 

r 7 
/=1 

(5.4.8) 

1This nota t ion  is consistent  wi th  the convention tha t  Rz(t, r) [Article 2.7] is a general izat ion 
of Kz(t, T) [Section 2.1.2]. But  here, as we shall see, the  general izat ion is in a new direction. 

2We could allow cl to have the  dimensions of t ime and dispense wi th  the  symbol  T; however, 
re ta in ing  T will emphasize  the  correspondence between the P W V D  and the o rd inary  W V D .  
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A 

where the use of r  of r  the exactness of the estimate. Substituting 

this into Eq. (5.4.4), and renaming the signal kernel as R (p) (t, T) to acknowledge the 
dependence on p, we obtain 

II 
l--1 

(5.4.9) 

Then, substituting from Eq. (5.4.1) with a(t) - 1, we find 

R ? ) ( t ,  - 1-[ 
l--1 

(5.4.10) 

The resulting TFD, denoted by W (p) (t, f )  and given by Eq. (5.4.3)as 

(5.4.11) 

is called a p o l y n o m i a l  W i g n e r  d i s t r i b u t i o n  (or p o l y n o m i a l  W D )  of order p. 
Thus we arrive at a general definition: A polynomial WD of order p of the 

signal z(t) is a function w(P)(t, f )  given by Eqs. (5.~.10) and (5.~.11), such that 
the coefficients bl and ct satisfy Eq. (5.~.8) when r is a polynomial of degree 
not exceeding p. In the special case in which z(t) is analytic, the polynomial WD 
becomes the p o l y n o m i a l  W i g n e r - V i l l e  d i s t r i b u t i o n  ( P W V D ) .  

If we put p - 2 ,  Cl __1~ and bl - 1 , then R (p) (t, T) reduces to z(t+ ~)r z*(t-r~), 
which is the instantaneous autocorrelation function (IAF), denoted by K~(t, T). We 

might therefore describe R (p) (t, T) as a p o l y n o m i a l  I A F  or h i g h e r - o r d e r  IAF.  
Eq. (5.4.10) shows that  for any z(t), the polynomial IAF is Hermitian in T. It 

follows that  the polynomial WD is real. 

5.4.3 IF Estimates with Zero Deterministic Bias 
When the IF is a polynomial of degree not exceeding p - 1 ,  the PWVD of order p 
gives an unbiased estimate of the IF law, as is shown by the following result. 

T h e o r e m  5.4.1: If z(t) and fz(t) are given by Eqs. (5.~.1) and (5.~.2), where 
r is a polynomial of degree not exceeding p, and if W (p) (t, f )  satisfies the general 
definition of a pth-order polynomial WD of z(t), then W (p) (t, f )  is symmetrical in 
f about f = fz (t). 

Proof: Substituting Eq. (5.4.1) into Eq. (5.4.10) and simplifying, we find 

p/2 

RT)(t,r) = R(~')(t,~)exp (j E b~[r - r  (5.4.12) 
j = l  

where R (p) (t, T), as the notation suggests, is the polynomial IAF for a(t), given by 

p/2 

R (p) (t, T) = r I  [a(t+clT) a(t--clT)] b~ . (5.4.13) 
/--1 
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Because r is a polynomial function of degree not exceeding p, and because W(~ p) (t, f)  is 
a pth-order polynomial WD, Eq. (5.4.8) is applicable, so that Eq. (5.4.12) becomes 

R (p) (t, T) = R (p) (t, T) e ~r (t)r = R(p)(t, ~') e ~2~fz(t) ~. (5.4.14) 

Taking Fourier transforms (T --~ f), we find 

W(P)(t,f) - W ( P ) ( t , f ) ~ 5 ( f - f z ( t ) ) =  W(P)( t , f - f~( t ) )  (5.4.15) 

where W (p) (t, f) is the corresponding polynomial WD of a(t): 

(5.4.16) 

From Eq. (5.4.13) we see that R(a p) (t, T) is real and even in T. Hence, from Eq. (5.4.16), 
W (p) (t, f) is real and even in f. Then, from Eq. (5.4.15), W (p) (t, f) is real and symmetrical 
in f about f = fz (t). " 

Because a symmetrical distribution is symmetrical about its first moment, The- 
orem 5.4.1 has the following corollary: If  z(t) has polynomial phase of degree not 

exceeding p, and if W, (p) (t, f )  is a pth-order polynomial WD of z(t), then the first 

moment  of W. (p) (t, f )  w.r.t, f is equal to fz(t) .  
Being unbiased for higher-degree polynomial FM signals, PWVDs can solve 

problems that  quadratic TFDs cannot [2]. PWVDs also give optimal frequency 
resolution in the sense that  they are FTs of maximal-length polynomial IAFs derived 
from the full-length signal. 

5.4.4 Calculation of Coefficients 
Applying Eq. (5.4.6)in Eq. (5.4.8) gives 

] 1 bl E ai [(t+C1T) i -- (t--C1T) i] . r (5.4.17) 

Eqs. (5.4.7) and (5.4.17) give two expressions for r Equating these expressions, 
and shifting and scaling the time variable so that  t = 0 and T = 1, we obtain 

a l - Z  b l E a i [  cli ( -c l )  - 2 E  aicl'  bl. 
1=1 i=0  1--1 ki=l ,3 , . . .  

(5.4.18) 

In the left-hand and right-hand expressions of this equation, the coefficient of ai is 
zero for all even values of i, justifying the decision to consider only odd values of i. 
Equating coefficients of al gives 

p/2 
1 

1=1 

(5.4.19) 



P o l y n o m i a l  W i g n e r - V i l l e  D i s t r i b u t i o n s  189 

and equating coefficients of a 3 ,  a5 , . . . ,  ap_l gives 

p/2 

O-- ~ c l ~ b l  ; i - - 3 , 5 , . . . , p - - 1 .  
/=1 

(5.4.20) 

The last two equations can be written in matrix form as 

cl c2 c3 ""  cp/2 bl 1/2 

C13 C2 3 C3 3 �9 �9 �9 C p / 2  3 b2 0 

5 b3 0 C15 C2 5 C3 5 " " �9 C p / 2  m 

C l P - - 1  c 2 P - - 1  c 3 P - - 1  . . . C p / 2 P - - 1  b p / 2  

(5.4.21) 

and solved algebraically or numerically. 
Eq. (5.4.21) is underdetermined: p/2 equations in p unknowns leave p/2 degrees 

of freedom. Various ways of exploiting the degrees of freedom give rise to various 
forms of the PWVD. Here we mention two forms described in [2, p. 217]. 

If we decide that we want uniform sampling intervals, we choose the values of cL 
and accept the resulting values of bL, which in general turn out to be fractions. The 
resulting form of the PWVD is called the f r a c t i o n a l - p o w e r s  f o r m  or F o r m  I, of 
which an example is given in [3, p. 550]. The need to compute fractional powers is 
a cause of inefficiency. 

Alternatively, if we decide that the polynomial IAF must contain only positive 
integer powers, we choose the values of bl and accept the resulting values of cz, 
which in general give non-uniform sampling intervals. The resulting form of the 
PWVD is called the i n t e g e r - p o w e r s  fo rm or F o r m  II. In a discrete-time imple- 
mentation, non-uniform sampling requires interpolation, but this is more efficient 
than computing non-integer powers. The number of interpolations required can be 
reduced by time-scaling [2, p. 218]. 

(There is also a "complex-time form" or "Form III" based on an analytic extension 
of the signal with a complex time argument; this is described in [5], with further 
details in [6].) 

Notice that given one solution to Eq. (5.4.21), we can obtain another solution by 
changing the sign of any cL and of the corresponding bL. Thus, from one solution, 
we can always find another solution in which all the indices bl are positive, ensuring 
that the polynomial IAF does not become unbounded as the signal approaches zero. 

5.4.5 Examples 
In the trivial case for which p = 2 (quadratic phase, linear FM), Eq. (5.4.21) reduces 
to clbl = 1/2.  If we fix the sampling points by choosing Cl = 1/2,  that  leaves 
bl - 1. Alternatively, if we choose bl = 1 for unit powers, that  leaves Cl = 1/2.  
Thus we have a degenerate case in which Forms I and II overlap. Substituting for 
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p, bl and cl in Eq. (5.4.8), we obtain the simplest possible CFD approximation: 

r  T1 [r + } ) -  r  ~)] . (5.4.22) 

The same substitutions in Eq. (5.4.10) yield the polynomial IAF 

R~ 2) (t, T) = z(t  + ~) Z* (t -- ~). (5.4.23) 

This is just the ordinary IAF Kz(t ,  7), which when substituted into Eq. (5.4.11) 
yields the ordinary (quadratic) Wigner distribution. So, for p = 2, Theorem 5.4.1 
says that the Wigner distribution is symmetrical about fz( t)  if z(t) is a quadratic- 
phase (i.e. linear FM) signal. This confirms that the WVD gives an unbiased esti- 
mate of the IF for deterministic linear FM signals. 

In the case for which p = 4 (quartic phase, cubic FM), Eq. (5.4.21) reduces to 
the 2 x 2 system 

C1 bl + c2 b2 = l / 2  
�9 (5.4.24) 

c13bl + c23b2 = 0 

F o r m  I: If we take cl = 1/4 and c2 = - 1 / 2 ,  Eqs. (5.4.24) become a linear system 
with solutions bl = 8/3,  b2 = 1/3. Substituting these values into Eq. (5.4.10) gives 

8 1 
R(4)(t, T) = [z ( t+4)z*( t - -~) ]  ~ [z ( t - -~)z*( t+~)]  ~ (5.4.25) 

where the superscript "(4)" indicates order 4. 

F o r m  II: If we take bl = 2 and b2 = 1, Eqs. (5.4.24) become a nonlinear system 
with solutions [ ]1 

C1 - -  2(2 - 21/3) ~ 0.6756 ; C 2  : --21/3Cl ~ -0 .8512.  (5.4.26) 

Substituting for bl and b2 in Eq. (5.4.10) gives 

R~4)(t, T) -- [Z(t-}-ClT) z* ( t - - c lT ) ]  2 Z(t-~-C2T) Z*(t--C2T). (5.4.27) 

where cl and c2 are as in Eqs. (5.4.26). This is one of an infinite number of Form-II 
solutions. More details on the design procedure are given in [1,2,7] and in Article 5.5 
(next). 

Fig. 5.4.1 illustrates the effectiveness of the PWVD in suppressing artifacts 
caused by errors in the CFD estimate of the IF. The IF of the test signal is 

fz( t)  = fc + fd C5( t /T)  ; 0 <_ t <_ T (5.4.28) 

where fc is the center frequency, fd is the minimax frequency deviation, and C5 is 
the Chebyshev polynomial of degree 5. Trace (a) shows the ordinary Wigner-Ville 
distribution (WVD), which clearly cannot handle the nonlinear IF law. The Form-II 
PWVD shown in trace (b) was computed by the "TFSA" software toolbox, developed 
in-house by the Signal Processing Research Centre, QUT. It is of 6th order, so that 
its signal kernel exactly dechirps the 5th-degree IF law. The superiority of the 
PWVD is evident, as is its symmetry about the IF law. 
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Fig. 5.4.1: Time-frequency representations of a 5th-degree Chebyshev polynomial FM signal 
[Eq. (5.4.28)] with center frequency fc ---- 0.25 Hz, minimax frequency deviation fd = 0.1Hz, dura- 
tion T = 128 seconds: (a) WVD; (b) 6th-order Form-II PWVD. Both TFDs are unwindowed. Each 
plot shows time vertically (range 0 to 128s; resolution 2s) and frequency horizontally (range 0 to 
0.5 Hz), and has the time trace at the left and the magnitude spectrum at the bottom. 

5.4.6 Multicomponent Signals and Polynomial TFDs 
The use of TFDs for multicomponent signal analysis requires a reliable method of 
suppressing cross-terms (see Section 3.1.2 and Articles 4.2 and 5.2). 

For quadratic TFDs, the mechanisms of generation and suppression of cross- 
terms are well understood. In the WVD, each cross-term is generated midway 
between the interacting components and alternates at a rate proportional to the 
separation between the components (see Article 4.2). Other quadratic TFDs may 
be obtained from the WVD by 2D low-pass filtering, which attenuates the cross- 
terms because of their alternating (high-pass) character. 

For higher-order polynomial TFDs, there is the added difficulty that cross-terms 
do not necessarily alternate, so that it may not be possible to suppress cross-terms 
entirely by convolving them with a simple smoothing function in the (t, f)  plane. 
However, if polynomial TFDs are implemented according to the S -me thod ,  as 
described in Article 6.2, the generation of cross-terms can be avoided [8]. 

5.4.7 Summary and Conclusions 
A PWVD of degree p is derived from a pth-order CFD approximation to the deriva- 
tive of the instantaneous phase. It reduces to the ordinary WVD if p - 2. It is real 
and symmetrical about the IF law of an FM signal whose instantaneous phase is a 
polynomial of degree not exceeding p (i.e. whose IF is a polynomial of degree not 
exceeding p - 1 ) ,  even if that signal is also amplitude-modulated. 

This topic is developed further in Article 5.5 (next). More properties of PWVDs 
are given in [1]. Some implementation issues are discussed in [4] and [7]. The effect 
of noise is considered in Article 10.4. 
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5.5 DESIGN OF POLYNOMIAL TFDs, W I T H  APPLICATIONS~ 
5.5.1 Decompositions of Polynomial Derivatives 

In many technological applications such as radar, sonar and communications, si- 
gnals can be modeled as higher-order polynomial phase signals (PPSs) with constant 
or slowly time-varying amplitude (see Section 5.4.1). The Wigner-Ville Distribution 
(WVD) can process PPSs having polynomials of degree less than or equal to two. In 
the case of higher degrees, methods based on higher-order statistics seem to be ne- 
cessary to process such signals [1,2]. In [3], the Polynomial Phase Transform (PPT) 
was introduced for the estimation of constant amplitude PPSs. The kernel of this 
transform is based on an expression of a polynomial derivative using the principle 
of the finite difference. In [4, 5] an exact decomposition of the derivatives of any 
order of a polynomial r is proposed in terms of shifted versions of this polyno- 
mial, i.e., r  t0), ..., r  tn). This decomposition is used to design time-frequency 
distributions that generalize the classical WVD and Ambiguity Function (AF). The 
relationships between these distributions, the PPT and the Polynomial Wigner-Ville 
Distribution (PWVD) are discussed. The estimation of the coefficients appearing 
in the model of a P PS affected by multiplicative and additive noise using the high- 
order ambiguity function is discussed in [6]. The analysis of the performances of the 
proposed estimators is studied in details in [5] and [6]. In this article, we recall the 
main results concerning the use of polynomials in the design of higher order time 
frequency distributions. Let to , . . . ,  tQ denote Q + 1 arbitrary distinct real numbers, 
7~N[t] the set of all polynomials of degree _< N and r the derivative of order 
of the polynomial r Consider the decomposition of r in the form �9 

Q 

r - E c~r - tk) Vt, (~ -- O, 1 , . . .  ,N)  (5.5.1) 
k=0 

where, for a given t~, the coefficients a~ depend only on the tk's and are solution 
of the linear system given in the Appendix. Then the 3 following properties are 
equivalent [4, 5] �9 
( i ) -At  least one polynomial r of degree N satisfies (5.5.1) 
(ii)-All the polynomials of 7~N[t] satisfy (5.5.1). 
( i i i )-The polynomial r satisfies the following identity 

Q 

(t) - Z 4r  - 
k=0 

vt (5.5.2) 

~  �9 M e s s a o u d  B e n i d i r ,  LSS-Supelec,  Universi td de Par is -Sud,  France  (beni- 
dir@lss.supelec.fr) .  Reviewers  �9 B. Barka t  and B. Picinbono.  
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The existence of the a~'s and their expressions in terms of the tk are discussed in [4]. 
In particular, for 

N 

r = E aiti' aN ~ 0 (5.5.3) 
i--0 

it is shown that  the smallest integer Q for which the decomposition (5.5.1) is possible 
is Q - N if t~ - N and Q - N - 1 if t~ < N assuming in the last case that  

to  + . .  . -~- t N - 1  - 0 .  (5.5.4) 

For instance, if t~ = N, one can choose Q = N and (5.5.2) becomes 

N 

E aN r - Ttk) = T NN!aN Vt. (5.5.5) 
k = 0  

If e - N -  1, assuming condition (5.5.4), one can choose Q - N -  1 and (5.5.2) 
becomes 

N - 1  
N - 1  7 . N - 1  E C~k r  Ttk) -- [ ( N -  1)!aN-1 + N!aNt] 

k = 0  

Vt VT. (5.5.6) 

E x a m p l e  5.5.1: P a r t i c u l a r  p a r a m e t e r s  tk's a n d  t h e i r  a s s o c i a t e d  c~ ' s  

Consider the important  case g - Q and 

tk - k + ~, k = 0 , . . . ,  Q (5.5.7) 

where c is an arbi trary parameter for Q = N and c = - Q / 2  for Q = N -  1 in 

order to satisfy (5.5.4). In both cases Q = N and Q = N -  1, the aQ's  appearing 
in (5.5.1) are given by 

Q k k a k ( -  1)kck k=0, . . .  Q = 1) c Q ~ ( -  , (5.5.8) 

where the C~ denote the number of combinations. 

5.5.2 Design of Time-Frequency Distributions 
We consider Q + 1 arbitrary real and distinct parameters" to,.. . , tQ, and denote 

by d0 , . . . , a~  the corresponding coefficients appearing in (5.5.2). We introduce the 
following kernel 

Q 
~e (z t, r) ~ ~ Q+~ ' = H ( z ( t -  tk~)) (5.5.9) 

k = 0  
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where z(t) is a PPS defined by 

N 
z ( t ) -  b(t)e jr r = E aiti with N > 1. (5.5.10) 

i=0 

Let z(t) be a constant amplitude PPS with b(t) = bo and N _< Q + 1. Using 
property (5.5.2) and relations (5.5.5) (5.5.6), the kernel K: ~ , Q+I can be written in the 

following forms according to the value of g �9 

]C~+ 1 (Z, t, T) -- exp ~ a~r - tkT) 
k=0 

= exp [jr for g -- 0, 1 , . . . ,  N 

= exp [ j T N - I [ ( N -  1)!aN-1 + N!aNt]] 

[~iT NN!aN] for g -  N exp ka J 

for g - N - 1  

(5.5.11) 

The Fourier Transform of the kernel ~ + 1  with respect to t or T leads to general 
time-frequency distributions that will be analyzed in the following sections. 

5.5.2.1 Generalized Ambiguity Function 
The Generalized Ambiguity Function (GAF) is defined by �9 

f0 T z(t) ~ r 1 (Z, O, T)--A )~gQ+l (z, t, 7") e - j~ dt. (5.5.12) 

where the kernel ]Ce Q+l is given by (5. 5. 9). 
In the following we consider the case g = N -  1 and introduce the notation 

,AN_ 1A Q+I- -~Q+I .  For a PPS given by (5.5.10) with a constant amplitude b(t) = bo, one 
[5] 

o,  exp 1 + -~ T sinc 

where ffPA=N!aN'rN-1 -- 0 and 

arg moaX I.AQ+I (z, O, 7")1 - N!aN'r N-1. (5.5.13) 

The function AQ+I is thus independent of the parameters tk and it can be seen as 
a generalization of the P P T  defined in [3, 7] by" 

T Q 
PQ+I (z, O, r) ~ / H (z*~(t - k~'))ck e-jOtdt' 

k=O 
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where z *k = z if k is even and z* if k is odd. For instance, if the tk's are given by 
(5.5.7), taking into account (5.5.2.1), one can easily deduce from the properties of 
the P P T  [3] that, for a constant amplitude PPS given by (5.5.10), one has in both 
cases Q = N and Q = N -  1 

r 1 (Z, O, T) = bo 2N-1 exp(j~)Pg(z, O, T) (5.5.14) 

where ~/x N!(N-1) --  2 a N  T N  and 

arg m0ax IAQ+I (z, 0, T)] -- arg m~x ]PN(z, O, T)I. 

The discrete version of AQ+I, denoted by __AQ+I, takes the form [5] : 

Nf N -  i 

__AQ+ 1 (z, 0, 7) ~ E H z(n - tkT) ~ exp ( - j n A O )  
n= Ni k=0 

where A is the sampling period. The result (5.5:13) shows that  the GAF has the 
ability to detect constant amplitude PPSs, similarly to the ability of the FT to 
detect pure frequencies. This gives a method for determining the degree, N, of 
the polynomial phase and its higher-order coefficient aN [3, 5, 7]. This method 
may be iterated and allows the determination of a N - l , . . . ,  h i .  To obtain a0 it 
is sufficient to calculate the phase of the demodulated signal z ( t ) e x p { - j  ~--~ig 1 aiti}. 

E x a m p l e  5.5.2: E s t i m a t i o n  of t he  p h a s e  us ing  t he  G A F  

Consider a third-order PPS with the phase 

�9 (t) = a3t 3 + a2t 2 + alt  + a0, a3 = 0.0063, a2 = 0.2513, al = 7.854, a0 = 1.0003. 

The spectrum of the signal affected by an additive noise is shown in Fig. 5.5.1(a). 
Applying (5.5.13), one obtains [5] the results given in Fig. 5.5.1(b), Fig. 5.5.1(c) and 
Fig. 5.5.1(d). 

From the peak of IA__3(z, 0, T)I , Fig. 5.5.1(b) reveals a peak in the neighborhood 
of 15.1 and this leads to an estimator a3 ,A - -  0.0063 of a3 .  

From the peak of ]A2(zl (t)}, 0, T)], zl(t) = z(t)exp(--j&3,At3), Fig. 5.5.1(c) re- 
veals a peak giving an estimator a 2 , d  - -  0.2513, of a2. 

From the peak of IA l(z2(t)}, 0, T)I, z2(t) = zl(t)  exp(--j&2,At2), Fig. 5.5.1(d) 
reveals a peak giving an estimator al,A -- 7.854, of al. 

5.5.2.2 Generalized Wigner Distribution 
The Generalized Wigner Distribution (GWD) is defined by [5] : 

/o z ( t )  - .  w e ( z ,  t - e / - 1  e Q+ 1 , Q+ 1 ( z ,  t ,  7") g dT  
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F ig .  5.5.1 - Estimation of coefficients aa, a2, al  " (b) yields aa, (c) yields g2, (d) yields a l .  

where the kernel 1C e Q + I  i8 given by (5.5.9). For g - 1, one obtains the P W V D  class 
over the interval [0, T] [8]. 

For a constant ampli tude PPS given by (5.5.10), the GWD is independent of 
the parameters  tk for Q _> N and one has [5] �9 

( - ) (~b(e)(t) - cOTe ) W e (z t, CO) T e 4) (e)(t) COT e sine 
Q + I  , - -  exp j 2 2 (5.5.16) 

arg max [W e el) (e) Q + l ( z , t ,  co)[ - (t). (5.5.17) 
CO 

This shows that  [W e (z t, CO)l is independent of the parameters  tk and it produces Q + I  , 

a maximum at co = ~b (e) (t) in the plane (t, co). 

A p p l i c a t i o n  of  t h e  p a r t i c u l a r  G W D  W N Q+I If the signal z(t) is a constant 
ampli tude PPS given by (5.5.10) and t~ - N,  one can choose Q - N and the notat ion 

A N WN+I=Wo.+I is introduced. In this case, the result (5.5.17) gives" 

a r g  max I]/~N_}_I(Z, t ,  CO)[ - -  N!aN. ( 5 . 5 . 1 8 )  
CO 

Tha t  is [WN+l (z, t, w)[ produces a maximum at w = N!aN in the plane (t,w). This 
leads to a procedure that  allows us to determine the degree of the phase and the 
value of its higher-order coefficient [5]. This procedure may be i terated and one can 
determine the other coefficients aN-l ,  . . . ,  al. Finally to obtain a0, it is sufficient 

N to calculate the phase of z ( t ) e x p { - j y ~ i =  1 aiti}, according  to the result above, 
the distribution WN+I can be computed by choosing arb i t rary  parameters  tk. For 
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instance, if the tk are given by (5.5.7) then the ak are given by (5.5.8). The discrete 
version of 1AYg+l is defined by �9 

N} N 

--~N+I (Z, n, w) = N E H (z'k(n - tkm))a~ (mA)N-1 e--j(mAlN~ 
m----1 k=0 

(5.5.19) 

5.5.3 Estimation of the Phase of a PPS 

Consider the problem of estimating the phase of a PPS signal 

y(t) - z(t)  + ~( t ) ,  z( t)  = b(t)~ ~(~) 

2 where r is of degree N assumed to be known, w(t) is a complex circular A/'(0, aw) 
white noise and b(t) a constant amplitude or a multiplicative Gaussian white noise. 
Introducing the notation x,~ - x(nA) where A is the sampling period, the discrete- 
version of this model is given by �9 

N 

Yn -- bn ejr + Wn, Cn -" E ai(nA)i for n = 1, ..., Ne. (5.5.20) 
i=o 

5.5.3.1 Case of Constant Amplitude and Additive Noise 

Consider the case of a constant amplitude b(t) - bo. Using the GAF and the 
GWD, two iterative algorithms to estimate the polynomial phase are proposed in [5]. 

T h e  G A F - b a s e d  e s t i m a t o r  We take Q - N -  1 = g and the tk's given by 
(5.5.7) In the discrete version of the GAF, A N (5.5.2.1), one choose tk = k Y-~ 

�9 ~ 2 ) 

N~ l + - ~ ~ - , N ~ - N ~  -~~- ,  A _.k N~-I = - ck=CN_l  and T satisfying 0 < T < It is N - l "  
shown [5] that  the first-order moment of the GAF is given by 

E [AN(y, O, ~)] = A N ( z ,  O, ~), V~ (5.5.21) 

and, for the complex signal z(n) given by (5.5.10), we have 

arg m~x [E JAN(Y, 0, T)][ -- N ! ( A r ) N - l a N .  (5.5.22) 

This shows that  IE JAN(Y, O, T)] I produces a maximum at 0 - N ! ( A T ) N - l a N  and 
aN can thus be determined using (5.5.22). The remaining coefficients can be com- 
puted via a recursive algorithm in the same way as in Example 5.5.2 [5]. 

P r o p e r t y  5.5.1: [5] It is always possible to choose T in order to ensure that the 
variables y(n - tkT) and y (m - tLT) are independent for n ~ m. For such values of 
T, the variance of A N  (Y, 0, T) is given by �9 

car {AN(Y,  0, T)} = b~" (Ne - (N - 1)T) G(SNR) (5.5.23) 
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where SNR 2 2 - b o/a w and 

k=O " SNR - 1. 
(5.5.24) 

The result (5.5.23) shows that  the variance of AN(Y, O, T) depends on the degree 
N of the polynomial phase, the number of samples Ne, the SNR and the delay 
parameter 7. It does not however depend on the coefficients of the polynomial 
phase. 

Denoting by PN(Y, ~, 7) the discrete version of the P P T  and according to the 
result of the second-order moment of PN(Y, O, 7") (given by Eq. (4.7) in [3]), it is 
shown that  [5]: 

var {AN(Y, O, T)} = var {PN(Y, O, T)} 
N~ 

for 7-= ~ -  (5.5.25) 

For a large number of samples, the estimator defined by 

1 
"aN, A - -  N!(TA)N_ 1 arg m0ax JAN(Y, o, r)l (5.5.26) 

is unbiased and its variance can be approximated by [5] 

6 
var{~g,A} ~ GN (SNR) (N!)2T2N-2L3A2N (5 .5 .27)  

where L = Ne - ( N -  1)T. Denoting by var{aN, p} the variance of the estimator of 
aN derived from the peak of the PPT ,  it is shown [5] that  : 

var{aN,A} -- var{aN, p} for 
N~ 

= (5.5 .28)  

and for high SNR, this variance can be approximated by 

var{aN,A} .~ SNR(N!)27.2N_2L3A2 N . (5.5.29) 

T h e  G W V  d i s t r i b u t i o n  b a s e d  e s t i m a t o r  Let us now consider the estimator 
of aN, based on the GWV distribution. We take Q = N = t~ and the tk's given by 
(5.5.7). The parameters appearing in the discrete version W g (5.5.19) are tk = k+c, 
N ~ =  Nr g+c, c~k -- Ck  and 0 < c < Ne - 1 - N. As it is the case for the estimator 
AN(Y, 9, T), it is shown [5] that  for any value of c, one has 

E [Wg(y  , n, w)] = W g ( Z  , n, w) (5.5.30) 

arg max IE [WN(Y, n, w)] I = N!ag.  (5.5.31) 
03 
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Thus coefficient aN of r can be determined via (5.5.31) and the other coefficients 
by using the same procedure as in the GAF. In addition, similar results to those 
proposed in Property 5.5.1 are established in [5]. Denoting by AfA and Afw the 
minimal value of Are to be treated respectively with the GAF and --~N , one has 

Afw~2NAfA for SNR:>>I and Afw>3, AfA for SNR<<I .  

The result above shows that, for low and high SNR, the GAF needs less samples 
than the GWD to ensure an accuracy estimation, in particular for high SNR it needs 
2N time less samples than the GWD. 

5.5.3.2 Case of Multiplicative and Additive Noises 

Assume now in the model (5.5.20) that bn is a real multiplicative white noise 
independent of wn. One takes TN = N e / N  and consider the particular version of 
the GAF denoted PN. If the multiplicative noise is zero mean, AN is not able to 
estimate aN. In order to solve this problem, it is possible to apply AN to the signal 
square y2 [6,9]. In this case of non-zero mean multiplicative noise, one can establish 
the following [6]: 

\ k = 0  

(5.5.32) 

where mp - E[b p] Vp C I N  and for m - N -  1 ,  . . . ,  1 

arg moaX IE [Pm(Y~,m, O, rm)]l = m!am(TmA) m-1 (5.5.33) 

arg {E [Yn,0]) = a0 (5.5.34) 

where Yn,m - Yne -jE~='~+I a~(nA)~ and T m =  Ne/rn.  These recursions allows us to 
determine the coefficients {ai}N=0 . Denoting by Re{x} the real part of x, the mean 
mb of bn can be estimated as follows 

1 {Ne 
mb -- ~-~eRe E yne 

•--1 

-J E ~=o a ' ( '~) '  } (5.5.35) 

and the variance by 

var {PN(Y, O, TN)} -- --~ \ k=O rnck (5.5.36) 

where 

(5.5.37) 
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The variance of "~N depends on the degree N of the phase, the number Ne of 
2 In order to ensure that the estimation of aN samples, the moments of bn and a w. 

will occur in the exact frequency bin, we should have 

N-1 2 )  P N ( e J C n , N ! a N ( T N A ) N - 1  TN)I2 l'-I k=0 rock 

var{7)N(y, O, WN)} 
>> ~. (5.5.38) 

In spectral analysis, it is enough to have this ratio greater than 25 and this leads 
to the following condition 

Nr > 25 N t-I(aw) (5.5.39) 

which gives the lower bound for the number of samples to use, in order to ensure an 
2 and the moments accurate estimation of aN at given values of degree N, variance aw 

of the noise bn. 

5.5.4 Summary and Conclusions 
Decompositions of polynomial derivatives are used to design time-frequency dis- 

tributions. The first one, referred to as the GAF, is very close to the the PPT.  The 
second one, referred to as the GWD, appears as a generalization of the PWVD. 
Applications to PPSs affected by multiplicative and additive noise are proposed. 

Additive noise is further considered in Article 10.4. A more intuitive introduction 
to PWVDs is given in Article 5.4. 

5.5.5 Appendix 
We consider Q + 1 arbitrary real and distinct parameters �9 to , . . . , tQ,  and denote 

by do , . . . , c~  one solution of the following Vandermonde system �9 

I 1 1 . . .  1 
to tl . . .  tQ 

�9 . 

�9 . 

t~o t~ . . .  t~Q 
�9 . �9 

�9 . 

, to ~ t~ t~ j 

~o 0 
a~ 0 

�9 

~ (-i)~! 

~ o 

(5.5.40) 

The existence of the solution of the system above is discussed in the the general 
case in [4]. For a given k (k - 0 , . . . ,  Q), we denote by a~(tZ#k),  (p -- 0 , . . . ,  Q), 
the classical symmetric polynomials of the Q parameters �9 t o , . . . ,  t k - i ,  t k + l , . . . ,  tQ 

defined by a~ (tL#k)=~ 1 and 

~5(t,~)~ ~ t~,...t~, (p-1, . . . ,Q) 
{to . . . . .  t k _  ~ , t k+  ~ , . . . , t Q  } 
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If N _< Q + 1, the system above has a solution given by 

(k = 0 , . . . , Q )  (5.5.41) 

assuming that the tk's satisfy condition (5.5.4) in the case t~ < N and N - Q + 1. 
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5.6 TIME-FREQUENCY REPRESENTATIONS COVARIANT 
TO GROUP DELAY SHIFTS~ 

5.6.1 Group Delay Shift Covariance Property 
Quadratic time-frequency representations (QTFRs) [1-5] are potentially capable of 
displaying the temporal localization of the spectral components of a nonstationary 
signal (see Chapter 3). However, no single QTFR exists that can be used effectively 
in all possible applications. This is because different QTFRs are best suited for 
analyzing signals with specific types of properties and time-frequency (TF) struc- 
tures. In order to assist the user in selecting the appropriate analysis tool, QTFRs 
are often classified based on the various properties they satisfy including covari- 

ance properties. A QTFR is said to satisfy a covariance property if the QTFR 
preserves, or is covariant to, certain TF changes on the signal. For example, for 
a signal x( t )  with Fourier transform X ( f ) ,  Cohen's-class QTFRs T(xC)(t, f )  (with 
signal-independent kernels; i.e. the quadratic class as defined on p. 68) are covariant 
to constant time shifts [2]. Specifically, 

Y ( f )  - ( y r X ) ( f )  - e - j2~*/  X ( f )  =~ T ( C ) ( t , f )  - T (xC) ( t -  7, f ) ,  (5.6.1) 

where Yr is the constant time shift operator. 1 Constant time shifts are important,  
for example, in shallow water sonar signal processing. Due to boundary interactions, 
a bot tom bounce path may be received several milliseconds after the direct path. 
Thus, a Q T F R  analyzing the received signal must preserve the delay associated 
with the difference in path lengths. Cohen's class QTFRs also preserve constant 

- ~ ( c ) ( t , f -  u) when Y ( f )  - ( Q ~ X ) ( f )  - X ( I -  u). frequency shifts T(yC) (t, f )  ~ x 

On the other hand, affine class QTFRs T(x A) (t, f )  preserve constant time shifts as 

in (5.6.1) and scale changes (dilations) on the signal, i.e., T(y A) (t, f )  - T(x A) (at, f / a )  

when Y ( f )  - ( C ~ X ) ( f )  - X ( f / a ) / x / ~  (see [3,6] and Article 7.1). 
In some applications, it is important  to preserve signal time shifts caused by the 

signal propagating through systems with dispersive TF characteristics or, equiva- 
lently, with nonlinear group delay 2 . A dispersive system is one which delays, in 
time, different frequencies by different amounts. For example, in underwater acous- 
tics, backscattering from immersed targets such as spherical shells may result in 
dispersive waves [3], thus leading to echoes with frequency-dependent group delay. 
If a Q T F R  preserves times shifts by an amount equal to the change in group delay 
in a signal or system, then the corresponding Q T F R  property is referred to as group 

~ Antonia Papandreou-Suppappola, Telecommunications Research Center, De- 
partment of Electrical Engineering, Arizona State University, Tempe, AZ 85287-7206 USA (pa- 
pandreou@asu.edu). Reviewers: P. Flandrin and D. L. Jones. 

1Table 5.6.1 summarizes various operators used in this article and their effect on signals. 
2The group delay of a signal x(t), with Fourier transform X( f )  = a(f) e-J27ro(f/$r), is the 

d derivative of the phase modulation O(f/fr)  of the signal, i.e., r(f) = -d-/tg(f/fr). Here, a(f) > 0 
is the signal's amplitude modulation, and fr > 0 is a reference frequency. 
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Table 5.6.1: Summary of some commonly used operators in this article together with their effect 
on a signal x(t). Some of these operators depend on a differentiable one-to-one function A(b). Here, 
A/(b) = dA(b) ,  A - I (A (b ) )  = b, sgn(b) yields the sign (4-1) of b, and f r  > 0 is a reference frequency. 
Also, ~a and R are the domain and range, respectively, of A(.). 

Operator Name Operator 

Identity Z 

Scaling Ca 

Constant frequency shift Q~ 

Constant time shift Y~ 

Hyperbolic time shift 79 (i)~ , A(b) = In b 

Power time shift 

Exponential time shift 

Group delay shift 

Hyperbolic warping 

Power warping 

Exponential warping 

Dispersive warping 

~:)(A) 
c 

h ( b )  = ~gn(b)Ib l  ~ 

(A) 
c 

h(b) = e ~b 

7)~(A) 

UA, A(b)= In b 

•i• 
A(b) = sgn(b)[bl '~ 

b/A, A(b) = e ~b 

/4A 

Effect of Operator 

X( f ) ,  f E ~ 
1 X(aL ) 

X ( f  - v) 

e - ~ :  X ( f )  

e-J2"cln(S/f,`)X(f), f E ~+ 

e-J2'rcsgn(l)l~l~X(f), f e 

e -j2~'ce'~I/:,`x(f), f E 

e-j2,~ A( ~ ) X (:), : e 

_i_ 
e 2:,. X(f,.e:/:,`), f C 

I f / f r l Lf-~-X ( f r s gn ( f ) l )lT I �88 ) ' 

f E ~  

~ X(/~ In yJ-~), f E~ + 

1 
A -1 _L 2 I (.))1 

"'trt~ fr i - i  (f~r))' f E~ 

delay shift (GDS) covariance (also called generalized time shift in [7]). If X ( f )  is 
passed through an allpass dispersive system with output  Y ( f )  - e-J2~A(d/d,`)X(f), 
the change in group delay, v ( f )  -- ~ A ( f / f r ) ,  is proportional to the derivative of 

the phase function A ( f / f r ) .  Since group delay is a measure of the time delay intro- 
duced in each sinusoidal component of the signal at frequency f ,  the ideal Q T F R  
Ty(t ,  f )  should preserve this frequency-dependent, group delay change T(f )  [7, 8]. 

P r o p e r t y  De f in i t i on  
The effect of the GDS operator 3 on a signal x(t) is given by 

Y ( f )  = (7 : )~ i )x ) ( f )=  e - J 2 " c i ( ~ ) X ( f ) ,  f e p (5.6.2) 

3One could also define the dual to this operator, i.e., (7)(~)x)(t) -- eJ2'rc~(t/t,`)x(t), tr > 0, to 
represent time-varying instantaneous frequency shifts (see Article 9.2). 



Time-Frequency Representations Covariant to Group Delay Shifts 205 

Fig.  5.6.1: A QTFR preserves a dispersive change in a signal's group delay CT(f) as the QTFR is 
shifted along the time axis by an amount equal to cT( f ) .  Here, Y(f)  = (T)(A) x )  ( f )  as in (5.{5.2). 

where go is the domain of A(.) and c e ~ (see [7-9] and Article 15.3). A QTFR 
T is GDS covariant if the QTFR of the output, Ty, corresponds to the QTFR of 
the input, Tx, shifted in time by an amount equal to the change in group delay, 

d A ( ~ )  that is introduced in (5.6.2). For f e go, the property states cT(f)  - c W 

Y( f )  - (7:)~A)x)(f) -- e-J2~cA(~)X(f)  =~ Ty ( t , f )  -- T x ( t - - c T ( f ) , f )  (5.6.3) 

when A(b) is a differentiable one-to-one function. Fig. 5.6.1 demonstrates the QTFR 
transformation in (5.6.3) due to the signal transformation in (5.6.2) that results in a 
nonlinear change in group delay. The parameter c expresses the amount of dispersion 
or nonlinear time modulation on the signal as shown in Fig. 5.6.2. The GDS operator 

7)~ A) in (5.6.2) is unitarily equivalent to the constant time shift operator Yc/f~ in 
(5.6.1) [see [7-10] and Articles 4.5 & 15.3], 

~)c (A) -- ~t(A l~ )c / f~A (5.6.4) 

where (UAI(UAX))(f) = X ( f ) ,  and the dispersive warping operator is given by [8] 

Z( f )  - ( U A X ) ( f ) -  IA' ( A - l ( f  /fr))1-�89 X ( f r A - I ( f  /f~)) , f C lq. (5.6.5) 

Here, b~ denotes the range of A(.). The unitary warping operator [8] in (5.6.5) 
preserves inner products, i.e., f fes(blAX)( f )  (UAX)*(f)df -- f l e X ( f )  X*( f )dr .  
Note that since the GDS covariance in (5.6.3) follows directly from the constant 
time shift covariance in (5.6.1) via (5.6.4), it experiences the same problems as the 
constant time shift covariance when the time origin is not known. An example of 
such a case is the estimation of the range of a target in an active sonar application. 

Specific Examples of the GDS Covariance Property 
The GDS covariance property in (5.6.3) simplifies to a particular covariance property 
(satisfied by a different class of QTFRs) when the differentiable one-to-one function 
A(b) and the time shift T ( f ) -  d A ( ~ )  are fixed. Depending on the choice of A(b), 
the time shift T(f) may be constant, linear, or nonlinear (dispersive). For example, 
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Fig .  5.6.2: Various group delay curves t = c~(f) corresponding to positive and negative changes in 
the parameter c in Equation (5.6.2). 

�9 for A(b) = b (with p = R = ~), the GDS covariance in (5.6.3) simplifies to the 
constant time shift, T(f) = ~ ,  covariance in (5.6.1) of Cohen's class or the 
affine class [4]. 

�9 for A(b) = ln b, b > 0 (with p = ~+ and b~ = ~), the covariance in (5.6.3) 
simplifies to the (dispersive) hyperbolic time shift, T(f) -- ~, f > 0, covariance 
of the hyperbolic class [11]. 

�9 for A(b) = sgn(b)Ibl 0 (with p = R = ~), the covariance in (5.6.3) 
simplifies to the (possibly dispersive) ath power time shift, T(f) -- ~ A ( ~ )  = 

~f.l f.I ~-~, covariance of the t~th power class (see [9] and Article 15.3). The 
 D'S is constant for a -- 1, and linearly dependent on frequency for a = 2. 

�9 for A(b) -- e ~b (with p - -  ~ and N -- ~+),  the covariance in (5.6.3) simplifies 
to the (dispersive) ath exponential time shift, T ( f ) =  ~ e  al/f~, covariance of 
the ath exponential class [7, 8]. 

Matched  Signal Analys is  
For successful TF analysis, it is advantageous to match the GDS of a Q T F R  in 
(5.6.3) with the signal's group delay. Thus, QTFRs that  satisfy (5.6.3) are ideally 
suited to analyze signals with group delay equal to that  GDS. The TF geometry un- 
derlying the GDS covariance property is related to the generalized impulse function 
defined as 

where p is the domain of the phase function 0 ( ~ ) .  The group delay r( f )  - 
reflects the dispersion characteristics of the class which is covariant to the GDS T(f) 
in (5.6.3) only when r( f )  = T(f) (or, equivalently, when ~(b) = A(b) in(5.6.3)). 

5.6.2 Classes of GDS Covariant QTFRs 
As shown in (5.6.4), the GDS operator in (5.6.2) can be acquired by unitarily 
warping the time shift operator in (5.6.1) [8, 10]. Thus, GDS covariant QTFRs 
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can be obtained by appropriately warping dispersively constant time shift covariant 
QTFRs, such as Cohen's class or affine class QTFRs, using 

T (Dcl~*)(t f )  ~z  f r r ( f ) '  fr A ~rr ' f e p,  (5.6.7) 

where p is the domain of A(~)  and Z ( f )  - (UAX)(f) is the dispersively warped 
signal in (5.6.5). The superscript class indicates which QTFR class undergoes the 
warping in (5.6.7), and D class indicates the resulting QTFR class with possible 
dispersive characteristics. For example, with class = C, T (C) is a Cohen's class 
QTFR that can be warped to yield a new QTFR T (DC) (see below). A more 
specific example follows. Consider the Wigner distribution (WD) [2-4], defined as 
Wz(t, f )  = f _ ~  Z ( f  + 2 ) Z * ( f  - ~)e  j2~t~ dv [see Subsection 2.1.4.2], which is a 
member of Cohen's class. By warping the WD as in (5.6.7), one obtains the GDS 
covariant version of the WD or frequency dispersively warped WD (DWD) [7,8] 

:) = w .  ( t f 
f r r ( f )  ' 

which is a specific QTFR example of T (DC). For a fixed A(b), this transformation 
can be achieved in three steps. First, the signal is warped as Z ( f )  = (b/AX)(f), 
and then the WD of the warped signal Z ( f )  is computed. Lastly, the TF axes are 
transformed for correct TF localization using t -~ t / ( A r ( f ) )  and f --, f r A ( f / f r ) .  
Note that this method ensures that the GDS covariant QTFRs, including the DWD, 
always satisfy (5.6.3) for a given differentiable one-to-one function A(b). 

GDS covar iant  Q T F R s  f rom Cohen ' s  class 

The GDS covariant Cohen's class QTFRs, T (DC) (t, f ) ,  are obtained by dispersively 

warping Cohen's QTFRs, T(x C) (t, f ) ,  using (5.6.7) with class - C and a warping 
function A(b) chosen to give the desired GDS covariance in (5.6.3). Note that 
Cohen's class QTFRs are given by [2] 

/:/? TOc C) (t, f )  - oo o0 7T (t - i, f - / )  W x  (i, 1) di d /  

where W z ( t ,  f )  is the WD. The kernel 7T(t, f)  uniquely characterizes the Cohen's 
class QTFR T (C) as well as its corresponding warped version T (De) in (5.6.7) [7,8]. 
Due to the warping in (5.6.5), the constant time shift and frequency shift covariances 
that all Cohen's class QTFRs satisfy are transformed into the GDS and warped 
frequency shift covariances, respectively, that all DC QTFRs satisfy [7, 8]. An 
important member of the DC class that satisfies many desirable properties is the 

DWD, W(x A) ( t , / ) ,  in (5.6.8). For example, it satisfies a specific set of marginal 
properties, and provides a highly concentrated representation for the generalized 

impulse I (a) ( f )  provided tg(b) = A(b)in (5.6.6). Specifically, for X ( f )  - I (a)( f ) ,  

W(XA)(t, f )  - - IT( f ) I  5 ( t -  c r ( f ) ) .  Other QTFR members and their properties can 
be found in [7, 8]. 
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Fig. 5.6.3: Some GDS covariant QTFR classes. An arrow points from a QTFR class being warped to 
a new QTFR class. Different types of warping are demonstrated depending on A(b) in (5.6.7). They 
include hyperbolic warping with A(b) = In b ( ), power warping with A(b) = sgn(b)Ibl ~ ( - - - - - ) ,  
or exponential warping with A(b) = e '~b (. . .) .  The warping (- - -) maps a QTFR class back to itself 
("self-mapping"). For example, the hyperbolic class in (5.6.9) is obtained by warping Cohen's class 
using the hyperbolic warping with A(b) = ]n b ( ) in (5.6.7). 

Different DC classes can be obtained, suitable in different applications, simply 
by choosing a differentiable one-to-one function A(b) to match a signal's TF char- 
acteristics. Once A(b) is fixed, it can be replaced in Equation (5.6.7) to obtain the 
corresponding formulation of the specified class; in Equation (5.6.8) to obtain the 
DWD; and in Equation (5.6.3) to obtain a fixed GDS (possibly dispersive) covari- 
ance property. Some class examples obtained by choosing the function A(b) are 
summarized below, and are also pictorially demonstrated in Fig. 5.6.3. 

C o h e n ' s  class: When A(b) = b and T(f) = 1/fr, the warping in (5.6.7) with p = 
maps Cohen's class back to itself since (5/AX)(f) = (ZX)( f )  = X ( f ) i n  (5.6.5) 
becomes the (non-dispersive) identity operator. The GDS covariance property in 
(5.6.3) simplifies to the constant time shift covariance in (5.6.1). Some members of 
Cohen's class include the WD and the spectrogram [2]. 

H y p e r b o l i c  class: When A(b) = In b and T(f) = 1/f ,  f > 0, the DC class in (5.6.7) 
(with p = N+ and class = C) is the hyperbolic class [11]. Thus, any hyperbolic 

class QTFR, T(x H) (t, f) ,  f > 0, can be obtained by warping a corresponding Cohen's 

class QTFR, T(x C) (t, f),  using the transformation 

T (xH ) ( t f ) - T(C ) ( t f f )  , f~, f~ In (5.6.9) 
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s s (5.6.5). The GDS covariance in (5.6.3) where Z ( f )  - (L/hX)(f) -- e 2-s-;~ X(f~  e ) in  
simplifies to the hyperbolic time shift covariance T (H) (t, f )  - T (H) ( t - c / f ,  f )  where 

y ( f )  _ (Tp(h) x )  (f) = e-J2~c 1~ ~ X ( f ) .  The warped frequency shift covariance 
simplifies to scale covariance [7, 8]. These two covariance properties defining the 
hyperbolic class are important for the analysis of Doppler-invariant signals similar to 
the signals used by bats for echolocation, and for the analysis of self-similar random 
processes. Members of the hyperbolic class include the Altes Q-distribution [12] 
(the DWD in (5.6.8) with A(b) = In b), the unitary Bertrand P0-distribution ( [6] 
and Article 7.1), and the hyperbologram [11]. 

Other class examples include the power warped Cohen's class [7, 8] when A(b) = 
sgn(b) Ibl ~ in (5.6.7), and the exponentially warped Cohen's class [7, 8] when A(b) = 
e b in (5.6.7) (see Fig. 5.6.3). 

G D S  cova r i an t  Q T F R s  f rom t he  affine class 

The GDS covariant atfine class QTFRs, T(x DA) (t, f ) ,  are obtained by warping the 

affine class QTFRs T (A) (t, f )  using (5.6.7) with class - A. The affine class QTFRs 
are given by (see [3, 6] and Article 7.1) 

/?/? 
oo oo 

where Wx(t ,  f )  is the WD and the kernel r b) uniquely characterizes T (A) and 
its corresponding warped version T (DA). The warping transforms the two covariance 
properties defining the aifine class, the constant time shift covariance and scale 
covariance, into two new covariance properties. These properties, which define the 
DA class, are the GDS covariance in (5.6.3), and the warped scale covariance [7, 8]. 
The latter property simplifies to known covariance properties based on A(b) as 
shown below. The DWD in (5.6.8) is a member of both the DC and the DA classes 
since the WD is a member of both Cohen's class and the affine class. Other QTFR 
members and their desirable properties can be found in [7, 8]. 

Various QTFR classes useful in different applications are obtained by fixing A(b) 
in (5.6.7). Some examples are listed below and are also demonstrated in Fig. 5.6.3. 

A t o n e  class: The atone class is an example of a "self-mapping" since, when A(b) = b 
and T(f) = 1/f~, the warping in (5.6.7) maps the affine class back to itself. Some 
important aifine QTFRs include the WD, the Bertrand P~-distributions ( [6] and 
Article 7.1), and the scalogram [3, 4]. 

~ t h  P o w e r  class: When A(b) - sgn(b)[bl ~ and 7(f )  = ~ [ ~ [ ~ - 1 ,  ~ ~ 0, the 

DA in (5.6.7) (with ~ = N and class = A ) i s  the ~th power class (see [7, 9] and 
Article 15.3). Different power classes are obtained by varying ~, and the affine class 
is obtained when ~ = 1. The ~th power QTFRs, T (~P), are obtained by warping 
corresponding members of the affine class (cf. (5.6.7)) 

T(x~P)(t, f ) -  T; ;) (( t l~)  If l/~l 1-~ , /~ s g n ( f ) I f l f ,  I 
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where Z ( f )  - (b/ iX)(f)  -1~ l_ �89  in Equation 
\ / 

(5.6.5). The GDS covariance in (5.6.3) simplifies to the ath power time shift covari- 
a n c e  property T (~ P)  ( t ,  f)  - T (~ P)  ( t  - -  C --~ - -  i t  I~l ~-1, f )whe re  Y ( f ) =  (T)(h)x)(f) 

e -j27rcsgn($) 17/~ I~ X ( f ) .  The warped scale covariance simplifies to scale covariance 
[7, 8]. These two properties defining the •th power class are important for ana- 

lyzing signals propagating through systems with power-law dispersive TF charac- 
teristics. Members of the ath power class include the power WD, the Bertrand 
P~-distributions ([6] and Article 7.1), and the powergram ( [9] and Article 15.3). 

ruth E x p o n e n t i a l  class: The ath exponential class QTFRs, T (~E), [7, 8] are 
obtained when A(b) - e ~b and T(f)  = -~-~e ~f/f~, a # O, in the DA formula- 
tion in (5.6.7) (with p - ~ and class - A). Any such QTFRs can be writ- 

as warped affine QTFRs, T(x~E)(t, f )  = T(z A) ( l t e - ~ f / f ~ ,  fr e~///~),  ten where 

Z ( f ) -  ( H A X ) ( f ) -  V/l~J~f X ( L  In ~ ) i n  (5.6.5). These QTFRs satisfy the ath 

exponential GDS covariance given as T (~E) (t, f )  - T(x ~E) ( t - c  ~ e  ~$/y~, f )  where 

Y ( f )  - (7) ( i )x) ( f )  -- e - j2~c:: / :r  X ( f ) .  This is an important property for analyz- 
ing signals passing through exponentially dispersive systems. The warped scale co- 
variance simplifies to constant frequency shift covariance [7]. Some important class 
members include the ath exponential WD (the DWD in (5.6.8) with A(b) = e~b), 
and the ath Cohen-Bertrand P0-distribution [7]. When a = 1, the ath exponential 
class yields the exponential class [7, 8] in Fig. 5.6.3. 

Another DA class example is the hyperbolically warped affine class [7,8] obtained 
when A(b)=  In b in (5.6.7) (see Fig. 5.6.3). 

5.6.3 Simulation Example 
When using QTFRs to analyze signals in real life applications, some pre-processing 
or a priori knowledge is necessary to identify the TF characteristics of the signal 
so as to match them to the GDS covariance of the QTFR. For example, signals 
with linear TF characteristics, such as Dirac impulses X ( f )  - -  e - j 2 ~ r c f / f r / v f - f 7  

or dolphin clicks, are best analyzed using CoAch's or affine class QTFRs as these 
QTFRs preserve constant time shifts T(f)  = 1/ fr  that equal the constant group 
delay r ( f )  - 1/f~ of the signal. Signals with hyperbolic TF characteristics, such 
as hyperbolic impulses (the signal in (5.6.6) with ~(b) - ln b and r ( f )  - 1 / f )  
or Doppler-invariant signals such as the signals used by bats for echolocation, are 
best analyzed using hyperbolic QTFRs since they preserve hyperbolic time shifts 
v( f )  = 1 / f .  Fig. 5.6.4 analyzes the sum of two windowed hyperbolic impulses given 

(before windowing)as X ( f ) -  -~  (e -j2~r31n ~ -[-e -j27rTln f-~), f > 0. As expected, 

the hyperbolic Altes Q-distribution [12] (the DWD in (5.6.8) with A(D) = lnb ) in  
Fig. 5.6.4(c) results in high TF concentration along the two hyperbolae t = 3 / f  and 
t = 7I f .  However, it also results in cross terms (CTs) along the mean hyperbola 



Time-Frequency Representations Covariant to Group Delay Shifts 211 

Fig. 5.6.4: TF analysis of the sum of two windowed hyperbolic impulses. The first row shows QTFRs 
from Cohen's class, and the second row shows QTFRs from the hyperbolic class in (5.6.9). (a) WD, 
(b) smoothed pseudo WD, (c) Altes Q-distribution (QD), (d) smoothed pseudo QD. 

t = (3+ 7)/(2f) [11]. The smoothed pseudo Altes Q-distribution (the hyperbolically 
warped version of the smoothed pseudo WD) in Fig. 5.6.4(d) removes the CTs with 
some loss of TF resolution. Cohen's class QTFRs, such as the WD in Fig. 5.6.4(a) 
and the smoothed pseudo WD in Fig. 5.6.4(b), are not well-matched to hyperbolic 
impulses. The WD results in complicated CTs between the two signal components 
as well as inner interference terms [4]. In comparison to the smoothed pseudo Altes 
Q-distribution in Fig. 5.6.4(d), the smoothed pseudo WD in Fig. 5.6.4(b) has a larger 
loss of TF resolution, and it is not as successful at removing all the CTs. Other 
examples, including real data simulations, can be found in [8, 9] and Article 15.3. 

5.6.4 Summary and Conclusions 
This article emphasizes the importance of matching a QTFR to the analysis signal 
for successful processing. Specifically, it presents new classes of QTFRs that are 
ideal when the dispersive group delay or changes in group delay of a signal match 
the frequency-varying time shift covariance property of the QTFRs. These QTFRs 
are important in analyzing signals propagating through systems with dispersive, 
nonlinear characteristics including hyperbolic, power or exponential. The QTFR 
classes considered here are obtained based on covariance properties, and can thus be 
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considered as special cases of the covariant QTFRs in Article 4.3. The contributions 
of F. Hlawatsch and G. F. Boudreaux-Bartels to the development of this work may 
been seen in [9,11] and in Article 15.3. 
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5.7 DESIGN OF H IGH-RESOLUTION Q U A D R A T I C  TFDs 
W I T H  SEPARABLE KERNELS o 

5.7.1 RIDs and Quadratic TFDs 
Reduced-interference distributions (RIDs) smooth out the unwanted cross-terms in 
the time-frequency (t, f)  domain [see Chapter 3 and Article 5.2]. The spectrogram 
is the best-known RID, but not the only one; it is well known that a time-frequency 
distribution (TFD) is a RID if its kernel has a two-dimensional low-pass character- 
istic in the Doppler-lag (~, T) domain [1]. A suitably chosen separable kernel, i.e. 
a kernel with the form G1 (~)g2(T), can meet this requirement while giving higher 
time-frequency resolution than the spectrogram; for example, the "smoothed WVD" 
discussed in [2] has a separable kernel. It has also been shown that if the kernel 
is independent of lag (i.e. a function of Doppler alone in the Doppler-lag domain, 
or of time alone in the time-lag domain), then the resulting TFD can exhibit fine 
frequency resolution and high attenuation of cross-terms [3, 4]. 

This article explores the properties of TFDs with separable kernels, including 
lag-independent kernels, characterizes the signals for which such kernels can be 
recommended, and gives examples of RID designs using such kernels. It builds on 
the argument presented in Sections 3.2.1 and 3.2.2 (pp. 66-69). 

5.7.2 Separable Kernel Formulations 
In the Doppler-lag domain, a s epa rab le  kernel  has the form 

If we let 

a l ( . )  - 

G 2 ( f )  - 

(5.7.2) 

(5.7.3) 

then the relationships shown in the graphical Eq. (3.2.6) become 

gl(t) Gu(f) 

gl (t) g2(r) al (~,) a2(f). 

/ 
(5.7.4) 

~ B o u a l e m  B o a s h a s h  and G a v i n  R. Put land ,  Signal Processing Research 
Centre, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia 
(b.boashash@qut.edu.au, g.putland~qut.edu.au). Reviewers: Z. M. Hussain and V. Sucic. 



214 Chapter 5: Design of  Time-Frequency Distributions 

Substituting Eq. (5.7.1) into Eq. (3.2.11), we obtain the filtered ambiguity function 

Az(V, T) = a~ (v) ge(T) A~(~, T) (5.7.5) 

(also called the "generalized ambiguity function" by some authors). Then, using the 
convolution properties and the notations of the graphical Eq. (3.2.10), we find 

rz(V, f)  = G1 (~) a2( f )  ~ kz(v, f)  (5.7.6) 

Rz(t, T) = g2(T) gl (t) * K~(t, T) (5.7.7) 

pz(t, f)  = gl (t) �9 Wz(t, f )  ~ G2(f) (5.7.8) 

where Kz(t, T) = Z(t+~) Z*(t--~) is the (unsmoothed) IAF, kz(v, f)  is its 2DFT (the 
spectral autocorrelation function), Wz(t, f)  is the WVD, rz(V, f)  is the smoothed 
spectral autocorrelation function, Rz(t, T) is the smoothed IAF, and pz(t, f )  is the 
quadratic TFD. 

Eq. (5.7.7) shows that the effect of the lag-dependent factor on the TFD is sim- 
ply "lag windowing", i.e. multiplication by the same factor in the (t, T) domain 
before transforming to the (t, f)  domain. In Eq. (5.7.8), the two convolutions are 
associative (i.e. can be performed in either order), so that we may consider the 
Doppler-dependent and lag-dependent factors as leading to separate convolutions 
in time and frequency, respectively. 

A D o p p l e r - i n d e p e n d e n t  (DI) kernel is a special case of a separable kernel 
obtained by putting 

e l  (/]) ---- 1 (5.7.9) 

in Eqs. (5.7.1) and (5.7.2), which then become 

= 

g l ( t )  -- 5(t) .  (5.7.11) 

Making these substitutions in Eqs. (5.7.4) to (5.7.8), we obtain 

5(t) a2(f)  

5(t) ge(T) a2(f)  

Az(~, v) = g2(T) A~(~, T) 

rz(~, f)  = G2(f) * kz(~, f)  

Rz(t, T) = g2(7) K~(t, T) 

pz(t, f)  = G2(f) �9 Wz(t, f). 

(5.7.13) 

(5.7.15) 
(5.7.16) 
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As seen in Eq. (5.7.12), a "Doppler-independent" kernel is indeed independent of 
Doppler in all four domains. In the Doppler-lag domain it is a function of lag alone. 
Eq. (5.7.16) shows that  a DI kernel causes smoothing (or "smearing") of the WVD 
in the frequency direction only. The graphical Eq. (3.2.10) defined the notation 

pz(t, f )  - r T)}. (5.7.17) 

Substituting Eq. (5.7.15)into Eq. (5.7.17) gives 

pz(t, f )  - ~ {g2(~') Kz(t, 7-)} (5.7.18) 

which shows that  a quadratic TFD with a DI kernel is a windowed WVD; the 
"windowing" is applied in the lag direction before Fourier transformation from lag 
to frequency. 

A l a g - i n d e p e n d e n t  (LI) kernel is another special case of a separable kernel, 
obtained by putting 

g2(T) = 1 (5.7.19) 

in Eqs. (5.7.1) and (5.7.3), which then become 

g(/], T) = G1 (/2) (5.7.20) 

G2(f) = 5(f). (5.7.21) 

Making these substitutions in Eqs. (5.7.4) to (5.7.8), we obtain 

g~(t)5(f) 

gl(t) Gl(u)5( f )  

al(U) (5.7.22) 

Az(~, T) = G~ (~) A~(v, T) 

~z(~, f)  = a~ (~) kz(~, f)  
Rz(t, T) = gl (t) �9 Kz(t ,  7) 

pz(t, f )  = gl(t) * Wz(t,  f ) .  

(5.7.23) 

(5.7.24) 

(5.7.25) 
(5.7.26) 

The last result shows that  an LI kernel causes smoothing of the WVD in the time 
direction only. 

As seen in Eq. (5.7.22), a "lag-independent" kernel is indeed independent of lag 
in all four domains. In the time-lag domain it is a function of time alone; for this 
reason, such kernels have been called "time-only kernels" [3, 4]. 

The WVD kernel is g(u, T ) =  1, which is both Doppler-independent and lag- 
independent; it may be regarded as DI with g2(T) = 1 or as LI with Gl(u) = 1. 
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Table  5.7.1: TFD properties and associated kernel requirements for separable, Doppler-independent 
and lag-independent kernels. Explanation of properties: T i m e  m a r g i n a l :  The integral of the TFD 
over frequency is the instantaneous power. Freq. m a r g i n a l :  The integral of the TFD over time is 
the energy spectrum. Ins t .  Freq. :  The IF is the first moment of the TFD w.r.t, frequency. T i m e  
delay:  The time delay is the first moment of the TFD w.r.t, time. T i m e  s u p p o r t :  If the non-zero 
values of the signal are confined to a certain time interval, so are the non-zero values of the TFD. 
Freq.  s u p p o r t :  If the non-zero values of the spectrum are confined to a certain frequency range, 
so are the non-zero values of the TFD. "WVD only*" (with asterisk) means a WVD multiplied by an 
arbitrary constant. 

PROPERTY 

Realness 

Time marginal 

Freq. marginal 

Inst. freq. 

Time delay 

Time support 

Freq. support 

RID potential 

KERNEL CONSTRAINTS 

Separable 

(~1 (/2) g2(T) 
�9 - 

(~1 (/2) g2(0) --- 1 Vu 

GI(0) g2(T) = 1 VT 

G1 (,) g2(0) = const. 
g (0) - 0 .  

GI(0 )  g2(T) -- const .  

Ci(0)  - 0 .  

DI only 

LI only 

Unrestricted 

DI 

G1 (/2) -- 1 

G2(I) is real. 

g2(0) = 1 

WVD only 

g~(0) - 0 

WVD only* 

Always 

WVD only* 

Inner artifacts 

LI 

g2(T) = 1 

gl (t) is real. 

WVD only 

(0) = 1 

WVD only* 

a l  ( 0 )  - 0 

WVD only* 

Always 

Cross-terms 

5 . 7 . 3  P r o p e r t i e s  

Table 5.7.1 is extracted from Table 3.3.1 on p. 75. The properties of time-shift in- 
variance and frequency-shift invariance are omitted, being common to all quadratic 
TFDs. Positivity is omitted because, in practice, the design of a separable kernel 
involves a deliberate sacrifice of non-negativity in favor of higher (t, f)  resolution. 

Let us define a p r o p e r  DI or LI kernel as one that is non-cons tan t  (so that the 
resulting TFD is not a WVD, with or without amplitude scaling). Similarly, let us 
define a p r o p e r  separable kernel as one that is neither DI nor LI. Then Table 5.7.1 
shows that a TFD with a DI kernel can satisfy the realness, time marginal, time 
support and instantaneous frequency (IF) properties; but no proper DI kernel satis- 
ties the frequency marginal, frequency support or time delay property. Similarly, a 
TFD with an LI kernel can satisfy the realness, frequency marginal, frequency sup- 
port and time delay properties; but no proper LI kernel satisfies the time marginal, 
time support or IF property. 
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The reduced-interference property ("RID potential") requires further explana- 
tion. The WVD may contain interference terms of two kinds. I n n e r  a r t i f a c t s  or 
"inner interference terms" [see Article 4.2] are caused by nonlinear frequency mod- 
ulation laws, and cause the WVD to alternate as we move normal to the expected 
feature(s) in the (t, f )  plane. In the case of a multicomponent signal, Cross- terms 
or "outer interference terms" [see Article 4.2] are caused by cross-product terms 
in the IAF Kz(t, T), and cause the WVD to alternate as we move parallel to the 
expected features in the (t, f )  plane. 

Thus the inner artifacts alternate as we move in the frequency direction, and 
may therefore be suppressed by convolution with a sufficiently long G2(f)  [see 
Eq. (5.7.16)], which corresponds to a sufficiently short g2(~-). This is possible for a DI 
kernel but not an LI kernel. Similarly, the cross-terms alternate as we move in the 
time direction, and may therefore be suppressed by convolution with a sufficiently 
long gl (t) [see Eq. (5.7.26)], which corresponds to a sufficiently short G1 (~). This 
is possible for an LI kernel but not a DI kernel. A proper separable kernel causes 
convolution in both time and frequency and can suppress both kinds of interference 
terms. 

For an LI kernel, the suppression of cross-terms is facilitated if the components 
are of slowly-varying frequencies, so that  the cross-terms extend (and alternate) 
approximately in the time direction. Furthermore, the loss of frequency resolution 
caused by convolution with gl(t) is proportional to the rate of change of the IF; 
for constant frequency, the components run parallel to the time axis, so that  there 
is no loss of resolution apart  from that  caused by the time-variation of frequency 
resolution in the WVD. 

5.7.4 Design Examples of Separable-Kernel TFDs 
Early experience suggested that  the kernel of a RID must exhibit a two-dimensional 
low-pass characteristic in the Doppler-lag domain (see e.g. [1], pp. 79-81). The B- 
d i s t r i b u t i o n  (BD) defined in [5] has the separable time-lag kernel 

GB (t, 7) -- ITI ~ cosh -2~ t (5.7.27) 

where/~ is a positive real parameter that  controls the degree of smoothing. This 
kernel is low-pass in the Doppler dimension but not in the lag dimension. But, para- 
doxically, the B-distribution has shown impressive reduced-interference properties 
for certain signals [5]. 

The best results from the BD are consistently obtained for small positive values 
of/~, for which the lag-dependent factor is nearly constant apart  from a "slot" at 

= 0. Moreover, any desired lag-dependence can be introduced later by windowing 
prior to Fourier transformation from 7 to f ,  as is often done for computational 
economy or improved time resolution. Accordingly, the BD was modified in [3, 4] 
by making the "lag-dependent" factor exactly constant. The resulting mod i f i ed  
B - d i s t r i b u t i o n  ( M B D )  had an LI kernel. This inspired a more thorough inquiry 
into the properties of LI kernels, and the findings explained the behavior of the BD, 
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whose kernel may fairly be described as "nearly Lr '  for small positive ft. 
The time-lag kernel of the MBD is 

cosh -2~ t (5.7.28) 
GMB(t, T) -- g~(t) = f_~oocosh_2~ ~ d~ 

where/~ is a positive real parameter and the denominator is for normalization. The 
graph of gz( t )  vs. t is a bell-shaped curve whose spread is inversely related to ~. 

If the signal is a tone or sum of tones, we can obtain closed-form expressions 
showing that  the MBD has optimal concentration about the IF law. In particular, 
the MBD of a single tone is a delta function of frequency, while the MBD o f  the 
sum of two tones comprises two delta functions plus a cross-term whose amplitude 
is controlled by fl (see [6] and Article 10.3). For most signals there is no closed- 
form expression for the MBD, so we must resort to numerical computations with 
discretized variables. For discrete time n and discrete lag m, the MBD kernel 
becomes 

cosh -2~ n (5.7.29) 
GMB (n, m) = g, (n) = E i  c~ i" 

The following numerical examples include one MBD for comparison. They also 
include TFDs with separable kernels using two types of window functions that  
are well known in digital signal processing and spectral analysis. The M-point  
H a m m i n g  function, where M is odd, is 

2~ri M-1 < i < M-1 (5.7.30) hammM(i) = 0.54 + 0.46 cos ~ -  ; 2 -- -- 2 

where i is discrete time or lag. The L-point H a n n i n g  function, where L is odd, is 

2~i L-1 < i < L-1 (5.7.31) hannL(i) -- 0.5 + 0.5 cos L ; 2 - -  - -  2 " 

In the numerical examples given below, the Hamming function is preferred in the 
lag direction and the Hanning in the time direction, in order to minimize ripples in 
the (t, f )  domain; and whenever a proper separable kernel is compared with DI and 
LI kernels, it has the same lag factor as the DI kernel and the same Doppler factor 
(or time factor) as the LI kernel. 

5.7.5 Results and Discussion 
Some numerical computations of separable-kernel TFDs, and of other TFDs for pur- 
poses of comparison, are presented in the following graphs. Complete specifications 
of signals and kernels are given in the figure captions for ease of reference. Each 
graph includes the TFD (main panel, with time axis vertical), time plot (left panel) 
and magnitude spectrum (bottom panel). 
�9 Fig. 5.7.1 shows two TFDs of a signal comprising a tone (constant frequency) 

and a chirp (linearly increasing frequency). Part (a) shows the WVD, with the 
prominent cross-term. Part (b) shows the effect of an LI kernel, which smoothes 
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Fig.  5.7.1: TFDs of the sum of a tone (frequency 0.1) and a linear FM signal (frequency range 0.2 
to 0.4), unit amplitudes, duration 65 samples, sampling rate 1Hz: (a) WVD; (b) lag-independent, 
G(n, m) = hann15(n). 

the WVD in the time direction, suppressing the oscillatory cross-term. For the tone, 
this smoothing causes only a slight loss of frequency resolution, and only because 
the frequency resolution of the WVD varies with time. For the chirp, the loss of 
frequency resolution is greater because the direction of smoothing is not parallel to 
the IF law; that is, the smoothing is "across" as well as "along" the component. 

Fig. 5.7.2 compares six TFDs of a two-component signal with slowly-varying 
frequencies; the lower-frequency component is a pure tone. In Fig. 5.7.3, the tone 
is replaced by a faster-varying sinusoidal FM signal (nonlinear FM). In each figure, 
part (a) shows the WVD, while part (b) shows the effect of a DI kernel, part (c) an 
LI kernel, and part (d) a separable kernel combining the lag and time functions of 
parts (b) and (c). Note that (b) and (d) are related by the same time-smoothing 
as (a) and (c), while (c) and (d) are related by the same frequency-smoothing as 
(a) and (b). In each figure, part (f) shows a spectrogram for comparison with the 
separable-kernel TFD. 

In Fig. 5.7.2, a cross-term is prominent in the WVD (a) and is not suppressed 
by the DI kernel (b). It is suppressed by the Harming LI kernel (c) and the MBD 
kernel (e), which is also LI. Both LI kernels are bell-shaped functions of time, and 
their parameters have been chosen to give similar degrees of smoothing in time, 
accounting for the similarity between graphs (c) and (e). The proper separable 
kernel (d) has lower frequency resolution, but less ripple about the IF laws, than 
the  LI kernels. The spectrogram (f) gives the best suppression of artifacts and the 
lowest resolution. Comparing Fig. 5.7.1(b) and Fig. 5.7.2(c), we see that the faster- 
varying IF, which causes a faster-varying cross-term frequency and lower minimum 
beat frequency, needs a longer time-smoothing function for adequate suppression of 
cross-terms. 

In Fig. 5.7.3, both cross-terms and inner artifacts are visible. The cross-terms 
appear as "rough terrain" between the components, while the inner artifacts appear 
as spurious ridges in the sinusoidal FM component; both types are prominent in 
the WVD (a). The DI kernel (b) is effective against the inner artifacts. The LI 
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Fig. 5.7.2: TFDs of the sum of a tone (frequency 0.15) and a linear FM signal (frequency range 
0.35 to 0.4), unit amplitudes, duration 65 samples, sampling rate 1Hz: (a) WVD; (b) Doppler- 
independent, O(n, m) = hamm47(m)  ; (c) lag-independent, G(n,m) = h a n n l l ( n ) ;  (d) separable, 
O(n,m) = h a n n l l  (n) hamm47(m)  ; (e) modified B, /3 = 0.2; (f) spectrogram, 3S-point rectangular 
window. 

kernel (c) is effective against the cross-terms. The separable kernel (d) is effective 
against both. The well-known Choi-Williams distribution (e), with the parameter 
a visually optimized, spreads the inner artifacts in time and the cross-terms in 
frequency but does not satisfactorily suppress either. In this example the separable- 
kernel TFD (d) appears to offer a better compromise between resolution and cross- 
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Fig. 5.7.3: TFDs of the sum of a sinusoidal FM signal (frequency 0.15-I-0.05, 2 cycles of modulation) 
and a linear FM signal (frequency range 0.35 to 0.4), unit amplitudes, duration 05 samples, sam- 
pling rate i Hz: (a) WVD; (b) Doppler-independent, O ( n , m ) =  hamm23(m); (c)lag-independent, 
O(n, m) = hann11 (n);  (d) separable, O(n, m) = hann11(n) hamm23(m) ; (e) Choi-Williams, cr = 1; 
(f) spectrogram, 17-point rectangular window. 

term suppression than either the spectrogram (f) or the CWD (e), neither of which 
has a separable kernel. Comparing Fig. 5.7.2(d) with Fig. 5.7.3(d), we may confirm 
that a more nonlinear IF requires a shorter lag window (for the suppression of inner 
artifacts), giving coarser frequency resolution. 



222 Chapter 5: Design of Time-Frequency Distributions 

5.7.6 Summary and Conclusions 
A separable kernel gives separate control of the frequency-smoothing and time- 
smoothing of the WVD: the lag-dependent factor causes a convolution in the fre- 
quency direction in the (t, f)  plane, while the Doppler-dependent factor causes a 
convolution in the time direction. A Doppler-independent (DI) kernel smoothes the 
WVD in the frequency direction only, reducing the inner artifacts and preserving 
the time marginal. A lag-independent (LI) kernel smoothes the WVD in the time 
direction only, reducing the cross-terms and preserving the frequency marginal. 

For an LI kernel, slower variations in component frequencies allow easier sup- 
pression of cross-terms and higher frequency resolution in the TFD; such kernels 
should therefore be considered for representing multicomponent signals with slowly- 
varying instantaneous frequencies. For a multicomponent signal with at least one 
highly nonlinear IF law, a lag-dependent factor is also needed to suppress the inner 
artifacts. 

The separable-kernel approach allows a complete understanding and appraisal 
of the properties and behavior of the smoothed WVD [2], the B-distribution [5] and 
the modified B-distribution [3, 4]. It also enables the construction of high-resolution 
quadratic TFDs using the classical smoothing functions commonly encountered in 
digital signal processing and spectral analysis. 
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5 . 8  FRACTIONAL FOURIER TRANSFORM AND 
GENERALIZED-MARGINAL TFDs o 

5.8.1 Fractional Fourier Transform 
The fractional Fourier t ransform (FRFT)  is a rotat ion of the time-frequency plane. 
For a real a,  the fractional Fourier t ransform F a with angle a is defined by 

= 

t2 
l - j  cot c~ ej ~ cot a cot ae-JUt csc if a is not a multiple of lr -dr ,  

s(u), if a is a multiple of 21r, 
s(-u), if a + lr is a multiple of 27r. 

(5.8.1) 
Also, one can see tha t  F2n~ for an integer n is the identity t ransformation and F ~  
is the tradit ional  Fourier t ransform F. Moreover, the following rotat ion proper ty  
holds: 

F~+~ - F~F~ .  

For more details, see, for example, [1, 2]. A numerical example of the F R F T  of a 
signal is i l lustrated in Fig. 5.8.1. 

With  the F R F T ,  it was proved in [2, 3] that  a rotat ion of a Wigner-Ville distri- 
bution is still a Wigner-Ville distribution as explained below. 

Let W~(t, w) denote the Wigner-Ville distribution of a signal s(t), i.e., 

J T T e_jW T W~(t,w) - s(t + -~)s*(t- -~) dT. (5.8.2) 

Let a be an angle and (t, ~) be a rotat ion of (t, w) with angle a: 

t = t c o s a + w s i n a ,  
(5 .8 .3)  

-- - t s i n a + w c o s a ,  

and 
I~s (t, &) -- Ws (t  cos a - & sin a,  t sin a + & cos a).  

Then (see e.g. [2]) 

f T (Fas )  (t  2)e-J~rdT. l~8( t ,h)  = ( F ~ s ) ( t +  ~) * - (5.8.4) 

The equation (5.8.4) tells us that  the rotat ion I~8(t, ~) of the Wigner-Ville distribu- 
tion Ws(t, w) of a signal s is the Wigner-Ville distr ibution of the signal Fa s .  It was 

~ X i a n g - G e n  Xia, Department of Electrical and Computer Engineering, University 
of Delaware, Newark, DE 19716, USA (xxia@ee.udel.edu). Reviewers: Paulo M. Oliveira and Shie 
Qian. 
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F ig .  5.8.1" The Fractional Fourier transform of a signal s(t) in (a) for (a) a -- 07r" (b) c~ = 0.11r; (c) 
a - - 0 . 2 ~ r ;  (d)  c ~ -  0.37r; (e)  a - - 0 . 4 z r ;  ( f )  a - - - -0 .57 r .  

also proved in [3] that a rotation of a Radon-Wigner distribution is also a Radon- 
Wigner distribution by using the FRFT technique. It is known that a Wigner-Ville 
distribution satisfies the conventional marginal properties, i.e., 

/ W~(f,~)d~ -](F~s)(f)[ 2, (5.s.5) 

and 

/ W~(f, cD)df-IF(F~s)(cD)J 2 -l(F~+~/2s)(cD)l 2 (5.s.6) 

5.8.2 Generalized-Marginal Time-Frequency Distribution 
For joint time-frequency (TF) distributions, one often imposes the marginal prop- 
erties: the integrals of a TF distribution along the time t and the frequency w are 
the powers of the signal in the frequency and the time domains, respectively. Sat- 
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isfaction of the t ime and the frequency marginals in Cohen's class 1 is equivalent to 
the kernel property  r T) = r 0) = 1 for all real 0 and T, where r T) is the 
Doppler-lag kernel 2 (see [4] and Table 3.3.1). This fact will later be seen to be just  
a special case of a more general property. 

It is normally accepted that ,  when signals are chirp signals, the T F  distributions 
should be concentrated on lines in the TF  plane. The question is the following. If we 
have some prior information about  a signal, can we take advantage of it in the design 
of a TF  distribution? Or, can we impose some requirements on a T F  distr ibution 
along these lines? If so, how? The generalized-marginal T F  distributions proposed 
in [5] give an answer to these questions. 

5.8.2.1 Generalized Marginals 
Generalized marginals are the marginals beyond the usual t ime and frequency 
marginals. Let Ps(t,w) be a TF  distribution of a signal s(t). Let La denote the 
straight line 

w cosc~ - t sinc~ = 0, (5.8.7) 

i.e. the line on the time-frequency plane through the origin with angle c~. Let L~(u) 
denote the line 

w cos c~ - t sin c~ = u ,  (5.8.8) 

i.e. the general member  of the family of lines parallel to La,  parameter ized by 
the real number u, where u is the signed perpendicular  distance from La. We 
call Ps ( t ,~ )  a g e n e r a l i z e d - m a r g i n a l  t i m e - f r e q u e n c y  d i s t r i b u t i o n ,  if the line 
integrals of Ps (t, ~) along the lines L~ k (u), for k = 1, 2, ..., N,  are the powers of the 
F R F T  with angles C~k + ~/2,  k = 1 ,  2, ..., N,  of the signal s, respectively. In other 
words, 

J~L P~( t ,w )dx -  [(F~+~/2s)(u)l 2, k -  1, 2,...,  N, (5.S.9) 
~k(u) 

where the dummy variable x is on the line La k (u). This is wri t ten more simply as 

fL p~( t 'w)dx -- +~/2sl 2 k - 1 2 N. 
~ k  

It is clear that ,  when c~1 = 0, c~2 = 7r/2, and N = 2, the above generalized-marginals 
are the conventional marginals. Also, the angles C~k may be chosen to be close to 
the angles of chirp signals in the TF  plane. 

5.8.2.2 Generalized-Marginal Time-Frequency Distributions in Cohen's Class 
In this subsection, we s tudy TF  distributions with kernels r T) in Cohen's class 
[4], which are generalized-marginal TF  distributions (5.8.9). We show tha t  a TF  

1 T h a t  is, t he  q u a d r a t i c  class; see p. 68n. 

2In th i s  a r t ic le ,  0 -- 27rp a n d  w -- 27rf. 
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distribution with kernel r T) in Cohen's class is a generalized-marginal one (5.8.9) 
if and only if its kernel r T) is equal to 1 on the lines that  are perpendicular to 
Lak, k = 1, 2, ..., N,  and pass through the origin. This implies tha t  the Wigner-Ville 
distribution satisfies all the generalized-marginals and it is the only one in Cohen's 
class with this property. 

A T F  distribution for a signal s(t) in Cohen's class is defined by 

1// 
Ps(t, w) - ~ As(O, ~)e-Jet-Jr~d0dT, 

where As(O, T) is the generalized ambiguity function of the signal s(t) with a kernel 

As(O, T) -- r T) S(U + 2 ) S * ( U -  -~)eJO~du. 

The T F  distribution Ps(t, w) can be also writ ten as 

/ / /  .(u Ps(t,w) - e-J~176162 T)S(U + -~)S  -~)dOdTdu. 

Then, P(t, w) is a generalized-marginal T F  distribution if and only if the following 
holds. Let 

= t cos c~ + w sin c~, t = tcos c~ - & sin c~, 
or 

& = - t s i n c ~ + w c o s a ,  w - t s i n a + & c o s c ~ .  

Then, the condition (5.8.9) is equivalent to 

/ Ps(tcosc~k -- ~ s inak , t s inc~k  + ~ c o s c ~ k ) d t - - I ( F a k + r / 2 s ) ( ~ ) l  2, k - 1,2 , . . . ,N .  

(5.8.11) 
In other words, a T F  distribution Ps(t, w) is a generalized-marginal distribution if 
and only if it satisfies (5.8.11). We now focus on the T F  distributions Ps(t,w) in 
(5.8.10), for a given angle a in (5.8.11). Let us see what  the left hand side of (5.8.11) 
with angle a for Ps(t,w)in (5.8.10)is. 

/ Ps( tcos  c~ - ~ sin (~, t s in  (~ + ~ cos ~)d t  

f /  T .  T)dTd u __-- 1 e - - j ~ T ( s i n  c~ t a n  c~+cos (~)--juT t an  c~r tan C~, T)S(U + -~)S (U - -~ 
COS O~ 

-- / e-J&rr sin ~, T COSO~)As(--T sin c~, T COS ol)dT, 

where As is the ambiguity function of s. It was proved (see, for example, [6]) tha t  

As(--Tsina, T COSa) -- AFo+~/2s(T, 0). 
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T a b l e  5 .8 .1"  Generalized-Marginal Kernels 

Name Kernel Generalized-Marginal r T) 

with angles ak, 1 < k < N.  

Margenau-Hill  c o s  ~ c o s [ 0 . 5  N 1-Ik=l (9 cos c~k + ~- sin (~k)] 

Rihaczek eO.5j 9r e0.5 j  1~ N= 1 (0 cos c~k -t-T sin c~k ) 

sinc 

Page 

Choi-Williams 

sin agT 
ag~- 

eO.591~-I 

02.1-2 

sin[a 1-I ~= 1 (9 cos c~k-t-~" sin c~k )l 
a 1-I N= 1 (9 cos c~k § sin c~k ) 

N1 l0 COS +T sin I I-I N2 (8 COS -I-T sin ) 0.5j 1-I kl =1 ak l  ak l  k2=1 ak2 ak2 e 

! 1- IN=l(OCOSak+Tsinak)  2 
e 

Therefore, 

/ P s ( t  &sin t'sin + &  )dr COS (~, O/ COS 

= / 

Therefore, the generalized-marginal property holds if and only if 

e j(u-c~ r sin o~)dT -- 5(u -- Co), T COS 

i.e., r  sin c~, ~" cos c~) = 1. 
Although the above discussion is for one angle only, it is s traightforward to 

generalize it to several angles C~k for k = 1, 2, ..., N. Therefore, we have obtained 
the following result. 

T h e o r e m  5.8.1" A time-frequency distribution Ps(t ,w) in (5.8.10) in Cohen's class 
with a kernel r ~-) is a generalized-marginal time-frequency distribution with an- 
gles ak, k -  1, 2, . . . ,N,  as in (5.8.11) if and only if 

r -- 1, for all real ~-, and k -  1,2, ..... ,N,  (5.8.12) 

in other words, r is 1 on the lines perpendicular to the lines Lak, k - 1, 2, ..., N,  
and passing through the origin. 

With this result, one can easily modify the well-known kernels so tha t  the cor- 
responding modified T F  distributions are generalized-marginals. We now list them 
in Table 5.8.1. 
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Theorem 5.8.1 also tells us that the Wigner-Ville distribution satisfies all 
marginal properties for all angles because r T) = 1 for all real 8 and T. There 
is, however, a tradeoff between the number of generalized-marginals you want to 
impose and the freedom of choosing a kernel r T) in Cohen's class. As more 
generalized-marginals are required, there is less freedom in choosing kernels. 

5.8.3 Summary and Conclusions 
Fractional Fourier transforms can be used to introduce generalized marginal time- 
frequency distributions. Such distributions have been shown in the literature to 
be among the best time-frequency distributions in the sense of having the highest 
resolution for chirp-type signals. 

Fractional Fourier transforms are further developed in Article 4.8. 
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Chapter 6 

Implementation and 
TFDs 

Realization of 

Algorithms and computational issues are the keys to efficiently utilizing the proper- 
ties of Time-Frequency Distributions (TFDs) for real life applications. This chapter 
presents procedures, techniques and methodologies for the efficient implementation 
of TFDs. The topic is covered in five articles with appropriate cross-referencing. 

The discrete-time equivalent formulation of quadratic TFDs is defined for the 
purpose of digital computation (Article 6.1). An alternative method for realization 
of quadratic TFDs is to use the short-time Fourier transform (STFT) as a basis 
(6.2). The Gabor time-frequency representation may be expanded on a rectangu- 
lar lattice, using the Fourier and Zak transforms for direct implementations (6.3). 
The computation of other quadratic TFDs can also be facilitated by using spectro- 
gram decomposition (6.4). Finally, the computational procedure for implementing 
quadratic time-frequency methods directly is outlined, along with the necessary 
algorithms and MATLAB TM code fragments (6.5). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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6 . 1  DISCRETE TIME-FREQUENCY DISTRIBUTIONS~ 
For the purposes of digital storage and processing, any real-life signal that  is not 
discrete-time and time-limited must be made so by sampling and windowing. More- 
over, if we wish to evaluate a continuous time-frequency distribution (TFD) numeri- 
cally in a finite number of operations, we must be content with computing a sampled 
form of the TFD from a finite number of samples of the signal. For such reasons, 
we need to define discrete, time-limited equivalents of continuous TFDs. This ar- 
ticle derives discrete forms of the Wigner-Ville distribution (WVD), the windowed 
WVD and the general quadratic TFD, and gives thirteen examples of discrete-time 
kernels. Thus it extends the material present in Chapters 2 and 3. 

If the signal z(t) is ideally sampled at times t = n / f s ,  where n is an integer and 
fs is the sampling rate, it becomes 

( X )  ( X )  

E - Z 
n - - - - - -  (:X:) rt~----~ - -  O O  

(6.1.1) 

where 5( . . . )  denotes the unit impulse function. We shall use a wide caret (~ to 
denote a TFD that  has been modified by sampling. In the lag (7") domain, we shall 
consider only ideal sampling at 7" = m i l s ,  where m is an integer. This in turn will 
draw attention to the discrete time values t = n / f s ,  where n is an integer; but it 
will not be necessary to specify ideal sampling in the time domain. 

6.1.1 The Discrete Wigner-Ville Distribution (DWVD) 
The WVD of a continuous-time signal z(t) has the form 

- * = - "  Wz(t, f )  jz {z(t  + ~) z (t 3) } z ~ (t 3) e-J2~f~dT"" 
r - - , S  (x )  

(6.1.2) 

Changing the variable of integration to 0 = 7"/2, we obtain the alternative definition 

F Wz(t, f )  - 2 z(t + O) z*(t - O)e-J4~f~ 
o o  

(6.1.3) 

which we shall find more convenient for the purpose of conversion to discrete form. 
The product z( t+O)z*(t-O) is the instantaneous autocorrelation function (IAF) 
in terms of t and 0. Let us consider this IAF as a function of 0 and suppose that  it 
is sampled. 

T h e o r e m  6.1.1: If W z ( t , f )  is modified by ideally sampling the IAF in 0 at 
0 = 7./2 = m / f s ,  where m is an integer and fs is the sampling rate, and if the 

~ Boualem Boashash and Gavin R. Putland, Signal Processing Research 
Centre, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia 
(b.boashash@qut.edu.au, g.putland@qut.edu.au). Reviewers: G. Matz and LJ. Stankovid. 
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A 

modified TFD is denoted by Wz(t, f), then 

A n ( n+m n--m) e-J27rkm/N (6.1.4) w (r - 2 E )z*( 
Iml<N/2 

A 

where N is the duration (in samples) of z(n/fs); and the time support for Wz is 
the same as for z(n/fs). 

P r o o f / e x p l a n a t i o n :  After sampling, the integrand in Eq. (6.1.3) becomes 

z(t + O) z*( t -  O)e -j4rfO 2 (5(0 - ~ss) 
m - - - - o o  

and the W V D  becomes 

O(3 

Wz(t, f) -- 2 ~ z(t + ~)  z*( t -  ~ )  e -j47rfm/fs 
r r t ~ - - C K )  

(6.1.5) 

(6.1.6) 

Now let t be conveniently restricted to t = n/fs where n is an integer (this represents sampling 
of the signal in time, but  the sampling is not ideal). Then, if z(t) has finite durat ion,  the t ime 
support  of z(n/fs) can be wri t ten in the form I n -  n0[ < g/2 ,  where n0 is real. Hence the t ime 

suppor t  of Wz is 
In + m - nol < g / 2  (6.1.7) 

where both signs must be satisfied. Because the sign can be chosen so as to increase the magnitude,  
we must have In - n0[ + [ m [  < N/2, hence In - n0] < N/2 and iml < N/2. So the t ime suppor t  

for Wz is the same as for z(n/fs), while the summat ion  in Eq. (6.1.6) is restricted to Iml < N/2, 
giving a maximum of N terms. 1 The sampling in T makes Wz(t, f) periodic in f with period fs/2, 
while the t ime-l imit ing gives a frequency resolution of N bins per period. So it is convenient to let 

k/s 
f -- (6.1.8) 

2N 

where k is an integer. Wi th  these restrictions, Eq. (6.1.6) reduces to Eq. (6.1.4). 

With a change of notation, Eq. (6.1.4) becomes 

Wz[n, k] - 2 E z[n+m I z*[n-m] e -j2~km/y. (6.1.9) 
Irnl<N/2 

This Wz [n, k] is called the d i s c r e t e  W V D  or D W V D .  If z[n] has a duration not 
exceeding N samples, the DWVD is represented as an N x  N real matrix. If the 
summand is extended periodically in m with period N (i.e. extended periodically 
in ~- with period 2N/fs), we obtain 

Wz[n, k] - 2 DFT {z[n+m] z*[n-m]} ; mc  (N) 
r r t - - *  k 

where (N} means any set of N consecutive integers. 2 

1N terms for odd N; N - 1  terms for even N. 

2For even N, the periodic extension is padded with a zero term. 
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It remains to find the minimum value of fs that avoids aliasing in 
the frequency and Doppler domains. As usual, we define the instanta- 
neous autocorrelation function as Kz(t ,T)-  z(t+~)z*(t--~), the spectrum as 
Z(f) - , ~ { z ( t ) } ,  the WVD as W~(t, f) - ~i{Kz(t,  T)}, and the ambiguity func- 

tion as Az(~, T) - -S{Kz( t ,  T)}. Using these notations and the familiar properties 

of the FT, it can be shown that  

Wz(t, f) - [2Z(2f)e  ja~/t] ; [2Z*(2f)e -ja'~/t] 

Az(u, T) = [Z(u)e j~'] �9 [ Z * ( - u ) e - Y ' ~ ] .  

(6.1.11) 

(6.1.12) 

If Z(f) is zero outside the band ]fl < B/2, then the spectrum on the right of 
Eq. (6.1.11), i.e. the WVD, is zero outside the band Ifl < B/2, and the spectrum 
on the right of Eq. (6.1.12) is zero outside the band Ivl < B .  Aliasing will be avoided 
if the sampling rate in ~- (namely fs/2, since fs is the sampling rate in 0) is at least 
B and the sampling rate in t (namely fs) is at least 2B; that  is, aliasing will be 
avoided if fs <_ 2B. The minimum sampling rate in T makes the WVD periodic in 
f with period B. 

The sampling rate may be reduced in the case of an analytic signal. If z(t) is 
the analytic associate of the real signal s(t), whose spectrum S(f) is zero outside 
the band Ill < B/2, then Z(f) is zero outside the band 0 < f < B/2, so that  
the spectrum on the right of Eq. (6.1.11), i.e. the WVD, is zero outside the band 
0 < f < B/2, and the spectrum on the right of Eq. (6.1.12) is zero outside the band 
IL, I < B/2. Aliasing will be avoided if the sampling rate in T is at least B/2 and 
the sampling rate in t is at least B; that  is, aliasing will be avoided if fs _< B .  The 
minimum sampling rate in T makes the WVD periodic in f with period B/2. 

Now consider Wz In, k] as a matrix with k as the column index. If the sampling 
rate in t is B, there is no zero-padding in the frequency domain for an analytic 
signal, and all the columns of Wz[n, k] are needed for the positive frequencies. If 
the sampling rate in t is 2B, only half the columns of Wz[n, k] are needed to represent 
the positive frequencies. The negative-frequency elements may be assumed to be 
zero if z[n] is analytic, provided of course that  the assumption of analyticity is not 
invalidated by short-segment effects, such as windowing of the signal in the n domain 
and/or  windowing of the IAF in the m domain. The latter kind of windowing is 
discussed under the next heading. 

6.1.2 The Windowed DWVD 
Nonlinear IF laws and multiple signal components give rise to artifacts (interference 
terms, cross-terms) in the WVD [see Article 4.2]. The effect of nonlinear IF laws 
can be reduced, with a concomitant loss of frequency resolution, by windowing the 
IAF in the lag direction (i.e. in T or 0) before taking the FT. For continuous time, 
if the window is 

g(T) - ~(~) - ~(0) , (6.1.13) 
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then the resulting TFD, denoted by Wgz(t, f ) ,  is 

F wg(t ,  f )  - g(7) z(t + 2) z*(t - ~) e-J2~HdT 
O 0  

/? = 2 0(0) z(t + O) z* (t - O)e-J4~f~ 
O 0  

(6.1.14) 

(6.1.15) 

and is called the w i n d o w e d  W V D  or p s e u d o - W V D .  The effects of sampling and 
time-limiting on the windowed WVD are described by the following theorem. 

T h e o r e m  6.1.2: If Wgz(t,f) is modified by ideally sampling g(T) in 0 at 
0 = 7/2 = m / f s ,  where m is an integer and fs is the sampling rate, and if g(7) 
is time-limited so that  

9(~')-  0 for IOl-  > M (6 1 16) 
~ f s  ~ ~ 

where M is a positive integer, and if the modified TFD is denoted by Wzg (t, f ) ,  then 

~ g  (~_s 2 ~ )  __ 2 n  , ~ ~](_f~s)Z(n+rnrn --~s ) Z *(n-m]e-J2rrkrn/Mk"-'~s ] (6.1.17) 

Iml<M/2 

A 

and the time support for W g is the same as for z(n/ fs) .  

Proof :  Apart from the limits on T, 0 and m, which lead to the substitution f = k-L the 
2 M  

explanation is similar to that of Theorem 6.1.1. �9 

With a change of notation, Eq. (6.1.17) becomes 

w g [ n ,  k] - 2 Z g[??~] z[n--Fm] z*[~n-fn] e -j21rkrn/M. (6.1.18) 

Iml<M/2 

This Wgz[n , k] is called the w i n d o w e d  D V W D  or p s e u d o - D W V D .  If z[n] has 
a duration not exceeding N samples, the windowed DWVD is represented-as an 
N z M matrix. If the summand is extended periodically in m with period M (i.e. 
extended periodically in 7 with period 2M/fs) ,  we obtain 

Wgz [n, k] = 2 DFT {g[rn] z[n+m] z*[n-m]} ; mC (M) .  
m---~ k 

(6.1.19) 

6.1.3 The Discrete Quadratic TFD 
In terms of continuous variables, the general quadratic TFD is 

p~(t, f )  - jz {G(t, 7) �9 [z ( t+2)  z*( t -~) ]}  
r---* f 

- r d u  
O 0  C ~  

(6.1.20) 

(6.1.21) 
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where G(t, T) is the time-lag kernel. If we define 

a( t ,  o) = a( t ,  

where 0 - T/2 ,  we obtain the alternative definition 

I?1? pz(t, f)  - 2 C;(u, O) z(t-u+O) z*(t-u-O) e-J4~f~ 
O ~  ( X )  

(6.1.22) 

(6.1.23) 

T h e o r e m  6.1.3" If pz(t,f) is modified by ideally sampling G(u,~-) in 0 at 
0 -  T / 2 -  m/fs and in u at u -  p/fs,  where m and p are integers and fs is the 
sampling rate, and if G(u, T) is time-limited so that  

~- M P (6 .1 .24)  G(u, 7-)- 0 for IOI-  ___ or lu[ _> 2y~ 

where M and P are positive integers, and if the modified TFD is denoted by "fiz(t, f), 
then 

P I m l < ~  Ipl<~- 

P r o o f / e x p l a n a t i o n :  The sampled version of G(u, O) is 
( x )  c o  

G(u, 0) = G(u,O) E 5(u-~)  E 5(0-~)  (6.1.26) 
p - -  - -  (:X:) m - - - - -  ( x )  

c o  ( x )  

-- G(u, O) E E 52 (u- ~--~ , 0- ~ ) (6.1.27) 
p - -  - -  CX:) m - - "  - -  (:x:) 

where 52(u, O) is the two-dimensional unit impulse function. When G(u, O) is replaced by G(u, 0), 
Eq. (6.1.23) becomes 

o o  o ( 3  

pA~(t,f)-- 2 E E C,(PI,n) (t--~+:)m z*(t--~--m~)e--Ja~fm/f~ (6.1.28) 
m - -  - -  ( : ~  p - - -  - -  (:x) 

The time-limiting of G(u, ~-) restricts the summation to [rn I < M/2 and ]p[ < P/2. The sampling 
in T makes pz(t, f) periodic in f with period fs/2, while the time-limiting in T (or m) gives a 
frequency resolution of M bins per period. So it is convenient to let 

f _  k fs (6.1.29) 
2M 

where k is an integer. With these restrictions, and with t -  n/fs, Eq. (6.1.28) reduces to 
Eq. (6.1.25). �9 

With a change of notation, Eq. (6.1.25) becomes 

p~[n, k] - 2 E E G[p, m] z[n-p+m] z*[n-p-m] e -j2~km/M (6.1.30) 
P Iml< -~- Ipf< 

-- 2 E Gin, m] ~ (z[n-~-m] z * [ n - m ] ) e  -j27rkm/M. (6 .1 .31)  

M Imt<-~ 
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This pz[n, k] is the generalized d i sc re t e  q u a d r a t i c  T F D .  
If the summand is extended in m with period M, Eq. (6.1.31) becomes 

p~[n,k] - 2 DF_T {G[n,m] , (z[n+m]z*[n-m])} ; mc<M). (6.1.32) 

Because the time (n) support for z[n+m] z*[n-m] is the same as for z[n], the time 
support for pz[n, k] is the same as for G[n, m], z[n]. If the latter has a duration 
not exceeding N samples, then the non-zero elements of pz[n, k] may represented 
as an N • M matrix and the linear convolution in Eqs. (6.1.31) and (6.1.32) may 
be interpreted as modulo-N. If G[n, m] is real and even in m, then the argument 
of the DFT is Hermitian in m, so that pz[n, k] is real. 

Eq. (6.1.32) shows that the implementation of the discrete quadratic TFD in- 
volves construction of the discrete IAF, followed by convolution in n with the time- 
lag kernel, followed by discrete Fourier transformation. These steps may be simpli- 
fled by taking advantage of symmetries, as explained in [1,2]. 

It remains to determine the effect of G(t, T) on the required sampling rate. If 
5~r{G(t , T)} -- "y(t, f)  and 9 r {G(t, T)} - 9(u, T), we have the familiar results 

" r - - - ~  . t - - *  v 

{g(t, T) �9 Kz(t, ~)} - 7(t, f )  ** Wz(t, f)  
T---* f 

S~{g(t, v) �9 Kz(t, T)} -- g(u, T) Az(u, w). 

(6.1.33) 

(6.1.34) 

Comparing the above with Eqs. (6.1.11) and (6.1.12), we see that  there is an addi- 
tional spreading of the spectrum in f but not in u. If 7(t, f )  is zero outside the band 
Ifl < B c / 2 ,  then the total bandwidth of the WVD is increased by Ba, so that the 
required sampling rate is increased by Bc  in w, or 2Ba in 0, and the sampling rate 
in t must be increased to match. 

6.1.3.1 Special Cases 
If G[n, m] = 5[n] g[m], then Eq. (6.1.32) reduces to Eq. (6.1.19), so that  the discrete 
quadratic TFD reduces to the windowed DWVD. If, in addition, g[m] = 1 (that is, 
if G[n, m] = 5[n] ), then Eqs. (6.1.19) and (6.1.32)reduce to Eq. (6.1.10), so that 
the windowed DWVD and the discrete quadratic TFD reduce to the DWVD. 

Two of the three theorems above concern the sampling of a window or kernel 
function. Theorem 6.1.1 seems to be an exception in that the entire IAF is sampled 
(which is possible only in theory, as one cannot compute a continuous IAF in prac- 
tice). However, because the WVD may be considered as a windowed WVD with 
g(T) = 1, Theorem 6.1.1 can be restated in terms of sampling the lag window, like 
Theorem 6.1.2. 
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6.1.3.2 Doppler-Frequency Form 
The Doppler-frequency form of the general quadratic TFD is 

= ( 6 . 1 . 3 5 )  

= g(~,u) Z( f -~+~)Z*(f -r i -~)drleJ2""tdu (6.1.36) 
o o  o o  

where g(u, f) is the Doppler-frequency kernel. If we define 
_ 

g(~, f) = g(u, f) (6.1.37) 

where ~ - u/2, we obtain the alternative definition 

p~(t,f) - 2 (;((,~) Z( f  -rl+() Z*(f -rl-()e34'~tdrld(. (6.1.38) 

As the time-lag definition of the quadratic TFD leads to Theorem 6.1.3, so the 
Doppler-frequency definition leads to the following result. 

T h e o r e m  6.1.4: If p~(t,f) is modified by ideally sampling g(rl, u) in ~ at 
~ = ~ , / 2 -  ~ and in r/ at r /=  ~ ,  where l and q are integers and N is a posi- 
tive integer and f~ is a positive constant, and if g(rl, u) is band-limited so that 

g(r/, u) = 0 for I~l = [~[ - > 4~  or [r/I _> 9f~aN (6.1.39) 

where L and Q are positive integers, and if the modified TFD is denoted by "fiz(t, f), 
then 

t" n [k-q+l]fs ) Z*( [k-q-l]f~ eJ2rrln/N pz(T , k2@ ) = 2 E E O(~2-~N ' 2~) Z( 2N 2N ) . (6.1.40) 
Ill < ~ Iql < 

P r o o f :  Parallel to the proof of Theorem 6.1.3 and the subsequent discussion. �9 

With a change of notation, Eq. (6.1.40) becomes 

p~[n, k] - 2 E E g[l, q] Z[k-q+l] Z*[k-q-l] e j2~tn/y (6.1.41) 

I/1< ~ Iql< 

= 2 ~ g[l, k]. (Z[k+l] Z*[k-l])e ~2"Z~/g. (6.1.42) 

IZl < -~ 

If the summand is extended in l with period L, Eq. (6.1.42) becomes 

,~[n, k] - 2  IDFT {g[1, k],(Z[k+l] Z*[k-l])} ; 1E (L). (6.1.43) 

The frequency support for pz[n, k] is the same as for G[1, k], Z[k]. If the latter 
support has a width not exceeding K frequency samples, then the non-zero elements 
of pz[n, k] may be represented as an L x K matrix and the linear convolution in 
Eqs. (6.1.42) and (6.1.43) may be interpreted as modulo-K. While the dimensions 
of the TFD matrix seem to differ from those in Theorem 6.1.3, the dimensions are 
upper bounds and may be matched, if desired, by zero-padding. 
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Table 6.1.1: Kernel requirements for selected properties ("Prop.") of quadratic TFDs, in time-lag 
and Doppler-frequency domains, for general continuous and discrete TFDs, and discrete TFDs with 
Doppler-independent (DI) and lag-independent (LI) kernels. Note that 0 = 7/2 and ~c - -  v / 2 .  

K E R N E L  C O N S T R A I N T S  

Continuous Discrete 

Prop. 

RE: 

TM: 

FM: 

IF: 

TD: 

TS: 

FS: 

G(t,  ~-) 
= c * ( t ,  -~-). 

G [ . . m ]  

Discrete DI 

C[n,m] = ~[~]g2[~n] 
G[l, k] = G2[k] 

Discrete LI 

GIn, m] = gl [n] 
~[l,k] = Cl[t]~[k] 

g2[m] = g~[-m] gl In] is real. 
= a*[n,-m]. 

G(t, O) = 6(t) G[n, 0] = 6In] g2[0] = 1 W V D  only 

G(0, f )  = 6( f )  G[0, k] = 6[k] W V D  only GI[0] = 1 

Gin. 01 -- 5In] ; 
E k kG[t, k] = 0. 

~[0, k] = ~[k] ; 

EnnG[n,m] = 0 .  

Gin,  m] = o 

if Iml < Inl. 

9~[0] = 1 ; 
Ek kC2[k] = 0. 

W V D  only 

Always 

W V D  only 

W V D  only 

GI[0] = 1 ; 

~-~n ngl [n] -- 0. 

W V D  only 

G(t, o) = ~(t) ; 

.f fG(~ , f )  df=O. 

G(O, f )  = 6( f )  ; 
f tG(t,r)dt = O. 

c(t, ~-)=o 
if IOl < Itl, 

Always ~(- ,  f ) = 0  

if I~1 < Ifl" 
6[t. k] = 0  

if jl] < Ikl. 

6.1.4 Desirable Properties; Kernel Constraints 
The desirable properties of continuous TFDs  (defined in Section 3.1.1, p. 60 if) are 
easily redefined for discrete TFDs.  Some important examples are given below. 

R e a l n e s s  ( R E )  says simply that the TFD is real. 
The m a r g i n a l  c o n d i t i o n s ,  which may be considered optional for signal- 

processing purposes, are the t i m e  m a r g i n a l  ( T M )  

~ k  pz[n, k] - Jz[n]l 2 (6.1.44) 

and the f r e q u e n c y  m a r g i n a l  ( F M )  

E n  pz[n, k] - IZ[k] ]  2. ( 6 . 1 . 4 5 )  

The IF p r o p e r t y  says that the periodic first moment of the T F D  w.r.t, fre- 
quency is the instantaneous frequency. Its dual, which seems to be regarded as less 
important, is the t i m e  d e l a y  p r o p e r t y  ( T D ) ,  and says that the periodic first 
moment of the T F D  w.r.t, time is the time delay. 

The t i m e  s u p p o r t  ( T S )  property says that if z[n] = 0 everywhere except 
n l < n _< n2,  then p z [ n , k ] -  0 everywhere except n l _< n _< n2.  Similarly, the 
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T a b l e  6 . 1 . 2 :  Kernels of selected TFDs in time-lag and Doppler-frequency domains�9 For the spectro- 
gram and windowed Levin (w-Levin) distributions, the window w[n] is assumed to be real and even. 
W[k] denotes the sampled spectrum of the window w(~-). In the PROPERTY column, an exclamation 
(!) means that the property is always satisfied, while an asterisk (*) means that the property is satisfied 
subject to non-degenerate constraints on the window and/or parameter. 

K E R N E L  PROPERTY 

D i s t r i b u t i o n  G[n ,m]  G[1, k] RE TM FM IF TD TS FS 

W V D  5[n] 5[k] ' ! ! ! ' ! ' 

Lev in  w v w v w ! w 1 5[n + m] 
+�89 

1 n 
rec t  ( 4-h--~m )] 

* * [ sinc n sinc m] 

+3 
1 k rec t  (h-~al)] 

** [ sinc k sinc l] 

I I I I I * * B o r n - J o r d a n  

cosh-  2~ n M o d i f i e d  B ,n cosh-2fl n 

w i n d o w e d  W V D  5In] w[m] W[k] * * * ! 

w - L e v i n  ! * * v 

Z h a o - A t l a s - M a r k s  

W[k+t] 
1 +~w[k-l] 

l w [ m ] ~ [ n + m ]  

~ ~[~n] ~[~-~n] 

! I I I 

[w[m] rec t  (~-~)]  

** [ sinc n sinc m] 

R i h a c z e k  5In - m] 6[k + l] ! ! ' ! : 

w - R i h a c z e k  w * [ - m ]  6[n - m] ~ W*[k + l] * w 

1 5 r k + l l +  l S[k_l]  [ w ! ! ! P a g e  

C h o i - W i l l i a m s  

5In- Jml] 1 1 

+ _ ~ l  2 �9 s inc l  - , , ~ - l  ) 

e x p (  -Tr2ak2~ 
4l 2 ] 

�9 * [ sinc k sinc l] 

w[k + l] WEk-l] 

x/W~ exp  ( - ~ ' 2 a n  2 ) 
2[m[ 4m 2 
** [ sinc n sinc m] 

( cosh2n)  * sinc m 

I I I I I 

~[n+m]~[n-m] s p e c t r o g r a m  

frequency suppor t  (FS)proper ty  says that if Z [ k ] - 0  everywhere except 
kl _< k _< k2, then pz[n, k] - 0 everywhere except kl < k < k2. 

The class of TFDs satisfying realness, the time and frequency marginals, the IF 
property and the time and frequency support properties is called class P. 

The properties listed above are selected from Table 3.3.1 on p. 75. For each 
property, Table 3.3.1 gives necessary and sufficient conditions on the kernel of the 
general continuous quadratic TFD. To obtain the corresponding conditions for dis- 
crete TFDs, we first express the conditions entirely in the time-lag and Doppler- 
frequency domains, using the scaled variables 0 and ~ where convenient, obtaining 
the "Continuous" column of Table 6.1.1. Then we sample the kernels as specified 
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in Theorems 6.1.3 and 6.1.4, obtaining the "Discrete" column of Table 6.1.1. The 
remaining columns are obtained by specialization. 

The sampling of the time-lag kernel will be free of aliasing if the kernel is first 
band-limited in t and 0 to +fs/2. This causes 5(t) to be discretized as 5[n]. Similarly, 
the sampling of the Doppler-frequency kernel will be free of aliasing if the kernel is 
first time-limited in f and ~ to +N/fs .  This causes 5(f) to be discretized as 5[k]. 

6.1.5 Examples 
By sampling the kernels of common continuous quadratic TFDs [see Table 3.3.2 on 
p. 76], we obtain the new Table 6.1.2, which lists the kernels for the discrete versions 
of those TFDs. The convolutions with sinc functions are performed before restricting 
the variable to integer values; this requires oversampling and is computationally 
inefficient. The convolutions in n and rn arise from the band-limiting of the time- 
lag kernel prior to sampling. This band-limiting of the kernel does not affect the 
result of convolving the kernel with the IAF, because the IAF is assumed to be 
similarly band-limited. Similarly, the convolutions in k and l arise from the time- 
limiting of the Doppler-Frequency kernel prior to sampling. Where no convolution 
appears in the kernel, either a sinc function has been converted to a discrete delta 
function by the sampling, or a window function is assumed to provide sufficient 
filtering. 

6.1.6 Summary and Conclusions 
Ideal sampling of window or kernel functions leads to straightforward definitions of 
discrete-time forms of the WVD, the windowed WVD and other quadratic TFDs. 
Use of the analytic signal minimizes the required sampling rate. 

Further theoretical details may be found in [3-5]. Some practical computational 
issues will be examined in Article 6.5. 
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6.2 QUADRATIC AND HIGHER ORDER TIME-FREQUENCY 
ANALYSIS BASED ON THE STFT ~ 

The oldest, simplest, and most commonly used tool for time-frequency (TF) analysis 
of a signal x(t) is the spectrogram, defined as the squared magnitude of the short 
time Fourier transform (STFT) [1]. The STFT is 

// F~(t, f )  - x(t  + T)W(T)e--J2~/'dT, (6.2.1) 
(X)  

where W(T) is a real-valued even lag window [cf. Section 2.3.1]. Implementations 
(hardware and software) of this transform are already widely present in practice. 
The STFT is linear and very simple for realization. However, it has some serious 
drawbacks. The most important one lies in its low concentration in the TF plane, 
when highly nonstationary signals are analyzed. In order to improve TF represen- 
tation, various quadratic distributions have been introduced. The most important 
member of this class is the pseudo Wigner distribution (WD) 

/ T T T T �9 
Wx(t, f ) -  w(-5)w(--5)z(t~ ~ + -~)x*(t - -5)e-32"/~dT. (6.2.2) 

O 0  
Y.d 

The WD itself has a drawback. Namely, in the case of multicomponent signals, 
�9 (t)  P - ~-]p=l Xp(t), it produces emphatic cross-terms that can completely mask the 
auto-terms and make this distribution useless for analysis. This is why many other 
quadratic reduced interference distributions have been introduced (Choi-Williams, 
Zhao-Atlas-Marks, Born-Jordan, Butterworth, Zhang-Sato...) [1], [Article 6.4]. The 
cross-terms reduction in these distributions is based on a kind of the Wigner distri- 
bution smoothing, which inherently leads to the auto-terms degradation [2]. In 
contrast to these TF representations, which are focused on the preservation of 
marginal properties and the cross-terms reduction, the S-method (SM), which is 
the topic of this article, is derived with the primary goal to preserve the auto-terms 
quality as in the WD, while avoiding (reducing) the cross-terms. The software and 
hardware realization of this method is very efficient, since it is completely based 
on the STFT. The SM can, in a straightforward manner, be extended to the cross- 
terms free (reduced) realization of the higher order TF representations, time-scale 
representations, and multidimensional space/spatial-frequency representations. 

6.2.1 STFT Based Realization of the Quadratic Representations 
6.2.1.1 Basic S-Method Form 
Relation between the STFT and the WD, [3], 

/? W=(t, f )  - 2 F=(t, I + O)F~(t, f - O)dO (6.2.3) 
O@ 

~ LJubi~,a Stankovid,  Elektrotehnicki fakultet, University of Montenegro, 81000 Pod- 
gorica, Montenegro (1.stankovic@ieee.org). Reviewers: J. F. Bhhme, S. Carstens-Behrens and 
B. Ristic. 
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has led to the definition of a TF  representation, referred to as the S-method (SM), 

/? SMx(t, f )  - 2 P(O)Fx(t, f + O)F;(t, f - O)dO. (6.2.4) 
O0 

The special cases of the SM are two most important  TF  distributions: (1) For 
P(O) = 1 the WD follows, SMx(t, f )  = Wx(t, f),  and (2) For P(O) = 5(0)/2, the 

spectrogram SM~(t, f )  - IF~(t ,  f)l 2 = S~(t, f )  is obtained. By changing the width 
of window P(0), denoted by 2Lp (P(O) = 0 for I 0 I> Lp), between these two 
extreme cases we can get a gradual transition from the spectrogram to the WD. 
The best choice of Lp would be the value when P(O) is wide enough to enable 
complete integration over the auto terms, but narrower than the distance between 
the auto-terms, in order to avoid the cross terms, Fig. 6.2.1. Then, the SM produces 
the sum of the WDs of individual signal components, avoiding cross-terms. 

P r o p o s i t i o n :  Consider  the signal x(t) = ~'~P xp(t) where xp(t) are monocomponen t  signals. p = l  
Assume tha t  the S T F T  of each component  lies inside the region Dp(t, f ) ,  p = 1, 2, ..., P .  Denote  
the length of the  p- th  region along f ,  for a given t, by 2Bp(t), and its central  frequency by fop(t). 
The SM of x(t) produces  the sum of the W Ds  Wxp (t, f )  of each signal component  xp(t),  

P W x p  (t,  f ) ,  (6.2.5) SMx(t ,  f )  = E p _ _  1 

if the regions Dp(t, f ) ,  p = 1, 2, ..., P, do not overlap, Dp(t, f )  N Dq(t, f )  = q} for p ~: q (meaning 
cross- terms free spec t rogram) ,  and if the  width  of the  rec tangular  window P(O), for a point  (t, f ) ,  
is defined by Lp( t ,  f )  = Bp(t) - I f -  fop(t)l for (t, f )  c Dp(t, f ) ,  and 0 elsewhere. 
P r o o f :  Consider  a point  (t, f )  inside a region Dp(t, f ) .  The integrat ion interval  in (6.2.4), for 
the p- th  signal component  is symmet r i ca l  wi th  respect  to 0 -- 0. It is defined by the smallest  
absolute  value of 0 for which f + 0 or f - 0 falls outside Dp(t, f ) ,  i.e., If + 0 - fop(t)l k Bp(t) 
or I f -  0 -  fop(t)l >_ Bp(t).  For f > fop(t) and positive 0, the  in tegrat ion limit is reached first 
in If + 0 -  fop(t)l > Bp(t) for 0 = Bp(t) - ( f  - fop(t)). For f < fop(t) and posit ive 0, the  limit 
is reached first in I f -  0 -  fop(t)l >_ Bp(t) for 0 -- Bp(t) - (fop(t) - f ) .  Thus,  having in mind 
the interval symmet ry ,  an integrat ion limit which produces  the  same value of integral  (6.2.4) as 
the value of (6.2.3), over the region Dp(t, f ) ,  is given by Lp( t ,  f )  in the  Proposi t ion.  Therefore,  
for (t, f )  C Dp(t, f )  we have SMx(t ,  f )  = Wxp(t,  f ) .  Since Lp( t ,  f )  = 0 for (t, f )  ~ Dp(t, f ) ,  
p = 1 , 2 , . . . , P .  
N o t e :  Any window P(O) with constant  width  Lp  2> m a x ( t , f ) { L p ( t , f ) }  produces  S M x ( t , f )  = 

:~'.pP1Wxp (t, f ) ,  if the regions Dp(t, f ) ,  p = 1, 2, .., P, are at  least 2Lp apar t  along the frequency 

axis, i.e., I fop(t) - foq(t)l > Bp(t) + Bq(t) + 2Lp,  for each p, q and t. This  is the  SM with  constant  
window width  (6.2.4). If  two components overlap for some time instants t, then the cross-term 
will appear, but only between these two components and for that time instants. 

The SM belongs to the general class of quadratic TF  distributions, whose inner 
product form reads 

px(t, f)  -- (~(tl, t2)[x( t  + tl)e -j2~ftl] [x(t + t2)e-J2rft2] * dtl dt2. 
O0 O0 

(6.2.6) 
If the inner product kernel (~(tl,t2) is factorized in the Hankel form (~(t~,t2) - 
2w(tl)p(tl + t2)w(t2), then by substituting its value into (6.2.6), with P ( - f )  = 
Ut~f{p(t)}, we get (6.2.4). Note that  the Toeplitz factorization of the ker- 

nel G(tl,t2) -- 2w(tl)p(tl - t z )w( t2)  results in the smoothed spectrogram. The 
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Fig. 6.2.1: Illustration of the SM calculation including two special cases: the WD and the spectrogram 

smoothed spectrogram composes two STFTs in the same direction, resulting in the 
distribution spread, in contrast to the SM, where two STFTs are composed in coun- 
terdirection, resulting in the concentration improvement (Fig. 6.2.1; reference [4]; 
Article 9.1). 

The SM kernel in Doppler-lag domain is given by c(u, T) = P(u/2)*v Aww(u, T), 
where Aww(u, T) is the ambiguity function of W(T), and .~ denotes a convolution in 
u. Generally, this kernel is not a separable function. 

6.2.1.2 Other Forms of the S-Method in Quadratic Representations 
T i m e  d i rec t i on  f o rm  of the SM is 

F SM=(t, f )  = 2 P(v)F=(t + T, f)F~(t  - T, f)e-J4~/rdv. 
o o  

(6.2.7) 

It results from the same analysis as (6.2.4), based on the frequency domain windowed 
WD, Wz(t, f )  = f _ ~  W(O/2)W(-O/2 )X( f  + O/2)X*(f - 0/2)exp(j27rtO)dO. 

F rac t iona l  d o m a i n  form: The frequency and time direction forms of the SM can 
be generalized to any direction in the time-frequency plane. Consider the fractional 
FT of x(t), denoted by X~(u) [Articles 4.8, 5.8]. Its STFT is 

F F~(u, v) - X~(u + T)h(r)exp(-j27rvr)dr. 
o o  

(6.2.8) 

where h(7) is the lag window. The SM in the fractional domain, is defined by 

F SMx (U, = 2 P(O)F2(u, + 0 ) F 2 *  ( - ,  - O)dO, 
o o  

(6.2.9) 

It can be easily realized based on the signal's fractional FT and (6.2.8). 
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Using the STFT rotational property, Fff (u, v)exp( - jTruv)  = 
F ~  exp(- jTr t f )  with u = t c o s a +  f s i n a ,  v = - t s i n a +  f c o s a ,  [5], we 
can rewrite (6.2.9) as 

j'? SMz ~ (t, f )  - 2 P(O)F ~ (t - 0 sin oz, f + 0 cos a) 
oo 

x F ~ (t + 0 sin a, f - 0 cos a)e j4~f~ sin C~dO ' (6.2.10) 

For a -- 0 it gives (6.2.4), while (6.2.7) follows for a - -7r/2. For the derivation of 
(6.2.10) the lag window h(T) is formally assumed as ( W ~ ( - T ) )  *. Optimal direction 
for the fractional SM calculation can be obtained based on the fractional moments 
analysis in [Article 4.8]. It has been used in [5]. 

Affine S M  form:  Continuous wavelet transform (WT) is defined by D=(t, f )  - 
f~x(w)h*((r- t ) f / f o ) d ~ - / v / f o / f [ .  As in [6] we used frequency instead of scale 
a - f o / f .  Consider h ( t ) i n  the form h(t) - w(t)exp(j27rfot)  which provides a 
strong formal connection of the WT with the STFT. The pseudo affine Wigner 
distribution is defined by 

_=x) T T T T 
wa( t ,  f ) -  W ( ~ o f ) W ( - ~ o f ) X ( t  + -~)x*(t - -~)e-J2~r d~ -. (6.2.11) 

oo 

The affine SM form reads: 

/? SMa(t, f )  - 2 P(O)D=(t, f; fo + O)Dx(t, f;  fo - O)dO, (6.2.12) 
oo 

where Dx(t, f; fo + O) is the W T  calculated with h(t) - w(t)exp(j27r(f0 + O)t). If 
P(O) - 5(0)/2, then SMa(t, f )  is equal to the scalogram of x(t),  while for P(O) - 1 
it produces wa( t ,  f )  defined by (6.2.11). This form of the SM has been extended 
to other time-scale representations in [6]. 

6.2.2 Discrete Realization of the Basic S-Method Form 
Discrete SM, for a rectangular window P(O), follows from (6.2.4) 

2 2 Lp 
SMx(~ ,  k) - ~--[IFx(~' k)l + 2Re{~-~i= 1"---" F x ( n , k  -t- i ) F ; ( n , k  - i ) } ]  (6.2.13) 

where" Fx(n, k) - DFTi--,k { x (n+i )w( i )A t } ,  At  is the sampling interval, Tw - N A t  
is the width of w(T), and 2Lp + 1 is the width of P(O) in the discrete domain. For 
notation simplicity we will assume normalized 2/Tw - 1. Recursive relation for the 
SM calculation is 

S M x ( n , k ; L p )  - S M x ( n , k ; L p  - 1 ) +  2Re{F~(n ,k  + L p ) F ~ ( n , k -  Lp)}  (6.2.14) 

where SM=(n, k; 0) - IF=(n, k)l 2, and SM=(n, k; Lp) denotes SM=(n, k) in (6.2.13) 
calculated with Lp. In this way we start  from the spectrogram, and gradually make 
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the transition toward the WD. The calculation in (6.2.13) and (6.2.14) needn't  be 
done for each point (n,k) separately. It can be performed for the whole matrix 
of the SM and the STFT. This can significantly save time in some matrix based 
calculation tools. In the SM calculation: (1) There is no need for analytic signal 
calculation since the cross-terms between negative and positive frequency compo- 
nents are removed in the same way as are the other cross-terms [7]. (2) If we take 
that  Fz(n, k) = 0 outside the basic period, i.e., when k < - N / 2  or k > N / 2 -  1, 
then there is no aliasing when the STFT is alias-free (in this way we can calculate 
the alias-free WD by taking Lp = N/2  in (6.2.13)). 

For the SM realization we have to implement the STFT first, based either on the 
FFT routines or recursive approaches suitable for hardware realizations [3, 7]. After 
we get the STFT we have to "correct" the obtained values, according to (6.2.13), 
by adding few terms 2Re{Fx(n ,k  + i)F~(n,k - i)} to the SPEC values. 

There are two possibilities to implement the summation in (6.2.13): 
(1) With a signal independent LB. Theoretically, in order to get the WD for each 
individual component, the length Lp should be such that 2Lp is equal to the width 
of the widest auto-term. This will guarantee cross-terms free distribution for all 
components which are at least 2Lp samples apart. For components and time in- 
stants where this condition is not satisfied, the cross-terms will appear, but still in 
a reduced form (see also [Article 7.3]). 
(2) With a signal dependent Lp -- Lp(n,  k) where the summation, for each point 
(n, k), lasts until the absolute square value of Fx(n, k + i) or Fx(n, k - i) is smaller 
than an assumed reference level R. If a zero value may be expected within a single 
auto-term, then the summation lasts until two subsequent zero values of Fx (n, k + i) 
or Fz(n, k -  i) are detected. The reference level is defined as a few percent of the 
spectrogram's maximal value at a considered instant n, Rn = maxk{Sz (n , k ) } /Q  2, 
where Q is a constant. Index n is added to show that  the reference level R is time 
dependent. Note that if Q2 __~ c~, the WD will be obtained, while Q2 = 1 results 
in the spectrogram. A choice of an appropriate value for design parameter Q2 will 
be discussed in Example 2. 

Example 1: Consider a real-valued multicomponent signal 

x(t) -- cos(1200(t + 0.1) 2) + r -36(t-1/3)2 cos(1200(t + 1/2) 2) + 

e -36(t-2/3)2 cos(1200(t - 1/3) 2) + cos(9607rt) 

within the interval [0, 1], sampled at At = 1/1024. This sampling rate is very close 
to the Nyquist rate for this signal, that  is 1/960. The Hanning window of the width 
T~ = 1/4 is used. The spectrogram is shown in Fig. 6.2.2(a). Its "corrected" version 
(the SM), according to (6.2.13), with five terms, Lp = 5, is shown in Fig. 6.2.2(c). 
The auto-terms are concentrated almost as in the WD, Fig. 6.2.2(b). The Choi- 
Williams distribution (CWD), whose kernel reads c(u, T) = exp(--(~7)2), is shown 
in Fig. 6.2.2(d). Normalized values - v / ~ N / 2  < ]2~v[ < v / ~ N / 2 , - V / T r N / 2  < IT[ < 

v/~N/2,  and 128 samples within that  interval, are used. If the analytic part of x(t) 
were used, similar results would be obtained [see Fig. 9.1.1 on p. 379]. 
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Fig. 6.2.2: Time-frequency representation of a real-valued multicomponent signal" (a) Spectrogram, 
(b) Pseudo Wigner distribution, (c) S-method with five "correcting terms " Lp = 5, (d) Choi-Williams 
distribution, as the representative of reduced interference distributions. 

Example 2: The adaptive SM realization will be illustrated on a three-component 
real signal, with a nonlinear FM component, 

x(t) - e -t2 cos(25~t) + cos(120t 3 + 45~t) + 1.5e -25t2 cos(40~t 2 + 150~t) 

with the sampling interval At -- 1/256. The signal is considered within the time 
interval [-1,  1]. The Hanning window of the width Tw - 1 is used. The spectrogram 
is presented in Fig. 6.2.3(a), while the SM with the constant Lp = 3 is shown in 
Fig. 6.2.3(b). The concentration improvement with respect to the case Lp = O, 
Fig. 6.2.3(a), is evident. Further increase of Lp would improve concentration, but 
it would also cause that  some cross-terms appear. Some small changes are already 
noticeable between the components with quadratic and constant IF. An improved 
concentration, without cross-terms, can be achieved by using the variable window 
width Lp. The regions D~(n, k), determining the summation limit Lg(n,  k) for each 
point (n, k), are obtained by imposing the reference level Rn corresponding to Q2 = 
50. They are defined as: Di(n,k)  - 1 when Sx(n, k) >_ Rn - m a x k { S z ( n , k ) } / Q  2, 
and D~(n,k) - 0 elsewhere, Fig. 6.2.3(c). White regions mean that  the value of 
spectrogram is below 2% of its maximal value at that  time instant n, meaning 
that  the concentration improvement is not performed at these points. The signal 
dependent SM is given in Fig. 6.2.3(d). The method sensitivity, with respect to the 
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Fig. 6.2.3: Time-frequency analysis of a multicomponent signal: (a) Spectrogram, (b) The S-method 
with a constant window, with Lp = 3, (c) Regions of support for the S-method with a variable 
window width calculation, corresponding to Q2 = 50, (d) The S-method with the variable window 
width calculated using regions in (c). 

value of Q2, is low. 

6.2.3 STFT Based Realization of Higher Order Representations 
In order to improve distribution concentration in the case of nonlinear FM signals, 
the higher order time-varying spectra have been defined (Wigner higher order spec- 
tra, Multitime Wigner distributions). For practical realizations the most interesting 
are the versions of these spectra reduced to the two-dimensional TF plane [8]. Here, 
we will present the L-Wigner distribution (LWD) and the fourth order polynomial 
Wigner-Ville distribution (PWVD). 

6.2.3.1 The L-Wigner Distribution 
The L-Wigner Distribution (LWD)is defined by [7,9] 

/ _~  T -j2~ f ~" r )x L (t + dr. LDL(t ,  f )  = WL(T)X *L (t -- ~-~ - ~ ) e  
c ~  

(6.2.15) 

For L = 1 it reduces to the WD. 
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T h e  LWD is a windowed  slice of the  mu l t i t ime  Wigne r  d i s t r ibu t ions :  

cx) K L - - 1  K 

T T T ) e j 2 ~ r f r d T  ' 
W K ( t l ,  ..., tk, f )  = x* ( E  ti + K + 1 ) n x* ( - t i  + K + 1 ) n x( t i  - K +------1 

i - - 1  i - - 1  i - - L  

along the line t l  -- t2 . . . . .  tL -1  -- --t, tL -- tL+l . . . . .  tK -- t, where  the  a u t o - t e r m s  in 
W ~  (tl .... , tk, f )  are located,  for L = ( K  + 1) /2  [9]. 

Similarly,  s t a r t i ng  from the  Wigne r  higher order  spec t ra ,  dual  to WxK(t l ,  t2, . . . , tk ,  f ) ,  we get 
a d i s t r ibu t ion  dual  to (6.2.15), 

f_~ o )xL( f_  o L W [ ( t ,  f ) =  W L ( O ) x * L ( f  + - ~  -~--L)e-J2~retdO. (6.2.16) 
(x) 

s tud ied  in deta i ls  in [10]. Its rea l iza t ion  is formal ly  the  same  as for the  t ime  d o m a i n  LWD.  

For a frequency modulated signal x(t) = exp(jr  the LWD produces [7] 

LWL(t, f ) -  WL(f  - r  FT{e(J(r162162162 

where 71,72 are the values of 7 within the lag window WL(T), and WL(f) = 
.P~_~I{WL(T)}. For L --+ ~ ,  the LWD tends to a distribution completely con- 
centrated along the IF, i.e., LWL(t, f)  --~ W L ( f -  r 

The relationship between LW2L(t, f)  and LWL(t, f )  is of form (6.2.3), 

F LW2L(t, f)  - 2 LWL(t, f + O)LWL(t, f - O)dO 
o o  

The realization of cross-terms and alias free version of the LWD may be efficiently 
done in the discrete domain, by using the SM form (6.2.13), as: 

(6.2.17) 

with LW1 (n, k) = W=(n, k), and Wz(n, k) calculated according to (6.2.13). Form 
(6.2.17) is very convenient for software and hardware realizations since the same 
blocks, connected in cascade, can provide a simple and efficient system for higher 
order TF analysis, based on the STFT in the initial step, and the signal sampled at 
the Nyquist rate. Numerical examples and illustrations of the LWD can be found 
in [7, 9-11]. 

6.2.3.2 Polynomial Wigner-Ville Distribution 
Modification of the presented method for the realization of the PWVD is straight- 
forward. The fourth order PWVD can be written in a frequency scaled form [12] 

o~--~ f ~ T)x*2(t-  7 A ' r ) x ( t _ A  T_ ~ PWx( t , f )  - -., J-  x2(t+-4 -4)x*(t+ 2 2)e-J~-~dT, (6.2.18) 
o o  

where A - 0.85//1.35 and f '  - f/2.7. Note that  PW=(t, f ')  - 2~ LW2(t, f ')  . f ,  
WxA(t, f '), where wA(t,  f ')  -- FT{x*(t + A2)x(t  - A2) } is the scaled and reversed 
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Fig. 6.2.4: Time-frequency representation of a real-valued multicomponent signal: (a) The SM (cross- 
terms and alias free version of the WD), (b) Polynomial Wigner-Ville distribution realized based on the 
STFT by using the SM and its order recursive form. 

version of the WD. The cross-terms free realization of the WD and LWD is already 
presented. In the discrete implementation of the above relation, the only remaining 
problem is the evaluation of wA(t ,  f ')  on the discrete set of points on frequency 
axis, f '  - - k A f ' .  Since wA(t ,  f ')  is, by definition, a scaled and reversed version 
of Wx(t, f '),  its values at f '  = - k A f '  are the values of Wx(t, f ')  at f '  - kA f ' /A .  
However, these points do not correspond to any sample location along the frequency 
axis grid. Thus, the interpolation has to be done (one way of doing it is in an 
appropriate zero padding of the signal). A discrete form of convolution (6.2.18), 
including rectangular window P(O) and the above considerations, is 

Lp 
PWz(n, k) - E i = - L p  LW2(n, k + i)I?V~(n, k + i/A) (6.2.19) 

where 2Lp + 1 is the width of P(O) in the discrete domain, while I?Vx(n, k + i/A) 
is the WD approximation. We can simply use I?Vx(n,k + i/A) = SMx(n,k + [i/A]) 
where [i/A] is the nearest integer to i/A, or use the linear interpolation of the SM 
values at two nearest integers. The terms in (6.2.19), when k + i or k + [i/A] is 
outside the basic period, are considered as being zero in order to avoid aliasing. 

Example 3: Consider real-valued multicomponent signal 

x(t) - cos(20 sin(Trt) + 307rt) + sin(20 cos(Trt) + 1007rt) 

within - 1  <_ t < 1, with At -- 1/128. In the realization, a Hanning window of 
the width Tw - 2 is used. Based on the STFT (using its positive frequencies), the 
cross-terms free WD is obtained from (6.2.13) with Lp - 15, and denoted by SM, 
Fig. 6.2.4(a). Then the LWD, with L -  2, is calculated according to (6.2.17). It is 
combined with the linearly interpolated SM value into the PWVD (6.2.19), shown 
in Fig. 6.2.4(b). For the precise implementation of [i/A] the lag window has been 
zero-padded by a factor of 2. 

6.2.4 Summary and Conclusions 
The STFT based realization of quadratic TF representations, having the auto- 
terms close or the same to the ones in the WD, but without (or with reduced) 
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cross-terms, is presented. For this realization the S-method is used. The method 
is generalized, in an order recursive form, for the realization of higher order TF 
representations. Applications of the presented method on, for example, time-scale 
representations [6], and multidimensional space/spatial-frequency analysis [13], are 
straightforward. Hardware realization of the S-method is also simple and direct [7]. 
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6.3 GABOR'S SIGNAL EXPANSION FOR A 
NON-ORTHOGONAL SAMPLING GEOMETRY ~ 

6.3.1 Historical Perspective 
In 1946 [1], Gabor suggested the representation of a time signal in a combined 
time-frequency domain (see Section 2.3.3); in particular he proposed to represent the 
signal as a superposition of shifted and modulated versions of a so-called elementary 
signal or synthesis window g(t). Moreover, as a synthesis window g(t) he chose a 
Gaussian signal, because such a signal has good localization in both the time domain 
and the frequency domain. The other choice that Gabor made was that  his signal 
expansion was formulated on a rectangular lattice in the time-frequency domain 
(mT, kgt), where the sampling distances T and Ft satisfied the relation gtT = 27r. 

The coefficients in Gabor's signal expansion can be determined by using an 
analysis window w(t). In the case of critical sampling, i.e., f~T = 27r, the analysis 
window w(t) follows uniquely from the given synthesis window g(t). However, such 
a unique analysis window appears to have some mathematically very unattractive 
properties. For this reason, the expansion should be formulated on a denser lattice, 
~ T  < 27r. This makes the analysis window no longer unique and thus allows for 
finding an analysis window that is optimal in some way. We can, for instance, 
look for the analysis window that  resembles best the synthesis window; a better 
resemblance can then be reached for a higher degree of oversampling. 

A better resemblance can also be reached if we adapt the structure of the 
lattice to the form of the window as represented in the time-frequency domain. For 
the Gaussian window, for instance, the time-frequency representation has circular 
contour lines, and circles are better packed on a hexagonal lattice than on a rectan- 
gular lattice. Gabor's signal expansion on such a hexagonal, non-orthogonal lattice 
then leads to a better resemblance between the window functions g(t) and w(t) than 
the expansion on a rectangular, orthogonal lattice does. 

6.3.2 Gabor's Signal Expansion on a Rectangular Lattice 
We start with the usual Gabor expansion [1-5] on a rectangular time-frequency 
lattice, in which case a signal ~(t) can be expressed as a linear combination 
of properly shifted and modulated versions gmk(t) = g ( t -  roT)exp(jkgtt) of a 
synthesis window g(t): 

o o  o o  

~(t) - E E amk gmk(t). (6.3.1) 
m - -  - -  c x )  k - ~  - -  ( x 3  

The time step T and the frequency step ~ satisfy the relationship ~ T  < 27r; note 
that  the factor 27r/~T represents the degree of oversampling, and that  in his original 

~ M a r t i n  J .  B a s t i a a n s  and A r n o  J.  v a n  L e e s t ,  Technische Universiteit Eindhoven, 
Faculteit Elektrotechniek, Postbus 513, 5600 MB Eindhoven, Netherlands (M.J.Bastiaans@tue.nl). 
Reviewers: Joel M. Morris and Shie Qian. 
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paper [1] Gabor considered the case of critical sampling, i.e. f tT = 27r. The 
expansion coefficients amk follow from sampling the windowed Fourier transform 
with analysis window w(t), f_o~ ~ ( t ) w * ( t -  r ) exp ( - jw t )d t ,  on the rectangular 
lattice (r  = mT, co = kft): 

amk - ~(t) w~k(t ) dr. (6.3.2) 
( x )  

This relationship is known as the Gabor transform. 
The synthesis window g(t) and the analysis window w(t) are related to each 

other in such a way that  their shifted and modulated versions constitute two sets 
of functions that  are biorthogonal: 

o o  (N2) 

~ gmk(t~)w~k(t2) -- 5(t~ -- t2). (6.3.3) 
m - -  - -  o o  k - -  - -  (:x:) 

If the biorthogonality condition (6.3.3) is satisfied, the Gabor transform (6.3.2) and 
Gabor's signal expansion (6.3.1) form a transform pair in the following sense: if 
we start  with an arbitrary signal ~(t) and determine its expansion coefficients a m k  

via the Gabor transform (6.3.2), the signal can be reconstructed via the Gabor 
expansion (6.3.1). 

The biorthogonality relation (6.3.3) leads immediately to the equivalent but 
simpler expression 

f t  ~ g ( t -  mT) w* t -  r o T + n - -  - Sn, (6.3.4) 
m - ~ w ( N D  

where 5n is the Kronecker delta. In the case of critical sampling, i.e., f t T =  27r, the 
biorthogonality relation (6.3.4) reduces to 

o o  

T ~ g ( t -  roT)w*( t -  [m + n]T) - 5n (6.3.5) 
m = - o o  

and the analysis window w(t) follows uniquely from a given synthesis window g(t), 
or vice versa. An elegant way to find the analysis window if the synthesis window 
is given, is presented in the next section. 

6.3.3 Fourier Transform and Zak Transform 
It is well known (see, for instance, [2-5]) that  in the case of critical sampling, 
ftT = 2:r, Gabor's signal expansion (6.3.1) and the Gabor transform (6.3.2) 
can be transformed into product form. We therefore need the Fourier transform 
8(t/T, a~/ft) of the two-dimensional array of Gabor coefficients amk, defined by 

o o  o o  

~(x, y) - ~ E amk exp[-j27r(my - kx)], (6.3.6) 
? T t - - -  ~ ( X )  k - -  ~ ( x )  
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and the Zak transforms ~(xT, 2~y/T; T), ~(xT, 2~y/T; T), and ~(xT, 2~y/T; T) of 
the signal ~(t) and the window functions g(t) and w(t), respectively, where the Zak 
transform f(t,w; T) of a function f(t) is defined as (see, for instance, [2,5]) 

o o  

](t, W; T) = E f (t + nT) exp(--jnTw). (6.3.7) 
n - - - - O 0  

Note that the Fourier transform ~(x, y) is periodic in x and y with period 1, and that 
the Zak transform f(t,  w; T) is periodic in w with period 2~/T and quasi-periodic in 
t with period T: f ( t  + roT, W + 2~k/~-; T) = f(t, W; T) exp(jmwT). 

Upon substituting from the Fourier transform (6.3.6) and the Zak transforms 
[cf. Eq. (6.3.7)] into Eqs. (6.3.1) and (6.3.2), it is not too difficult to show that 
Gabor's signal expansion (6.3.1) can be transformed into the product form 

xT, y-~ ; T - g(x, y) O xT, y-~ ; T , (6.3.8) 

while the Gabor transform (6.3.2) can be transformed into the product form 

g(x, y) - T ~ xT, y--~-; T xT, y-~; T . (6.3.9) 

In particular the product form (6.3.9) is useful for determining Gabor's expansion 
coefficients. Since a Zak transform is merely a Fourier transform [cf. Eq. (6.3.7)], 
the expansion coefficients can be determined by Fourier transformations and multi- 
plications; and if things are formulated for discrete-time signals, we can use the fast 
Fourier transform to formulate a fast algorithm for the Gabor transform [3, 4]. 

The relationship between the Zak transforms of the analysis window w(t) and the 
synthesis window g(t) then follows from substituting from Eq. (6.3.9) into Eq. (6.3.8) 
and reads 

T ~ xT, y--~-;T zT, y~ - ;T  = 1. (6.3.10) 

From the latter relationship we conclude that (the Zak transform of) the analysis 
window w(t) follows uniquely from (the Zak transform of) the given synthesis 
window g(t). In general, however, the unique analysis window w(t) has some very 
unattractive mathematical properties. We are therefore urged to consider Gabor's 
signal expansion on a denser lattice, in which case the analysis window is no longer 
unique. This enables us to choose an analysis window that is better suited to our 
purpose of determining Gabor's expansion coefficients. 

6.3.4 Rational Oversampling 
In the case of oversampling by a rational factor, 2r/FtT -- p/q > 1, with p and q 
relatively prime, positive integers, p > q _> 1, Gabor's expansion (6.3.1) and the 
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Gabor transform (6.3.2) can be transformed into the sum-of-products forms [3, 4], 
el. Eqs. (6.3.8) and (6.3.9), 

~as(x, y) - P g,~(x, y)a~(x, y) (s - O, 1, . . . ,  q - 1) 

q-1 

a~(x,y) _ pT Zw~r* (x,y) qos(x,y) ( r - O ,  1, . . . , p - I ) ,  
q s=o 

(6.3.11) 

(6.3.12) 

respectively, where we have introduced the shorthand notations 

a~(x, y) = a(x, y + r/p) 

~s(x, y) = ~((x + s)pT/q, 2Try~T; pT) 

g~r(x, y) = ~7((x + s)pT/q, 27r(y + r/p) /T;  T) 

w~(x,  y) = (v((x + s)pT/q, 27r(y + rip) /T;  T), 

with 0 < x < 1 and s - 0,1, . . . , q -  1 (and hence 0 < ( x + s ) / q  < 1), and 
0 < y < 1/p and r - 0, 1, . . . ,  p - 1 (and hence 0 < y + r/p < 1). The relationship 
between the Zak transforms of the analysis window w(t) and the synthesis window 
g(t) then follows from substi tut ing from EQ. (6.3.12) into EQ. (6.3.11) and reads 
[cf. Eq. (6.3.10)] 

T (x,y)Ws2 r 1 - - 8 2 '  - -  g ~  * ( x ,  y )  - 5~ ( 6 . 3  13) 
q r=0 

with sl,  s2 = 0, 1, . . . ,  q - 1. The latter relationship represents a set of q2 equations 
for pq unknowns, which set is underdetermined since p > q, and we conclude tha t  
the analysis window does not follow uniquely from the synthesis window. 

After combining the p functions ar(x,y) into a p-dimensional column vector 
a(x, y), the q functions qas(x, y) into a q-dimensional column vector r  y), and the 
q• functions gsr(x, y) and Wsr(X, y) into the q • matrices G(x, y) and 
W(x,  y), respectively, the sum of products forms can be expressed as matrix-vector 
and matr ix-matr ix  multiplications: 

1 
r  y) - -- G(x, y) a(x, y) (6.3.14) 

P 

a(x, y) = pT W* (x, y)r  y) (6.3.15) 
q 

T 
Iq = -- G(x, y) W* (x, y), (6.3.16) 

q 

where Iq denotes the q x q-dimensional identity matr ix  and where, as usual, the 
asterisk in connection with vectors and matrices denotes complex conjugation and 
transposition. 
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The latter relationship again represents q2 equations for pq unknowns, and the 
p • q matrix W* (x, y) cannot be found by a simple inversion of the q • p matrix 
G(x,y). An 'optimum' solution that is often used, is based on the generalized 
inverse and reads Wopt(X,y ) - (q/T) G*(x,y) [G(x,y) G*(x,y)] -1. This solution 
for W(x,  y) is optimum in the sense that (i) it yields the analysis window w(t) 
with the lowest L 2 norm, (ii) it yields the Gabor coefficients amk with the lowest 
L 2 norm, and (iii) it yields the analysis window that - in an L 2 sense, a g a i n -  best 
resembles the synthesis window. 

The 'optimum' solution gets better if the degree of oversampling p/q becomes 
higher. However, there is another way of finding a better solution, based on the 
structure of the lattice. If the lattice structure is adapted to the form of the window 
function as it is represented in the time-frequency domain, the 'optimum' solution 
will be better, even for a lower degree of oversampling. We will therefore consider 
the case of a non-orthogonal sampling geometry, but we will do that in such a way 
that  we can relate this non-orthogonal sampling to orthogonal sampling. In that  
case we will still be able to use product forms of Gabor's expansion and the Gabor 
transform, and benefit from all the techniques that have been developed for them. 

6.3.5 Non-Orthogonal Sampling 
The rectangular (or orthogonal) lattice that we considered in the previous sections, 
where sampling occurred on the lattice points (7 = roT, w = k~), can be obtained by 
integer combinations of two orthogonal vectors iT, 0] t and [0, ~]t, see Fig. 6.3.1(a), 
which vectors constitute the lattice generator matrix 

[0 o] 
We now consider a time-frequency lattice that is no longer orthogonal. Such a 
lattice is obtained by integer combinations of two linearly independent, but no 
longer orthogonal vectors, which we express in the forms [aT, c~] t and [bT, d~] t, 
with a, b, c and d integers, and which constitute the lattice generator matrix 

[0 01 [a 
Without  loss of generality, we may assume that the integers a and b have no common 
divisors, and that  the same holds for the integers c and d; possible common divisors 
can be absorbed in T and gt. Note that  we only consider lattices that  have samples 
on the time and frequency axes and that are therefore suitable for a discrete-time 
approach, as well. 

The area of a cell (a parallelogram) in the time-frequency plane, spanned by 
the two vectors [aT, c~] t and [bT, d~] t, is equal to the determinant of the lattice 
generator matrix, which determinant is equal to ~TD, with D = lad-  bc I. To be 
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F i g .  6 .3 .1"  (a) A rectangular  lattice with lattice vectors [T, 0] t and [0, ft] t, and thus R = 0 and D = 1" 
and (b) a hexagonal lattice with lattice vectors [T, ft] t and [0, 2~] t, and thus R = 1 and D = 2. 

usable as a proper Gabor sampling lattice, this area should satisfy the condition 
D < 27r/ftT. 

There are a lot of lattice generator matrices that  generate the same lattice. We 
will use the one that  is based on the Hermite normal form, unique for any lattice, 

where R and D are relatively prime integers and 0 <_ IRI < D. Sampling then 
occurs on the lattice points (r  - roT, w = [mR + nD]ft), and it is evident tha t  these 
points of the non-orthogonal lattice form a subset of the points (7- - rnT, w - kf~) 
of the orthogonal lattice. To be more specific: the non-orthogonal lattice is formed 
by those points of the rectangular (orthogonal) lattice for which k -  mR is an 
integer multiple of D. Note that  the original rectangular lattice arises for R - 0 
and D - 1, see Fig. 6.3.1(a), and that  a hexagonal lattice occurs for R - 1 and 
D -  2, see Fig. 6.3.1(b). 

6.3.6 Gabor's Signal Expansion on a Non-Orthogonal Lattice 
If we define the two-dimensional array %ink as 

o o  

/~rnk-- E ~k-rnR-nD, ( 6 . 3 . 1 7 )  
n ~ - -  (ND 

Gabor 's  signal expansion on a non-orthogonal lattice can be 
[cf. Eq. (6.3.1)] 

expressed as 

o o  o o  o o  o o  

qD(t) -- Z E %rnk arnk gmk(t) -- E E a~k gmk(t)' (6.3.18) 
m = - - o o  k - - - - o o  m - - - o o  k - - - c x 3  

while - with a different analysis window w(t), t h o u g h ! -  the expansion coefficients 
amk are still determined by the Gabor transform (6.3.2). Of course, since we only 
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I - -  ) ~ m k  amk - which is, in fact, a properly sampled version need the limited array a m k  

of the full array a m k  - we need only calculate the coefficients a m k  for those values 
of m and k for which k -  mR is an integer multiple of D. We note that  the Fourier 

, ' is related to the Fourier transform 5(x, y) transform 5' (x y) of the limited array amk 
of the full array a m k  via the periodization relation 

and thus 

D - 1  

d ' ( x , y ) - ~  E 5  x - 5 ,  y -  (6.3.19) 
n - - 0  

D - 1  

a~ , ~ a~ ~ - ~ , y - - f f  . 
n - - 0  

In the non-orthogonal case, the biorthogonality condition takes the form 
[cf. Eq. (6.3.3)] 

CO CO 

E E )~mkgmk(tl)Wmk(t2)=5(tl--t2) (6.3.21) 
m - - - - C O  k - - C O  

and leads to the equivalent but simpler expression [cf. Eq. (6.3.4)] 

27r Co ( [ 27r ) ( .  nR) 
Df~ E g(t - mT) w* t -  mT + n-D-- ~ exp 327rm-~- = 5n. (6.3.22) 

m = - C O  

Note that  for R = 0 and D = 1, for which we have a rectangular lattice [see 
Fig. 6.3.1(a)], Eq. (6.3.22) reduces to Eq. (6.3.4), and that  for R = 1 and D = 2, 
for which we have a hexagonal lattice [see Fig. 6.3.1(b)], Eq. (6.3.22) takes the form 

CO ( [ H ~ g ( t -  ~ T ) ~ *  t -  ~ T  + ~ ( -1)  m" = ~ .  (6.a.2a) 
m - -  - -CO 

The biorthogonality condition expressed in terms of the Zak transforms of the 
window functions now takes the form, cf. Eq. (6.3.13), 

T n nR 
Dq gs~ , r  * z -  , - 5 n ~ -  , (6.3.24) 

with sl, s2 = 0, 1, . . . ,  q - 1  and n = 0, 1, . . . ,  D-l,  and allows an easy determination 
of the analysis window w(t) for a given synthesis window g(t). For R = 0 and D = 1, 
for instance, relation (6.3.24) reduces to Eq. (6.a.~a), while for R = 1, D = 2, q = 1, 
and p an even i n t e g e r -  which corresponds to the integer (p/2-times) oversampled 
hexagonal c a s e -  it reduces to 

T go,r(x, y)w* (x, y)(-1) nr = 5n (n = 0 1; p even), (6.3.25) -~ 0,~-~p/2 , 
r - - 0  
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from which the Zak transform ~v(t,w; T) and hence the window function w(t) can 
easily be determined. 

Since we have related Gabor's signal expansion on a non-orthogonal lattice to 
sampling on a denser but orthogonal lattice, followed by restriction to a sub-lattice 
that corresponds to the non-orthogonal lattice, we can still use all the techniques 
that are developed for rectangular lattices, in particular the technique of deter- 
mining Gabor's expansion coefficients via the Zak transform, el. Eq. (6.3.12). 

6.3.7 Summary and Conclusions 
Gabor's signal expansion and the Gabor transform on a rectangular lattice have been 
introduced, along with the Fourier transform of the array of expansion coefficients 
and the Zak transforms of the signal and the window functions. Based on these 
Fourier and Zak transforms, the sum-of-products forms for the Gabor expansion 
and the Gabor transform, which hold in the rationally oversampled case, have been 
derived. 

We have then studied Gabor's signal expansion and the Gabor transform based 
on a non-orthogonal sampling geometry. We have done this by considering the 
non-orthogonal lattice as a sub-lattice of an orthogonal lattice. This procedure 
allows us to use all the formulas that  hold for the orthogonal sampling geometry. In 
particular we can use the sum-of-products forms that  hold in the case of a rationally 
oversampled rectangular lattice. 

We finally note that if everything remains to be based on a rectangular sampling 
geometry (as in Article 4.9), it will be easier to extend the theory of the Gabor 
scheme to higher-dimensional signals; see, for instance, [6], where the multi- 
dimensional case is treated for continuous-time as well as discrete-time signals. 
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6 . 4  SPECTROGRAM DECOMPOSITIONS OF 
TIME-FREQUENCY DISTRIBUTIONS 0 

Cohen's class of bilinear time-frequency distributions (or the quadratic class; see 
p. 68n) has attracted much attention over the past decade or so. While such TFDs 
have yielded a proliferation of methods and are becoming increasingly popular in 
applications, their progress has been slowed, at least in part, by the computational 
burdens which are generally much greater than for spectrograms or wavelet-based 
methods. This article demonstrates methods for greatly reducing the computational 
burden, by decomposing the TFDs into linear weighted sums of spectrograms. The 
computational efficiency comes from economizing the number of STFTs that  must 
be computed to form these spectrograms. Surprisingly, one can reduce the number of 
STFTs to a small number by using Haar windows for the STFT computation [1-3]. 
Finally, for certain kernels, special windows may be designed which can represent a 
TFD very well by using only three or four windows [3, 4]. 

It should be noted that several attempts have been made to decompose time- 
frequency distributions themselves, in order to isolate specific TFD components or 
to synthesize TFDs using several components. While this is an interesting and 
valuable topic, it is beyond the scope of this article, which deals specifically with 
decomposition of the kernel of the TFD. 

6.4.1 Decomposition Based Approaches 
Cunningham and Williams have shown that a TFD of Cohen's class can be ex- 
pressed as a weighted sum of spectrograms, where the spectrogram windows are an 
orthonormal set [5, 6], and have given a rigorous base for further work. They were 
motivated by some ideas from White [7] and from Amin [8], who has continued his 
work in this area. The windows result from an eigensystem decomposition of the ker- 
nel. This approach has been used to approximate various TFDs [6]. A twist on this 
concept is to use windows which are shifted and scaled versions of each other [1-3]. 
In these studies, windows from the Haar basis set were used. It can be shown that  
any TFD can be represented by n+ l  Haar windows, where n = log2(N-1 ), and N is 
the number of sample points. Thus, a 257-point kernel can be represented by 9 Haar 
functions, one at each scale. It is important to note that the cross-spectrograms, 
i.e. spectrograms formed by STFTs using different windows, are used as well as the 
auto-spectrograms to form a basis for the TFD. 

The Reduced Interference Distribution [9-11] or RID is a well-defined set of 
Cohen's-class TFDs [12] that can be constructed using a simple set of constraints, 
while retaining a number of very desirable mathematical properties. Faster compu- 
tation of this class of TFDs was a particular motivation for the development of the 
spectrogram decomposition methods discussed in this article. 

~ Wi l l i am J. Wi l l i ams  and Selin Aviyente ,  Department of Electrical Engineering 
and Computer Science, University of Michigan, Ann Arbor MI 48109, USA (wjw@eecs.umich.edu, 
saviyent@eecs.umich.edu). Reviewers: B. Boashash and P. Flandrin. 
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6.4.2 Decomposition of Time-Frequency Kernels 
For a given time-frequency kernel, the first step in the spectrogram decomposition 
algorithm is to decompose the kernel in terms of spectrogram windows. The ap- 
proach suggested by Cunningham and Williams used an eigensystem type approach 
to decompose the 2-D kernel expressed in time-lag (n, rn) as the outer product of 
a set of orthonormal basis functions. These basis functions become the windows of 
the spectrogram decomposition and the eigenvalues are the weightings of the spec- 
trogram summations. Let C(n, k) be a TFD with a real, bounded kernel of interest; 
then it can be expressed as 

M 

C(n, k) - ~ ~ ISTFT~(n, k)l 2 . (6.4.1) 
i=1  

Denote the spectrogram windows as wi(n), and the signal as x(n); then the STFTs 
can be represented as 

N - 1  

STFTi(n,  k) - E x(m - n)wi(rn) e -j2'~mk/N. (6.4.2) 
rn--0 

This is the Cunningham-Williams decomposition in a nutshell. The problem is 
that while the eigendecomposition gives an orthonormal set of windows, there is no 
orderly relationship between the windows as is the case for a Principal Component 
Analysis (PCA) or Karhunen-Lot?ve Transform (KLT) for a set of signals. This is 
the "best basis" for the kernel in the same sense as is the KLT for representation 
of a set of signals. There is no redundancy or relationship between windows that 
allows more efficient computation. The principal eigenvector does the best job of 
representing the kernel in terms of an outer product with itself, the next eigenvector 
does the next best job when its contribution is compared to the remaining others, 
and so on. 

Generally, the kernel can be adequately represented using a small number of the 
potential windows. However, a spectrogram must be computed for each window. 
In the present article we suggest methods which use specially designed windows, 
potentially increasing the speed and efficiency of representation. 

6.4.3 Development of the Method 
Time- and frequency-shift-covariant bilinear discrete TFRs are specified by a dis- 
crete kernel, and can be rewritten in the inner product form of 

TFRx(n,  w; r 

= E E x(n+nl)e-3w(n+nl)r nl+n22 
nl n2 

, n l - - n 2 )  [x(n-Jr-n2)e,-2w(n+n2)] * 

(6.4.3) 
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where S-n  and M_~ are, respectively, the time and frequency shift operators o n  ~2, 

the space of finite-energy discrete-time signals, and r is a bounded linear operator 
on ~2 [5,6]. 

The spectral representation of ~ may be used to express the TFR as a weighted 
sum of spectrograms or "projectograms". If the kernel is associated with a bounded, 
self-adjoint linear operator, then the kernel may be decomposed by an eigendecom- 
position such that one can represent the TFR as being composed of a finite series of 
spectrograms. The orthonormal windows forming the spectrograms are the eigen- 
functions of the decomposition. The eigenvalues of the decomposition provide the 
weights for summing the set of spectrograms. The viewpoint may be taken that 
the projections of the signal on the eigenvectors of the kernel decomposition are 
then time and frequency shifted by the time and frequency shift operators, yielding, 
essentially, the STFT. The magnitude squared STFT is the "projectogram" or spec- 
trogram associated with that particular window. A total of N windows are required 
to completely represent an N • N kernel. 

The spectrogram decomposition can more generally be expressed as 

TFRx(n, w; r (6.4.4) 
N N 

nl nl I--1 k--1 

Here, Wk and wl are the windows and Ak,z is the coefficient for each k, 1. Then, 
~-'~,~ wk(nl)z(n + nl)e -3~(n+n~) is recognized as STFTk(n,w) and the kernel is 

realized by the outer product ~--~/v=l g ~'~k=l )~k,lWk(nl )wl(n2).  
By realizing that the spectrogram (cross and auto) is 

SPk,l (n, w) - STFTk(n, w) STFT~ (n, w) (6.4.5) 

one may write Eq. (6.4.4) as 

N N 

TFa=(n,  w; r = E E ~k,lSPk,l(n, W). (6.4.6) 
/=1 k = l  

6.4.4 Wigner Example 

The kernel matrix for an 8 x 8 discrete Wigner matrix is 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 

(6.4.7) 
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Using the Haar basis vectors 

1 

1 1 1 1 1 1 1 1 
1 1 1 1 - 1  - 1  - 1  --1 

o o o o 

o o o o 
2 - 2  0 0 0 0 0 0 
0 0 2 - 2  0 0 0 0 
0 0 0 0 2 - 2  0 0 
0 0 0 0 0 0 2 - 2  

(6.4.8) 

one may obtain the projection of the kernel matrix on the outerproduct formed by all 
possible pairs of Haar basis vectors. The projection value is obtained by multiplying 
the kernel and the outerproduct matrices element by element and summing over 
all elements of the result. This provides the weighting A(k,l) for combining the 
spectrograms of Eq. (6.4.4). The array of weights is 

1 0 0 0 0 0 0 0 - 
0 - 1  0 0 0 0 0 0 
0 0 0 - 1  0 0 0 0 
0 0 - 1  0 0 0 0 0 
0 0 0 0 0 0 0 - 1  
0 0 0 0 0 0 - 1  0 
0 0 0 0 0 - 1  0 0 
0 0 0 0 - 1  0 0 0 _ 

(6.4.9) 

Generally, good T F R  representation is possible using only a fraction of the win- 
dows required for full representation. The spectrogram itself, of course, requires 
only one term, since it has only one window in its decomposition. In general, N 2 
cross-spectrograms are required, but for many kernels only a few weights are non- 
zero and other weights are small enough to set to zero. However, even better results 
may obtained by using a special set of orthogonal windows, one may represent the 
T F R  using many fewer cross-spectrograms. 

6.4.5 Optimum Orthogonal Windows 
The kernel for the binomial TFD [11] is shown here for illustration for N = 9: 

B ~ .  

0 0 0 0 ~ 0 0 
1 4 0 0 0 0 0 ~ 1~ 
1 3 0 0 0 0 ~ 
1 1 0 0 0 0 ~ 

! ! ! ! 1 ! 16 8 4 2 2 

0 4 3 t t 0 
16 8 2 2 

0 0 ~ a t 0 
16 8 4 

0 0 0 4__ ! 0 
16 8 

0 0 0 0 1 0 

0 0 

0 0 

6__ 0 0 
16 

3 4 0 
8 16 
1 1 1 
4 8 16 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

(6.4.10) 



264 Chapter 6: Implementation and Realization of TFDs 

The method used by Cunningham and Williams would require the decomposition 

Vs  - B V  (6.4.11) 

where ~ is a diagonal matrix of eigenvalues. The corresponding rows and columns of 
V form outer products which, weighted by the appropriate eigenvalues and summed, 
form the kernel 

B = V,~V'. (6.4.12) 

One would wish the eigenvalues to decline quickly, indicating that  a truncated 
outerproduct reconstruction could suffice. Generally, it has been found that  about 
17 outerproducts are sufficient to well represent a 256 x 256 kernel matrix [5]. 

More efficiency can be gained taking advantages of symmetry. The upper right 
and lower left portions of B exhibit symmetry, so all of the kernel information is 
carried by the submatrix 

C __ 

1_. 
8 
1 
4 
1 
2 

1 

0 0 0 0 

• 0 0 0 
16 

a 6- 0 0 
8 16 

! 3 ! 0 
2 8 16 
1 1 1 1 
2 " 4 8 16 - 

(6.4.13) 

Much greater efficiency can be gained by rotating matrix C to form 

D 

0 
1 
2 
1 
4 
1 
8 

1 

1 1 1 1 
2 4 8 16 

! 3 4_ 0 
2 8 16 

3 6-- 0 0 
8 16 

! 0 0 0 
16 

0 0 0 0 

(6.4.14) 

where the 1 in the center of the kernel matrix has been replaced by zero and a sin- 
gle companion matrix with the missing 1 (and zero elements otherwise) is created. 
These matrices can be augmented with additional zeros in their rows and columns 
to a size equal to the original kernel. Then, a third matrix can be formed from C 
by flipping C along the anti-diagonal. These three zero augmented matrices can be 
summed to form the original kernel. The eigenvectors of D can now be used as win- 
dows once the matrix is rotated back to its original position. However, the windows 
resulting from the eigenvectors now come in pairs such that  the proper outerprod- 
ucts are formed using a window and its time-reversed pair. Due to symmetry, only 
the upper right quadrant of B as represented by C, plus the impulse window which 
provides the 1 in the center, is required to compute the STFTs. Details about the 
construction of TFDS from the STFTs are given elsewhere [1-4]. 
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Fig. 6.4.1. Comparison of results for dolphin clicks: (a) True Binomial TFD, (b) Time series, and 
(c) Approximated Binomial TFD using a 4-spectrogram approximation. 
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6.4.6 Kernel Decomposition Results 
Computation of TFDs by this method is efficient and fast. An example (Fig. 6.4.1) 
is provided for a 129 x 129 binomial kernel matrix. Only four distinct windows 
plus the impulse window are required to provide a very good representation of a 
complex signal. The kernel reconstructed from the truncated outer product series 
has only about 7% residual error. The signal consists of a dolphin click followed by a 
time-shifted and scaled version of the click (2:1 compressed in time and normalized 
for energy) followed by a time-shifted and frequency-shifted version of the click. 
This signal has been used elsewhere to illustrate the time-shift, scale and frequency 
shift covariance of RIDs. Nine STFTs must be computed for this approximation. 
One additional trivial computation is required for the impulse window. Clearly, 
the true and approximated TFD results are very similar. If one looks closely it 
appears that the cross-term activity is decreased in the approximate result. This is 
consistent with previous observations that noise and cross-term activity are abated 
in the approximations. One could compute each of the STFTs required in parallel. 
The formation of the cross-spectrograms from the STFTs and the summation of 
those results would require additional hardware or software, but these operations 
involve only multiplication of STFT points, multiplication of the resulting cross- 
spectrograms by the required eigenvalue coefficients and finally, summation of the 
results. In addition, a number of signal processing "tricks" may be employed to 
speed up the computations due to symmetry, the realness of the TFD result, etc. 

Some TFDs that fall into the RID class may be approximated with a smaller 
number of windows. The Born-Jordan TFD requires only three distinct windows 
for a very nice representation. In fact, one may compute a legitimate RID using 
an impulse and one other distinct window [4]. However, this minimum window 
TFD may not have desirable representation properties in some cases. The windows 
derived by these methods have an interesting self-scaling property which accounts 
for the scale covariance being retained [13]. 

6.4.7 Summary and Conclusions 
The liability of bilinear TFDs from Cohen's class in terms of computational burden 
can be overcome to a considerable degree by employing various means of spectro- 
gram decomposition. In addition to fast computation, noise and cross-terms may 
be decreased in the approximated form. It is clear that such TFDs can now be 
computed very rapidly using parallel computation or dedicated hardware, bringing 
their use into a wider range of practical applications. 

The next article considers the computation of quadratic TFDs discretized by 
the method of Article 6.1. 
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6.5 COMPUTATION OF DISCRETE QUADRATIC TFDs ~ 

6.5.1 General Computational Procedure 
Article 6.1 deals with definitions and properties of the discrete WVD (DWVD) and 
other discrete quadratic TFDs. It shows that the general discrete quadratic TFD 
of an analytic signal z[n] is 

pz[n, k] - 2 E E G[p, m] z[n-p+m] z*[n-p-m] e -j2~km/M (6.5.1) 
P Iml< M IPI< 

= 2 D F_T {Gin, m] �9 (z[n+m] z*[n-m]) } ; m e (M) (6.5.2) 

where the support dimensions of the kernel do not exceed M samples in the lag (m) 
direction and P samples in the time (n) direction, and (M) means any set of M 
consecutive integers; cf. [1, p. 444]. So the general procedure for evaluating such a 
TFD is: 

1. Formation of the instantaneous autocorrelation function (IAF) 

2. Discrete convolution in n (time) with the smoothing function G[n, m]; 

3. Discrete Fourier transformation mapping m (lag) to k (frequency). 

For the DWVD, which has G[n, m ] -  5In], step 2 reduces to an identity transfor- 
mation and may be omitted. The windowed DWVD has G[n, m ] -  5[n] g[m], so 
that step 2 reduces to multiplication of the IAF by g[m]. Some other quadratic 
TFDs, however, have special forms leading to computational procedures which are 
not degenerate cases of the above, and which may be simpler or faster. 

This article addresses some of the practical issues in computing quadratic TFDs 
of a real signal, examines various cases of the above procedure, and considers the 
spectrogram as one example of a special form leading to a simpler, faster algorithm. 

6.5.2 Computation of the Analytic Signal 
The usual definitions of quadratic TFDs, especially the WVD and the windowed 
WVD, assume an analytic signal in order to avoid interference terms between pos- 
itive and negative frequencies. For computational purposes, an analytic signal also 
avoids the need for 2• oversampling prior to computation of the IAF (see Sec- 
tion 6.1.1 and ref. [2]). So, given a real signal s(t), we must first compute the 
analytic signal z(t) associated with s(t). The simplest method is the direct ap- 
proach of filtering out the negative frequencies in the frequency domain. If a real 
signal s[n] is given for n - 0, 1, 2 , . . . ,  N -  1 and periodically extended with period 
N, where N is even (or is made even by zero-padding), the algorithm is: 

~ B o u a l e m  B o a s h a s h  and Gav in  R. P u t l a n d ,  Signal Processing Research 
Centre, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia 
(b.boashash@qut.edu.au, g.putland@qut.edu.au). Reviewers: S. L. Marple, A. Reilly and V. Sucic. 
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1. Compute S[k] = DFT{s[n]} for k = 0 , 1 , . . . , N - I ;  

2. Compute N S[k] for k - 0, T 
z[k]- 2s[k] k-1,2 ,  

" ~  2 

0 otherwise; 
- - - 1  (6.5.3) 

3. Compute z[n] = IDFT{Z[k]},  where IDFT{ . . . }  denotes the inverse DFT. 

The treatment of the Nyquist term (k=  N/2) and the precise meaning of "analytic" 
for a discrete-time periodic signal are explained in [3]; these issues become significant 
if the signal has non-zero amplitude at the Nyquist frequency. Further details on 
implementation of TFDs, including computation of the analytic signal, are given 
in [4]. A time-domain algorithm for computing the analytic signal using FIR filters 
is described in [5]. 

6.5.3 Real-Time Computation of TFDs 
The formula for the discrete quadratic TFD [Eq. (6.5.2)] involves the expression 
z[n+m] where m is allowed to be positive, together with z*[n-m] where m is 
allowed to be negative. The same applies to the DWVD 

k] - 2 DEW ; (N) (6.5.4) 

and the windowed DWVD 

Wgz[n,k] = 2 DVT{g[m] z[n+m] z*[n-m]} ; mc(M> (6.5.5) 

(both of these expressions are derived in Article 6.1). Both cases involve t ime-  
advanced  signals; for any value of n, the computation of the TFD involves signal 
values up to z[n+A], where A is some positive integer. In real-time computation, we 
cannot compute the TFD for time n until we know the signal values up to z[n+A]; 
thus A is the minimum l a t e n c y  of the computation. In the case of the DWVD 
[EQ. (6.5.4)], the range of m for which the IAF can be non-zero is maximized when 
n is at the center of the time-support of the signal; so the latency reaches a peak of 
half the signal duration. For the windowed DWVD, the latency is limited to half the 
window duration. For the general discrete quadratic TFD, the latency is limited to 
half the sum of the dimensions of the G matrix. The latency of the analytic signal 
computation must be added to that  of the TFD computation. In all cases a smaller 
value of M not only reduces latency but also produces shorter FFTs,  hence shorter 
computational delays; but the cost is reduced frequency resolution. 

Latency is one of two measures of merit for real-time computation of TFDs. 
The other measure is throughput,  which depends on the efficiency of the numerical 
algorithms. Eq. (6.5.2) can be written 

pz[n, k] = 2 DFT {Rz[n, m]} (6.5.6) 
�9 m----* k 
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where Rz[n, ml = a[n, m], (z[n+m] z*[n-m]). Similarly, 

pz[n+ 1, k] = 2 DFT {Rz[n+ 1, m]}. (6.5.7) 
r r~ - -*  k 

The above two equations represent successive time-slices of the TFD. Multiplying 
the second equation by j,  adding the result to the first equation and using the 
linearity of the DFT, we obtain 

pz[n, k] + jpz[n+ 1, k] - 2 DF_T {Rz[n, m] + jRz[n+ 1, m]}. (6.5.8) 

If the TFD is known a priori to be real, as it usually is, then Eq. (6.5.8) means that  
the successive time slices of the TFD are respectively the real and imaginary parts 
of the right-hand side, which involves only one FFT [6]. Thus the realness property 
can enhance efficiency by halving the required number of FFTs. It can also halve 
the storage requirement as it implies Hermitian symmetry in the smoothed IAF. 

6.5.4 Computational Approximations for Discrete-Time Kernels 
Table 6.5.1 reproduces the "G[n, m]" column of Table 6.1.2 (p. 240) and adds two 
special cases often found in the literature: B J1/2 denotes the Born-Jordan distribu- 
tion with a = 1/2,  while ZAM2 denotes the Zhao-Atlas-Marks distribution with 
a = 2. Some entries in the "Gin, m]" column of Table 6.5.1 call for continuous con- 
volution prior to sampling. At best, the evaluation of such a convolution in the 
time-lag domain requires oversampling. At worst, it requires the numerical evalu- 
ation of an improper integral arising from a singularity in G(t, T). In either case, 
computational inefficiencies will arise unless the smoothing effect of the convolution 
can be approximated in some other way. The chosen approximations, shown in the 
right-hand column of Table 6.5.1, are explained below. 

In the case of the B-distribution, the sole purpose of the convolution is to avoid 
aliasing. Without  the convolution, and for typical values of the parameter fl (e.g. 

= 0.01), the time-lag kernel would be a continuous function with a narrow slot 
at m = 0 caused by the factor {2m[ ~. This factor is approximately unity for small 
nonzero values of m. The convolution fills in the slot, so that  the factor is approx- 
imately unity at m = 0 also. This effect can be approximated by replacing 12ml 
with [4m2+ 1] 1/2 , as is done in Table 6.5.1. 

In the case of ZAM distribution, for a suitable (unbounded) wire], the con- 
volution also ensures that  G[n, 0] = 5[n], which in turn verifies the TM property. 
Without  the convolution, we would have 

an { w[m] if lanl <_ 12ml 
GZAM[n, m] -- w[m] rect(~-~) -- 0 otherwise. (6.5.9) 

This gives G[n, 0] = w[0]5[n], which verifies the TM property provided that  
w[0] = 1. Accordingly, Eq. (6.5.9) is used in Table 6.5.1, although other approx- 
imations are possible. For example, we could sacrifice the TM property in favor of 
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Tab le  6.5.1: Computational approximations for time-lag kernels of selected discrete quadratic TFDs. 
In the "Distribution" column, subscripts indicate parameter values while the prefix "w-" means "win- 
dowed" by the function w[m]. For the spectrogram and w-Levin distributions, the window to is as- 
sumed to be real and even. The "O[n, m]" column shows the exact kernels required for the avoidance 
of aliasing in the Doppler-frequency domain. If G[n, m] cannot be computed as written, the "Approx." 
column shows the suggested computational approximation. 

Distribution 

WVD 

Levin 

BJ 

BJ1/~ 

Modified B 

w-WVD 

w-Levin 

ZAM 

ZAM2 

Rihaczek 

w-Rihaczek 

Page 

CW 

spectrogram 

1 (~[n-~- m ]  _~_1 (~ [Tt-- m ]  

[ 1 rect( ~ )] 

** [ sinc n sinc m] 

1 n rect(~mm)] 
** [ sinc n sinc m] 

cosh-  2~ n 
n cosh-  2~ n 

~[~]~[.~] 

~[n m] -~w[m] (5[n+m] + - ) 

[w[m] rec t (~n  )] 

�9 �9 [ sinc n sinc m] 

[w[m] rect (2--~) ] 
�9 �9 [ sinc n sinc m] 

~[~ - m] 

a[~- I'~1] 

12ml exp[, am2 ) 
�9 , [ sinc n sinc m] 

cosh2n �9 s inem 

~[~+~] ~[~-~] 

Approx. 

1 if 12n[ < 14aml + 1 [4~m[+l  
0 otherwise. 

1 if Inl < Iml ,~ 12ml+l 
0 otherwise. 

~ w[m] if lanl <_ [2m[ 
~ 0 otherwise. 

w[m] if Inl _~ Iml 
0 o t h e r w i s e .  

51n] if m = 0 

7ra ( - T r 2 a n 2 )  o t h e r w i s e "  
[,V4m2_bzr a e x p  4m2q_Tra 

cosh 2 n 

some s m o o t h i n g  by using the  a p p r o x i m a t i o n  

1 [1 tanh(14rn I [2an[) ] (6.5.10) 

and  we could  salvage the  T M  p r o p e r t y  by using a s e p a r a t e  def ini t ion for rn - 0 .  
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For the Born-Jordan (B J) and Choi-Williams (CW) distributions, the convolu- 
tions are needed to remove singularities at m -  0 and ensure that  G[n, 0 ] -  5[n]. 
For the BJ distribution, we can remove the singularity and approximate the spread- 
ing in the [n, m] plane by replacing 14~rnl with 14~rnl + 1. The result is 

1 rect  (14arnl+l) (6.5.11) GBJ [n, m] ..~ ]4c~rn[+l n , 

which is equivalent to the rule given in Table 6.5.1. For the CW distribution, a 
similar effect is obtained by replacing 12ml with [4m2+Tra] 1/2 . This step, by itself, 
gives the kernel 

4 r r t 2 + T r a )  (6.5.12) 

For n - r n - 0 ,  this reduces to G [ 0 , 0 ] -  1, which is consistent with the re- 
quirement that  Gin, 0] - 5In]. However, for m - 0, Eq. (6.5.12) reduces to 

G[n, 0 ] -  e -~n2 , which is only an approximation to 5[n]. Accordingly, a two-part 
definition of the kernel is used in the "Approx." column of the table. With n = 0, 
the kernel as defined in the table reduces to 

Gcw[0, rn] -- , / ~ rn~ ,  (6.5.13) u - - -  

which takes the value 1 at m = 0 and 1/v/2 at m = :t: V/Tra/4. For realistic values 
of a (e.g. a > 1), this gives a reasonable degree of smoothing in the m direction. 

An alternative approach to the problem of singularities, which is not pursued 
here, is to evaluate the kernels in the Doppler-lag [l, m] domain. This is efficient if 
we intend to evaluate the time-convolution by the F F T  method, which also uses the 
[l, m] domain. But it is still an approximation (if the time-lag form of the kernel 
is taken as the definition) because the analytical formulae for continuous FTs of 
standard signals are only approximations when applied to the DFT. 

6.5.5 Special Case: Direct Form of the Discrete Spectrogram 
The short-time Fourier transform (STFT) of the continuous-time signal x(t) with 
real window w(t) is defined (in Section 2.3.1) as 

F~ (t, f ) ~- .-~ f~ {X(T) W(T -- t)} -- e-J2~ft ~f {x(7 + t) W(T) } 

= e -j2~:t x(~" + t)w(~')e -j2~:'d7. 
o o  

(6.5.14) 

(6.5.15) 

It is shown in Chapter 2 that  the spectrogram Sz w (t, f) ,  which is simply the squared 
magnitude of the STFT,  can also be considered as a quadratic TFD with kernel 
w(t+ 2) w( t -  ~). The discrete form of this kernel is w[n+rn] w[n- m]. Hence the 
discrete spectrogram can be conveniently evaluated using the general procedure 
described in Section 6.5.1 above. But it is simpler and more efficient to discretize 
the continuous spectrogram directly. 
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T h e o r e m  6.5.1" If the spectrogram S~ is modified by ideally sampling W(T) at 

T - m / f s  (6.5.16) 

where m is an integer and fs is the sampling rate, and if 

w ( T ) -  0 for iv ] -~f~> M (6.5.17) 

A 

where M is a positive integer, and if the modified TFD is denoted by S~, then 

2 
Aw n [ m+n m e-j27rkm/M Sx (~'  ~M-) -- E x~ fs ) w(y~) . (6.5.18) 

Iml<M/2 

P r o o f / e x p l a n a t i o n :  When W(T) is sampled, the integrand in Eq. (6.5.15) becomes 

( x )  

X(T + t)W(T)e -j2~l" E 5 (T-  ~ )  (6.5.19) 
TYt'----00 

so that  the STFT  becomes 

Fw(t , f ) - -  e-J2"It E X(~ss +t) w(~)e-J2~rfm/f~ (6.5.20) 
m ' - - - - 0 0  

By Eqs. (6.5.16) and (6.5.17), the summat ion  is restricted to [m[ < M/2, giving a maximum of M 

terms. 1 The sampling in ~- makes Fw(t ,  f )  periodic in f with period f s ,  while the t ime-limiting 
in ~" gives a frequency resolution of M bins per period. So it is convenient to let 

f -  k fs/M (6.5.21) 

where k is an integer. Wi th  these restrictions, Eq. (6.5.20) becomes 

~" kfs e-J27rkfst/M m t) m e--j27rkm/M. F~'(t,--M-) = E x ( T  + W(Ts) (6.5.22) 
I m l < M / 2  

Put t ing  t -- n/fs to match the quantizat ion of T, then taking the squared magni tude of the discrete 
STFT,  we obtain Eq. (6.5.18). �9 

With a change of notation, Eq. (6.5.18) becomes 

S:[n, k] - (6.5.23) 
I Iml<M/2 

This S~[n, k] is the d i sc re te  s p e c t r o g r a m  of the discrete-time signal x[n] with 
window w[m]. If the summand is extended periodically in m with period M (i.e. 
extended periodically in T with period M/fs), we obtain 

2 

S:  [n, k] - ~ x[m + n] w[m] e -j2~k'~/M (6.5.24) 

1 M t e r m s  for odd M" M - 1  terms for even M. 



274 Chapter 6: Implementation and Realization of TFDs 

where (M / denotes any set of M consecutive integers. 

S~[n,k] - I DF_ T {x[m+n] 

2 This may be written 

2 
w[m]} ; m e ( M } .  (6.5.25) 

The time support of S~ In, k] is that of x[n] �9 win], corresponding to x(t) �9 w(t). 
If this has a duration not exceeding N samples, then the non-zero elements of the 
discrete spectrogram may be represented by an N • M real matrix. Only half of 
the M columns are needed for the non-negative frequencies, which are sufficient if 
x(t) is real. 

Eq. (6.5.23) involves x[n + m] where Iml < M/2 and M is the window length 
in samples. So, in real-time computations, the latency of the discrete spectrogram 
computed by this formula is half the window length. 

6.5.6 Sample Code Fragments 
In view of the current popularity of M A T L A B  TM, we  illustrate this Article with 
some code fragments from the experimental MATLAB function t lkern.m, which 
computed all of the TFDs plotted in Article 5.7. The input parameters of the 
function specify the kernel in terms of a time-dependent factor gl In], a lag-dependent 
factor g2[m], and an "auxiliary factor" g3[n, m]. The overall time-lag kernel G[n, m] 
is then computed as 

Gin, m] - g2(m](gl[n] * g3(n, m]) = (g2[m] gl [n]) * g3[n, m]. (6.5.26) 

This scheme allows the computation of a wide variety of quadratic TFDs in un- 
der 320 lines of code, including exceptions for direct computation of the discrete 
spectrogram. 

6.5.6.1 Example 1: MBD (General Algorithm) 

For a separable kernel, the auxiliary factor would normally be omitted (i.e. taken 
as 5In, m]), while the time-dependent and lag-dependent factors would have input 
parameters specifying their types (e.g. Hamming or Hanning) and durations (in 
samples). Although the kernel of the modified B-distribution (MBD) is separable 
(see Article 5.7 and Table 6.5.1), its parameter ~ is not a duration. The MBD 
kernel is therefore specified using the factors 

cosh -2~ n (6.5.27) gl[n]- 5[n]; g2 [m] -  1;  g3[n,m] = E .  cosh_2~n. 

Notice that the auxiliary factor is the complete kernel. 
To compute the MBD in Fig. 5.7.2(e) on p. 220, the function t l k e r n  is called 

with the following significant parameters: 

2For even M, the periodic extension is padded with a zero term. 
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s = signal vector 
N = 128=  assumed period 

t r  = I = time resolution 
tf = 'delta' = string specifying 91 [n] 
i f  = '1' = string specifying g2[rn] 
af = 'mb' = string specifying form of g3[n, m] 
ap = 0.2 = auxiliary parameter  (~). 

All internal computations, including IAF generation, are designed to be valid for 
periodic signals. Therefore, to compute the IAF of a non-periodic signal such as the 
one in Fig. 5.7.2(e), the assumed period N must be at least twice the signal length 
to avoid wrap-around effects. Because the time support of the IAF is identical to 
that  of the signal, the same value of N is also sufficient to avoid wrap-around in the 
subsequent convolution with gl [n]. 

The output is the real matrix t f d  (1 : Mpad+ 1,1 : Nsel ) ,  whose dimensions Mpad+ 1 
and Nsel are assigned early by the statements 

Mpad = 2^ceil(log(2*M)/log(2)); Y. lag-to-frequency FFT length 

Ncut = min(N,length(s)); '/. duration of TF plot 

Nsel = ceil(Ncut/tr); Y. no. traces in TF plot 

where M is the support length of the kernel in the lag direction; in this case M has 
been set to l e n g t h ( s )  because of the constant "lag-dependent" factor. 

Preliminaries: The analytic signal is computed by the frequency-domain method. 
If N is even, the Nyquist term has MATLAB index N/2+l and the amplitude at that  
frequency is left unchanged [3]. If N is odd, there is no Nyquist term. The following 
code handles both cases: 

Noff = fix(N/2); 

z = fft (real (s) ,N) ; 
z(2:N-Noff) = 2*z(2:N-Noff); 

z(Noff+2:N) = O; 

z = ifft (z) ; 

s truncated or padded 
positive frequencies 

negative frequencies 

For this kernel, the time-dependent factor g l  and the lag-dependent factor g2 are 
computed by the statements 

gl(l:N) = O; 
�9 . . 

g1(1) = 1;  
. . . 

g 2 ( l : M p a d )  = 1 

where " . . . "  denotes one or more line(s) of control code, or code that  is skipped in 
this case. The auxiliary factor g3 (the whole kernel in this case) is computed by 

Moff= fix(M/2); 
�9 . . 

g3(1 N,1 Mpad) = O" 
�9 . . 



276 Chapter 6: Implementation and Realization of  TFDs 

temp(l:N) = O; 

for n = -Noff:Noff 

temp(l+rem(N+n,N)) = (cosh(n))'(-2*ap)" 

end 

temp = temp/sum(temp); ~ normalize 

for m = -Moll:Moll 

g3(:,l+rem(Mpad+m,Mpad)) = temp.'; 

end 

where ap denotes the auxiliary parameter (~), and the remainder (rein) function 
causes high array indices to represent negative values of time and lag. 

Step 1--Formation of the IAF" The IAF matrix K(I" N, 1 "Mpad) is formed by 

for n = I:N 

for m = -Moff:Moff 

K(n,m) = z(n+m)z'*(n-m), with corrected indices: 

K (n, l+rem (Mpad+m,Mpad)) = z(l+rem(2*N+n+m-I ,N) ) .conj (z(l+rem(2*N+n-m-i ,N) ) ) ; 

end 

end 

where the "corrected" indices allow handling of periodic signals. 

Step 2mConvolution in time" The assembly of the time-lag kernel and the con- 
volution in time with the IAF are performed together. The smoothed IAF is 

Rz[n, m] - Kz[n, m] �9 Gin, m] -- gz[n, m] �9 (g2[m I gl[n] * g3[n, m]). (6.5.28) 

The above convolutions may be taken as circular if the assumed period is sufficiently 
long, in which case 

Rz[n, m ] -  IDFT { DF_T {Kz[n, m]} DFT {g3[n, m]} DFT {gl[n] g2[m]}}. (6.5.29) 

This is implemented by the following code, in which K (" ,mcorr) is initially the mth 
column of the IAF, but is overwritten by the mth column of the smoothed IAF: 

for m = -Moll:Moll 

mcorr = l+rem(Mpad+m,Mpad) ; 

. . .  

K(:,mcorr) = ifft(fft(K(:,mcorr)).*fft(g3(:,mcorr)).,fft(gl.'.g2(mcorr))); 

. . .  

end 

(The factor g2[m] could be taken outside the IDFT, but this would not improve the 
efficiency of the code because g2(mcorr) is a scalar.) The FFT method of convo- 
lution is useful in experimental code because of its generality, but is not necessarily 
the most efficient method, especially if one of the convolved sequences is short. 

Now we apply the time-resolution (tr): 

for nsel = l:Nsel 

Y. nselth column of r is selected row of K: 

n = l+tr*(nsel-l) ; 

r(: ,nsel) = K(n,:).'; 

end 
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Step 3 - - D F T :  The final DFT (lag to frequency) is computed by 

r = fit (r) ; 

which, for the sake of generality, does not take advantage of realness. 

Final adjustments: The following code scales the TFD and repeats its first row 
(the zero-frequency row) so that  the TFD spans a full cycle in the frequency domain: 

t f d  = [ r e a l ( r )  ; r e a l ( r ( 1 ,  : ) ) ]  . , ( N c u t / N s e l / M p a d )  ; 

The scaling ensures that  the sum of the matrix elements is close to the signal energy 
regardless of the time resolution. 

6.5.6.2 Example 2: Spectrogram (Special Case) 
The spectrogram in Fig. 5.7.3(f) on p. 221 was computed by the same function tlk- 
ern. For the spectrogram, the parameters s, N and tr are the same as for the MBD, 
while t f is ignored. Other significant parameters are 

i f  - -  ' r e e L '  - -  string specifying type of window 
M -- 1 7 -  window length (in samples) 

af - ' sg '  - string calling for spectrogram. 

The output is t f d ( 1  :Mpad/2+l,  1 :Nsel) ,  where the dimensions are assigned as for 
the MBD, except that  the window duration M is read as an input parameter  and 
not  overwritten. 

The analytic signal is computed as for the MBD, although this is not strictly 
necessary for the spectrogram�9 

The rectangular window is computed by 

Moff = fix(M/2)" 

g2(l:Mpad) = 0; 
�9 . . 

for m = -Moll-Moll 

g2(l+rem(Mpad+m,Mpad)) = I; 

end 

The matrix K (i" N, 1 "Mpad) normally represents the IAF, but for the spectrogram 
it is assigned differently: 

for n = I:N 

for m = -Moll:Moll 

Y. K(n,m) = z(n+m)g2(m), with corrected indices: 

K (n, l+rem (Mpad+m, Mpad) ) = z (l+rem (2*N+n+m- I, N) ) *g2 (l+rem (Mpad+m, Mpad) ) ; 

end 

end 

The code that  applies the time resolution and performs the final DFT (lag to 
frequency) is the same as for the MBD. But the final adjustment is different: 

tfd = (abs(r(l:Mpad/2+l,:))).'2.,(Ncut/Nsel/Mpad/sum(g2.'2)); 
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The magnitude-squared operation alters the relationship between the window and 
the scaling of the TFD. Also note that the above step uses only half the columns of 
the Fourier-transformed r matrix, namely those corresponding to the non-negative 
frequencies. Efficiency could be further improved by exploiting the analytic signal 
to halve the sampling rate. 

6.5.7 The TFSA package 
The Time-Frequency Signal Analysis (TFSA) package is a set of functions developed 
over more than a decade at the Signal Processing Research Centre, Queensland Uni- 
versity of Technology, for computing modulated signals, quadratic and polynomial 
TFDs, ambiguity functions, wavelet transforms and scalograms, and various esti- 
mates of instantaneous frequency. As this is a production package rather than an 
experimental package, computationally intensive functions are precompiled and op- 
timized for efficiency, and an interactive user interface is added. The current version 
is distributed as a M:ATLAB toolbox, so that TFSA functions can be used with other 
computational and graphical functions of M:ATLAB. Further information is available 
at ht tp: / /www.sprc.qut .edu.au/or http://www.eese.bee.qut.edu.au/research/spr/.  

6.5.8 Summary and Conclusions 
High-level programming languages with built-in FFT functions and matrix opera- 
tions have made it possible to construct compact yet highly versatile functions for 
computing quadratic TFDs. Use of a common algorithm for all TFDs is convenient 
for the programmer. But, as illustrated by the direct form of the spectrogram, ef- 
ficiency can sometimes be improved by using different algorithms in special cases. 
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Chapter 7 

Measures, Performance Assessment 
and Enhancement 

This chapter describes a number of time-frequency methods specifically developed 
for performance enhancement for a given application. The adopted performance 
measures are defined using objective criteria. The topic is covered in five articles. 

Hyperbolic FM signals are well described by the Affine Wigner-Ville distribu- 
tion, a method related to time-scale analysis and the wavelet transform (Article 7.1). 
A general procedure for enhancing the time-frequency resolution and readability of 
TFDs is the reassignment principle (7.2). Techniques for measuring the concentra- 
tion of TFDs and for automatic optimization of their parameters may be based on 
entropy measures (7.3). Another approach defines a resolution performance mea- 
sure using local measurements in the (t, f)  domain, such as relative amplitudes of 
auto-terms and cross-terms (7.4). Finally, attempts to unify time-frequency, time- 
scale, filter banks, wavelets and the discrete-time Gabor transform using product 
functions and cascaded frames may assist in the selection of the best-performing 
method for a given application (7.5). 

Time Frequency Signal Analysis and Processing 
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7.1 T I M E - F R E Q U E N C Y  ANALYSIS BASED ON T H E  AFFINE 
GROUP. ~ 

7.1.1 Scale Transformations and their Constructive Role in the 
Time-Frequency Analysis of Real Signals 

The notion of time-frequency analysis is very familiar from the experience of hearing 
perception and its practical interest in signal theory seems a common sense topic. 
However, at this level of generality, there is no indication for giving an analytic 
content to the subject and, in fact, numerous techniques have been proposed (see 
Chapters 2 and 5). The introduction of the affine group allows to overcome this 
lack of universality by adding a consistency condition on which a common consent 
is possible. 

At first it is necessary to recognize that  signals describe the time evolution of a 
physical quantity (an acoustic pressure for example) and that  the measurement of 
this quantity can be done only after a system of reference and a system of physical 
units have been chosen. In fact, depending on these choices, different descriptions 
(i.e. different signals) can be associated with the same physical phenomenon. Ob- 
viously the communication theory has to deal with the situation by interpreting 
equivalently the various options. We will show that  the affne group is the right 
mathematical  tool for managing this equivalence. 

In signal theory there is only one reference variable which is the time. Hence 
the changes of reference system are naturally interpreted as clock changes involving 
changes of time origin and changes of time unit. The analytical description of any 
change is thus given by a transformation of the form: 

t ~ t '  = a t  + b, (7.1.1) 

where t and t' are the time variables and where a and b are real numbers with a > 0. 
The set of all such transformations constitutes the affine group. 

These transformations will also affect physical units (those which are derived 
from the time unit) by multiplying each of them by some power of the dilation a. 
As a result a change of clock of the form (7.1.1) will induce on a given signal s ( t )  a 

change of the form: 
s ( t )  ~ s ' ( t )  = a r s ( a - l ( t  - b)) ,  (7.1.2) 

where r is a real exponent depending on the physical nature of the signal under 
study. The exponent r will be called index of (dimensional) conformity. 

The above remarks are only useful preliminaries before tackling the time-fre- 
quency problem. Actually time-frequency analysis is an alternative description in 
which signals are not characterized by their instantaneous values but by their form 
which is described in terms of modulations of amplitude and frequency. In practice, 
this description is summarized by a real function P ( t ,  f )  which gives an image of 

~ J. Bertrand, LPTMC, University Paris VII, Case 7020, 75251 Paris Cedex 05, 
France (bertrand@ccr.jussieu.fr), and P. Bertrand (pibert@libertysurf.fr). 
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the spreading of the signal in the time-frequency half-plane (f  > 0). The basic 
problem of time-frequency analysis is to make this approach effective by setting up 
the correspondence between the physical signal s(t) and its time-frequency repre- 
sentation P(t,  f ) .  It is well-known that  the operation cannot be linear and the usual 
method consists in defining P(t,  f )  as an Hermitian functional on a Hilbert space 
whose elements are in direct relation with the physical signals. In affine theory this 
classical approach is followed, the specific point being the introduction of a Hilbert 
space where an irreducible unitary representation of the affine group does exist. 

Any real signal s(t) is entirely characterized by the positive frequency part of 
its Fourier transform, i.e. by the function: 

F Z ( f )  - Y ( f )  e - je~f t  s(t) dt, 
( x )  

(7.1.3) 

where Y ( f )  is the Heaviside step function. 
In agreement with (7.1.2), a general affine transformation on signal s(t) acts on 

Z ( f )  according to: 

Z ( f )  , Z ' ( f )  - a r+l e -j2'~b:f Z ( a f ) ,  (7.1.4) 

where r is the index of conformity of the physical signal. In contrast with (7.1.2), 
the transformation (7.1.4) corresponds to an irreducible representation of the affine 
group. Moreover, as can be verified, it conserves the norm defined by: 

~0 (:X) I l Z l l  2 - IZ(f)12 f 2~+~ df. (7.1.5) 

In the following, we will adopt this norm for which the representation (7.1.4) of the 
affine group is unitary. 

In a change of reference system, the time-frequency representation of a signal will 
also be changed. This change will depend on the change in the variables (cf. (7.1.1)) 
and on the meaning of the function P(t,  f )  as a quantitative representation of the 
spreading of the signal in the time-frequency half-plane. This leads to introduce the 
general transformation: 

P(t,  f )  , P'(t ,  f )  - aqP(a - l ( t  - b) ,a f ) ,  (7.1.6) 

where q is a real number which can be considered as an index of significance. The 
integral of P(t,  f )  on the half-plane that  is invariant by transformation (7.1.6) has 
the form: 

' fq P(t,  f ) d t  df . (7.1.7) 

For the common choice q = 0, a probabilistic comprehension of the spreading is 
possible. However, in special applications, the choice of other values for q can be 
pertinent. 
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The occurrence of the dimensional indices r and q is a new feature that  has 
been introduced by the consideration of scaling transformations. It did not appear 
in the case of the Wigner-Ville representation which is based, in an essential way, 
on translations in both time and frequency through the so-called Weyl-Heisenberg 
group. In fact, it can be seen directly that  the invariance of the scalar product asso- 
ciated with the norm (7.1.5) and of the integral (7.1.7) under frequency translations 
is only possible if r = - 1 / 2  and q = 0 respectively. 

7.1.2 Tomographic Derivation of the Affine Wigner Function 
Tomographic methods are now of routine use in signal analysis. Their emergence 
in time-frequency analysis is related to the recognition that  the general marginals 
of the well-known Wigner-Ville function along straight lines of arbi trary slope, are 
positive and easily interpretable in terms of the signal. An immediate result has 
been the construction of the Wigner-Ville function by relying only on the Heisenberg 
group which performs time and frequency translations [1,2]. Pract icalapplicat ions 
have arisen in the domain of quantum optics, where the method of tomography [3] 
allows to determine precisely the state of a system from experimental data  [4]. 
More recently, there has been a renewed interest for the so-called fractional Fourier 
transform arising naturally in the expression for the Radon transform of the Wigner- 
Ville function (see Articles 4.8 and 5.8). 

In fact, the relation between tomography and Wigner function is not accidental 
but is connected in an essential way to the underlying group. In signal analysis, 
the straight lines of a given direction in the time-frequency plane arise as families 
of curves invariant by a subgroup of the translations group. In the affine case, a 
tomography can be set up in an analogous way by considering all the subgroups 
which are acting as dilations around a fixed time. This will be done now. 

The linear chirps play a major role in usual tomography since they are associated 
with straight lines in the time-frequency plane. They form families of signals which 
are characterized by their invariance, up to phase, under the subgroup of translations 
in a given direction. In the affine case, the same role is played by signals that  are 
invariant (up to a phase) in dilations centered at the instant t = ~. These are the 
hyperbolic chirps defined by: 

r  f-J2~'/3-r-le-j2~~f, /~ real. (7.1.8) 

It can be verified tha t  such signals conserve the same form in the transformation of 
type (7.1.4) submitted to the constraint: 

b = ~(1 - a). (7.1.9) 

These transformations are just those of the subgroup of dilations of origin t = ~. 
A signal Z(f), with index of conformity r, can be decomposed on the r  

fixed, and the coefficients of the development are equal to: 

(Z,g,~) - fo~176 fJ2~Z+~ eJ2=r df, (7.1.10) 
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where the scalar product is defined from (7.1.5). The expression (7.1.10) is a general 
Mellin transform whose inverse is easily obtained. 

The group delays of the hyperbolic chirps (7.1.8) at frequency f are found to be 

t = ~ + f l / f ,  fl real. (7.1.11) 

They correspond to curves in the time-frequency half plane (t, f) ,  f > 0, that are 
invariant by dilation (7.1.9). 

Let Pq( t , f ;Z )  denote the time-frequency representation of signal Z( f )  that 
is under construction. The tomographic condition relates the integral of Pq(t, f )  
along hyperbolas (7.1.11) to the coefficients (7.1.10) of signal Z( f )  on the basis of 
hyperbolic chirps. It takes the form: 

Pq(t, f; Z)5((t  - ~)f  - Z) fq dt df - \Z, r  2, (7.1.12) 
O 0  

where each member is separately invariant by affine transformations. Considered for 
all real values of fl and ~, this relation has the form of a generalized Radon transform 
for Pq(t, f) .  Its inversion gives the expression of the A]fine Wigner Function [1,5]: 

Pq(t, f; Z) -- f 2 r - q + 2  c j 2 r u f t  
O 0  

fueU/2 Z* fue-U/2 u 
• Z 2 s i - - ~ ] 2 )  2 sinh(u/2) 2 sinh(u/2) du. (7.1.13) 

The integrand can be seen to depend only on the functions A(u) and A(-u)  where: 

ue~/2 
A ( u ) -  2sinh(u/2)" (7.1.14) 

In formula (7.1.13), the index of significance q can be chosen according to the type 
of time-frequency representation needed, but r is necessarily equal to the index of 
conformity attached to Z(f ) .  

When an affine change is performed on signal Z( f )  according to (7.1.4), the 
function (7.1.13) is clearly transformed as in (7.1.6). Hence, the Affine Wigner 
Function verifies the condition: 

Pq(t, f; Z') = a q Pq(a-l  (t - b), a f ; Z), (7.1.15) 

where Z' ( f )  is defined in (7.1.4). This property of invariance of the correspondence 
between a signal Z( f )  and its time-frequency representation Pq( t , f )  is essential 
for an analysis founded on the affine group. However, it does not characterize 
univocally the Affine Wigner Function. In fact, an infinite family of functions 
satisfying condition (7.1.15) can be determined: They form the affine analog of 
Cohen's class. 1 But the Affine Wigner Function (7.1.13) stands out as the only one 

1That  is, the  quadra t ic  class; see p. 68n. 
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with a tomographic construction based on the affine group alone. In this sense, 
it occupies the same position in the affine class as the usual Wigner-Ville function 
does in Cohen's class. 

7.1.3 Discussion of the Result in terms of Broad-Band 
Corrections for the Usual Wigner Function 

It is instructive to start  using the Affine Wigner Function (7.1.13) for the analysis 
of narrow-band signals. In that  case, the factor f2r-q+l  is approximately constant, 
with f replaced by the central frequency f0 of the band. Moreover, the integrand 
in (7.1.13) is different from zero only when the arguments of Z and Z* are both in 
the band. This requires for u to stay in the vicinity of the value u = 0. In fact, it 
can be observed that  the extension of the domain of u will decrease along with the 
bandwidth of the signal. This allows to replace the function A(u) by its first order 
development about u = 0: 

)~(u) "~ 1 + u/2, (7.1.16) 

when analyzing narrow-band signals. 
A change of variables from u to v = u f  then leads to the approximate form: 

/] r2r-q+ l e j2~vt Z f + -~ Z* Pq(t, f )  ..~ Jo 
o o  

v 
( f  - -~) dv. (7.1.17) 

Thus for narrow-band signals, the expression of the Wigner-Ville function appears 
as a simplified expression of the Affine Wigner Function. 

In the general case, it remains interesting to study the properties of the function 
(7.1.13) in relation with those of the usual Wigner-Ville function. 

The total integral of Pq(t, f )  over the time-frequency space is now written in 
the invariant form: 

/ / o  ~ Pq(t, f; Z) fq dt df - IIzll 2, (7.1.18) 
o o  

where IlZll is defined in (7.1.5). 
Integrating the distribution on the time only, we get: 

f /  Pq(t, f; Z)dt  - f2r+l-q IZ(f)I2. (7.1.19) 
o o  

It can be observed that  it is only for the choice q = 2r + 1 that  the familiar expression 
is exactly recovered. 

Since Pq(t, f )  represents a spreading of the signal in the time-frequency plane, 
it can be used to compute the mean value of the epoch t for a fixed value of the 
frequency. The resulting expression, whatever the value of q, is the usual group 
delay of the signal: )(C )1 
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where the phase O(f) of the analytic signal Z(f)  is defined by: 

Z(f)  - [Z(f)[ e ye(f). (7.1.21) 

A domain where it is particularly important  to be careful with the indices r and q is 
in the study of the effect of transducing filters on the time-frequency representations. 
Suppose a signal Z(f) ,  having an index of conformity equal to r, passes through 
a stationary linear device whose action changes its physical nature. The emerging 
signal Z(f)  can be written as: 

Z(f)  -- T( f )  Z(f) ,  (7.1.22) 

where the function T(f )  characterizes the device. In general, Z(f)  will transform 
under dilations with an index of conformity ~ different from r. Hence, for con- 
sistency, the function T(f)  must be assigned an index a determined by relation 
(7.1.22) as: 

a - ~ - r - 1. (7.1.23) 

Notice that  the identity filter corresponds here to a -  -1 .  
These operations have a counterpart in the domain of time-frequency functions. 

Let P(q)(t, f; Z), P~(~) (t, ,f" T) and P~)(t ,  f;  Z) be the representations corresponding 

to functions Z(f) ,  T( f )  and Z(f)  respectively. The dependence of the represen- 
tations on the indices of conformity of the signals has been shown explicitly, to 
avoid ambiguity. The time-frequency analog of relation (7.1.22) has the form of a 
convolution in time provided the indices are related according to: 

0 - q + ~ + 1. (7.1.24) 

In practical situations, where ~ -  q and 7 - - 1 ,  the relation is: 

/? P(q~) (t, f; 2)  - P (~  (t - t', f;  T) P(q)(t', f; Z) dt', (7.1.25) 
OO 

where the index a is given by (7.1.23). 
Consider now the case of a transducer defined by: 

T(I)  - f -h ,  h real, (7.1.26) 

with conformity index a - h - 1. The only action of such a device is to replace the 
signal Z(f)  with index of conformity r by the signal Z'(I)  - f - h  Z(I)  with index 

- r  + h. Relation (7.1.25) now becomes: 

P~+h) (t, f; I-UZ) - P~) (t, f; Z), (7.1.27) 

an identity that  can also be verified directly on the expression (7.1.13). Thus, once 
q has been chosen, computing Pq(t, f)  for a signal Z(f)  or for any of its transforms 
(as defined by (7.1.22) and (7.1.26)) yields the same result, provided care is taken 
to use the correct conformity indices. In the present context, the property leads to 
consider the device defined by (7.1.26) as a perfect transducer. 
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7.1.4 Hyperbolic Chirps and Affine Group Extension 
The properties of marginalization, localization and extended invariance that  are 
well-known for the Wigner-Ville function have direct analogs in the present case. 

The marginal condition leading to a density in f is derived from relation (7.1.19). 
In addition, marginal densities in fl are obtained for each value of ~ when integrating 
Pq(t, f )  along hyperbolas ( t -  ~)f = 13. From the tomographic condition (7.1.12) it 
results that  these densities have the form: 

p~:(,3) - I(Z, r (7.1.28) 

and verify: 

/ ;  p((#) d# (7.1.29) IIZII 
OO 

Localization in the time-frequency space arises for general hyperbolic chirps. For 
these signals, a direct computation gives: 

Pq(t, f; r - f - q  6((t - ~)f - 13). (7.1.30) 

The special case /7 -- 0 corresponds to a localized signal r - f - r - le -J2~( I  
attached to the instant t = ~. The latter form can be obtained directly by requiring 
that  after a clock change, labeled by (a, b) and acting as in (7.1.4), the signal keeps 
a localized form at the transformed instant t t = a~ + b. 

Another case of localization, that  can be considered as a limit of the hyperbolic 
chirp behavior, concerns the pure frequency signal with index of conformity r: 

Zfo(f) = f - r  6(f  - fo) (7.1.31) 

which is represented by: 

Pq(t, f; Zyo) = f l -q  6(f  - fo). (7.1.32) 

The property of invariance, under afIine transformations, of the correspondence 
between a signal Z( f )  and its representation Pq(t, f; Z) can be extended. To this 
end, we introduce the transformations performing a translation on the/~-parameter 
of the hyperbolic chirps according to: 

d2~(f) > r = f- j2~(#+c)-r-1 e-J2~I (7.1.33) 

where c is a real number. These transformations act on an arbitrary signal as: 

Z( f )  > Zc(f) = f-j2~c Z( f ) .  (7.1.34) 

Moreover, they combine with the affine transformations to form a three-parameter 
group Go which is is the largest group conserving the family of hyperbolas (7.1.11) 
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as a whole and the family of hyperbolic chirps. These general transformations, 
labeled by (a, b, c), act on a signal according to: 

Z(f) ' Za,b,c(f) -- at-hie -j2rr(bf-t-clnf) Z(f), (7.1.35) 

and on its Affine Wigner Function as: 

Pq(t,f;Z) , Pq(t,f;Za,b,c) -- cap q ( a - l ( t - b - c f - 1 ) , a f ; Z )  . (7.1.36) 

Thus the correspondence between the signal Z(f) and the function Pq(t, f; Z) is 
invariant not only by the affine group but by its extension Go. 

7.1.5 Unitarity Property and Some of its Consequences 
The Affine Wigner Function (7.1.13) verifies the so-called unitarity (or Moyal) prop- 
erty: 

// fo P (t, f; Z)Pq(t, f; dtdf (7.1.37) Z') f2q [(z,z')l 
(3O 

where the scalar product (Z,Z ') ,  issued from definition (7.1.5), depends on the 
index r of the signal. 

A special case of relation (7.1.37) is obtained when Z'(f) is the hyperbolic chirp 

r  (cf. (7.1.8)) so that Pq(t, f; Z') has the form (7.1.30). The result is just the 
tomographic condition which was introduced in (7.1.12). 

A more general form of the unitarity property (see [6], formulas (III.15-17)) 
finds a direct application in the reconstruction of the signal from its affine Wigner 
function. In fact, it allows to write directly the formula: 

(flf2)-2r-l f f 2r+2+q Pq(t, f; Z) e j2ruft (7.1.38) Z(fl) Z*(f2) 
J 

- rue-U~2 ( f2-2s inh(u/ )2)  (2sinh(u/2)) 5 ( f l  2sinh(u/2)) 5 fueU/2 u 2r+2 du dt df , 

where, as usual, the symbols 5 hold for Dirac distributions. 
The knowledge of p(fl,f2) = Z(fl)Z*(f2) allows to reconstruct the analytic 

signal up to a constant phase. Explicitly, we have: 

IZ(f)[ - v/p(f, f ) ,  ei(0,_02) = p(fl, ]'2) (7.1.39) 
p(fl ,  f l )  p(f2, f2) ' 

where the decomposition (7.1.21) of Z(f) has been used. This result shows that 
the affine Wigner function (7.1.13) is a representation of the signal which does not 
discard any information but a constant phase. 

The unitarity relation can also be used to define a regularized version Pq(t, f) 
of Pq(t, f). To this end, a basic function (I)(f) is chosen and its representation 
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Pq(t, f; ~) written down. The smoothed version Pq(t, f; Z) of the representation 
Pq(t, f; Z) is then defined by the convolution on the affine group" 

F/o Pq(t, f; Z) - f -q 
O 0  

Pq(t', f'; Z) Pq(f(t' - t), f ' / f ;  ~) f,2q dt' dr', (7.1.40) 

where the kernel is the time-frequency representation of function ~. A more prac- 
tical form of the smoothed function Pq is obtained when taking into account the 
transformation law (7.1.15) of Pq(t, f; ~) and the unitarity property (7.1.37)" 

/~(t, f; Z) - I(Z, ~(t,/))12 , (7.1.41) 

where O(t,/)(if) is defined according to: 

r - f -r-le-j2~/'t @(if~f). (7.1.42) 

The set of functions O(t,/)(if) is recognized as a family of wavelets obtained from 
the mother wavelet O(ff) by an affne transformation such that a = f - l ,  b = t. 
Thus the right-hand side of relation (7.1.41) is the square modulus of the wavelet 
coefficient of Z(f).  Conversely, the above developments allow to interpret the square 
modulus of the wavelet coefficient as the result of a smoothing in the time-frequency 
half-plane. In particular, this provides a guide to assess the properties of a mother 
wavelet. 

For example, the function (I)(f) may be chosen so that its representation 
Pq(t,f; r has the best possible concentration in the time-frequency plane. An 
optimal choice for (I)(f) is found to be the Zlauder wavelet [5]. It can be written 
using as parameters the mean frequency f0 = <  f >, the mean square deviation 

/ _ <  f2 > _f3,  and the relative bandwidth p = a / / f0 .  The explicit expression 
of that wavelet is: 

(~(f)--K(P)fo r-1 ( f  ) 
- r - l +  

where K(p) is a normalization constant. 

1 

2p2 e x p (  2p 21 .t0f) (7.1.43) 

The function (7.1.43) has a time-frequency representation approximately local- 
ized in the vicinity of point t = 0, f = f0. By varying a / ,  it is possible to make it 
spread along one or the other of the time and frequency directions, without changing 
the point it is attached to. 

7.1.6 Summary and Conclusions 
The group of affine transformations on the time, or clock changes, has been in- 
troduced in an attempt to perform an analysis of real signals that is independent 
of the system of reference and of the system of units employed. The approach 
has proved operational, leading to an adapted time-frequency representation, the 
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Aj~fine Wigner Function, that  has many properties similar to those of the usual 
Wigner-Ville function. 

The actions of time dilations on signals and time-frequency distributions are 
respectively characterized by two indexes r and q which are real numbers. The 
index of conformityr depends on the physical origin of the signal and controls its 
behavior in a change of time units. The index of significance q, at tached to the 
time-frequency representation, can be chosen according to the kind of description 
we require. 

Both indexes r and q are special features coming from the introduction of dila- 
tions and allowing to express properly their effects. Those indexes are particularly 
important  in the time-frequency analysis of problems involving transductions. They 
can be overlooked only in the limit of narrow relative bandwidth, in which case the 
usual Wigner-Ville representation appears as a universal approximation. 

There are several ways to build a time-frequency analysis satisfying the above 
constraints of independence relatively to clock changes. They result in an affine 
analog of Cohen's class. However, what is called the Affine Wigner Function in the 
present work stands out as the unique time-frequency distribution obtained by a 
tomographic method fitted to the affine group. This distribution is unitary, gives a 
realistic description of the hyperbolic chirps and does not degrade the information 
contained in the original signal, except for a constant phase factor. 
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7.2 TIME-FREQUENCY REASSIGNMENT~ 
Time-frequency and time-scale representations [1] aim to extract relevant informa- 
tion from a signal by representing it over a two-dimensional plane. These tools 
have been extensively studied in the past twenty years, resulting today in many 
useful analysis methods. Among them, the spectrogram and the smoothed vet- 
sions of the Wigner-Ville distribution [1] are probably the most widely used, but 
their applicability is limited by localization trade-offs, which may be troublesome in 
some applications. For the spectrogram, a shorter analysis window yields a better 
time resolution and henceforth a poorer frequency resolution, as a consequence of 
the Gabor-Heisenberg inequality [1]. For the smoothed versions of the Wigner-Ville 
distribution, a larger smoothing kernel yields reduced cross-terms, but also a poorer 
localization of the signal components (see "Article 4.2"). 

These shortcomings must be overcome in order to obtain time-frequency "pic- 
tures" that can be both easily read by non-experts and easily included in a signal 
processing application. This is exactly what the reassignment principle has been de- 
vised for. Initially introduced in 1976 by Kodera, Gendrin and de Villedary [2], this 
idea first remained little known and rarely used. But recently, advances obtained 
during the eighties in time-frequency analysis have made its rebirth possible [3], 
which considerably extended its applicability, both conceptually and computation- 
ally. 

7.2.1 Basic Principle 
For a sake of simplicity, we will first present the basics of reassignment in the case 
of the spectrogram, which was the only case considered by Kodera et al [2]. Its 
application to other representations will be discussed afterwards. The spectrogram, 
which is the squared modulus of the short-time Fourier transform 

- IF (t, f ) l  2 , ( 7 . 2 . , )  

F h (t, f)  - / x(u) h* (t - u)e -i2~/~ du (7.2.2) 

can also be expressed as a two-dimensional smoothing of the Wigner-Ville distri- 
bution [1] 

sh(t , f )  - . / . /  Wx(u,u) Wh( t -  u , f  - u)dudu. (7.2.3) 

In these expressions, t and f are respectively the time and frequency running vari- 
ables, x(t) is the analyzed signal, and h(t) is the analyzing window. All integrals 
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have integration bounds running from - o o  to +cx~. The latter expression shows ex- 
plicitly that  the value of the spectrogram at a given point (t, f )  is a weighted sum of 
all the Wigner-Ville distribution values at the neighboring points ( t -  u, f -  u). The 
number sh(t, f)  is therefore the sum of a whole energy distribution located around 
its geometrical center (t, f ) .  Reasoning with a mechanical analogy, the situation is 
as if the total mass of an object was assigned to its geometrical center, an arbitrary 
point which except in the very specific case of an homogeneous distribution, has 
no reason to suit the actual distribution. A much more meaningful choice is to 
assign the total mass of an object as well as the spectrogram value sh(t, f) 
to the center of gravity of their respective distribution. This is exactly what the 
reassignment performs : at each time-frequency point (t, f )  where a spectrogram 

value is computed, we also compute the coordinates (t', f )  of the local centroid of 
the Wigner-Ville distribution Wx, as seen through the time-frequency window Wh 
centered at (t, f):  

t x ( t , f )  = S ) ( t , f )  uW~(u,u)  W h ( t -  u , f  - u)dudu (7.2.4) 

f~ ( t , f )  - S ) ( t , f )  uW~(u,u)  W h ( t -  u , f  - u )dud , .  (7.2.5) 

Then, the spectrogram value S)(t, f ) i s  moved from (t, f) to (t, f) .  This leads us 
to define the reassigned spectrogram as 

(7.2.6) 

Originally, the reassignment operators t and f have been equivalently related to the 
phase of the STFT,  an information which is generally discarded when computing 
the spectrogram: 

A 1 07) (t, f )  (7.2.7) 
tx(t, f)  -- 27r Of 

A 1 07) (t, f )  (7.2.8) f x ( t, f) - f + -~ -~  . 

with 7)(t, f )  = arg Fh(t, f). These expressions may be interpreted respectively as 
the local group delay and the local instantaneous frequency of the signal observed 
inside the time-frequency domain imposed by the analysis window h. But it has 
been shown in [3] that  a much more efficient implementation is possible thanks to a 
third expression involving two additional STFTs with particular analysis windows : 

t~(t, f ) =  t - ~ { Fth(t' f)  } (7.2.9) 
Fzh(t, f) ' 

{ Fazh/at(t'f) } (7.2.10) 
fz(t, f)  = f + ~ 27rFzh(t ' f)  
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As presented here, the reassignment principle can be used with a large number 
of distributions, beyond the spectrogram case. For example, if the WVD of the 
short-time window h(t) in eq. (7.2.3)is replaced by an arbitrary (low-pass) kernel 
H(u, , ) ,  one recognizes the general form of the quadratic time-frequency energy 
distributions that are covariant under time and frequency shifts, referred to as the 
Cohen's class 1 [1]: 

p~ (t, f)  - / / W x  (u, . )  II(t - u, f - . )  du dr. (7.2.11) 

The local centroids are then given by 

A 1 / /  
tx(t, f )  - Px(n t , f )  u W~(u, ~) n(t - u, f - , ) d u  dr 

fx(t ,  f )  - Px(n t , f )  , W x ( u , , ) I I ( t -  u, f -  , ) d u d , .  

(7.2.12) 

(7.2.13) 

and the corresponding reassigned distribution becomes 

(7.2.14) 

From a theoretical point of view, this reassigned representation is no longer bi- 
linear, but it still remains an energy distribution covariant under time and frequency 
shifts. One of the most important properties of the reassignment principle is that 
the application of the reassignment process defined by eqs. (7.2.12), (7.2.13) and 
(7.2.14) to any distribution of the Cohen's class yields perfectly localized distribu- 
tions for chirp signals, frequency tones and impulses, since the WVD does so, and 
since the centroid of a linear distribution necessary lies on the line. When applied 
to multicomponent signals, reassignment improves readability by overcoming m to 
a certain extent the usual trade-off between cross-term level and localization: 
the underlying smoothing of the standard distribution guarantees some cross-term 
reduction, whereas reassignment acts as a squeezing that re-focuses the signal terms 
that had been spread out by smoothing (see Figure 7.2.1). 

Among the examples of Cohen's class members studied in [3], the case of the 
smoothed pseudo Wigner-Ville distribution yields a very versatile signal analysis 
tool, with independently adjustable time and frequency smoothings: 

S P W V ~ ' h ( t ,  f )  - / / g ( t -  u ) H ( f  - , )  W x ( u , , ) d u d ,  (7.2.15) 

1That is, the quadratic class as defined on p. 68. 
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time time 

Fig.  7.2.1: Cross-term level and localization trade-off in the Cohen's class. We consider here 
the time-frequency representation of a signal composed of two different chirps whose instantaneous 
frequencies are detailed in (a). The kernel of the time-frequency distribution in the Cohen's class 
defines the degree of smoothing which is applied [1]: a weak smoothing favors a sharp localization 
at the expense of the presence of cross-terms (an example is the Wigner-Ville distribution displayed 
in a contour plot in (b)). Conversely, a stronger one leads to a lower cross-term level but also to a 
poorer localization (such as the spectrogram in (c)). Thanks to its smoothing-squeezing scheme, the 
reassignment method overcomes this trade-off as shown in (d) with the reassigned spectrogram. 

Its reassigned version can be computed easily with two additional SPWDs: 

A S P W V t g , h ( t , f )  
t x ( t , f )  - t -  

S P W V ~  'h (t, f )  

S P W V ~  'dh/dt (t, f )  
fx(t ,  f )  - f + i 

27r S P W V ~  'h (t, f )  

(7.2.16) 

(7.2.17) 

A different kind of generalization can be obtained when switching to time-scale 
energy distributions of the affine class [1], i.e., the quadratic distributions covariant 
under time shifts and dilations: 

- ~ , a ~  dud~ (7.2.18) 
a 
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Within this framework, the reassignment operator in time is given directly by 

A 1 / /  
t~(t, a) - ~ ( t ,  a) ) ~ , a v  dudu, (7.2.19) 

a 

whereas the reassignment operator in scale requires an intermediate step in the 
frequency domain 

and 

~x(t, a) - .. f0 with f0 - - / / f  II(t, f)  dt df 
A(t,a)' 

fx(t,a) = ~ ( t , a )  vWx(u,u)l-I t a u 'au dudu 

(7.2.20) 

The most important case among this class is the scalogram (the squared modulus 
of the wavelet transform) [I], obtained by choosing for II the WVD of the chosen 
wavelet. Simple and efficient expressions of the reassignment operators also exist in 
this case [3, 4]. 

7.2.2 Variations and Related Approaches 
7.2.2.1 Two Variations 
The original purpose of the reassignment principle was the design of time-frequency 
distributions with increased readability. But some useful information on the signal 
structure can also be directly extracted from the reassignment operators, as shown 
by the following two extensions: 

Signal/noise discrimination and supervised reassignment. When the analyzed 
signal includes broadband noise, the reassignment process yields peaked areas in 
noise-only regions, whereas rather smooth energy distributions are expected there. 
For such situations, an improved reassignment algorithm referred to as supervised 
reassignment [5] has been designed. This approach first attempts to discriminate 
between "signal+noise" and "noise only" regions in the time-frequency plane by 
means of a detector applied to the reassignment operators. Reassignment is then 
only performed for the points considered to belong to "signal+noise" regions. 

Signal component extraction and differential reassignment. Many signal process- 
ing problems such as denoising and signal classification can be solved by a relevant 
tiling of the time-frequency plane, so as to isolate each signal "component" (although 
this concept is not clearly defined). For such applications, a new reassignment pro- 
cess called differential reassignment [6] has been considered. Whereas the original 
reassignment principle moves each value by one finite jump, differential reassignment 
considers each time-frequency point as the starting point of an elementary particle 
whose velocity field is deduced from the reassignment operators. The final points 
called asymptotic reassignment points are gathered and lead to a time-frequency 
map in which each cell indicates a signal component. 
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7.2.2.2 Related Approaches 
Although original in many respects, the concept of reassignment is obviously con- 
nected with several approaches that  have been proposed independently. We lack 
space to discuss these interactions precisely, but we cite: 

�9 The instantaneous frequency density [7], which yields at each time sample a 
histogram of the frequency reassignment operator of the spectrogram. 

�9 The extraction of ridges and skeletons out of the phase structure of the wavelet 
transform [8, 9]. These ridges are made of the fixed points of the reassignment 
operators, either horizontally (~x(t, a) - a) or vertically (tx(t, a) - t). 

�9 The synchrosqueezed plane [10], which also moves the scalogram values, but 
by a scale displacement only. 

7.2.3 Summary and Conclusions 
Reassignment can be viewed as the second step of a process whose goal is to build 
a readable time-frequency representation. It consists of: 

1. a smoothing, whose main purpose is to rub out oscillatory interferences, but 
whose drawback is to smear localized components; 

2. a squeezing, whose effect is to refocus the contributions which survived the 
smoothing. 

As a result, this approach yields without a drastic increase in computational 
complexity enhanced contrast (when compared to smoothed distributions such 
as spectrograms) with a much reduced level of interferences (when compared to 
the Wigner-Ville distribution). This is especially true when the signal-noise ratio 
is not too low, and when the signal components are not "too close" to each other. 
Finally, MATLAB T M  implementations of the algorithms discussed here are included 
in a freeware available at h t tp : / /c r t t sn .univ-nantes . f r /~auger / t f tb .h tml .  

References 
[1] P. Flandrin, Time-Frequency/Time-Scale Analysis. San Diego: Academic Press, 1999. 
Original French edition: Temps-frdquence (Paris: Hermes, 1993). 

[2] K. Kodera, C. de Villedary, and R. Gendrin, "A new method for the numerical analysis 
of nonstationary signals," Physics of the Earth ~ Planetary Interiors, vol. 12, pp. 142-150, 
1976. 

[3] F. Auger and P. Flandrin, "Improving the readability of time-frequency and time-scale 
representations by the reassignment method," IEEE Trans. Signal Processing, vol. 43, 
pp. 1068-1089, May 1995. 

[4] P. Flandrin, E. Chassande-Mottin, and P. Abry, "Reassigned scalograms and their fast 
algorithms," in Proc. SPIE: Wavelet Applications in Signal and Image Processing III, 
vol. 2569, pp. 152-158, Soc. of Photo-optical Instrumentation Engineers, San Diego, CA, 
12-14 July 1995. 



296 Chapter 7: Measures, Performance Assessment and Enhancement 

[5] E. Chassande-Mottin, F. Auger, and P. Flandrin, "Supervised time-frequency reassign- 
ment," in Proc. IEEE-SP Internat. Syrup. on Time-Frequency ~ Time-Scale Analysis, 
pp. 517-520, Paris, 18-21 June 1996. 

[6] E. Chassande-Mottin, I. Daubechies, F. Auger, and P. Flandrin, "Differential reassign- 
ment," IEEE Signal Processing Letters, vol. 4, pp. 293-294, October 1997. 

[7] D. Friedman, "Instantaneous frequency distribution vs. time: An interpretation of the 
phase structure of speech," in Proc. IEEE Internat. Conf. on Acoustics, Speech and Signal 
Processing (ICASSP'85), pp. 1121-1124, Tampa, FL, 26-29 March 1985. 

[8] R. Carmona, W. L. Hwang, and B. Torr@sani, Practical Time-Frequency Analysis: 
Gabor and Wavelet Transforms with an Implementation in S. San Diego: Academic 
Press, 1998. 

[9] P. Guillemain and R. Kronland-Martinet, "Horizontal and vertical ridges associated to 
continuous wavelet transforms," in Proc. IEEE-SP Inter'nat. Syrup. on Time-Frequency 

Time-Scale Analysis, pp. 63-66, Victoria, BC, 4-6 October 1992. 

[10] S. Maes, "The synchrosqueezed representation yields a new reading of the wavelet 
transform," in Proc. SPIE: Wavelet Applications II, vol. 2491, pp. 532-559, Soc. of Photo- 
optical Instrumentation Engineers, Orlando, FL, 17-21 April 1995. 



Measuring Time-Frequency Distributions Concentration 297 

7.3 MEASURING TIME-FREQUENCY DISTRIBUTIONS 
CONCENTRATION 0 

Efficient m e a s u r e m e n t  of t ime-f requency d is t r ibut ions  (TFDs)  concen t ra t ion  can 
provide a quan t i t a t ive  cr i ter ion for evaluat ion of various d is t r ibu t ions  per formance .  
It can be used for adap t ive  and au toma t i c  p a r a m e t e r  selection in t ime-f requency  

analysis, wi thou t  supervis ion of a user. Measures  for d i s t r ibu t ion  concen t ra t ion  

of m o n o c o m p o n e n t  signals da te  back to [1, 2]. For more  complex  signals, some 
quant i t ies  from stat is t ics  and  in format ion  theory  were the  inspi ra t ion  for defining 

measures  of the T F D s  concen t ra t ion  [3,4]. They  provided  good  quan t i t a t ive  measure  

of the au to - t e rms  concent ra t ion .  Various and efficient modif ica t ions  are used in 
order  to take into account  the appea rance  of osci l latory cross- terms.  

The  appl ica t ion  of concen t ra t ion  measures  will be d e m o n s t r a t e d  on au toma t i c  
de t e rmina t i on  of the "best  window length" for the spe c t rog ra m or "the best  number  
of te rms"  in the  m e t h o d  tha t  provides t rans i t ion  form the spe c t rog ra m toward  the 

pseudo Wigner  d i s t r ibu t ion  (pseudo W D )  [Article 6.2]. 

7.3.1 Concentration Measurement 
The  basic idea for measur ing  T F D s  concen t ra t ion  can be expla ined  on a simplified 

example  mot iva ted  by the probabi l i ty  theory. Consider  a set of N nonnega t ive  num- 

bers pl ,  p2, ..., PN >_ 0, such tha t  PI + P2 q--... �9 PN -- 1. Form a simple tes t  funct ion 
M ( p l ,  P2,... ,  P N )  -- p2 + p2 + . . .  + p2g. It is easy to conclude t ha t  M ( p l ,  P2, ..., P N ) ,  

under  the cons t ra in t  Pl + P2 + ... q-PN -- 1, has the  min imal  value for Pl - P2 - 
. . . .  P N  -- 1 / N ,  i.e., for maximal ly  spread  values of P l , P 2 , . . . , P N .  The  highest  
value of M ( p l , p 2 ,  . . . ,PN), under  the  same const ra in t ,  is achieved when  only one Pi 

is different from zero, Pi - ~(i - io), where  io is an a rb i t r a ry  integer 1 < io <_ N.  
This  case cor responds  to the  maximal ly  concen t ra t ed  values of p l ,p2 , - - . ,PN,  at a 

single Pio -- 1. Therefore ,  the funct ion M ( p l , p 2 ,  . . . , P N )  can be used as a mea- 
sure of concen t ra t ion  of the set of numbers  pl ,  p2, ..., P N ,  under  the  uni ty  sum con- 
s t raint .  1 In general ,  the cons t ra in t  can be included in the  funct ion itself by using 
the form M ( p l ,  P2, ..., PN) -- (p2 ~L_ p2 -1L ... + p2N) / (Pl -[- P2 -[- ... -~- pN)2.  For non-  

negat ive  Pl ,P2,  .. . ,PN this funct ion has the m i n i m u m  for Pl - P2 - ... - PN ,  and 
reaches its max ima l  value when  only one Pi is different from zero. 

In t ime-f requency  analysis this idea has been used in order  to measure  the  con- 
centra t ion.  Several  forms of the  concen t ra t ion  measure ,  based on this fundamen ta l  

idea, are in t roduced.  

1. M e a s u r e  b a s e d  o n  t h e  r a t i o  o f  n o r m s -  For the  W D  of energy nor- 

malized signals, the  r e l a t i o n  ~--~-n E k  p2x(?l, k) - 1 holds. Therefore ,  subs t i tu t ion  

~ LJubi~a Stankovid, Elektrotehnicki fakultet, University of Montenegro, 81000 Pod- 
gorica, Montenegro (1.stankovic@ieee.org). Reviewers: W. J. Williams and P. Flandrin. 

1in probability theory, the famous Shannon entropy -~-']i Pi log(p/) is commonly used for the 
same purpose. It produces the maximal value for the lowest concentration of probabilities Pi, 
Pl --- p2 . . . . .  PN -- 1/N, and the minimal value for the highest concentration p~ ---- ~(i - i0). 
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Pi ~ p2(n, k) in the basic example, gives a function tha t  can be used for measuring 
the concentration of the time-frequency representation px(n, k): 

( L 4 )  4 ~ n ~ k P ~ ( n ' k )  (7.31) 
Mjp  - ~2 ---- (En Ek P2( n, k)) 2" 

This form is just  the fourth power of the ratio of L4 and L2 norms of px(n, k). 2 
It has been introduced by Jones and Parks in [3]. They have used the magni tude 
of the signal's short-t ime Fourier transform as the time-frequency representat ion 
px(n, k) in (7.3.1). High values of Mgp indicate that  the representat ion px(n,k) is 
highly concentrated,  and vice versa. In general, any other ratio of norms Lp and 
Lq, p > q > 1, can also be used for measuring the concentration of px(n, k) [3]. 

When there are two or more components (or regions in t ime-frequency plane of a 
single component)  of approximately equal energies (importance),  whose concentra- 
tions are very different, the norm based measures will favor the distr ibution with a 
"peaky" component,  due to raising of distribution values to a high power. It means 
tha t  if one component  (region) is "extremely highly" concentrated, and all the others 
are "very poorly" concentrated, then the measure will not look for a trade-off, when 
all components are "well" concentrated. In order to deal with this kind of problems, 
common in t ime-frequency analysis, a concentration measure could be applied to 
smaller, local t ime-frequency regions [3]: 

E n  E k  Q2( m - It, l -  k)p4 (m, l) (7.3.2) 
MjpL(n, k) - (E,~ Ek  Q(m - n, l - k)p~(m, l)) 2 

The localization weighting function Q(n, k) determines the region where the con- 
centration is measured. In [3] the Gaussian form of this function is used. 

2. R@nyi e n t r o p y  b a s e d  m e a s u r e s :  The second class of T F D  measures is 
defined in analogy with the Rdnyi entropy. It has been introduced in t ime-frequency 
analysis by Williams et al. [4,5], with a significant contribution of [6,7] in establishing 
the properties of this measure. The R@nyi entropy, applied on the T F D  px(n,k), 
has the form 

1 l o g 2 ( E n  E k  Pax(n'k)) (7.3.3) R ~ =  1 - a  

with a > 2 being recommended for the TFD measures [7]. For a = 2 and the 
WD of energy normalized signals (~-]n ~-~k p2(n, k) = 1), we have R2 - 0 for all 
signals. Note tha t  the logari thm is a monotone function. Thus, the behavior of 
R~ is determined by the argument  ~-~n ~]k p~(n,k) behavior, as explained at the 
beginning of this section. In contrast  to the measure (7.3.1), the entropy (7.3.3) 
has larger values for less concentrated distributions due to a negative coefficient 

2In statistics, similar form (known as kurtosis) is used as a measure of the flatness or peakedness 
of a distribution. Kurtosis is zero for a Gaussian distribution. Values greater than zero mean that 
the distribution has more of a peak than a Gaussian distribution, while values less than zero mean 
flatter distributions. 
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1 / ( 1 -  c~) for c~ > 2. This will be the case for all other measures which will be 

presented in the sequel. 
It is interesting to note tha t  the S h a n n o n  e n t r o p y  

H - - E n  E k  [pz(n, k)log 2 px(n, k)] 

could be recovered from the R~nyi entropy, from the limit case a --~ 1, [7]. The 
Shannon entropy could not be used for general TFDs  px(n,k), which can assume 

negative values [7]. 

3. N o r m a l i z e d  R ~ n y i  e n t r o p y  m e a s u r e s .  In order to avoid the problem 
which could be caused by the fact tha t  the R~nyi entropy based measure with 
(~ = 3 ignore the presence of oscillatory cross-terms (when the auto- terms are well 
separated),  some kind of normalization should be done. It can be done in various 
ways, leading to a variety of possible measure definitions [4]. 

Normalization with the distribution volume is performed as: 

1 3 
RV3 - --~ log 2 E n  E k  [px(n,k)/ E n  E k  Ipx(n,k)l] �9 (7.3.4) 

If the distr ibution contains oscillatory values, then summing their absolute values 
means tha t  large cross-terms will decrease the measure RVa. This is the expected 
behavior of a measure, since it will seek for a balance between the cross-terms 
suppression and auto- terms enhancement.  The volume normalized form of measure 
has been used for adaptive kernel design in [4]. 

4. The basic idea for the measure tha t  will be presented next comes from 
an obvious c lass ica l  d e f i n i t i o n  of  t h e  t i m e - l i m i t e d  s igna l  d u r a t i o n .  If a 
signal x(n) is t ime-limited to the interval n E [nl, n2 - 1], i.e., x(n) ~ 0 only for 
n E [ n : , n 2 -  1], then the durat ion o f x ( n )  is d = n 2 - n : .  It can be wri t ten 

as d - limp-.oo ~-~-n Ix(n)l 1/p" T h e  s a m e  definition applied to a two-dimensional 
function pz(n, k) ~: 0 only for (n, k) E Dz, gives 

No - lim E n  E k  IP~(n' k)l:/p (7.3.5) 
p----*oo 

where ND is the number of points within Dx. In reality, there is no a sharp edge 
between p~(n, k) 7/= 0 and p~(n, k) = 0, so the value of (7.3.5) could, for very large 
p, be sensitive to small values of p~(n, k). The robustness may be achieved by using 
lower order forms, for example with p = 2. Therefore, the concentrat ion can be 
measured with the function of the form 

M~ -(~-~n ~-~-k Ip~(n, k)l:/P) p, (7.3.6) 

with ~-~n ~-~-k px(n, k) = 1, and p > 1. 

After we have presented several possible forms for measuring the concentration 
of TFDs,  we can summarize a p r o c e d u r e  for  c o n s t r u c t i n g  a T F D  m e a s u r e  
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based on one-dimensional classical signal analysis definitions, or definitions from 
either probability, quantum mechanics, or information theory: 

(i) In the classical signal analysis definitions, consider the signal power Ix(t)i 2 
(spectral energy density Ix(f) l  2) as the probability density function in time (fre- 
quency). This idea comes from quantum mechanics, where the absolute square of 
the wave function is the position's probability density function. 

(ii) Assume that the TFD pz(t,  f )  can be treated as a joint two-dimensional 
probability density function. 

(iii) According to these assumptions, reintroduce one-dimensional definition into 
joint two-dimensional time-frequency domain. 

(iv) Additional modifications, interpretations, constraints, and normalizations 
are needed in order to get forms that  can be used in time-frequency analysis. For 
example, several possible forms of the R~nyi entropy measure in time-frequency 
domain have been proposed and used in various problems. 

Example: Consider  the classic L e i p n i k  e n t r o p y  m e a s u r e  [2], and Z a k a i ' s  e n t r o p y  p a r a m -  
e t e r  5t = - f_c~oo Ix(t)l 2 In Ix(t)l 2 dt of signal x(t) [2]. According to the  procedure  for cons t ruc t ing  
a t ime-f requency form, based on a classical signal processing relation,  we get 

/ c~ 12 2 ~t = - Ix(t) In Ix(t)l dt -* - px(t, f )  lnpx( t ,  f)dtdf (7.3.7) 
o o  ( x )  o o  

This is exact ly  the well known S h a n n o n  e n t r o p y .  It has a l ready been discussed in [7] with 
respect  to its (non)appl icabi l i ty  in t ime-frequency problems.  In a similar  way, a logar i thm of the  
general  Zakai 's  signal dura t ion  (uncer ta inty)  

= = ~ log 2 Za  log 2 T2a 1 - a (f_o~ ix(t)12 dt)a 

according to the  proposed procedure,  t ransforms  into the  R~nyi ent ropy measure,  

Z~ ~ log 2 p~ (t, f )d td f  = R~ 
1 - c ~  c~ oo 

where Iz(t)l 2 has been replaced by pz(t,  f ) ,  and the unit  signal energy is assumed.  

R e m a r k :  In the probability theory all results are derived for the probability 
values Pi, assuming that ~--~4 pi = 1 and pi _> 0. The same assumptions are made in 
classical signal analysis for the signal power. Since a general TFD commonly does 
not satisfy both f-~c~ f - ~  pz(t,  f )  - 1 and p~(t, f )  >_ O, the obtained measures of 
TFD concentration may just formally look like the original entropies or classical 
signal analysis forms, while they can have different behavior and properties. 3 

3 Q u a n t u m  mechanics  forms can also be used for the  definition of highly concent ra ted  signal 
representat ions .  One of them is the "pseudo quan tum"  signal representa t ion  [8] in the  form of 
SDx(t,g~) = f-~oo x[L]( t + T/(2L))x*[L]( t - - T / ( 2 L ) )  e - j ~ r d T '  with x[L](t) = A ( t ) e x p ( j L r  

for z(t)  = A(t)  exp( jr  For example,  for x(t) = A e x p ( - a t 2 / 2  + jbt2/2 + jct)  we get 

SDx( t ,  fJ) = A 2 e x p ( - a t 2 ) v / 4 7 r / ( a / L 2 ) e x p ( - ( g ~ -  b t -  c )2 / (a /L2)) .  For a / L  2 --, 0 it results  
in SD(t ,  fO) -- 27rA2 exp(-at2)5(g  ~ -  b t - c ) ,  what  is just  an ideally concent ra ted  d is t r ibut ion along 
the ins tan taneous  frequency. For a large a, if L 2 is large enough so t ha t  a / L  2 --. O, we get the  
d is t r ibu t ion  highly concent ra ted  in a very small  region around the point  (t, ~o) -- (0, c). 
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7.3.2 Numerical Examples 
Consider the spectrogram 

k) k)l 

where F~' (n, k) - DFTm~k {w(m)x(n + m)} is the short-time Fourier transform 
(STFT); E is the energy of the lag window w(m). Among several spectrograms, 
calculated with different window lengths or forms, the best one according to the one 
of proposed concentration measures, denoted by .M[pz(n,k)], will be that  which 
minimizes (or maximizes, depending on the used measure form)" 

w + - arg min {.M [S:(n,k)]}. (7.3.8) 
w 

Let us illustrate this by an example. Consider the signal 

x(t) - cos(50 cos(~t) + 10~t ~ + 70~ t )+  cos(25~t ~ + 180~t) (7.3.9) 

sampled at At - 1//256, within - 1  _< t < 1. The Hanning window w(m) with 
different lengths is used in the spectrogram calculation. Here, we have used the 
measure (7.3.6) with p - 2, although for this signal all presented measures would 
produce similar results [9]. Note that the presented measures would significantly 
differ if, for example, the second component were pure sinusoid cos(180~-t) instead 
of cos(25~-t 2 + 180~t). 

For wide lag windows, signal nonstationarity makes the spectrogram very spread 
in the time-frequency plane, having relatively large measure A/t [S~(n, k)] - M 2, 
Figs. 7.3.1(a), 7.3.1(b). For narrow lag windows its Fourier transform is very wide, 
causing spread distributions and large M 2, Figs. 7.3.1(d), 7.3.1(e). Obviously, be- 
tween these two extreme situations there is a window that  produces an acceptable 
trade-off between the signal nonstationarity and small window length effects. The 
measure M 2 is calculated for a set of spectrograms with N - 32 up to N - 256 
window length, Fig. 7.3.1(f). The minimal measure value, meaning the best concen- 
trated spectrogram according to this measure, is achieved for N - 88, Fig. 7.3.1(f). 
The spectrogram with N - 88 is shown in Fig. 7.3.1(c). 

The same procedure will be used for determination of the optimal number of 
terms L, in a transition from the spectrogram to the pseudo WD, according to the 
recursive form of the S-method (SM) [Article 6.2]" 

SMx(n, k; L) - SM=(n, k; L - 1) + 2~{F=(n, k + L)F:~(n, k - L)} (7.3.10) 

where SMz(n, k; 0) - I F y ( n ,  k)] 2, and both k + L and k -  L are within the basic 
frequency period. Note that  SM(n, k; N/2) is equal to the pseudo WD. The optimal 
distribution SM+(n, k; L), on our way from L - 0 (the spectrogram) toward L - 
N/2 (the pseudo WD), is the one calculated with L producing the minimal value of 
M[SMx(n,k;L)], 

L + - arg rn~n {A/~ [SMx(n,k;L)]}. (7.3.11) 
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Fig .  7.3.1: (a)-(e) Spectrogram for various window lengths, and (f) its measure j ~  [SW(n,k)] - M 2. 
The lowest M 2 is achieved for N = 88, being the best window length choice according to this measure. 
(g)-(k) The S-method for various values of parameter L, and (I) its measure 2v[ [SMx(n, k; L)] - M 2. 
The lowest M 2 is obtained for L - 9. 

Here, instead of ISM~(n, k; L)I, a nonnegative part of SMx(n,k; L) will be used. 
Distributions SMz(n,k; L) should be properly scaled in order to satisfy unbiased 
energy condition. The same signal is used for the illustration of the SM. Since 
this method is based on the WD, the best results will be achieved with a wide lag 
window in the STFT calculation, N - 256. The spectrogram (L - 0) is shown in 
Fig. 7.3.1(g). By increasing L the SM improves concentration of the spectrogram 
toward the pseudo WD quality, meaning lower measure {M [SMx(n, k; L)]} = M 2, 
Fig. 7.3.1(h), 7.3.1(i). After L has reached the value equal to the distance between 
the auto-terms, cross-terms start to appear, increasing M 2, Figs. 7.3.1(j), 7.3.1(k). 
Minimal M 2 means a trade-off between the auto-terms concentration and the cross- 
terms appearances, Fig. 7.3.1(k). The SM with L corresponding to minimal M22 is 
shown in Fig. 7.3.1(1). 

The concentration measure is illustrated on time-frequency analysis of a pressure 
signal in the BMW engine with speed 2000 [rev/min], Fig. 7.3.2, [Article 15.2]. 

7.3.3 Parameter Optimization 
Parameter optimization may be done by a straightforward computation of a dis- 
tribution measure .M[px(n, k)], for various parameter values. The best choice ac- 
cording to this criterion (optimal distribution with respect to this measure) is the 
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Fig.  7.3.2: Concentration measure illustration on time-frequency analysis of a car engine pressure 
signal. Signal, and its S-method based time-frequency representations are given. Time is rescaled into 
corresponding crank-angle. The best choice according to this measure was L -- 3. 

distribution which produces the minimal value of Ad[px(n, k)]. In the cases when 
one has to consider a wide region of possible parameter values for the distribution 
calculation (like for example window lengths in spectrogram), this approach can 
be numerically inefficient. Then, some more sophisticated optimization procedures, 
like the one using the steepest descent approach described in [4], can be used. Its 
simplified version will be presented here [9]. 

The gradient of a measure A,4[p~:(n, k)], with respect to a distribution's general- 
ized optimization parameter denoted by ~, is 

k)] k)] opt(n,  k) 
op (n,k) " 

Iterations, starting from a very low concentrated distribution toward the maximally 
concentrated one, i.e., toward the measure minimum, can be done according to 

~rn+l -- ~rn - -  #C~./~[px(n, k)]/O~ (7 .3 .12)  

where # is the step, which should be chosen in the same way as the step in the other 
adaptive algorithms. The step should not be too small (since the convergence would 
be too slow), and not too large (to miss the minimum, or cause the divergence). 

In discrete implementations, the gradient OAd[pz(n, k)]/O~ can be approximated 
based on .M[px(n, k; ~m)] calculated with ~m and its previous value ~m-1 

.A/~[px(n , k; ~rn)] - .A/[[Px(ft, k; ~m-1)] (7 .3 .13)  
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Example: The optimization procedure will be illustrated on the signal x(t), its 
spectrogram, and the measure form Example 2. The optimal window length is 
obtained in few iterations by using (7.3.13), starting from the very narrow window. 
Values of ~0 = N = 16 and ~1 = N = 20 in the initial and first iteration, are 
assumed. The next value of ~m+l -= N is calculated according to (7.3.13). During 
the iterations we get ~ m  - -  16, 20, 76, and 90. The algorithm is stopped at ~,n = 90, 
when I~m+l -  ~ml < 2, since even number of samples are used in the realization. 
Note that  the obtained optimal value is within +2 of the value obtained by direct 
calculation. The value of parameter # = 1//3 has been used in all examples. 

7.3.4 Summary and Conclusions 
Measurement of time-frequency distributions concentration, with application to an 
automatic optimization of distribution parameters, is presented. It is based on the 
forms borrowed from the classical signal analysis, probability, or information theory, 
with appropriate interpretations and adjustments. 
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7.4 RESOLUTION P E R F O R M A N C E  ASSESSMENT FOR 
Q U A D R A T I C  TFDs o 

7.4.1 Selecting and Comparing TFDs 
Quadratic time-frequency distributions (TFDs) are effective tools for extracting in- 
formation from a non-stationary signal, such as the number of components, their 
durations and bandwidths, components' relative amplitudes and instantaneous fre- 
quency (IF) laws (see Chapters 1 and 2). The performance of TFDs depends on 
the type of signal (see Chapter 3) [1,2]. For example, in the case of a monocompo- 
nent linear FM signal, the Wigner-Ville distribution is known to be optimal in the 
sense that it achieves the best energy concentration around the signal IF law (see 
Article 2.1 for more details) [1]. 

In applications involving multicomponent signals, choosing the right TFD to 
analyze the signals is an immediate critical task for the signal analyst. How best to 
make this assessment, using current knowledge, is the subject of this article. 

Let us, for example, consider a multicomponent whale signal, represented in the 
time-frequency domain using the Wigner-Ville distribution, the spectrogram, the 
Choi-Williams distribution, the Born-Jordan distribution, the Zhao-Atlas-Marks 
(ZAM) distribution, and the recently introduced B-distribution [3] (see Fig. 7.4.1). 

To determine which of the TFDs in Fig. 7.4.1 "best" represents this whale signal 
(i.e. which one gives the best components' energy concentration and best interfer- 
ence terms suppression, and allows the best estimation of the components' IF laws) 
one could visually compare the six plots and choose the most appealing. The spec- 
trogram and the B-distribution, being almost free from the cross-terms, seem to 
perform best. 

The performance comparison based on the visual inspection of the plots becomes 
more difficult and unreliable, however, when the signal components are closely- 
spaced in the time-frequency plane. To objectively compare the plots in Fig. 7.4.1 
requires to use a quantitative performance measure for TFDs. There have been 
several attempts to define objective measures of "complexity" for TFDs (see Sec- 
tion 7.3.1). One of these measures, the R(Snyi entropy given in [4], has been used by 
several authors in preference to e.g. the bandwidth-duration product given in [1]. 
The performance measure described in this article, unlike the Re~nyi entropy, is a 
local measure of the TFD resolution performance, and is thus more suited to the 
selection problem illustrated by Fig. 7.4.1. This measure takes into account the 
characteristics of TFDs that influence their resolution, such as energy concentra- 
tion, components separation, and interference terms minimization. Methodologies 
for choosing a TFD which best suits a given signal can then be developed by optimiz- 
ing the resolution performance of considered TFDs and modifying their parameters 
to better match application-specific requirements. 

~ Boualem Boashash and Victor Sucic, Signal Processing Research Cen- 
tre, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia 
(b.boashash@qut.edu.au, v.sucic@qut.edu.au). Reviewers: W. J. Williams and LJ. Stankovi6. 
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Fig. '7.4.1: TFDs of a multicomponent whale signal. 

7.4.2 Performance Criteria for TFDs 
In the case of monocomponent FM signals, the best TFD is that which maximizes 
energy concentration about the signal instantaneous frequency. This is achieved by 
minimizing component sidelobe amplitude As relative to mainlobe amplitude Am, 
and mainlobe bandwidth B relative to central frequency f (see Fig. 7.4.2). 

The instantaneous concentration performance of a TFD may thus be quantified 
by the measure p expressed as: 

p ( t )  = 
As(t) 
Am(t) 

B(t) 
f(t) (7.4.1) 

A good performance is characterized by a small value of the measure p. For ex- 
ample, for the Wigner-Ville distribution of a linear FM signal with infinite duration, 
the bandwidth B and the sidelobe amplitude As are zero [1], and we obtain p = 0. 

For multicomponent FM signals, the performance of a TFD can be quantitatively 
assessed in terms of: 

�9 the energy concentration of the TFD about the respective instantaneous fre- 
quency of each component, as expressed by Eq. (7.4.1), and 

�9 the components resolution, as measured by the frequency separation of the 
components' mainlobes, including the effect of cross-terms. 
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Fig.  7.4.2: Slice of a TFD of a monocomponent signal at time t = to. The dominant peak is the 
component, while the other peaks are the sidelobes. For clarity of presentation, we limit ourselves to 
measuring the mainlobe bandwidth at 0.71 of the component normalized amplitude Am. 

Fig.  7.4.3: Diagram illustrating the resolution of a two-component signal in the absence of cross-terms. 
The lobes are clearly distinguished from each other; the components are said to be resolved. 

For stationary signals, the frequency resolution in a power spectral density es- 
timate of a signal composed of two single tones, fl  and f2 (see Fig. 7.4.3), may be 
defined as the minimum difference f2 - fl  for which the following inequality holds: 

fl + B1/2 < f 2 -  B2/2 ,  fl  < f2 (7.4.2) 

where B1 and B2 are the respective bandwidths of the first and the second sinusoid. 
In the case of non-stationary signals, for a TFD pz(t, f) of a two-component 

signal, the above definition of resolution is valid for every time slice of a cross-term- 
free TFD, such as the spectrogram. However, for TFDs exhibiting cross-terms, we 
need to take into account the effect of cross-terms on resolution. 

A slice of a typical quadratic TFD, with components clearly resolved, is shown 
in Fig. 7.4.4(a), where Bl(to), fl(to), Asl (to) and Am1 (to) represent respectively 
the instantaneous bandwidth, the IF, the sidelobe amplitude and the mainlobe 
amplitude of the first component at time t = to. Similarly, B2(t0), f2(t0), As2(to) 
and Am2 (to) represent the instantaneous bandwidth, the IF, the sidelobe amplitude 
and the mainlobe amplitude of the second component at the same time to. The 
amplitude Ax(to) is that of the cross-term. An example of a quadratic TFD with 
non-resolved components is shown in Fig. 7.4.4(b). 
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(a) The two dominant peaks are the 
(resolved) signal components, the 
middle peak is the cross-term, and 
the other peaks are the sidelobes 

(b) The two components and the 
cross-term have merged into a single 
peak; we say that  the components 
are not resolved 

F i g .  7 .4 .4 :  Slice of a TFD  of a two-component  signal taken at t ime t -- to. 

7.4.3 Resolution Performance Measure for TFDs 
Eq. (7.4.2) and Fig. 7.4.4(a) suggest that the resolution performance of a TFD for a 
neighboring pair of components in a multicomponent signal may be defined by the 
minimum difference D(t) = f 2 ( t ) -  fl (t) for which we still have a positive separation 
measure S(t) between the components' mainlobes centered about their respective 
IFs, fl (t) and f2(t). For best resolution performance of TFDs, S(t) should be as 
close as possible to the true difference between the actual IFs. 

The components' separation measure S(t) is expressed as [5]: 

Bl (2 t) ~(t) : ( f 2 ( t )B2( t ) ) -  (re(t) ) (7 .4 .3)  

The resolution also depends on the following set of variables, all of which should 
be as small as possible: 

(a) the normalized instantaneous bandwidth of the signal component Bk(t)/fk(t), 
k = 1, 2, which is accounted for in S(t) (Eq. (7.4.3)), 

(b) the ratio of the sidelobe amplitude IAsk (t)l to the mainlobe amplitude IAmk (t)l , 
k = 1, 2, of the components, and 

(c) the ratio of the cross-term amplitude IAx(t)l to the mainlobe amplitudes of 
the signal components IAmk (t)l, k = 1, 2. 

It follows that the best TFD for multicomponent signals analysis is the one that 
concurrently minimizes the positive quantities (a), (b), (c), and maximizes S(t). 

Hence, by combining the above variables, expressions for a measure P(t) of the 
resolution performance of a given TFD can be defined. Two have been proposed 
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in [5], among these a normalized performance measure expressed as: 

1{ P( t ) -  1 -  -~ As(t) 
Am(t) 

1 A=(t) 
Am(t) 

s(t) +(1 D(t)) } (7.4.4) 
where, for a pair of signal components, A,~(t) and As(t) are respectively the average 
amplitudes of the components' mainlobes and sidelobes, Az(t) is the cross-term 
amplitude, S(t), defined by Eq. (7.4.3), is a measure of the components' separation in 
frequency, and D(t) = f2(t)- fl (t) is the difference between the components' actual 
IFs. The algorithm presented in [6] describes how the parameters in Eq. (7.4.4) are 
measured in practice. 

The measure P(t) is close to 1 for well-performing TFDs and 0 for poorly- 
performing ones. Therefore, when designing a TFD we want to maximize P(t) in 
order to reduce the cross-terms, while preserving the components' resolution. 

In some applications involving real-life signals, we may need to better discrimi- 
nate between different TFDs resolution performances in a given set of K TFDs. In 
this case, a suitable alternative to P(t) that  was proposed in [7] could be used. It 
is expressed as: 

Amj(t)  , (t) l Amj Dj(t) 

M j ( t ) - l - - ~  max (I A*~(t) ]Amk(t) / max (IA=~(t) I max (Bk(t)) 
A.~ k (t) / <k<K Dk(t) l < k < K  �9 l < k < K  1 

(7.4.5) 
where Mj(t) (1 _< j <_ K) is the resolution performance measure of the j - th  TFD, 
and B is the average instantaneous bandwidth of the components mainlobes. The 
measure M(t) is used in Section 7.4.5 to compare the performances of quadratic 
TFDs of a real-life signal, as it discriminates better than the measure P(t) for 
real-life signals [8]. 

7.4.4 Application to the Selection of the Optimal TFD 
for a Given Multicomponent Signal 

A methodology for selecting the optimal TFD for resolving closely-spaced compo- 
nents in a multicomponent signal involves then the following steps: 

1. Define a set of comparison criteria describing the information sought from 
TFDs (Section 7.4.2). 

2. Objectively measure the resolution performance of TFDs based on these cri- 
teria (use the measure P defined by Eq. (7.4.4)). 

3. Optimize each TFD to match the criteria as close as possible [5, 6]: Select as 
the optimal TFD kernel parameter value the one which maximizes the over- 
all performance measure Poveran, taken to be the mean of the instantaneous 
measures P in a time interval of interest. 
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Table  7.4.1: Optimization results for the TFDs of signal s(t) defined by Eq. (7.4.6). 

TFD Optimal value of the kernel parameter Po~er~]l 
Spectrogram Bartlett window, length 31 0.86 
Wigner-Ville N/A in this case 0.62 

Choi-Williams a = 1 0.82 
Born-Jordan N/A in this case 0.81 

Zhao-Atlas-Marks (ZAM) a = 2 0.67 
Modified B ~ = 0.04 0.88 

4. Quantitatively compare TFDs and select the best one: An optimized TFD 
which has the largest value of Poverall is selected as best for representing the 
given signal in the joint time-frequency domain. 

Example :  We define the following two-component signal in noise: 

8( t )  --  81 ( t )  q- 82(t)-~- n(t) 
= cos (21r (0.1 t + 2 t2)) + cos (27r (0.2 t + ~ t2)) + n(t) (7.4.6) 

where a = 0.0016 is the component bandwidth-duration ratio (duration T = 128), 
and n(t) is additive white Gaussian noise with signal-to-noise ratio SNR = 10 dB. 
The sampling frequency is f~ = 1 Hz. 

The signal s(t) is analyzed in the time-frequency domain using the following 
TFDs: the spectrogram, the Wigner-Ville distribution, the Choi-Williams distribu- 
tion, the Born-Jordan distribution, the Zhao-Atlas-Marks (ZAM) distribution, and 
the Modified B-distribution [9]. 

To find the optimal TFD for resolving the two components of s(t), we first 
find the optimal values of the TFDs kernel parameters, as described in the above 
methodology. The Wigner-Ville distribution and the Born-Jordan distribution have 
no "smoothing" parameters, hence do not need optimizing. The optimized TFD 
with the largest Pover~ll among the considered TFDs is then selected as optimal 
for representing s(t). Table 7.4.1 lists the results of the optimization process, and 
it shows that the signal optimal TFD is the Modified B-distribution with the pa- 
rameter/~ = 0.04. All optimized TFDs are plotted in Fig. 7.4.5. From the signal 
optimal TFD important signal parameters can be measured (see Table 7.4.2). In 
addition, by optimizing components' concentration and resolution, more accurate 
components IF laws' estimates are obtained from the peaks of the optimal TFD's 
dominant ridges in the time-frequency plane [1] (see Fig. 7.4.6). 

7.4.5 Use of the Performance Measure in Real-Life Situations 
The methodology defined in this section enables to select a real-life signal best- 
performing TFD in an objective, automatic way. Its use should make time-frequency 
techniques more applicable in practice (e.g. machine condition monitoring described 
in Articles 15.2 and 15.6, or other applications presented in Part V). 
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Fig. 7.4.5: Optimized TFDs of signal s(t) defined by Eq. (7.4.6). 

Table 7.4.2: Parameters of Sl(t) and s2(t) (Eq. (7.4.6)) measured from the signal s(t) optimal TFD 
(Modified B-distribution, /~ -- 0.04). The values shown are the averages over t E [32, 96]. 

Parameter Component sl(t) Component s2(t) 
Instantaneous bandwidth B 0.0194 0.0195 

Mainlobe amplitude IA~nl 1.0002 0.9574 
Sidelobe amplitude IAs] 0.0900 0.0858 

Cross-term amplitude ]Axl 0.1503 

The methodology consists of the following steps: 

1. Represent the signal in the time-frequency domain with a quadratic TFD, i.e. a 
smoothed Wigner-Ville distribution (see Article 3.2). Following the approach 
described in Article 5.7, we smooth the WVD in both time t and lag T with 
the Hanning window of length equal to a quarter of the signal duration. This 
time-frequency smoothing is intended to suppress the WVD inner and outer 
artifacts, while preserving components time-frequency features (see Article 4.2 
for more details). 

2. For the different time instants of the smoothed WVD, select the two closest 
dominant peaks in the frequency direction. To achieve the best resolution of 
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(a) Modified B (~ = 0.04) (b) Spectrogram (Bartlett ,  L = 31) 

Fig. 7.4.6: Comparison of the measured (dashed) and true (solid) IF laws of the component sl(t) 
(left) and s2(t) (right) of the signal s(t) defined by Eq. (7.4.6). The mean-square-errors (MSEs) of the 
IF estimates obtained from the peaks of the signal optimized Modified B-distribution (best-performing 
TFD) are given in (a), and those obtained from the peaks of the signal optimized spectrogram (second 
best TFD) in (b). 

the signal components, the best resolution of the two closest components at an 
observed time instant is sufficient [10]. Note that  if a signal is monocomponent 
or no components exist at a particular time, this time instant is not considered. 

3. For the selected pairs of components, optimize different TFDs using the reso- 
lution performance measure M defined by Eq. (7.4.5). The measure M is used 
over P since it is a better discriminator of real-life signals TFDs resolution 
performances [11]. The kernel parameter value, which from a set of different 
values considered, maximizes the overall performance measure (the mean of 
M over the observed times) is selected as the kernel parameter optimal value. 

4. Calculate the measure M of the optimized TFDs for each of the selected pairs 
of signal components. The TFD which maximizes the average (over time) M 
is selected as the signal best-performing TFD among the considered TFDs. 

E x a m p l e :  To illustrate how to use this methodology in practice, let us find the best- 
performing TFD for the Noisy Miner (Manorina melanocephala) song signal. The 
same TFDs we considered in the synthetic signal optimal TFD selection example 
will be considered in this real-life signal example. 

We start  by representing the signal in the time-frequency domain with the 
Wigner-Ville distribution smoothed in time and lag with the Hanning windows 
of length L = 3501 (Fig. 7.4.7(a)). 

For each time instant of the smoothed WVD we then identify the pair of closest 
components. From Fig. 7.4.7(b) we can see that  different components form such 
pairs at different times. 

Next, as described in steps 3 and 4 of the above-defined methodology, the six 
considered TFDs are first optimized, after which their resolution performances are 
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(a) Smoothed W V D  (Han- 
ning, L = 3501) 

(b) Pairs of closest compo- 
nents 

(c) Modified B (fl = 0.91) 

Fig. 7.4.7: Optimization of the bird song signal TFDs. The signal Smoothed WVD is shown in (a), 
and the pairs of its closest components in (b), with the overall closest pair (at time t -- 4295) marked 
by the squares. The signal optimized Modified B-distribution is shown in (c). 

Table 7.4.3: Optimization and comparison results for the TFDs of the Noisy Miner song signal. The 
values of Moverall indicate that the spectrogram performs better than most traditional TFDs in this 
case. Only the Modified B-distribution performs better than the spectrogram and all others. 

TFD Optimal value of the kernel parameter Moveran 
Spectrogram Bartlett window, length 3501 0.90 
Wigner-Ville N/A in this case 0.50 

Choi-Williams a = 0.004 0.74 
Born-Jordan N/A in this case 0.65 

Zhao-Atlas-Marks (ZAM) a = 2 0.63 
Modified B fl = 0.91 0.93 

evaluated using the measure M. Table 7.4.3 shows the signal TFDs kernel pa- 
rameters optimization and the TFDs resolution performance results. The Modified 
B-distribution ibr ~ = 0.91, plotted in Fig. 7.4.7(c), is found to have the largest 
value of Moverall (the mean of M over the time instants). Therefore, we select this 
TFD as best to represent the Noisy Miner song signal in the time-frequency plane. 

7.4.6 Summary and Conclusions 
This article defines a measure for assessing the resolution performance of quadratic 
TFDs in separating closely-spaced components in the time-frequency domain. The 
measure takes into account key attributes of TFDs, such as components' mainlobes 
and sidelobes, and cross-terms. The introduction of this measure allows to quantify 
the quality of TFDs instead of relying solely on visual inspection of plots. The 
resolution performance measure also allows for selecting the optimal TFD in a given 
practical application, and improving methodologies for designing high resolution 
quadratic TFDs, such as the Modified B-distribution. 
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7.5 J O I N T - D O M A I N  REPRESENTATIONS 
VIA D I S C R E T E - D O M A I N  FRAMES 0 

Representation of a signal in joint domains has been a very active area in signal pro- 
cessing. Prime examples of such representation are the short-time Fourier transform 
(STFT) and the discrete-time Gabor transform (DTGT) in the joint time-frequency 
domain, and filter banks and wavelets in the joint time-scale domain. The varieties 
of joint-domain transforms are unified in this article in the form of product function 
and cascaded frames. 

7.5.1 Frames and Reconstruction Collections 
A f r a m e  is a collection of sequences, which we refer to as frame elements, that  
generates a finite representation of a signal via the inner product of the signal with 
the frame elements. An overview of frame theory can be found in [1, 2]. Mathe- 
matically, a collection of sequences {Vm} in a Hilbert space ]HI, m c Z, the set of 
integers, forms a frame for ]HI, if there exist two numbers A and B, called the lower 
and upper frame bound, respectively, such that  0 < A < B < c~ and 

Allfll 2 ~ ~-~.l (f, vm)12 <_ Bllffl 2, v f  e H. (7.5.1) 
m 

Every f c H can be reconstructed using a corresponding dual frame {Um} as 
f = E m  (f, vm) um = E,~ (f, Urn) Vm. The corresponding dual frame {Um} 
in H is defined by Um = S-lyre, where S is the frame operator defined via 

S f  = E m  (f, Vm)vm. 
A collection {urn} in IH[ is defined to be a r e c o n s t r u c t i o n  co l l ec t ion  [3] (RC) 

for {vm} if every x e ]HI can be written as x = ~-~m (z, Vm) urn. It is assumed that  all 
the collections or sequences described in this article belong to the same Hilbert space 
of interest. An RC {urn} is related to a frame {Vm} via the following theorem [3]. 

T h e o r e m  7.5.1: A collection {urn} is a reconstruction collection for a frame {Vm} 
for ]HI if and only if 

= - 1 ) .  ( 7 . 5 . 2 )  

m 

The RC concept is similar to the pseudo-frame concept [4], where two Bessel se- 
quences {urn} and {Vm} are a pseudo frame and pseudodual frame pair for IE if and 
only if (f, g) = }-~m (f, v,~)(urn, g), V f, g C ]HI. The pseudo-frame theory, however, 
does not restrict the analysis collection to be a frame. By restricting the analysis 
collection to be a frame, the boundedness and continuity of the transform is ensured. 

~ Joe l  M. Morr is ,  Computer Science and Electrical Engineering Department, Uni- 
versity of Maryland Baltimore County, 1000 Hilltop Circle, Catonsville, MD 21250, USA (mor- 
ris@umbc.edu), and Sanjay  M. Joshi,  Lucent Technologies, 1701 Harbor Bay Parkway, Alameda, 
CA 94502, USA (joshi@ieee.org). Reviewers: X.-G. Xia, R. Baraniuk, and M. J. Bastiaans. 
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The spaces of interest are the spaces of periodic and non-periodic square-summ- 
able sequences. The space 12(Z/L) is the space of all sequences f (k)  periodic in 
k with integer period L. The inner product for 12(Z/L)is  defined as (x,y) = 

L - 1  ~]k=o x(k)y*(k). The designation L represents the set { 0 , 1 , 2 , . . . , L -  1}. The 
space/2(Z) is the space of all square-summable sequences, with the inner product 
defined as (x, y ) -  ~-]k~___cr x(k)y*(k). 

7.5.2 Product-Function Frames 

Product-function frames (PFFs) generalize the windowed transforms, such as the 
discrete-time Gabor transforms, as seen in the following subsections. 

7.5.2.1 PFF for Periodic Spaces 
A P F F  with two defining factor functions gm and r in 12(Z/L) is defined via 
{gmr The elements of this frame are (gmr - gm(k)r where m e M 
and n e N. Since the span of {gmr is 12(Z/L), it is necessary that  M N  should 
be greater than or equal to its dimension L, i.e., M N  >_ L. 

We choose the collection {r as an orthonormal basis for 12(z/g)  and take 
L = M N ' =  M'N ,  where M '  and g '  are integers. This implies 12(z/g)  C 12(z/n). 
The following theorem [5] characterizes the frame condition for {gmr in terms of 
matrices G(i) ,  i c N, whose elements are given by 

M - 1  

Gqp(i) - E gm(i + qN)gm(i + pN), p,q e M'. 
m--O 

T h e o r e m  7.5.2" A collection {gmr is a frame for 12(Z/i) iff G(i) are non- 
singular Vi c N.  

Let an RC of a frame {gmr be denoted by {Vmr defined similar to {gmr 
The collections {gmr and {Vmr are related via the following theorem [5]. 

T h e o r e m  7.5.3: A frame {Vmr is a reconstruction collection for {gmr iff 
gm (k) and %n (k) satisfy 

M - 1  

E g,,~(k + qN)Vm(k + pN) - 5 ( q -  p), k e N and q,p C M'. (7.5.3) 
m--O 

Let gin(k) - g ( k -  mN')  be a time-shifted version of a sequence g(k), where N '  
is the time-shift parameter.  Equation (7.5.3) then becomes 

M - 1  

E g* (k + q g  - mN' )v (k  + pN - mN')  - 5(q - p), k e N,  q, p e M'. (7.5.4) 
m - - O  

This condition is the same as the one for the G a b o r  t r a n s f o r m  in [6] and in 
several other papers in different forms. Since r can be chosen as any orthonormal 
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transform, the same pair of g and ~/ can be used for any windowed orthonormal 
transform. W i n d o w e d  t r a n s f o r m s  are equivalent to oversampled (or critically- 
sampled) m o d u l a t e d  f i l t e rbanks  [7]. The relationship between the analysis and 
synthesis filters is in the time domain as given by Eq. (7.5.4). 

Instead of using a single window for the Gabor transform, we can use a number 
of windows, resulting in a m u l t i - w i n d o w  G a b o r  t r a n s f o r m  [8]. The equations 
are modified such that grn is replaced by gp,m, where p denotes the window number 
and m denotes the shift. 

We now define a new family of transforms for periodic discrete-time sequences 
called p r o d u c t  t r a n s f o r m s  [5]. Let g i n ( k ) -  g(k)~bm(k) and ~/m(k ) -  "),(k)~bm(k), 
where {r is an orthonormal basis for 12(Z/M). From Theorem 7.5.3, g and ~' 
must satisfy 

M - 1  

g* (k + qN)7(k + pN) ~ ~;~(k + qN)~m(k + pN) - ~(q - p) ,  (7.5.5) 
m - - 0  

where k �9 N and p, q �9 M',  to guarantee {gmr and {TmCn} are reconstruction 
collections for each other. The dimension of the space spanned by {gCmCn } is equal 
to the least common multiple LCM (M, N) [5]. 

This scheme has been utilized for fast computation of the DFT, i.e., F F T ,  by 
using N and M-point DFTs as {r and {~m}, where M and N are relatively- 
prime integers. The same algorithm can be used for any orthonormal transform 
of periodic sequences. The frame-theoretic structure derived above allows selecting 
different transforms for {r and {r to obtain a variety of transforms. 

7.5.2.2 PFF for Non-Periodic Spaces 

For 12(Z), the elements of a PFF  {gmOn} are (gmOn)(k) - gm(k)r like the 
periodic case. The indices m and n are integers and m c Z and n �9 N.  

Following Daubechies' method [1], a sufficient condition for a product-function 
collection in 12(Z) to be a frame can be stated as follows [3]. 

T h e o r e m  7.5.4: L e t  {g,cCn} be a collection in 12(Z), where m �9 Z ,  n �9 N ,  and 
{r } is an orthonormal basis for 12 (Z/N).  If  

r e ( g )  --  inf ~ Ig~( / ) l  ~ > 0, M ( g )  - sup E ]gm(l)[2 < c~, (7.5.6) 
lEZ IEZ 

m m 

and 

for some ~ > O, where 

s u p  + - < ( 7 . 5 . 7 )  
sEZ 

fl(s) - sup E Igm(l)gm(1 - s)l, (7.5.8) 
IEZ 

m 

then {g,cCn } is a frame. 



318 Chapter 7: Measures, Performance Assessment and Enhancement 

Examples of such collections are windowed transforms and a new scale-modulation 
transform discussed later in this article. 

A necessary condition for a frame is as follows [3]. 

C o r o l l a r y  7.5.5: If  a collection {green} defined in Theorem 7.5.~ is a frame for 
/2(Z), then Eq. (7.5.6) is true. 

For a PFF {green}, let an RC be defined as {~/mCn}. Note that  this is not 
the only solution possible. Substituting in the generalized reconstruction condition 
(Eq. 7.5.2), we get 

g t , ( k  - - ( 7 . 5 . 9 )  

m 

Equation 7.5.9, thus, is a necessary and sufficient condition for a collection {~'mCn} 
to be an RC for a frame {green }. 

For a windowed transform, such as the discrete-time Gabor transform, gm(k) is 
defined as a shifted version of a mother window g(k), i.e., gin(k) - g(k - m M ) ,  
where M > 1 is known as the shift-parameter. Assuming that  ")/m(k) also has 
the same structure (it is not necessary), the reconstruction condition (Eq. 7.5.9) 
becomes 

~-~.g*(k - m M  - ng)~/(k - raM) = 5(n), (7.5.10) 
m 

which is analogous to the biorthogonal-like condition [9] for defining pairs of biortho- 
gonal-like sequences (g(k)} and {~'(k)} used for the discrete-time Gabor expansion 
in /2(Z). Collections (gmn} and (~/mn}, where gmn(k) = g ( k -  nN)e  j2~rmk/M, 
g(k) C/2(Z), and ~mn defined similarly, are a pair of collections of biorthogonal-like 
sequences if 

N 
(g, 7 (uv) ) - -~5(u)5(v),  (7.5.11) 

where 7(uV)(k) - 7(k - uM)e  j27rvk/N [9]. Equation 7.5.11 is called the b i o r t h o g o -  
nal- l ike  cond i t ion .  

The product-function frame structure separates the computation of the window 
functions from the orthonormal basis used, thus reducing the complexity. The same 
windows g and 7, for instance, could be used with the discrete cosine transform 
(DCT) to obtained a windowed DCT. Thus, we have a generalized structure for 
windowed transforms. 

If the frame element component gm is replaced by a component gpq, where 
gpq(k) - g p ( k -  qT), the necessary and sufficient conditions for the m u l t i - G a b o r  
e x p a n s i o n s  in /2(Z) are obtained. In this frame, gp are different windows, T is 
the time-shift parameter, and qT is the shift of each window. This structure, hence, 
extends the multi-window Gabor schemes described in [8] for the finite-dimensional 
space of periodic signals, 12(z/n),  to the infinite-dimensional space/2(Z). 

A new type of transform using a s c a l e - m o d u l a t i o n  structure [3] is now derived 
from the PFFs.  Consider C L, the space of length-L complex sequences, where 
for two sequences x(k) and y(k), k c L, in C L, the inner product is defined as 
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Fig. 7.5.1" Reconstruction collection windows '~'m for the scaled windows discussed in the text. 

( x ~ y )  L - 1  - ~-~k=O x ( k ) y *  (k) and the norm is defined via I lx l l -  y/(x, x). It is a finite- 
dimensional subspace of/2(Z) with dimension L. Let L - M N ,  where M and N 
are integers. Define gin(k) ,  m - 0, 1, 2 , . . . ,  M - 1, to be scaled versions of a mother 
window, each of length (m + 1)N and norm 1. For example, an exponentially- 
decaying mother window generates scaled windows given by gin(k)  = e - d k / ( ( m + l ) g ) ,  

where 0 _< m _< M -  1, 0 < k < (m + 1)N. Let the r elements used with these 
windows be r = e j2~nk /g ,  where 0 < n, k _ N -  1. Note that  the r elements 
are periodically extended to a length of M N .  For such a frame with d = 4 and 
N -- 16, the corresponding RC elements are shown in Fig. 7.5.1. 

This new transform was used in [3] to analyze an exponentially decaying mod- 
ulated signal, as found in magnetic resonance techniques. It was shown that  the 
scale-modulation transform is likely to yield better signal estimation in the presence 
of noise. 

The shift-modulation structure of the Gabor transforms has been in use for 
several years. The shift-scale structure of the wavelet transforms is a more recent 
development. The obvious third choice is the scale-modulation structure, which is 
provided by the scale-modulation transform. 

7.5.3 Cascaded Frames 
Although the product-function structure unifies the windowed transforms, it is not a 
good structure to represent the other popular joint time-frequency analysis scheme: 
wavelets. The discrete wavelet transform (DWT) and all of its variations can be 
unified under a second structure, cascaded frames. In simpler te rms,  a cascaded 
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&D--Ho 

Fig. 7.5.2" Perfect reconstruction filterbank. 

frame is a ' transform of transforms', although the discussion is presented in terms 
of the more general frames concept. 

Suppose a frame {U0,m} maps a signal f in 12(Z/Lo) to a vector of coefficients 
C1 - -  [C.I,0, Cl,I,...,Cl,L1], L1 ~_ Lo. The coefficients themselves can be treated as 
a signal in 12(Z/L1). We can then use a frame {ul,n} for 12(Z/L1) to map the 
v e c t o r  E l  t o  another vector c2 in some 12(Z/L2), L2 >_ L1. A signal in 12(Z/Lo), 
thus, is effectively mapped to a coefficient vector c2 in 12(Z/L2). This can be 
viewed as a frame {Up}, p E L._.~2, operating on a signal f in 12(Z/Lo). We call 
this structure a cascaded frame. The following theorem proves that  the cascaded 
structure corresponds to a frame [3]. 

T h e o r e m  7.5.6: Suppose {no,m}, m e L_A, is a frame for 12(Z/Lo), and {Ul,n}, 
n c L2, is a frame for 12(Z/L1), where Lo <_ LI < L2. Then there exists a frame 
{Up}, p e L___22, for 12(Z/Lo) obtained by cascading {U0,m} and {Ul,n}. 

When the number of elements in a frame for a finite-dimensional space is finite, 
frame theory is characterized in terms of matrix theory. Computation of an RC 
becomes an inversion problem of square matrices in the case of critically-sampled 
frames, and that  of rectangular matrices in the case of oversampled frames. 

The cascaded structure can be extended to /2(Z)  via the following theorem [3]. 

T h e o r e m  7.5.7: If {urn}, m e Z, and {Vn}, n e Z, are frames for/2(Z), then 
cascading {urn} and {Vn} results in a frame for/2(Z). 

We now discuss some examples of cascaded frames in/2(Z).  Consider a perfect 
reconstruction (PR) filterbank (FB) shown in Fig. 7.5.2. One of the analysis filters, 
say G0, is typically a low-pass filter and the other is a high-pass filter. The output 
of each filter, thus, gives the information about the signal in a particular time period 
in the corresponding frequency band. In d i s c r e t e  wave le t  t r a n s f o r m s  (DWT), 
the output  of GO is further processed using the same filterbank, thus increasing the 
frequency resolution at the cost of reducing the time resolution for the transform 
coefficients. This cascading process is continued repeatedly to obtain the complete 
DWT. P R is guaranteed as long as the corresponding synthesis FB is present on 
the synthesis side. 

In wave le t  packe t  t r a n s f o r m s  (WPT),  the output of any filter may be sub- 
jected to another layer of cascading filters. This gives much more flexibility in 
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x ~ L-DFT 
L-IDFT 

Fig. 7.5.3: Cascaded WPT and DFT. 

> yo!O!  
x(O) o > Yot,) 

GO X(1) r ~ ~ > Yl(0) 
. : :1 ~ .d G0 > Yl(1) 
. _--1 

r ~ G 1 > Y2!0! 
r :l / "-] > Y2 ti) 
o ~ G1 X(7) e ~- Y3 (0) 

> Y3 (1) 

Fig. 7.5.4: An Extension of a WPT. z(0) through x(7) are input signal samples. Y0 through Y3 are 
the output signals. 

choosing the time and frequency resolution for the transform coefficients. In hy- 
b r i d  W P T ,  the filters GO and G1 may be different for each cascading layer. All 
these results can be readily extended to 12(Z/L) [10]. 

We need not restrict ourselves to cascaded filterbanks only. We can replace some 
of the filterbanks by any frame. Even a frame for a periodic space 12(Z/L), when 
used as a filterbank, provides a frame for/2(Z),  since it is effectively a windowed 
transform, where the window is a rectangular window of length L moved by L 
samples for each shift [3]. Thus, we can combine the W P T  with the DFT to obtain 
different TF plane partitions. Fig. 7.5.3 shows such a scheme. 

Instead of cascaded filterbanks, we" can use the DFT structure repeatedly to 
obtain various TF plane partitions, resulting in b lock  t r a n s f o r m  packe t s .  

New arrangements of the PRFBs,  such as shown in Fig. 7.5.4, can be used to 
obtain more extensions of the WPT.  The box labeled 'GO G I'  is an analysis FB like 
the one shown in Fig. 7.5.2. Similar to the wavelet transforms, all these frames can 
be easily extended to 12(Z/L) [10]. 

7 . 5 . 4  S u m m a r y  a n d  C o n c l u s i o n s  

In this article, we have seen how two frame structures, product-function frames and 
cascaded frames, generalize the popular transform techniques for joint-domain rep- 
resentation: discrete-time Gabor transforms for periodic and non-periodic spaces, 
and the discrete-time wavelet transforms. The necessary and sufficient conditions for 
the elements to form a frame were stated. It was demonstrated that  the popular dis- 
crete joint-domain representation techniques, namely, the discrete-time Gabor and 
wavelet transforms, are special cases of these structures. Several new transforms, 
namely, product-transform, scale-modulation transform, and various extensions of 
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the discrete wavelet transforms, were derived as special cases of these structures.  
These two structures result in a variety of discrete transforms, giving a user more 
freedom in choosing a transform bet ter  suited for a particular type of signal. To 
conclude, we believe tha t  this work paves the way for many new interesting discrete- 
domain representation schemes in signal processing. 

References 
[1] I. Daubechies, "The wavelet transform, time-frequency localization and signal analysis," 

IEEE Trans. Information Theory, vol. 36, pp. 961-1005, September 1990. 

[2] C. E. Hell and D. F. Walnut, "Continuous and discrete wavelet transforms," SIAM 
Review, vol. 31, pp. 628-666, December 1989. 

[3] S. M. Joshi, Joint-Domain Representations Using Discrete Domain Frames. PhD the- 
sis, Computer Science and Electrical Engineering Department, University of Maryland, 
Baltimore County, Catonsville, MD 21250, July 2000. 

[4] S. Li and D. M. Healy, Jr., "A parametric class of discrete Gabor expansions," IEEE 
Trans. Signal Processing, vol. 44, pp. 201-211, February 1996. 

[5] S. M. Joshi and J. M. Morris, "Some results on product-function frames," Signal Pro- 
cessing, vol. 80, pp. 737-740, April 2000. 

[6] M. R. Portnoff, "Time-frequency representation of digital signals and systems based on 
short-time Fourier analysis," IEEE Trans. Acoustics, Speech, ~ Signal Processing, vol. 28, 
pp. 55-69, February 1980. 

[7] H. BSlcskei and F. Hlawatsch, "Oversampled modulated filter banks," in Gabor Analysis 
and Algorithms: Theory and Applications (H. G. Feichtinger and T. Strohmer, eds.), ch. 9, 
pp. 295-322, Berlin/Boston: Birkh~user, 1998. 

[8] M. Zibulski and Y. Y. Zeevi, "Discrete multiwindow Gabor-type transforms," IEEE 
Trans. Signal Processing, vol. 45, pp. 1428-1442, June 1997. 

[9] J. M. Morris and Y. Lu, "Generalized Gabor expansions of discrete-time signals in 12(Z) 
via biorthogonal-like sequences," IEEE Trans. Signal Processing, vol. 44, pp. 1378-1391, 
June 1996. 

[10] G. Strang and T. Q. Nguyen, Wavelets and Filter Banks. Wellesley, MA: Wellesley- 
Cambridge Press, 1996. 



Chapter 8 

M ulti-Sensor and 
Processing 

Time-Space 

This chapter presents time-frequency methods suitable for multi-sensor and time- 
space processing. The topic is covered in five articles with appropriate cross- 
referencing to other relevant chapters. 

In underwater acoustics and telecommunications, separation of signal mixtures 
is traditionally based on methods such as Independent Component Analysis (ICA) 
or Blind Source Separation (BSS). These can be formulated using TFDs for deal- 
ing with the case when the signals are non-stationary (Article 8.1). Multi-sensor 
data can be processed with TFDs for channel estimation and equalization. In Blind 
Source Separation (BSS) and Direction of Arrival (DOA) estimation problems, the 
time-frequency approach to array signal processing leads to improved spatial resolu- 
tion and source separation performances. Methods include time-frequency MUSIC, 
AD-MUSIC and TFD-based BSS (8.2). In sensor array processing, for source lo- 
calization, TFDs provide a good framework for hypothesis testing as they possess 
additional degrees of freedom provided by the t and f parameters (8.3). TFD-based 
array detection is formulated using the Weyl correspondence. The TFD-based struc- 
ture allows the optimal detector to be implemented naturally and efficiently (8.4). 
In the underdetermined case, the time-frequency formulations, methodologies and 
algorithms for BSS are implemented using two different approaches, namely vector 
clustering and component extraction. Algorithms and MATLAB TM code for time- 
frequency BSS using the above-mentioned methods are provided (8.5). 

Time Frequency Signal Analysis and Processing 
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8 . 1  BLIND SOURCE SEPARATION USING 
TIME-FREQUENCY DISTRIBUTIONS 0 

Blind source separation (BSS) is a fundamental problem in signal processing that 
is sometimes known under different names: blind array processing, signal copy, 
independent component analysis, waveform preserving estimation, etc. In all these 
instances, the underlying model is that of n 'statistically' independent signals whose 
m (possibly noisy) mixtures are observed. Neither the structure of the mixtures 
nor the source signals are known to the receivers. In this environment, we want 
to identify the mixtures (blind identification problem) and decouple the mixtures 
(blind source decoupling). 

BSS can have many applications in areas involving processing of multi-sensor 
signals. Examples of these applications include: Source localization and tracking 
by radar and sonar devices; speaker separation (cocktail party problem); multiuser 
detection in communication systems; medical signal processing (e.g., separation of 
EEG or ECG signals); industrial problems such as fault detection; extraction of 
meaningful features from data, etc. 

Research in this area has been very active over the last two decades. Surprisingly, 
this seemingly impossible problem has elegant solutions that depend on the nature 
of the mixtures and the nature of the source statistical information. 

Most approaches to blind source separation assume (explicitly or not) that  each 
source signal is a sequence of independently and identically distributed (i.i.d.) vari- 
ables [1]. In this context, the blind source separation is possible only if at most one 
of the sources has a Gaussian distribution. In contrast, if the source sequences are 
not  i.i.d., we can blindly separate the sources even for Gaussian processes. Several 
authors have considered the case where each source sequence is a temporally corre- 
lated stationary process [2], in which case blind source separation is possible if the 
source signals have different spectra. Other contributors [3, 4], have addressed the 
case where the second 'i' of 'i.i.d.' is failing, that is, the non stationary case. 

Our focus is the exploitation of signal non stationarity for blind source separa- 
tion. In this case, one can use time frequency analysis to separate and recover the 
incoming signals. The underlying problem can be posed as a signal synthesis from 
the time frequency (t-f) plane with the incorporation of the spatial diversity pro- 
vided by the multisensor. Moreover, the effects of spreading the noise power while 
localizing the source energy in the t-f domain amounts to increasing the signal to 
noise ratio (SNR) and hence improved performance. This article reviews the BSS 
techniques that  exploit the joint eigenstructure of a combined set of time frequency 
distribution matrices. The first part is devoted to the BSS problem of instanta- 
neous mixtures while the second part considers the general case of blind separation 
of convolutive mixtures. 

~ Karim Abed-Meraim (Sig. & Image Proc. Dept., Telecom Paris, France, 
abed@tsi.enst.fr), Adel Belouchrani (EE Dept., Ecole Nationale Polytechnique, Algiers, Algeria, 
belouchrani@hotmail.com), and Rahim Leyman (Center for Wireless Communication, National 
University of Singapore, larahim@cwc.nus.edu.sg). Reviewers: B. Barkat and A. Cickochi. 
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8.1.1 Separation of Instantaneous Mixtures 
8.1.1.1 Data Model 
Consider m sensors receiving an instantaneous linear mixture of signals emitted 
from n _< m sources. The m x 1 vector x(t) denotes the output of the sensors at 
time instant t which may be corrupted by additive noise n(t). Hence, the linear 
data model may be given by" 

x(t) - A s ( t ) +  n(t), (8.1.1) 

where the m x n matrix A is called the 'mixing matrix'. The n source signals 
are collected in a n x 1 vector denoted s(t) which is referred to as the source 
signal vector. The sources are assumed to have different structures and localization 
properties in the time-frequency domain. The mixing matrix A is full column rank 
but is otherwise unknown. In contrast to traditional parametric methods, no specific 
structure of the mixture matrix is assumed. 

8.1.1.2 Spatial Time-Frequency Distributions 
The discrete-time form of a quadratic-class time-frequency distribution (TFD), for 
a signal x(t), may be expressed (cf. [5] and Article 6.1) as 

o o  o o  

D=x(t, f )  - E E r 1)x(t + m + 1)x*(t + m -  1)e -j4~yt (8.1.2) 
l ~ - - C X )  m ~ - - o o  

where t and f represent the time index and the frequency index, respectively. The 
kernel r l) characterizes the distribution and is a function of both the time and 
lag variables. The cross-TFD of two signals xl (t) and x2(t) is defined by 

o o  o o  

D z l x 2 ( t , f ) -  ~ ~ r 1 ) x l ( t + m + l ) x ~ ( t + m - 1 ) e  -j4~ryt (8.1.3) 
l = - c x ~  m = - -  c x )  

Expressions (8.1.2) and (8.1.3) are now used to define the following data spatial 
time-frequency distribution (STFD) matrix, 

(x)  (x)  

Dxx(t, f )  - ~ E r  + m + 1)x H(t + rn - 1)e -ya~yt (8.1.4) 
l ~ - - O O  m - - - - -  o o  

where [Dxx(t, f)]ij = Dz,xj (t, f),  for i , j  = 1 , . . . ,  m. x H denotes the conjugate 
transpose of x. 

Under the linear data model of equation (8.1.1) and assuming noise-free envi- 
ronment, the STFD matrix takes the following structure: 

Dxx(t, f )  - ADss(t ,  f ) A  g (8.1.5) 

where Ds~(t, f )  is the source TFD matrix whose entries are the auto- and cross- 
TFDs of the sources, respectively, defined as Ds~s~ (t, f )  and Ds~sj (t, f )  for i ~: j .  
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8.1.1.3 BSS based on STFD 

Let us now briefly review the principle of blind source separation based on the 
STFD [3, 6]. 

Whitening: Let W denotes a n x m matrix, such that (W A )(W A )  H - I, i.e. 
U = W A  is a n x n unitary matrix (this matrix is referred to as a whitening matrix, 
since it whitens the signal part of the observations). Pre- and Post-multiplying the 
STFD matrices Dxx(t, f )  by W leads to the whitened STFD-matrices, defined as: 

Dxx(t, f )  = WDxx( t ,  I ) W  g (8.1.6) 

From the definition of W and Eq. (8.1.5), we can express Dxx(t , f )  as 

Dxx(t , f )  = V D ~ ( t ,  f )U  g (8.1.7) 

Note that  the whitening matrix can be computed in different ways. It can be 
obtained, for example, as an inverse square root of the observation autocorrelation 
matrix [3] or else computed from the STFD matrices as shown in [7]. 

Source separation using joint diagonalization (JD)" By selecting auto-term t-f 
points, the whitened STFD matrices will have the following structure, 

Dxx(t, f )  = V D ~ ( t ,  f )U  H (8.1.8) 

where D~( t ,  f )  is diagonal. 1 This expression shows that  any whitened STFD-matrix 
is diagonal in the basis of the columns of the matrix U (the eigenvalues of Dxx (t, f )  
being the diagonal entries of D~( t ,  f)) .  

If, for a point (t, f )  of the time frequency domain, the diagonal elements of 
D~( t ,  f )  are all distinct, the missing unitary matrix U may be uniquely (up to 
permutation and scaling ambiguity 2) retrieved by computing the eigendecomposi- 
tion of Dxx(t,  f) .  Indeterminacy occurs in the case of degenerate eigenvalues, i.e., 
when D~,~, (t, f )  -- D~sj (t, f), i ~ j. It does not seem possible to a priori choose 
the t-f point such that the diagonal entries of D~( t ,  f )  are all distinct. Moreover, 
when some eigenvalues of Dxx(t , f )  come to degeneracy, the robustness of deter- 
mining U from eigendecomposition of a single whitened STFD matrix is seriously 
impaired. The situation is more favorable when considering joint diagonalization of 
a combined set {Dxx(ti , fi)li = 1 , . . .  ,p} of p (source auto-term) STFD matrices. 
This amounts to incorporating several t-f points in the source separation problem 
which reduces the likelihood of having degenerate eigenvalues. It is noteworthy that  
two source signals with identical t-f signatures cannot be separated even with the 
inclusion of all information in the t-f plane. 

The joint diagonalization (JD) [2] of a set {Mklk = 1..p} of p matrices is defined 
as the maximization of the JD criterion: 

1Since the off-diagonal elements of Dss(t ,  f )  are cross-terms, the source TFD matrix is quasi- 
diagonal for each t-f  point that  corresponds to a true power concentration, i.e. a source auto-term. 

2The BSS problem has inherent ambiguity concerning the order and amplitudes of the sources. 



Blind Source Separation Using Time-Frequency Distributions 327 

p n 

C ( V )  de__f ~ ~ IvHMkv~I2 (8.1.9) 

k=l i--1 

over the set of unitary matrices V - I v 1 , . . . ,  Vn]. An efficient joint approximate 
diagonalization algorithm exists in [2] and it is a generalization of the Jacobi tech- 
nique [8] for the exact diagonalization of a single normal matrix. 

Source separation using joint anti-diagonalization (JAb)" By selecting cross- 
term t-f points, the whitened STFD matrices will have the following structure: 

Dxx(t,  f )  = VDss(t ,  f )U H (8.1.10) 

where Ds~(t, f )  is anti-diagonal. 3 The missing unitary matrix U is retrieved by 
Joint Anti-Diagonalization (JAD) of a combined set {Dxx(ti , f/)li = 1 , . . - ,  q} of q 
source cross-term STFD matrices [6]. 

The joint anti-diagonalization is explained by first noting that  the problem of 
anti-diagonalization of a single n x n matrix N is equivalent 4 to maximizing 

n 
C ( N ,  V )  def _ ~ Iv~Nv~I 2 (8.1.11) 

i=1 

over the set of unitary matrices V = [ V l , . . . ,  Vn]. Hence, JAD of a set {Nk[k = 
1..q} of q n x n matrices is defined as the maximization of the J A b  criterion: 

q q n 

C ( V )  de__f ~ C ( N k  ' V)  - - ~ ~ Iv~Nkv~l 2 (8.1.12) 
k=l k=l i=1 

under the same unitary constraint. 
More generally, we can combine joint diagonalization and joint anti- 

diagonalization of two sets {Mklk = 1..p} and {Nklk = 1..q} of n x n matrices 
by maximizing the J D / J A D  criterion: 

C ( V )  de__f ~ I v / H g k v i [  2 -  Iv~mkv~l 2 (8.1.13) 
i=1 k=l k=l 

over the set of unitary matrices V = [v l , . . .  , Vn]. The combined J D / J A D  criterion 
can be applied to a combined set of p (source auto-term) STFD matrices and q 
(source cross-term) STFD matrices to estimate the unitary matrix U. 

R e m a r k s "  (1) The success of the JD or JAD of STFD matrices in determining 
the unitary matrix U depends strongly on the correct selection of the auto-term 
and cross-term points [6]. Therefore, it is crucial to have a selection procedure that  

3Since the diagonal elements of Dss(t, f) are auto-terms, the source TFD matrix is quasi anti- 
diagonal (i.e. its diagonal entries are close to zero) for each t-f point corresponding to a cross-term. 

4This is due to the fact that the Frobenius norm of a matrix is constant under unitary transform, 
i.e. norm(N)--norm(VHNV).  
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is able to distinguish between auto-term and cross-term points based only on the 
STFD matrices of the observations. In [6], a selection approach that  exploits the 
anti-diagonal structure of the source cross-term STFD matrices has been proposed. 
More precisely, for a source cross-term STFD matrix, we have 

Trace(Dxx(t , f ) )  - Trace(UD.~(t ,  f ) U  H) 

= Trace(Dss (t, f ) )  ~ 0. 

Based on this observation, the following testing procedure applies: 

T r a c e ( D x x  ( t , f ) )  
if norm(Dxx(t,f)) < ~ ~ decide that  (t, f )  is a cross-term 

Trace if (D~(t , f ) )  
norm(D___xx(t,f)) > s ) decide that  (t, f )  is an auto-term 

where e is a 'small' positive real scalar. 

(2) In practice, the source cross-term STFD matrices will not be purely anti- 
diagonal. This is because some auto-terms, through their side lobes or main lobes, 
will intrude over the cross-term regions. The cross-terms will be however the domi- 
nant components. This situation is similar to the earlier work on joint diagonaliza- 
tion of STFD matrices selecting auto-term points [3], where the source auto-term 
STFD matrices are not purely diagonal because of cross-term intrusion. This im- 
pairment is mitigated by the joint approximation property of the JD//JAD algorithm 
and by its robustness. 

(3) Other classes of TFDs and techniques can also be used in BSS. In [9] a cumulant- 
based 4th-order Wigner distribution or Wigner trispectrum was used for source 
separation. In [10] blind separation of more sources than sensors (underdetermined 
BSS problem) has been solved using a TF domain orthogonality concept. Imple- 
mentation details and the corresponding MATLAB TM code of the above algorithm 
are presented in Article 8.4. Sample code for computation of TFDs is given in 
Article 6.5. 

8.1.2 Separation of Convolutive Mixtures 
8.1.2.1 Data Model 
Consider now a convolutive multiple input multiple output (MIMO) linear time 
invariant model given by: 

n L 

xi ( t )  - E E ai j (1)s j ( t  - l) for i = 1 , . . .  
j = ~  / = o  

,m  (8.1.14) 

where s j ( t ) ,  j - 1 , . . .  ,n ,  are the n source signals (model inputs), x i ( t ) ,  i = 
1 , . . .  , m, are the m > n sensor signals (model outputs), aij is the transfer function 
between the j - th  source and the i-th sensor with an overall extent of ( L +  1) taps. As 
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before, the sources are assumed to have different structures and localization prop- 
erties in the time-frequency domain and the channel matr ix  A defined in (8.1.16) 
is full column rank. 

In matr ix  form, we have 
x(t)  - As( t )  (8.1.15) 

where 

s(t) - -  [81 (t),""", 8 1 ( t  - -  (L + L') + 1 ) , . . . ,  Sn(t - (L + L') + 1)] T 
x( t )  - [ x l ( t ) , " "  ,xl(t- L'+ 1 ) , . . .  ,xm(t-L'+ 1)] T 

with 

I 1 
A l l  " ' "  Aln 

A - " ".. : (8.1.16) 

A m l  " " " Amn 

I aij(O) ... aij(L) ... 0 

Aij - ".. ".. ".. . (8.1.17) 

0 ... aij(O) ... aij(L) 

Note that  A is a [mL' • n(L + L')] matr ix  and Aij are [L' • (L + L')] matrices. L'  
is chosen such that  mL' >_ n(L + L'). 

We retrieve here the same formalism as in the instantaneous mixture case. The 
data  STFD matrices still have the same expression as in (8.1.5). But  the source 
auto- term (respectively, cross-term) matrices Dss(t,  f )  are no longer diagonal (re- 
spectively, anti-diagonal), but  block-diagonal 5 (resp., block an t i -d iagona l )where  
each diagonal block is of size (L + L') • (L + L').  It is this block-diagonal or block 
anti-diagonal s t ructure that  we propose to exploit, in the next subsection, to achieve 
BSS. 

8.1.2.2 BSS using STFD Matrices 

In this subsection we generalize the BSS method developed earlier to the case of 
convolutive mixtures. 

Whitening: The first step of our procedure consists of whitening the da ta  vector 
x(t).  This is achieved by applying to x(t)  a whitening matrix W,  i.e. a [n(L' + 
L) x mL'] matr ix  verifying: 

W l i m  ( 1 T ) T-~oo ~ E x(t)x(t)H w H  
t - -1 

- W R = W  H - ( W A R s ~ ) ( W A R ~ )  H - I 

(8.1.18) 

5 T h e  b l o c k  d i a g o n a l  s t r u c t u r e  c o m e s  f r o m  t h e  fac t  t h a t  t h e  c r o s s - t e r m s  b e t w e e n  si(t) a n d  

s i ( t  - d) a r e  n o t  ze ro  a n d  d e p e n d  on  t h e  loca l  c o r r e l a t i o n  s t r u c t u r e  of  t h e  s igna l .  
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where Rx and Rs denote the autocorrelation matrices 6 of x(t) and s(t), respectively. 
Equation (8.1.18) shows that if W is a whitening matrix, then 

! 
U - WAR2 (8.1.19) 

is a [n(L ~ + L) • n(L'+ L)] unitary matrix where Rs { (Hermitian square root matrix 
of Rs) is block diagonal. The whitening matrix W can be determined from the 
eigendecomposition of the data autocorrelation Rz as in [3]. 

Separation using joint block diagonalization: Consider now the whitened STFD 
matrices D__xx(t , f )  defined in (8.1.6). By (8.1.15) and (8.1.19), we obtain the key 
relation: 

Dxx(t , f )  - UR/ �89  f ) R / � 8 9  g = VD(t ,  I ) U  g (8.1.20) 

1 1 
where we have set D(t, f )  - R~-~Ds~(t, I ) R ;  ~. 

Since the matrix U is unitary and D(t ,  f) is block diagonal, the latter just means 
that any whitened STFD matrix is block diagonal in the basis of the column vec- 
tors of matrix U. The unitary matrix can be retrieved by computing the block 
diagonalization of some matrix D__xx(t , f) .  But to reduce the likelihood of indeter- 
minacy and increase the robustness of determining U, we consider the joint block 
diagonalization of a set {D• fi); i - 1 , . . - , p }  of p whitened STFD matrices. 7 

This joint block-diagonalization (JBD) is achieved by the maximization under 
unitary transform of the following criterion, 

p n (L'+L)l 

C ( V )  de_f ~ ~ ~ lu*D___xx(tk, f k ) U j l  2 (8.1.21) 
k=l l=l i , j= (L '+L) ( l -1 )+ l  

over the set of unitary matrices U - [u l , . . .  , Un(U+L)]. Note that an efficient 
Jacobi-like algorithm for joint block diagonalization algorithm exists in [11,12]. 

Once the unitary matrix U is determined (up to a block diagonal unitary matrix 
D coming from the inherent indeterminacy of the JBD problem [13]), the recovered 
signals are obtained up to a filter by 

~(n) - U H W x ( n )  (8.1.22) 

According to (8.1.15) and (8.1.19), the recovered signals verify, 

1 
~,(n) - D R s ~ s ( n )  (8.1.23) 

1 
where, we recall that, the matrix R~ ~ is block diagonal and D is a block diagonal 
unitary matrix. 

6In practice, Rx and Rs are replaced by their time-averaged estimates, e.g., Rx -- 
()-] T= 1 x ( t ) x ( t ) H ) / T .  

7A similar procedure can be used with joint block anti-diagonalization of source cross-term 
STFD matrices. 
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Fig.  8.1.1: WVD of two mixed signals at 0 dB SNR. 

R e m a r k s :  (1) In practice, only n signals among the n(L' + L) recovered ones are 
selected. This is done by choosing the signals which lead to the smallest cross-terms 
coefficients. Note tha t  this information is a byproduct  of the joint block diagonal- 
ization procedure and hence this selection needs no additional computations.  

(2) Here we have considered source separation up to a filter, instead of the full 
MIMO deconvolution procedure. Note that  if needed a SIMO (Single Input  Multi  
Output)  deconvolution/equalizat ion [14] can be applied to the separated sources. 

8.1.3 Illustrative Examples 

The two following examples il lustrate the effectiveness of the t ime frequency ap- 
proach in achieving blind separation of non-stat ionary sources. 

8.1.3.1 Separation of Instantaneous Mixtures 

In this experiment,  we consider two chirp signals (n - 2), depicted by 

s l ( t )  = exp(- j0 .0047rt  2) ; s2(t) = exp(- j0 .0047rt  2 - jTr0.4t) , 

impinging on an array of rn = 5 sensors at 30 and 60 degrees. Whi te  Gaussian noise 
was added, leading to an SNR of 0 dB. The Wigner-Ville distr ibution (WVD) of 
the mixture at the middle sensor is depicted in Figure 8.1.1. 

From Figure 8.1.1, we selected eight arbi t rary  t-f points, among which one was 
a cross-term. By applying the J D / J A D  algorithm, we obtain the results displayed 
in Figure 8.1.2 with a signal rejection level est imate of-26 dB. 

8.1.3.2 Separation of Convolutive Mixtures 

The parameter  settings of this example are as follows: 

�9 n = 2 (speech signals sampled at 8kHz), m = 3, L = 1 and L ~ =  2. 
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Fig. 8.1.2: WVDs of the two chirps using JD/JAD with seven auto-terms and one cross-term. 

Fig. 8.1.3" Speech signal separation. 

�9 The transfer function matrix of the simulated multi-channel is given by: 

1 0.85 + 0.1z -1 ] 
A(z) 0 .7  -~- 0 . 4 z  - 1  0 .25  + z - 1  . 

1 -~- 0 . 5 z  - 1  0 .7  -~- 0 . 8 5 z  - 1  

Figure 8.1.3 shows the original speech signal, their convolutive mixture and the 
recovered speech signals by the time frequency separation algorithm. 

8.1.4 Summary and Conclusions 
The problem of blind separation of linear mixtures of non-stationary source signals 
based on time frequency distributions has been investigated. Both instantaneous 
and convolutive mixture cases have been considered. For both cases, solutions based 
on the use of the joint matrix structure (i.e., diagonal, anti-diagonal, block diagonal, 
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or block anti-diagonal) of a combined set of spatial time frequency distribution 
matrices selected in both the auto-term and cross-term regions, have been presented. 
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8.2  SPATIAL TIME-FREQUENCY DISTRIBUTIONS 
AND THEIR APPLICATIONS 0 

8.2.1 Spatial Time-Frequency Distributions 
The evaluation of quadratic time-frequency distributions (TFDs) of nonstationary 
signals impinging on a multi-sensor receiver yields spatial time-frequency distri- 
butions (STFDs), which permit the application of eigenstructure subspace tech- 
niques to solving a large class of channel estimation and equalization, blind source 
separation (BSS), and high resolution direction-of-arrival (DOA) estimation prob- 
lems [1-3]. STFD based techniques are appropriate to handle sources of nonstation- 
cry waveforms that are highly localized in the time-frequency (t-f) domain. In the 
area of BSS, the use of the STFDs allows the separation of sources with identical 
spectral shape, but with different t-f localization properties, i.e., different t-f sig- 
natures. For both source separation and DOA estimation problems, spreading the 
noise power while localizing the source energy in the t-f domain amounts to increas- 
ing the robustness of eigenstructure signal and noise subspace estimation methods 
with respect to channel and receiver noise. This in turn leads to an improvement 
of spatial resolution and source separation performance. 

The quadratic class of STFD matrix of a signal vector x(t) is defined as 

i?i?l? Dxx(t, f)  - g(~, T)X(U + ~ ) x g ( u  -- ~)eJ2"(~ 'u-~"- f~ ' )dT dudl., ,  
o o  I x )  o o  

(s.2.1) 
where g(L,, T) is the kernel function (see Chapter 3). 

In narrowband array processing, when n signals arrive at an m-element array 
(see Fig. 8.2.1), the linear data model 

x(t) -- y(t) + n(t) = Ad(t)-t-  n(t) (8.2.2) 

is commonly assumed, where x(t) is the m • 1 data vector received at the array, d(t) 
is the n x 1 source data vector, the m • n spatial matrix A = [al---a,~] represents 
the mixing matrix, ai is the steering vector of ith signal, and n(t) is an additive 
noise vector whose elements are modeled as stationary, spatially and temporally 
white, zero-mean complex random processes, independent of the source signals. 

Under the uncorrelated signal and noise assumption and the zero-mean noise 
property, the expectation of the crossterm TFD matrices between the signal and 
noise vectors is zero, i.e., Z [Dyn(t, /)]  -- E [Dny(t, f ) ] - -  0, and it follows 

E [D~x(t,/)] = Dyy(t,  f )  -4- E [D, , ( t ,  f)] - ADdd(t ,  f ) A  g --t- a2I, (8.2.3) 

where cr 2 is the noise power, and I is the identity matrix. Eq. (8.2.3) is similar to that 
which has been commonly used in array processing based on second-order statistics, 

~ Moeness  (3. A m i n  and Yimin  Zhang,  Department of Electrical and Com- 
puter Engineering, Villanova University, Villanova, PA 19085, USA (moeness~ece.villanova.edu, 
yimin@ieee.org). Reviewers: A. Gershman and K. Abed-Meraim. 
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#1 #1 

#2  

# n  # m  

"E> 
Fig.  8.2.1" m-element array with n signal arrivals. 

relating the signal correlation matrix to the data spatial correlation matrix [1]. This 
implies that key problems in various applications of array processing, specifically 
those dealing with nonstationary signal environments, can be approached using 
quadratic transformations. If Ddd(t, f)  is a full-rank matrix, the two subspaces 
spanned by the principal eigenvectors of Dxx(t, f)  and the columns of A become 
identical. In this case, direction finding techniques based on eigenstructures can be 
applied. If Ddd(t, f)  is diagonal, i.e., the signal cross-TFDs at the t-f point (t, f)  
are zeros, then both the mixing matrix and the signal waveforms can be recovered 
using BSS methods. 

8.2.2 Fundamental Properties 
There are five key advantages of array signal processing using STFD. In order to 
properly explain these advantages, we use the diagram in Fig. 8.2.2. We consider 
two sources A and B incident on a multi-sensor array. Source A occupies the t-f 
region Ra, whereas source B occupies the t-f region Rb. The t-f signatures of the 
two sources overlap, but each source still has a t-f region that is not intruded over 
by the other source. 

(1) Eq. (8.2.3) can be easily derived for any arbitrary joint-variables. Time 
and frequency are indeed the two most commonly used and physically understood 
parameters. However, by replacing the STFDs by spatial arbitrary joint-variable 
distributions, one can relate the sensor joint-variable distributions to the sources 
joint-variable distributions through the same mixing matrix A. As shown in the 
Examples section, there are situations where it is preferable to consider other do- 
mains such as the ambiguity lag-Doppler domain, where the locations of the signals 
and their cross-terms are guided by properties and mechanisms different than those 
associated with the t-f domain (see Article 3.2). 

(2) Eq. (8.2.3) is valid for all t-f points. It is well known that direction find- 
ing techniques require Ddd(t, f)  to be full rank, preferably diagonal. On the other 
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BC 

Fig. 8.2.2: Signals with different time-frequency signature. 

hand, BSS techniques demand the diagonal structure of the same matrix with- 
out degenerate eigenvalues. These properties along with high signal-to-noise ratio 
(SNR) requirements may be difficult to achieve using a single t-f point. Two dif- 
ferent methods can be used for integrating several t-f points into Eq. (8.2.3). One 
method is based on a simple averaging performed over the signatures of the sources 
of interest, whereas the second method is based on incorporating several desired t-f 
points into joint diagonalization or joint block-diagonalization schemes. 

(3) The TFD of the white noise is distributed all over the t-f domain, whereas 
the TFDs of the source waveforms are likely to be confined to much smaller regions. 
Referring to Fig. 8.2.2, the noise is spread over both Ra and Rb as well as the 
complement region Re. If the t-f points (t, f)  used in either the averaging or joint 
diagonalization approaches belong to the noise only region Rc, then no information 
of the incident waveforms is used and, as such, no reasonable source localization and 
signal separation outcomes can be obtained. On the other hand, if all points (t, f)  
in Fig. 8.2.2 are used, and the employed TFD satisfies the marginal constraints, 
then it can be easily shown that only the signal average power is considered. As a 
result, the problem simplifies to the second-order covariance based matrix approach, 
traditionally used in high resolution DOA estimation. This is an important feature, 
as it casts the conventional techniques as special cases of the array signal processing 
framework based on t-f analysis. Finally, if we confine the (t, f)  points to Ra and 
Rb, then only the noise part in these regions is included. The result of leaving 
out the points (t, f) that are not part of the t-f signatures of the signal arrivals is 
enhancing the input SNR, which is utilized by the source localization and signal 
separation techniques. 

(4) By only selecting t-f points that belong to the t-f signature of one source, 
then this source will be the only one considered by Eq. (8.2.3). This selection, in 
essence, is equivalent to implicitly performing spatial filtering and removing other 
sources from consideration. It is important to note, however, that such removal does 
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not come at the expense of reduction of the number of degrees-of-freedom (DOFs), 
as it is the case in beamspace processing, but the problem remains a sensor space 
processing with the original number of DOFs kept intact. This property represents 
a key contribution of TFDs to the direction finding and DOA estimation areas. An 
antenna array can be used to localize a number of sources equal or even greater 
than its number of sensors. The fundamental condition is that there must be t- 
f regions over which the respective t-f signatures of the sources do not overlap. 
Referring to Fig. 8.2.2 and considering the case of two sensors, if all t-f points 
incorporated in direction finding belong to region Ra and not Rb, then the signal 
subspace defined by Eq. (8.2.3) is one-dimensional. Thus, by excluding source B, a 
one-dimensional noise subspace is established. This allows us to proceed with high 
resolution techniques for localization of source A. In a general scenario, one can 
localize one source at a time or a set of selected sources, depending on the array 
size, overlapping and distinct t-f regions, and the dimension of the noise subspace 
necessary to achieve the required resolution performance. The same concepts and 
advantages of t-f point selection discussed above for direction finding can be applied 
to BSS problems. 

(5) The a priori knowledge of some temporal characteristics or the nature of 
time-varying frequency contents of the sources of interest may permit us to directly 
select the t-f regions used in Eq. (8.2.3). For instance, it is known that, in the 
ambiguity domain, all fixed frequency sinusoidal signals map to the time-lag axis. 
By only incorporating the points on this axis, we have, in fact, opted to separate 
and localize all narrowband signals in broadband communications platforms. 

8.2.3 Examples 
In this Section, we present simulation examples to demonstrate the fundamental 
offerings discussed in the previous Section. Time-frequency MUSIC (t-f MUSIC), 
ambiguity-domain MUSIC (AD-MUSIC), and the BSS based on STFDs are three 
different techniques chosen for the demonstration. The algorithms involved in the 
implementation of the techniques are given in Tables 8.2.1, 8.2.2 and 8.2.3 [1,2, 4]. 

Example I [4]. Consider the scenario of a four-element equi-spaced linear array 
spaced by half a wavelength, where one chirp signal and two sinusoidal signals are 
received. The data record has 128 samples. All three signals have the same SNR 
of 20 dB. The DOAs of the chirp signal and the two sinusoidal signals are 15 ~ 10 ~ 
and 0 ~ respectively. While the ambiguity function of the chirp signal sweeps the 
ambiguity domain with contribution at the origin, the exact autoterm ambiguity 
function of the narrowband arrivals sl (t) and s2(t) is zero for non-zero frequency- 
lags and may have non-zero values only along the vertical axis L, = 0. 

In this simulation example, we selected 24 points on the time-lag axis, exclud- 
ing the origin, and as such emphasizing the narrowband components. Fig. 8.2.3 
shows the ambiguity function where the two vertical lines away from the origin 
represent the crossterms between the sinusoidal components. Fig. 8.2.4 shows the 
two estimated spatial spectra for three independent trials, one corresponds to the 
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T a b l e  8 .2 .1 :  Time-Frequency MUSIC. 

S T E P  I 

S T E P  II  

S T E P  I I I  

Form K matrices Dxx(ti, fi) for the selected (ti, fi) points, 
i = l , . . . , K .  

The eigenvectors of E [Dxx(t, f)] corresponding to the m - n 
smallest eigenvalues,el, �9 �9 �9 , era-n, are obtained by joint block- 
diagonalization, or the eigen-decomposition of averaged matrix 

K 
1 

E Dxx(ti, fi). 
i - -1  

Estimate the number of signals from the eigenvalues, and 
estimate the DOAs from the peaks of the t-f MUSIC spectra 

f(O) II~Ha(0> [ -2 = , where l~n - [ e l , - - ' ,  era-hi, and a(0) is 

the steering vector corresponding to D0A 0. 

T a b l e  8 .2 .2 :  Ambiguity-Domain MUSIC 

Ambiguity-Domain MUSIC follows the same procedure as time-frequency 
MUSIC by using Dxx(Pi,Ti) instead of Dxx(ti, fi), i =  1,- . .  ,K .  

conventional method and the other corresponds to the AD-MUSIC. There are two 
dominant eigenvalues for the case of the AD-MUSIC, since we have not deliberately 
considered the chirp signal through our careful selection of the ambiguity-domain 
points. It is clear that  the AD-MUSIC resolves the two sinusoidal signals, while the 
conventional MUSIC could not separate the three signals. 

Example II [5]. Consider a uniform linear array of eight sensors separated by half 
a wavelength. Two chirp signals emitted from two sources positioned at (01,02) = 
( -10  ~ , 10~ respectively. The data record has 1024 samples. The start  and end 
frequencies of the chirp signal of the source at 01 a r e  f s l  - -  0 and f~l = 0.5, 
while the corresponding two frequencies for the signal of the other source at 02 are 
fs2 = 0.5 and f~2 = 0, respectively. 

Fig. 8.2.5 displays the standard deviations of the DOA estimation ~1 versus 
SNR. The curves in this figure show the theoretical and experimental results of the 
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T a b l e  8.2.3" Blind Source Separation Based on STFDs 

S T E P  I 

S T E P  II  

S T E P  I I I  

S T E P  IV 

S T E P  V 

Estimate the auto-correlation matrix l~xx from T data samples. 
Denote by A a , . . . ,  An the n largest eigenvalues and the 

corresponding eigenvectors of Rxx. 

An estimate b2 of the noise variance is the average of the m - n 

smallest eigenvalues of Rxx. The whitening matrix is formed as 

qr -- [(/~1 -- ~2 )  - l h l , ' ' "  , ('~n -- O'2) - l h n ]  
H. 

L .J 

Form K matrices by computing the STFD of whitened vector 

z(t) - W x ( t )  for a fixed set of (ti, fi) points, i = 1 , . . .  ,K,  
corresponding to signal autoterms. 

A unitary matrix U is then obtained as joint diagonalizer of the 
set D,.,.(ti, fi), i - 1 , . . .  , K. 

The source signals are estimated as ~(t) = U H W x ( t ) ,  and the 

mixing matrix A is estimated as A = W#1J .  

Fig .  8.2.3:  The ambiguity functions of the chirp signal and two sinusoidal signals. 

conventional MUSIC and t-f MUSIC. Pseudo Wigner-Ville distribution with window 
length L - 33 and 129 are considered. The Cramer-Rao Bound (CRB) is also shown 
in Fig. 8.2.5. Both signals are selected when performing t-f MUSIC. Simulation 
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Fig. 8.2.4: The estimated spatial spectra of AD-MUSIC and conventional MUSIC. 

Fig. 8.2.5: The standard deviations of DOA estimation ~I vs. SNR. 

results are averaged over 100 independent trials of Monte Carlo experiments. The 
advantages of t-f MUSIC in low SNR cases are evident from this figure. Fig. 8.2.6 
shows estimated spatial spectra at S N R = - 2 0  dB based on t-f MUSIC (L = 129) 
and the conventional MUSIC. The t-f MUSIC spectral peaks are clearly resolved. 

Example trII [1]. In Fig. 8.2.7, we show an example of the application of STFDs 
to the BSS problem. A three-element equi-spaced linear array is considered where 
the interelement spacing is half a wavelength. Two chirp signals arrive at - 10  ~ and 
10 ~ respectively. The number of data samples used to compute the STFD is 128. 
The number of t-f points employed in the joint diagonalization is p=128, with equal 
number of points on each signature. Fig. 8.2.7(b) shows the Choi-Williams distri- 
butions of two linear mixtures of the original chirp signals depicted in Fig. 8.2.7(a), 
corresponding to the data at the first and the second sensors. Using the STFDs, 
we are able to recover the original signals from their observed mixture, as shown in 
Fig. 8.2.7(c). 
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Fig. 8.2.6: The estimated spatial spectra of t-f MUSIC and conventional MUSIC. 

8.2.4 Crossterm Issues in STFD 
There are two sources of crossterms. The first type are the crossterms that  are 
the results of the interactions between the components of the same source signal. 
The other type of crossterms are those generated from the interactions between 
two signal components belonging to two different sources. These crossterms are 
associated with cross-TFDs of the source signals and, at any given t-f point, they 
constitute the off-diagonal entries of the source TFD matrices Ddd(t ,  f )  defined in 
(8.2.3). Although the off-diagonal elements do not necessarily destroy the full-rank 
matrix property necessary for direction finding application [6], they violate the basic 
assumption in the problem of source separation regarding the diagonal structure of 
the source TFD matrix. We must therefore select the t-f points that  belong to 
autoterm regions where crossterm contributions are at minimum, e.g., by using a 
priori information of the source signals. 

The method of spatial averaging of the STFD introduced in [7] does not reduce 
the crossterms as in the case with reduced interference distribution kernels, but 
rather move them from their locations on the off-diagonal matrix entries to be part  
of the matrix diagonal elements. The other parts of the matr ix diagonal elements 
represent the contribution of the autoterms at the same point. Therefore, not only 
we are able to set the off-diagonal elements of the source TFD matrix to zeros, 
but also we can improve performance by selecting the t-f points of peak values, 
irrespective of whether these points belong to autoterm or crossterm regions. 
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Fig .  8 .2 .7 :  Blind source separation based on STFDs. 

8.2.5 Summary and Conclusions 
The spatial time-frequency distribution (STFD) is an important tool for temporal 
and spatial separations of sources emitting nonstationary signals. It is a discrimi- 
natory tool that allows a consideration of only a subset of source signals impinging 
on a multi-sensor receiver. This property enhances signal parameter estimation and 
permits direction finding and signal separation to be applied to a number of sources 
that  is equal or even exceeds the number of sensors. 
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All material  presented in this article is based on the model (8.2.2). One im- 
por tant  change in the direction of the research in the t ime-frequency array signal 
processing area was given in [8], where the strict model of (8.2.2) was relaxed and 
a direction finding technique employing a STFD-based wideband root-MUSIC was 
proposed. Another research direction is the utilization and integration of crossterms 
into STFDs. It has recently been shown [9] tha t  source separat ion can be performed 
based on both autoterms and crossterms through joint diagonalization and joint 
anti-diagonalization schemes of STFD matrices. Article 8.4 presents algorithms 
and sample code for these methods. 
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8.3 QUADRATIC DETECTION IN ARRAYS USING TFDs ~ 

The detection of signals in noise is a classical hypothesis-testing problem. The use of 
a sensor array can considerably enhance signal detection by providing a large gain 
in the SNR and allowing for signal source localization. The long-lasting interest 
devoted to the field of sensor array processing can be traced to the large number of 
applications where data is collected in both space and time. Some important appli- 
cations include radar/sonar signal processing; ultrasonic, optical, and tomographic 
imaging; earth geophysical exploration such as crust mapping and oil exploration; 
and more recently space-time processing for wireless communications. We assume 
the very popular uniform linear array (ULA) geometry and a single signal source 
arriving from the far-field at some angle 0 with respect to the array. The goal is to 
detect the presence of this signal source from observations contaminated by additive 
noise at the sensors. 

In many situations, the channel may induce unknown modifications to the 
time and frequency parameters of the transmitted signal. Such situations include 
the well-known delay-Doppler situation in radar/sonar detection problems. Time- 
frequency distributions (TFDs), which jointly describe the time and frequency char- 
acteristics of the signal, are powerful tools for designing the optimal detector in such 
situations. It has been shown that the optimal quadratic detector for the detection 
of nonstationary Gaussian signals (i.e. signals whose statistics vary rapidly but are 
Gaussian at each fixed time instance) with unknown time and frequency offsets in 
the presence of noise can be implemented naturally within the quadratic class of 
TFDs [1]. Here we show how this idea can be extended to detection using an array of 
sensors, even those which exhibit imperfect spatial coherence. Imperfect coherence 
(i.e. a loss in the spatial correlation for a fixed time instance) is often attributed 
to signal scattering in multipath channels. Specifically, we consider the problem 
of detecting arbitrary nonstationary second-order signals with unknown time and 
frequency offsets arriving in a linear array with an unknown angle of arrival. We 
explicitly show how the optimal detector for such a problem can be implemented 
naturally and efficiently in the time-frequency domain. 

8.:].1 The Detect ion Problem 

Consider the following composite hypothesis-testing problem in continuous time: 

Ho x ( t )  - 

H1 . x ( t )  - s ( t -  j2€ + n ( t )  

where t C T, the time interval of observation, x is the observed signal, n is zero- 
mean complex white Gaussian noise with variance (7 2, and s is a zero-mean complex 
arbitrary second-order signal with correlation function Rs(tl ,  t2). The parameters 

~ Anil M. Rao and Douglas  L. Jones,  Department of Electrical and Computer 
Engineering, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign (anil- 
rao@dsp.csl.uiuc.edu, jones@dsp.csl.uiuc.edu). Reviewers: Akbar M. Sayeed and Graeme S. Jones. 
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(7, L,) represent time and frequency offset parameters that  are assumed to be un- 
known. These parameters arise in the classic radar delay/Doppler scenario where 
the delay is due to the range of the target and the Doppler is due to the velocity of 
the target. In statistical hypothesis testing, for each observation, x, a real-valued 
test statistic, L(x ) ,  is compared to a threshold to decide in favor of H0 or/-/1; that 
is, to decide whether the signal is present or not. TFDs provide a natural detection 
framework for such hypothesis-testing problems for two main reasons: first, detect- 
ing a second-order signal (such as a Gaussian signal) in the presence of Gaussian 
noise involves a quadratic function of the observations [2], and bilinear TFDs are 
quadratic in the observations; second, TFDs possess additional degrees of freedom 
provided by the time and frequency parameters. 

8.3.2 Quadratic Detection in a Linear Array 
In the linear array configuration, the signal comes in to the array of M sensors with 
spacing d at angle 0, where 0 is assumed to be unknown. We will denote the signal 
at the ith sensor by xi(t), i = 1 , . . . ,  M. Due to the linear array configuration, the 
signal at the ith sensor is a delayed version of the signal at the first sensor, and 
the value of the delay depends on the unknown angle of arrival, 0. That  is, when 
the signal is present x i ( t )  - s ( t -  ( i -  1)D) + ni( t ) ,  where D - d sin(0) and c is 

c 

the velocity of propagation in the medium. A concern arises when considering the 
use of a very large array in order to achieve high array gain; the signal received 
at widely separated sensors may have reduced coherence due to the complexity 
in the propagation of the signal from the source to spatially separated receivers 
(see [3-6] and references therein). Loss of spatial coherence can often be attr ibuted 
to complex signal scattering arising in multipath propagation [7]. In particular, 
the larger the angular spread of the multipath the more rapid the loss in spatial 
coherence (the smaller the coherence length). Since we are only considering the 
second-order statistics of the signal, the model for partial coherence used will be 
given in terms of the correlation function. An exponential power-law model has 
been suggested [3,8] whereby the cross-correlation function between the ith and j t h  

l i - j l  

sensors will be scaled by the coefficient cij = e L , where L is a dimensionless 
characteristic correlation length. We may arrange the decorrelation coefficients in 
matrix form as C = {cij}. It will be convenient to deal with the aligned sensor 
outputs; that is, let yi(t) = x i ( t  + ( i -  1)D). It will also be convenient to arrange 
the aligned sensor outputs in vector form as y 0  = [Yl (t) y2(t) . . .  yM(t)] T where the 
superscript 0 denotes the dependence of aligning the sensor signals on the unknown 
angle of arrival. 

The optimal test statistic based on the deflection 1 criterion and using a gen- 

1Deflection-optimal detectors can be interpreted as "maximum signal-to-noise ratio (SNR)" 
detectors because deflection is a measure of SNR. The deflection is defined as 

q -- E[L(x)IH1] - E[L(x)IHo] 
Var[L(x)lHo] 



346 Chapter 8: Multi-Sensor and Time-Space Processing 

eralized likelihood ratio test (GLRT) technique to deal with the unknown time, 
frequency, and angle parameters is given by 

- max ( (C @ R~ ~'~)) y0  y0)  Lopt 
(r,u,O) \ / ' ' 

(8.3.2) 

where | represents the Kronecker product, Rs denotes the linear operator defined 
by the corresponding correlation function Rs as 

(Rsx ) ( t )  = f Rs( t  ,T)X(T)dT , (8.3.3) 

and R~ r'~) (tl, t2) - Rs( t l  - T, t2 - T)e j27rvtx e -j2~rut2 denotes the correlation function 
corresponding the signal source with the unknown time and frequency offsets. Upon 
expanding the inner product in (8.3.2) we obtain 

M M 

Lopt max E E cij<R~r'v) 0 0 -- y , ( t ) , y j ( t ) ) .  
(T,C~,0) i--1 j - -1  

(8.3.4) 

8 . 3 . 3  T F D  B a s e d  A r r a y  D e t e c t i o n  

The connection to TFDs is made through the use of the Weyl correspondence which 
relates inner products, positive definite linear operators, and the Wigner distribu- 
tion. Using the fact that the Weyl correspondence involves a covariance to time, 
frequency, and scale offsets, using the methods in [1] it can be verified that the test 
statistic in (8.3.4) may conveniently be expressed in terms of TFDs, allowing for 
a natural and efficient implementation of the optimal detector. The optimal test 
statistic may be expressed as 

M M 

- max E E e (t, f; g = WSR~) ,  (8.3.5) Lopt (t,f,O) i - 1  j - 1  cijpy~y~ 

where g is the Doppler-lag kernel filter and WSR~ is the Weyl-symbol of Rs defined 
by 

WSRs  (u, v) - / Rs (u  + T/2,  u -- T/2)e-J2~VrdT . 
a n ,  

(8.3.6) 

We use the superscript 0 here to denote the fact that the TFD must be formed 
for each hypothesized angle of arrival. Observe that in (8.3.5) we must form the 
sum of all weighted cross-TFDs; we will refer to this quantity as a matrix TFD. 
Figure 8.3.1 illustrates the detector structure for the partially coherent case. Be- 
cause the detector involves forming TFDs of signals that are aligned to examine 
different spatial directions, we may think of this detection structure in terms of 
time-frequency-space or time-scale-space. Since we have not assumed any spatial 
statistical characteristics of the signal, the kernel is the same regardless of the angle 
of arrival being analyzed. 
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Fig. 8.3.1: TFD-Based Optimal Quadratic Array Processor. 

L opt 

If the array environment is perfectly coherent, then cij = 1 Vi, j .  Using funda- 
mental properties of bilinear TFDs, it can be verified that the optimal test statistic 
will involve first summing the sensor observations and then applying the TFD (with 
the kernel as before) for each hypothesized angle of arrival and choosing the max- 
imum value. Hence the matrix processing of Figure 8.3.1 is replaced with simple 
summation. If the array environment is noncoherent, then C = I and it can be ver- 
ified that  the optimal test statistic will include first taking the TFD of each sensor 
observation (again, with kernel as before), and then summing the resulting TFDs 
for each hypothesized angle of arrival and choosing the maximum value. 

8.3.4 Summary and Conclusions 
We demonstrated that time-frequency based detectors are naturally suited to 
quadratic detection in an array environment. By using a GLRT approach, the 
deflection-optimal test statistic was cast in the form of TFDs. The TFD-based 
structure allows the optimal detector to be implemented naturally and efficiently 
by exploiting the many degrees of freedom available. In the general case of a par- 
tially coherent environment, the test statistic included a weighted sum of all cross- 
TFDs of the aligned sensor outputs for each value of hypothesized angle of arrival. 
Completely coherent and noncoherent cases were shown to be special cases of the 
partially coherent model. In the coherent case, the optimal test statistic simplified 
to include a single auto-TFD of the sum of the aligned sensor outputs for each 
hypothesized angle of arrival. In the noncoherent case, the optimal test statistic 
simplified to include the sum of auto-TFDs of the aligned sensor outputs for each 
hypothesized angle of arrival. 
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8 . 4  IMPLEMENTATION OF STFDs-BASED SOURCE 
SEPARATION ALGORITHMS o 

Spatial time-frequency distributions (STFDs) are a generalization of the time- 
frequency distributions to a vector of multi-sensor signals. 

Under a linear model, the STFDs and the commonly known covariance ma- 
trix exhibit the same eigenstructure. In applications involving multi-sensor signals, 
the aforementioned structure is often exploited to estimate some signal parameters 
through subspace-based techniques. 

Algorithms based on the covariance matrix assume stationary signals. When 
the frequency content of the measured signals is time-varying, approaches of this 
class can still be applied; however, they do not use the signal time-frequency infor- 
mation. Algorithms based on STFDs properly use this time-frequency information 
to significantly improve performance. This improvement comes essentially from the 
fact that the effects of spreading the noise power while localizing the source energy 
in the (t, f) domain amounts to increasing the signal-to-noise ratio (SNR). 

STFDs-based algorithms exploit the time-frequency representation of the signals 
together with the spatial diversity provided by the multiple sensors. 

The concept of the STFD was introduced for the first time in 1996. It was 
used successfully in solving the problem of the blind separation of non-stationary 
signals [1-3]. This concept was then applied to solve the problem of direction of 
arrival (DOA) estimation [4]. Since then, other works have been conducted in this 
area using the new concept of STFDs [5-9]. 

This article examines the implementation of STFDs-based source separation al- 
gorithms. Some theoretical aspects of these algorithms are presented in Articles 8.1 
and 8.2. The MATLAB TM codes of the aforementioned algorithms are provided in 
the next sections. 

8.4.1 The Spatial TFD (STFD) 
Given an analytic signal vector z(t), the spatial instantaneous autocorrelation func- 
tion (SIAF), which is the generalization of the instantaneous autocorrelation func- 
tion (IAF) defined in Chapter 2, is given by 

Kz,~.(t, T) -- z(t + ~ ) z * ( t -  ~) (8.4.1) 

Define also the smoothed SIAF as 

R~.,~. (t, 7) - G(t, 7) �9 K~.,~.(t, 7), (8.4.2) 

where G(t, T) is the time-lag kernel. The time convolution operator *t is applied to 
each entry of the matrix K~.,z(t, T). The class of quadratic Spatial TFDs (STFDs) 

~ Adel  Belouchrani ,  EE Dept., Ecole Nationale Polytechnique, Algiers, Algeria 
(belouchrani@hotmail.com). Reviewers: K. Abed-Meraim and H. Bousbia-Salah. 
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are then defined as 

Dz ~(t, f )  - ~ {R~,~(t, T)}, (8.4.3) 

where the Fourier transform 9 ~ is applied to each entry of the matrix Rz,z(t, r). 
The discrete-time definition equivalent to Eqs. (8.4.3) and (8.4.2), which leads 

to the simple implementation of a STFD, is 

D~. (n, k) - :D.T" {G(n, m) �9 K~.,.(n, m)}, (8.4.4) 
,z  m---, k n 

which can be written 

M M 

D,.,,. (n, k) - E E G(n-p ,m)z (p+  m ) z * ( p -  m)e -ja=-~-, (8.4.5) 
m = - M  p = - M  

where the discrete Fourier transform DJ c and the discrete time convolution oper- 
ator *n are applied to each entry of the matrix G(n, m)*n Kz,z(n, m) and matrix 
Kz,.(n, m), respectively. N = 2M + 1 is the signal length. Note that the STFD 
of a signal vector is a matrix whose diagonal entries are the classical auto-TFDs of 
the vector components and the off-diagonal entries are the cross-TFDs. 

A more general definition of the STFD can be given as 

M M 

D~.,~. (n, k) - E E G(n - p , m ) |  m ) z * ( p -  m)e - j4~-~,  (8.4.6) 
m - - - M  p - - - M  

where | denotes the Hadamard product, and [G(n, m)]ij = Gij(n, m) is the time- 
lag kernel associated with the pair of the sensor signals zi(n) and zj(n). 

The following MATLAB code calculates half of the STFD of a vector signal z(n) 
(the other half is obtained by Hermitian symmetry)" 

Y, MATLAB code 1 

Y, Initialization 

D = zeros (fft_length, sample_size, sensor_number, sensor_number) ; 

Y, STFD computation 

for k = I : K; Y, K: sensor number 

for 1 =k : K; 
D(:,:,k,l) = Cross-TFD(z(k,:),z(l,:),window_length,fft_length); 

end 

end 

where the function 

Cross-TFD (z (k,  : ) ,  z (1,  : ) ,  window_length ,  f f t _ l e n g t h )  

calculates the cross-TFD of the signals zk(n) and zz(n). [For the implementation of 
such functions, see Chapter 6.] 
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8.4.1.1 Structure under Linear Model 

Consider the following linear model of the multi-sensor signal z(n), 

z(n) = As(n), (8.4.7) 

where A is a K x L matrix (K >_ L) and s(n) is a L x 1 vector which is referred to 
as the source signal vector. 

Under this linear model the STFDs take the following structure: 

D~.~.(n, k) = A D ~ ( n ,  k )A  H (8.4.8) 

where Ds~(n, k) is the source STFD of vector s(n) whose entries are the auto- and 
cross-TFDs of the source signals. 

The auto STFD denoted by D ~ ( n ,  k) is the STFD D~.~(n, k) evaluated at auto- 
term (t, f)  points only. Correspondingly, the cross STFD DC~.(n,k) is the STFD 
Dz~.(n, k) evaluated at cross-term (t, f)  points. 

Note that the diagonal (off-diagonal) elements of D~s(n, k) are auto-terms (cross- 
terms). Thus, the auto (cross)STFD Da~(n, k) (D~(n,  k))is diagonal (off-diagonal) 
for each (t, f )  point that corresponds to a source auto-term (cross-term), provided 
the window effect is neglected. 

8.4.2 STFDs-Based Source Separation 
The multi-sensor signal z(n) is assumed to be non-stationary and to satisfy the 
linear model (8.4.7). 

The problem of source separation consists of identifying the matrix A and/or 
recovering the source signals s(n) up to a fixed permutation and some complex 
factors (see Article 8.1 for more details). 

Denote by W the L x K whitening matrix, such that 

(WA)(WA) n = U U  n = I. (8.4.9) 

Pre- and post-multiplying the STFD Dzz(n, k) by W leads to the whitened STFD, 
defined as 

D~.~.(n, k) = WD,~.(n, k ) W  H = UDss(n, k)U H (8.4.10) 

where the second equality stems from the definition of W and Eq. (8.4.8). 
By selecting auto-term (t, f)  points, the whitened auto STFD will have the 

following structure: 
D~.(n, k) - VD~s(n , k)C H (8.4.11) 

where Das(n,k) is diagonal. The missing unitary matrix U is retrieved (up to 
permutation and phase shifts) by Joint Diagonalization (JD) of a combined set 
{D~.(ni, ki)li - 1 , . . .  ,P}  of P auto STFDs. The incorporation of several auto- 
term (t, f )  points in the JD reduces the likelihood of having degenerate eigenvalues 
and increases robustness to a possible additive noise. 
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The selection of cross-term (t, f )  points leads the following whitened cross STFD: 

DCz(n, k) = UDsCs(n, k ) U  H (8.4.12) 

where D~s(n,k ) is off-diagonal. The unitary matrix U is found up to permu- 
tation and phase shifts by Joint Off-Diagonalization (JOD) of a combined set 
{D~.(ni,  k ~ ) l i -  1 , . . . ,  Q} of Q auto STFDs. 

The unitary matrix U can also be find up to permutation and phase shifts by a 
combined J D / J O D  of the two sets {D~.(ni,  ki)l i  - 1 , . . . ,  P} and {DC~.(ni, ki) l i  - 
1 , . . . ,  Q}. Once the unitary matrix U is obtained from either the JD or the JOD 
or the combined JD/ JOD,  an estimate of the mixing matrix A can be computed by 
the product W # U ,  where ~ denotes the pseudo-inverse operator. An estimate of 
the source signals s(n) is then obtained by the product A#z(n ) .  

8.4.3 Implementation of the Whitening 

The implementation of the whitening goes as follows: 

�9 Estimate the sample covariance R from T data samples. 

�9 Denote by A1,.. .  ,AL the L largest eigenvalues, and by h i , . . .  ,hL the corre- 
sponding eigenvectors of R. 

�9 Under the white noise assumption, an estimate of the noise variance 6 2 is the 
average of the K - L smallest eigenvalues of R. 

�9 The whitening matrix is computed by 

W = [(A1 - a2) -�89 h i , . . . ,  (AL - a2) -�89 hL] T (8.4.13) 

�9 The whitened signals are then computed by z(n) = Wz(n ) .  

Note that  in the last step, the dimension of the problem is reduced from K to L. 
The above procedure is valid in the case of more sensors than sources, i.e. K > L. 
When K = L, no noise is assumed and the whitening matrix is computed as the 
matrix square root of the sample covariance matrix R. 

The following MATLAB code gives the implementation of the whitening �9 

~. MATLAB code 2 
Computation of the covariance matrix 

R = z*z'/sample_size" 
if L < K, Y, Assumes white noise 

Y, K: sensor number, L: source number 

Y, Compute the eigen decomposition of R 
[U,d] = eig(R) ; 
[power,k] = sort (diag(real (d)) ) ; 
sigma = mean(power (i : K-L) ) ; 
wl = ones(L,l)./sqrt(power(K-L+l:K)-sigma) ; 

Y, Computation of the whitening matrix 
W = diag(wl) *U(1 :K,k(K-L+I :K) ) ' ; 



Implementation of 5TFDs-Based 5ource 5eparat]on Algor]thms 353 

else 

W = inv(sqrtm(R)) ; 

end; 
% Whitening the signals 

z = W*z ; 

Assumes no noise 

8.4.4 Selection of Auto-Terms and Cross-Terms 
The selection procedure of the auto-terms and cross-terms exploits the off-diagonal 
s tructure of the source cross STFD matrices. More precisely, for a source cross 
STFD, we have 

Trace(D~.(n,  k)) - Trace(UD~s(n,  k )U H) - T race (D~(n ,  k)) ..~ 0. (8.4.14) 

Based on this observation, the following testing procedure applies: 

if Trace(D~.~.(n, k))/norm(D~.~.(n, k)) < e Then decide tha t  (n, k) is a cross-term 

if Trace(D~.z(n,k))/norm(D~.~.(n,k)) > e Then decide tha t  (n,k)is an auto- term 

where e is a 'small '  positive real scalar. 
The following MATLAB code implements the selection procedure: 

MATLAB code 3 

Initialization 

M = []; ~ will contain the auto STFDs 

N = []; % will contain the cross STFDs 

mp = 2*L; ~ number of selected frequencies at a given time sample 

where L is the source number 
esp = 0.i; ~ threshold 

To select only (t-f) points with significant energy 

[Dsort,Ii] = sort(D); ~ D is the STFD computed at MATLAB code 1 

for tp=l:skip:sample_size ~ skip is some chosen step 
for k = l:mp 

fp = Ii(fft_length-k,tp); 

Z Selection of the STFDs associated to the (t-f) point tp,fp 

Ds = squeeze(D(fp,tp,:,:)); 

Form the other half of Ds by Hermitian symmetry 
Ds = Ds+ (Ds-diag(diag(Ds)))'; 

if (trace(Ds)/norm(Ds))> esp, ~ Selection criterion 

M = [M Ds]; % Selection of auto STFDs 

else 

N = [N Ds]; % Selection of cross STFDs 

end; 

end; 

end; 

Note that the matrices M and N are the concatenation matrices of 

the auto-STFD matrices and cross-STFD matrices, respectively. 
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8.4.5 Implementation of JD and JOD 
The joint diagonalization (JD) [10] of a set { M k l k  = 1 , . . .  , P }  of P matrices of 
dimensions L • L is defined as the maximizat ion of the JD criterion 

P L 

CjD(V) de_j ~ ~ iv~Mkv~[2 (8.4.15) 
k=l i=1 

over the set of uni tary matrices V = Iv1 , . . . ,  VL]. 
The joint Off-diagonalization (JOD) [8] of a set { N k l k  = 1 , . . .  , Q} of Q matrices 

of dimensions L • L is defined as the maximizat ion of the JOD criterion 

P L 

C J O D ( V )  de f _ E E Iv~ Nkv~12 (8.4.16) 
k=l i--1 

over the set of uni tary matrices V -- Iv1 , . . . ,  V L]. 
The combined joint diagonalization and joint off-diagonalization [8] of two sets 

{ M k l k  = 1 , . . .  , P }  and { N k l k  = 1 , . - . , Q }  of L x L matrices is defined as the 
maximizat ion,  over the set of uni tary matrices V - Iv1 , . . . ,  VL], of the J D / J O D  
criterion 

CjD/JOD(V) de f E Iv~Mkv~] 2 - ~ Iv~mkv~l 2 . ( 8 . 4 . 1 7 )  

i = l  k = l  k = l  

Maximizat ion of Eq. (8.4.17) is performed by successive Givens rotations as follows: 
A uni tary matr ix  V = [v~j] is sought such tha t  the criterion in Eq. (8.4.17) is 
maximized w.r.t, the matrices Mk = Ira/k], k = 1 , - . .  , P ,  and Nk = [nkij], k = 
1 , . . .  , Q. At each Givens rotat ion step, a pivot pair r, s is chosen. Wi th  5ij denoting 
the Kronecker delta operator,  vii is set to 5ij, except for the elements V r r  : V s s  = 

cos(0), vrs = e jr sin(0) and Vsr = - e  - j r  sin(0). One can show [10] tha t  optimization 
of Eq. (8.4.17) is equivalent to the maximizat ion of 

Q = vT~Re(G)v (8.4.18) 

where 

P T T 
G -- ~-~'~k=l g l , k g l , k  -- ~ Q = I  g2,kg2,k 

v T - [cos 20, - sin 20 cos r - sin 20 sin r 

g T, = k k k k j(mksr _ mks)] 
k [mrr -- ross, mrs  + msr ,  

82 T . _ k k k k k k [nrr -- nss,  nrs + nsr , j (nksr  -- nrs)]" 

(8.4.19) 

(8.4.20) 

(8.4.21) 

(8.4.22) 

The next step is to recognize tha t  the part icular  parameter izat ion of v is equiv- 
alent to the condition v T v  = 1. Maximization of a quadrat ic  form under the unit 
norm constraint  of its argument  is obtained by taking v to be the eigenvector of 
~ e ( G )  associated with the largest eigenvalue. 
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The reader may check that if we set P - 1 and Q - 0,1 the above boils down 
to the standard Jacobi diagonalization procedure [11]. Also note that  the main 
computational cost in this kind of technique is the update under Givens rotations of 
the various matrices involved in the diagonalization. This makes the computational 
cost of the J D / J O D  procedure similar to P+Q times the diagonalization of a single 
matrix. 

The following MATLAB code gives the implementation of the JD/JOD:  

Y, MATLAB code 4 
Y, Initialization 
L = rain(size(M))" Y, M" auto STFDs given at MATLAB code 3 
nml = max(size(M)); 
nm2 = max(size(N))" '/, N: cross STFDs given at MATLAB code S 
V = eye(L); '/, L is the source number 
threshold = i/sqrt (sample_size)/I00; 
more = I" 
while more, more=O; 
for p=I:L-I, 
for q=p+l : L, 

Y, Givens rotations 
gl=[M(p,p:L:nml)-M(q,q:L:nml) ;M(p,q:L:nml)+M(q,p:L:nml) ; 

i* (M(q,p : L :nml)-M(p,q: L :nml) ) ] ; 
g2= [M(p,p:L:nm2)-M(q,q:L:nm2) ;M(p,q:L:nm2)+M(q,p:L:nm2) ; 

i*(M(q,p:L:nm2)-M(p,q:L:nm2)) ] ; 
[vcp,d] = eig(real(gl.gl'-g2*g2')); [la,Ki]=sort(diag(d)); 
angles=vcp (:, Ki (i)) �9 angles=sign (angles (I)),angles; 
c=sqrt (0.5+angles (I)/2) ; 
sr=O . S* (angles (2) -j *angles (3) ) /c ; sc=conj(sr) ; 
yes = abs(sr) > threshold" 
more=more I yes ; 
if yes, Y. Update of the M, N and V matrices 
colpl=M(: ,p:L-nml); colql=M(: ,q:L:nml) ; 
M(" ,p:L:nml)=c*colpl+sr*colql-M(: ,q:L:nml)=c*colql-sc*colpl; 
rowpl=M(p, :) ;rowql=M(q, :) ; 
M (p, �9 ) =c*rowpl+sc*rowql ; M (q, : ) =c*rowql-sr*rowpl ; 
colp2=N( : ,p:L:nm2); colq2=N(: ,q:L:nm2) �9 
N(" ,p" L'nm2) =c*colp2+sr.colq2;N( : ,q:L:nm2)=c*colq2-sc*colp2 ; 
rowp2=N (p, : ) ; rowq2=N (q, : ) ; 
N(p, �9 ) =c*rowp2+sc*rowq2 "N(q, : ) =c*rowq2-sr.rowp2 ; 
temp=V( : ,p) ; 
V(- ,p)=c*V(: ,p)+sr.V(: ,q) ;V(: ,q)=c*V(: ,q)-sc.temp; 

end" Y. if 
end; Y, q loop 

end; Y, p loop 
end; Y, while 

8.4.6 Summary and Conclusions 
The detailed implementation of non-stationary source separation algorithms based 
on Spatial TFDs has been presented together with the associated MATLAB codes. 

1That is, only matrix M1 is incorporated in the criterion of Eq. (8.4.17). 
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The implementat ion details included whitening, selection of auto- term and cross- 
te rm regions and the combined Joint Diagonalization and Joint Off-Diagonalization. 
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8.5 UNDERDETERMINED BLIND SOURCE SEPARATION 
FOR FM-LIKE SIGNALS~ 

In many real-life engineering applications, including sonar and telecommunications,  
the signal under consideration may consist of a mixture of a number  of signals. 
The user may not be interested in the whole mixture signal (also called a multi- 
component signal), but rather  in a particular component  of it. For instance, in 
telecommunications the received signal may be a mixture  of several source signals 
(multiple access interference) but the user may wish to recover only one or some 
individual source signals. The various component  signals may be non-stat ionary 
(i.e., their spectral contents may vary with time); and since t ime-frequency (TF) 
analysis has proved to be a powerful tool in the analysis of such signals, we use 
this technique to extract  the desired source signal. In particular,  we use the time- 
frequency distribution (TFD) of the mixture signal in order to separate and recover 
any signal component  (see Article 8.1 for a detailed justification). 

In this article, we focus on the impor tant  problem of underdetermined blind 
source separation (UBSS) where the number of sources is larger than  the number  of 
sensors. The sources under consideration are non-stat ionary frequency-modulated 
(FM) signals encountered in radar and certain wireless communicat ion systems. 
For instance, linear FM chirp signaling is considered for frequency-hopped CDMA 
(Code Division Multiple Access) systems [1-3], in which context UBSS coincides 
with the blind multiuser detection problem. 

We present here two classes of methods where UBSS is achieved using source 
spatial signatures in conjunction with their TF  signatures. The two methods are 
based on a vector clustering technique and a mono-component  extract ion technique, 
respectively. 

8.5.1 Data Model and Assumptions 
Assume tha t  an n-dimensional vector s(t) - [81(~:),... ,Sn(t)] T E C (nxl) corre- 
sponds to n non-stat ionary complex source signals s i ( t ) ,  i - 1 , . . . ,  n. The source 
signals are t ransmi t ted  through a medium so that  an array of m sensors picks up 
a set of mixed signals represented by an m-dimensional  vector x(t)  - [Xl ( t ) , . . . ,  
X m ( t ) ]  T C C (re• For an instantaneous linear mixture  medium, the observed 
signals can, then, be modeled as: 

x(t) - A s ( t ) +  r/(t), 

where A c C (mxn) is the mixing matr ix  and r/(t) - [r/ l(t) ,r/2(t) , . . . ,~lm(t)] T e 

C (rex1) is the observation noise vector. For the UBSS problem, i.e. for n > m, the 
mixing matr ix  A is not (left) invertible. However, the column vectors of matr ix  

~ K a r i m  A b e d - M e r a i m  and Linh-Wrung Nguyen ,  Sig. & Image Proc. Dept., Tele- 
com Paris, France (abed@tsi.enst.fr, trung@tsi.enst.fr), and Adel  Be louchran i ,  EE Dept., Ecole 
Nationale Polytechnique, Algiers, Algeria (belouchrani@hotmail.com). Reviewers" B. Boashash, 
V. Chandran and A. Beghdadi. 
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Fig. 8.5.1: A time-frequency distribution of a multicomponent signal. 

A = [al, a 2 , . . . ,  an] are assumed to be pairwise linearly independent, i.e., for any 
i , j  E 1, 2 , . . . ,  n and i ~: j ,  a i  and aj are linearly independent. 

Here, the sources are assumed to be multicomponent FM signals. By a mul- 
ticomponent signal, we mean a signal whose TF representation presents multiple 
ridges in the TF plane. Analytically, the kth source may be defined as, 

Mk 

- Z (s.5.2) 
l=1 

where each component sk,L(t), of the form 

sk,t(t) = ak,z(t) e jCk'~(t), (8.5.3) 

is assumed to have only one ridge in the TF plane. An example of a multicomponent 
signal, consisting of three components, is displayed in Fig. 8.5.1. 

8.5.2 Separation using Vector Clustering 

In this approach, the sources are assumed to have different structures and local- 
ization properties in the TF domain. More precisely, we assume the sources to be 
orthogonal in the TF domain (Fig. 8.5.2) in the sense that  their TF supports 1 are 
disjoint. 

The above assumption can be applied to any TFD. It is clear that  the TF 
orthogonality is too restrictive and will almost never be satisfied exactly in practice. 
Fortunately, only approximate orthogonality, referred to as quasi-orthogonality, is 
needed in practice to achieve source separation [4]. Note, that  two FM signals with 
different FM laws satisfy the quasi-orthogonality assumption. 

Under the above assumption, one can notice that  two auto-term spatial time 
frequency distribution (STFD) matrices (see Article 8.1 for a thorough definition) 

1A T F  support  of a given signal s(t) is defined by {(t, f)[Dss(t, f) :fl 0} where Dss(t, f)  repre- 
sents the T F D  of s(t). 
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Fig.  8.5.2: TF orthogonal sources; the TF supports of two sources are disjoint. 
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Fig. 8.5.3: Diagram of the UBSS algorithm. 

of the observation D x x ( t l , f l )  and Dxx(t2,f2) corresponding to the same source 
si(t) are such that: 

D x x ( t l ,  f l )  = Ds~s~ ( t l ,  f l ) a / a / H ,  

Dxx(t2, f2) - Ds~s~ (t2, f2)aia H. (8.5.4) 

Eq. (8.5.4) indicates that  Dxx(t l ,  f l )  and Dxx(t2, f2) have the same principal eigen- 
vector ai. The idea of the proposed algorithm is to group together the auto-term 
points associated with the same principal eigenvector representing a particular 
source signal. The TFD of this source (Ds~s~ (t, f)) is obtained as the principal 
eigenvalues of the STFD matrices at the auto-term points. The proposed algorithm 
is shown diagrammatically in Fig. 8.5.3. It consists of the following four steps: 

(1) STFD computation and noise thresholding: Given a finite set of observation 
vectors, the STFD matrices of the observation Dxx(t,  f )  can be estimated using 
time-lag domain discrete implementation as shown in Articles 6.1 and 8.4. These 
STFD matrices are next processed to extract the source signals. In order to reduce 
the computational complexity by processing only "significant" STFD matrices, a 
noise thresholding is applied to the signal TFD. More precisely, a threshold cl 
(typically, el = 0.05 of the point with maximum energy) is used to keep only the 
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points {(ts, fs)} with sufficient energy: 

Keep (ts, fs) if ]lDxx(ts,fs)[[ > cl. (s.5.5) 

(2) Auto-term selection: The second algorithm step consists of separating the 
auto-term points from cross-term points using an appropriate testing criterion. For 
that,  we exploit the sources' TF  orthogonality. Under this assumption, each auto- 
term STFD matrix is of rank one, or at least has one "large" eigenvalue compared 
to its other eigenvalues. Therefore, one can use rank selection criteria, such as MDL 
(minimum description length) or AIC (Akaike information criterion), to select auto- 
term points as those corresponding to STFD matrices of selected rank equal to one. 
For simplicity, we use the following criterion: 

if /~max {Dxx(t, f )}  _ 1 > e2 > decide that  (t, f )  is a cross-term point 
norm {Dxx(t, f )}  

where c2 is a small positive scalar (typically, c2 = 10-4) ,  and ,~max {Dxx(t, f )}  
represents the largest eigenvalue of Dxx(t,  f) .  

(3) Clustering and source TFD estimation: Once the auto-term points have been 
selected, a clustering step based on the spatial signatures of the sources is performed. 
This clustering is based on the observation that  two STFD matrices corresponding 
to the same source signal have the same principal eigenvectors. Moreover, the 
corresponding principal eigenvalues are given by the desired source TFD. This leads 
to the core step of our source separation method that  uses vector clustering. This 
is implemented by the following four operations: 

(a) For each auto-term point, (ta, fa), compute the main eigenvector, a(ta, fa), 
and its corresponding eigenvalue, A(ta, fa), of Dxx(ta, f~). 

(b) As the vectors {a(ta, fa)} are estimated up to a random phase e jr r E [0, 27r), 
we force them to have, without loss of generality, their first entries real and 
positive. 

(c) These vectors are then clustered into different classes {C~}. Mathematically, 
a(ti ,  f~) and a(t j ,  fj)  belong to the same class if: 

d(a( t i , f i ) ,a( t j , f j ) )  < s (8.5.6) 

where s is a properly chosen positive scalar and d is a distance measure 
(different strategies for choosing the threshold c3 and the distance d or even 
the clustering method can be found in [5]). As an example, in the simulated 
experiment, we used the angle between the two vectors as a distance measure: 

d(ai, aj)  - arccos(5.Tfij) (8.5.7) 

where fi = [Re(a) T, Im(a)T]T/llall. 
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(d) Set the number of sources equal to the number of "significant" classes and, for 
each source si (i.e. each class Ci), estimate its TFD as: 

{)~(ta, fa), if (t, f )  -- (ta, fa) e Ci (8.5.8) 
D s ~ ( t ,  f)  -- 0, otherwise. 

(4) Source signal synthesis: Use an adequate source synthesis procedure to esti- 
mate the source signals, si(t) (i = 1 , . . . ,  n), from their respective TFD estimates 
D s~s~. TF synthesis algorithms can be found in Chapter 11 and ref. [6]. 

An example in Fig. 8.5.4 illustrates the performance of the proposed algorithm. 

8.5.3 Separation using Monocomponent Extraction 
To achieve UBSS, we introduce here a four-step procedure consisting of: 

1. Computation and spatial averaging of the observed signal TFDs; 

2. Component extraction to separate all signal (mono) components; 

3. Component clustering to group together components belonging to the same 
multicomponent source signal; 

4. TF signal synthesis to recover the original source waveforms. 

To have a "clean" TFD (i.e. one that can reveal the features of the signal 
clearly, without any "ghost" components), we use a newly developed high resolution 
quadratic TFD called the B-distribution (see Articles 2.7, 3.3 and 5.7). In addition, 
we use a spatial averaging that mitigates further the sources cross-terms by a factor 
depending on their spatial signatures angle (see Article 8.2). More precisely, we 
compute the averaged TFD (on which line detection is applied) as: 

m 

D(t, f )  - Trace(Dxx(t, f))  - E D=~x, (t, f) .  
/=1  

(s.5.9) 

For component clustering, we use the observation that the STFD matrices at two 
auto-term points corresponding to the same source signal have the same principal 
eigenvector. Therefore, the proposed component clustering procedure consists of 
grouping together components associated with the same spatial direction represent- 
ing a particular source signal. This spatial direction is estimated as the averaged 
value over all component points of the principal eigenvectors of the corresponding 
STFD matrices. More precisely, for each extracted component C, one estimates the 
corresponding spatial direction as: 

I ~~ca( t i ,  fi  ) ac  = Nzc  (8.5.10) 
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where I v  denotes the set of points of component C, Nzc denotes the number of 
points in :Iv and a(ti, fi) is the estimated principal eigenvector of the ith component 
point STFD matrix Dxx(ti, fi). These vectors are then clustered into different 
classes using the clustering algorithm in Section 8.5.2. 

For the component extraction, two different techniques, presented next, can be 
used. The first one is based on a "road extraction" procedure initially proposed 
for road detection in satellite image processing [7] while the second uses a "peak 
detection and tracking" procedure [8]. 

8.5.3.1 A "Road Network Tracking" Approach 
The component-extraction method is divided into three main steps [9]: (i) prepro- 
cessing: because of the particularity of the TFD image, a preprocessing is needed 
before applying the component extraction procedure; (ii) line detection giving lo- 
cal binary detection of the potential linear structures (segments); and (iii) global 
optimization giving a set of labeled components. Due to space limitation, we only 
give a brief review of the principle of the method. Additional information and 
mathematical details can be found in [7] and references therein. 

(1) Preprocessing: First the TF image is transformed to a real positive-valued 
image by forcing to zero all negative values 2 of the TFD and by using a gray scale 
in the range from 1 to 256. Also, line detectors are usually limited to a line width 
of 5 pixels. If the researched components do not respect this limit (which is usually 
the case for a TF image), an image subsampling by block-averaging is applied to 
reduce the pixel size. Despite the blurring effect, this filter presents the advantage of 
reducing the noise in the TF image. Moreover, as the TF image is unisotropic (i.e., it 
contains horizontal lines as can be observed in Fig. 8.5.1), this image downsampling 
[see Fig. 8.5.4(f)] removes this particular feature of the WE image. 

(2) Line detection (Local optimization): A line detector is applied at each pixel 
of the image. We used a detector proposed in [7] for radar image processing. For 
a given direction, its response is based on the ratio of the means computed on 
both sides of the suspected line and the mean of the line itself. Height directions 
are studied and the best response is kept. The resulting image is then binarized 
using a simple thresholding. If statistics on the image are available (noise distribu- 
tion, additive or multiplicative noise, etc.), a statistical study of the line detector 
performance can be made to choose the more adapted threshold (for instance the 
threshold corresponding to a fixed false alarm rate in homogeneous areas). 

(3) Road detection (global optimization): This step is a global step introducing 
constraints on the shape of the linear features to extract connected components and 
to suppress the false alarms [7]. It works on segments extracted on the thresholded 
line response image by thinning and linearization. The previously detected seg- 
ments are connected depending on proximity and alignment constraints (specially 

2Negative values correspond mainly to undesired cross-terms or noise. 
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Fig .  8 .5 .4 :  Testing the "vector clustering" UBSS algorithm for m -- 2 mixtures of two monocomponent 
and one multicomponent LFM signals denoted by st(t),  s2(t) and s3(t) (a-c). The recovered source 
signals (m-o) indicated the success of the UBSS algorithm. Source s3(t) was not falsely separated into 
two monocomponent sources. 
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on the line curvature) to form coherent components. Small isolated segments are 
suppressed. The algorithm depends on the following thresholds: the maximum gap 
between two segments to connect them, the allowed angular difference between the 
two segments, and the minimum size of a component. The result is a labeled image 
of components. 

Fig. 8.5.5 shows an example illustrating the separation quality that  can be ob- 
rained by the above technique. 

8.5.3.2 A "Peak Detection and Tracking" Approach 
We present here a component separation algorithm [8] relying on the additional 
assumption that  all components of the signal exist at almost all time instants. 
Fig. 8.5.6, Table 8.5.1 and Table 8.5.2 illustrate this algorithm. Fig. 8.5.6 provides 
the algorithm flowchart, Table 8.5.1 describes the estimation technique of the num- 
ber of components and Table 8.5.2 details the component separation technique. 

(1) Noise thresholding: The first step of the algorithm consists in noise thresh- 
olding to remove the undesired "low" energy peaks in the TF  domain. 3 We set to 
zero the TFD values smaller than a properly chosen threshold e. Using M A T L A B  TM 

notation, this operation can be written as: 

Dth (t, f )  = D(t, f). �9 (D(t, f )  > c). (8.5.11) 

(2) Estimation of the number of components: In general, for a noiseless and 
cross-terms free TFD, the number of components at a given time instant t can 
be estimated as the number of peaks of the TFD slice D(t, f). Here, we propose 
a simple technique to estimate the number of components in the case where all 
components exist simultaneously at almost all time instants. In this situation, we 
can efficiently evaluate the number of components (see Table 8.5.1) as the maximum 
argument of the histogram of the number of peaks computed for each time instant t 
in the range [1, 2 , . . . ,  tmax] (where tmax • fmax is the dimension of the TFD matrix). 

(3) Component separation procedure: The proposed algorithm assumes that  
(i) all components exist at all time instants in the TF  plane and (ii) any component 
intersection is a crossing point. Under these two assumptions, we note that  if, at a 
time instant t, two or more components are crossing, then the number of peaks (at 
this particular slice D(t, f)) is smaller than the total number of components d. The 
details of the proposed separation technique is outlined in Table 8.5.2. 

To validate the proposed algorithm, we reconsider the same multicomponent 
signal analyzed in Fig. 8.5.1. This signal consists of a mixture of two quadratic 
frequency modulated (FM) components and a linear FM component. The mixture 
signal is added to a zero-mean white Gaussian noise, with SNR equal to 0dB. 

3This noise thresholding is justified by the fact tha t  the noise energy is spread over the whole 
TF domain while the components '  energies are well localized around their respective IFs leading 
to high energy peaks for the latter (assuming no cross-terms). 
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Fig.  8.5.5: (a--c) WVD of st( t) ,  s2(t), s3(t); (d,e) spatial-averaged TFD of the mixture outputs 
using WVD and MWVD; (f) STFD mixture converted to image; (g-h) extraction of source components 
using "road network tracking"; (i) auto-term points of known components; (j- l) TFD estimates of the 
sources; (m-o) TFD of estimated sources after TF synthesis: m = 2 sensors and SNR = 10dB. 
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Fig .  8.5.6: Flowchart of the "component extraction" based algorithm. 

T a b l e  8 .5 .1"  Estimation of the number of components. 

1. For t = 1, . . . , tmax 

number_components(t) = number of peaks of D(t, :) 
end 

2. Compute the histogram H of number_components. 

3. Evaluate the number of components as d = arg max H 

The B-distribution of the noisy signal as well as the components resulting from 
the separation algorithm are displayed in Fig. 8.5.7. Another relevant component 
separation algorithm can be found in [10]. 

8.5.4 Summary and Conclusions 
This article presents TF-based methods for the underdetermined blind separation of 
FM-like signals. The first class of methods is based on a vector clustering approach 
while the second is based on a component extraction approach. Two component 
extraction techniques are introduced using a "road network tracking" algorithm 
(initially developed for road detection in satellite image processing) and a dedicated 
"peak detection and tracking" algorithm, respectively. 

Simulation examples are provided to illustrate the performances of considered 
blind separation methods. Note that the UBSS method based on vector clustering 
is more general in the sense that it can be applied to separate a larger class of 
(not necessarily FM) signals as long as they satisfy the TF orthogonality property. 
In fact, it can be seen as a member of the "sparse decomposition" based UBSS 
methods [11] which essentially use the sparse representation of the source signals in a 
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Table 8.5.2: Component separation procedure for the "peak detection and tracking" algorithm. 

1. Assign an index to each of the d components in an orderly manner. 

2. For each time instant t (starting from t = 1), find the component 
frequencies as the peak positions of the TFD slice D(t, f). 

3. Assign a peak to a particular component based on the smallest dis- 
tance to the peaks of the previous slice D(t -  1, f)  (IFs continuous 
functions of time). 

4. If at a time instant t a crossing point exists (i.e., number of peaks 
smaller than the number of components), identify the crossing compo- 
nents using the smallest distance criterion by comparing the distances 
of the actual peaks to those of the previous slice. 

5. Permute the indices of the corresponding crossing components. 

Fig. 8.5.7: The B-distribution of the original signal (top left) as well as the extracted components 
using the "peak detection and tracking" algorithm. 

given transformed domain (in our case, it is the TF domain). The "vector clustering" 
based method is however less performant than the second class of methods using 
component extraction when considering only FM-type signals. Several component 
extraction techniques exist in the literature [8-10, 12] among which two have been 
presented in this article. The best promising technique (i.e. the one providing the 
best separation quality) is the "image processing" based one using a "road detection" 
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algorithm. In terms of computational cost, it is however much more expensive than 
the "peak detection and tracking" technique. 
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Chapter 9 

Random Processes and Noise Analysis 

Time-Frequency Distributions (TFDs) have been studied initially for deterministic 
signals. Noise is an ever permanent feature in signals and so there is a need to extend 
the formulation of TFDs to the case of random signals. This chapter describes time- 
frequency methodologies developed for dealing with randomness in non-stationary 
signals and systems. The topic is covered in five articles with appropriate cross- 
referencing. 

Noise analysis for TFDs is presented with derivations of mean and variance 
of TFDs (Article 9.1). Both cases of additive and multiplicative noise, including 
white and colored noise, are treated. Time-varying random processes and systems 
can be represented with dispersive time-frequency characteristics using the Weyl 
symbol (9.2). This approach allows the adaptation of analysis tools to systems 
or processes that have specific time-frequency (TF) characteristics. TFDs such 
as the spectrogram and WVD can be designed that are robust to impulse noise 
(9.3). Time-varying power spectra can be defined based on generalizations of the 
Wigner-Ville spectrum and evolutionary spectrum. These are particularly suitable 
for underspread non-stationary processes (i.e. processes with small time-frequency 
correlations) (9.4). Time-varying random channels are also described using a time- 
frequency approach (9.5). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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9.1 ANALYSIS OF NOISE IN T I M E - F R E Q U E N C Y  
DISTRIBUTIONS ~ 

This article presents noise analysis for commonly used time-frequency distributions 
such as those presented in Chapters 2 and 3. The Wigner distribution, as a basic 
time-frequency representation, is studied first. The bias and variance in the case of 
complex white noise are derived. The analysis of noise is extended to other quadratic 
distributions, and to different types of additive and multiplicative noise, including: 
stationary white noise, nonstationary white noise, and colored stationary noise. 
Exact expressions for the mean value and the variance of quadratic distributions 
for each point in the time-frequency plane are given. 

9.1.1 Wigner Distribution 
The pseudo Wigner distribution (WD) of a discrete-time noisy signal x(n) --- s(n)+ 
e(n) is defined by1: 

W= (n, f) - Z m  w(m)w(-m)x(n + re)x* (n - m)e -j4'~/m. (9.1.1) 

where w(m) is a real-valued lag window, such that w(O) = 1. 
Consider first the case when s(n) is deterministic and the noise e(n) is a white, 

Gaussian, complex, stationary, zero-mean process, with independent real and imagi- 
nary parts having equal variances. Its autocorrelation function is Ree(m) - ff~5(m). 
The WD mean for the noisy signal x(n) is 

E{W=(n, f)} = ~-~mw(m)w(-m)s(n + m)s*(n-  ?'n)e -j4rrfm 

+ ~m w(~n)w(-~)R"(2m)~-J~m 

f 
l /4  

2 = 2 W~ (n, f - a)Fw (2a)da + a~, 
J-~/4 

(9.1.2) 

where Fw(f) = ~'m~:[w(m)w(-m)] is the Fourier transform (FT) of the product 
w(m)w(-m), and Ws(n, f) is the original WD of s(n), without a lag window. 

The lag window w(m) causes the W D  bias. The second term on the right-hand 
side in (9.1.2) is constant, so one can assume that it does not distort the WD. 
Expanding Ws(n, f -  a) into a Taylor series, around f ,  we get 

1/4 (')2 

2 w~ (~, f - ~)F~ (2~)d~ -~ W~(~ f)  + ~ W~(~,/)  
J - 1 / 4  ' O f  2 

~n~ + .... (9.1.3) 

~ L J u b i ~ a  S t ankov id ,  Elektrotehnicki fakultet, University of Montenegro, 81000 Pod- 
gorica, Montenegro (1.stankovic@ieee.org). Reviewers: M. G. Amin, and M. J. Bastiaans. 

1Notation ~ without limits, will be used for oo m, Y~-m=-oo" The constant factor of 2 is omitted 
in the WD definition, and in other TFD definitions. 
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Thus, the bias can be approximated by 

1 02W,(n, f)  
bias (n, f )  ~- -~ Of u 1 b(n, f)m2 ?Tt2 ~ ~ 

__ / ' 1 /2  f2F~(f)df .  For the regions where the WD variations in the where m2 J -  1/9 
frequency direction are small, the bias is small, and vice versa. 

The WD estimator va r i ance ,  at a given point (n, f ) ,  is defined by: 

cr~VD(n, f )  -- E{Wx(n, f )Wx(n,  f )}  - E{W,(n ,  f)}E{W:~(n, f)}.  (9.1.4) 

For signals x(n) -- s (n)+ e(n) it results in 

Cr~D(n' f )  -- ~-~ml ~--~m: W ( ~ l ) W ( - - ~ T t l ) W ( m 2 ) w ( - - g r t 2 ) e  - j 4 r r f ( m l - m 2 )  

• + .~)~* (~ + . ~ : ) R ~ ( ~ -  m:,  ~ -  -~1) 
+~*(~ - . ~ ) ~ ( ~  - . ~ : ) R ~ ( ~  + . ~ , ~  + . ~ )  

+~(~ + -~)~(~  - -~:)R;~. (~ - -~1, ~ + m:)  

+~*(~ - . ~ ) ~ * ( ~  + . ~ ) R ~ .  (~  + . ~ 1 , ~  - - ~ )  

+ R ~ ( ~  + . ~ ,  ~ + m ~ ) R ~ ( ~ -  . ~ ,  ~ - m~) 

+R~ .  (~ + m ~ , ~ -  . ~ ) R ~ .  (~ - . ~ , ~  + .~)1. (9 .~ . s )  

The fourth-order moment of noise is reduced to the correlation functions by using 
the relation E{qz2z3z4} - E{zlz2}E{z3z4} + E{zlz3}E{z2z4} + E{zlz4}E{z2z3}, 
which holds for Gaussian zero-mean random variables zi, i = 1 ,2 ,3 ,4 .  For the 

25(n m) and R~ .  (n m) - 0. The variance considered complex noise R~(n, m) - ~ - 
of the WD estimator reduces to 

- 4 Em + + 4 ]  

It is frequency independent. For constant modulus signals, s(n) - a exp[jr the 
variance is constant @VD(n, f )  -- 2 (2a2 + 2 a~Ew cr~), where Ew - Em[w(rn)w(-m)] 2 
is the energy of w(m)w( -m)  window. A finite energy lag window is sufficient to 
make the variance of Wx(n, f)  finite. 

The optimal lag window width can be obtained by minimizing the error e 2 = 
bias 2 (n, f )  + cr~/D(n , f) .  For example, for constant modulus signals, and the Han- 
ning window w(m)w( -m)  of the width N, when Ew = 3N/8 and rn2 - 1/(2N2),  
we get: 

e 2 _ ~ _ _ 1  b 2(n f ) + ~ c r  2(2a 2+or  2) 
256N 4 ' 

From Oe2/i)N - 0 the approximation of optimal window width follows: 

b2(n,f ) 
Nopt(n, f )  ~- 24a~(2a 2 + a~)" 
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An approach to the calculation of the estimate of Nopt(n, f),  without using the 
value of b2(n, f),  is presented in [1], [Article 10.2]. Other statistical properties of 
the WAgner distribution are studied in [2]. 

9.1.2 Noise in Quadratic Time-Frequency Distributions 
A discrete-time form of the Cohen class 2 of distributions of noise e(n) is defined by: 

p~(n, f ;  G) = ~-~, ~-~m G(m, l)e(n + m + l)e* (n + m - l)e -j4€ (9.1.6) 
where G(m, l) is the kernel in the time-lag domain. 

Its m e a n  value, for a general nonstationary noise, is 

E{p~(n, f; G)} - ~-~L ~-~m G(m, 1)R~(n Jr- m 4. l, n 4- m - l)e -jd~yl, 

where Roe (m, n) is the noise autocorrelation function. For special cases of noise the 
values of E{p~(n, f; G)} follow. 
(1) Stationary white noise, R~ (m, n) - a ~ ( m  - n), 

E(p , (n ,  f; G)} - 2 ~g(0,0). 

(2) Nonstationary white noise, Rcc (m, n) -- I ( n ) 5 ( m -  n), I(n) > O, 

E{pc(n, f; G)} - ~-~m G(m, O)I(n + m). 

(3) Stationary colored noise, Rr162 (m, n) = Roe ( m -  n), 

f 
l/2 

-- G(0, 2(f - a) )S~(a)da ,  

where S ~ ( f )  - .Tm~/[R~ (m)] is the noise power spectrum density, and the kernel 
forms in time-lag, Doppler-lag, and Doppler-frequency domains are denoted by: 

f 
l/2 

~-~m G(m, 1)e -j2€ = g(v, l) - G(v, f)eJ2~fZdf . (9.1.7) 
J - l /2  

The var iance  of p~(n, f; G), is defined by 

a~2 ( n , f ) -  E{p~(n, f ;G)p~(n, f ;G)}* - E{p~(n , f ;G)}E{p~(n ,  f; G)}. 

For Gaussian noise, as in (9.1.4)-(9.1.5), we get: 

2 (n, f) ~ , ,  ,~ , , O'ee -- ~ ~-~m, ~-~m2 G(ml ll )G* (m2 /2) (9 1.8) 
x [Ree(n + m l  + / 1 ,  n + m2 + 12)R'~(n + m, - 1 , ,  n 4. m2 - / 2 )  

+ R ~ .  (n + m~ + l l ,  n + m2 -12)R~.~(n + m~ - l l ,  n + m2 + 12)]e-Jd.f(L,-z~). 

2 (n, f)  for the specific noises will be presented next. Form of ace 

2That is, the quadratic class; see p. 68n. 
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C o m p l e x  s t a t i o n a r y  a n d  n o n s t a t i o n a r y  w h i t e  noise 
For nonsta t ionary complex white noise, with independent real and imaginary 

part  of equal variance, Ree (m, n) = I(n)5(m - n), Ree* (n, m) = 0, we get 

2 (n, f )  - E L  E m  IG(m'/)12 I(n + m + 1)I* (n + m - l) pi(n, 0; lal ). (9.1.9) Gee 

2 the variance is proport ional  to the kernel For s ta t ionary white noise, I(n) - he, 
energy, 

2 ( n , f )  a e4 12 - E z  E m  [ G ( m ,  1) . (9.1.10) Gee 

Colored s tat ionary noise 
For complex colored s ta t ionary noise, the variance (9.1.8) can be writ ten as 

2 { G*(m2,12) ~r(e(rt'f)- Z l l  Z m l  G(ml,/l) ~-'~"rn2 El2  

x [/~ee(?Ttl -- //12 -[-11 --12)R2e(ml - m2 - (11 -12))]e -jnTrf(l~-12) }, 

or 

2 (n , f )  - E l  E m  G(m'l)  {G(m,l)*z *m[R:e(m + 1)Ree(m /)eJa'fz]} * , Gee 

where " *z *m" denotes a two-dimensional convolution in l, m. Consider the prod- 
uct of G(m,l)  and Y*(m,l)  - {G(m, 1)*l *m[R~e(m + 1)Ree(m-/)eJ4rfl]} * in the 
last expression. Two-dimensional FTs  of these terms are G(L,,~) and y(v,~) = 
G(v, ~)See(f - (~ - ~')/2)S~e(f - (~ + v) /2) /2 .  According to the Parseval 's  theorem 
we get: 

2(  n, f )  __ l f l / 2  f l / 2  ~ V 
(Tee 2 J-1/2 J-1/2 s h ( f  - + 

- Ps~ (0, f;  Igl ), 

v )d~'d~ 
2 2 

(9.1.11) 

for If - (~ - v)/21 < 1/2 and I f -  (~ + v)/21 < 1/2. The transforms in (9.1.11) are 
periodic in v and ~ with period 1. It means that  we should take into account all v and 

when If - [ ( ~  + kl) - (v + k2)]/2[ < 1/2 and I f -  [(~ + kl) -+-(/] -{- k2)]/21 < 1/2, 
where kl and k2 are integers. 

Note that  the F T  of a colored s tat ionary noise is a white nonsta t ionary noise, 
with autocorrelat ion in the frequency domain 

Rzz ( f l ,  f2) - ~-~m E n  E{e(m)e*(n)}e(-J2r'flm+j27r'f2n) - See(f2)~p(fl - f2), 

where 5p(f) is a periodic delta function with period 1. Thus, (9.1.11) is just  a form 
dual to (9.1.9). 
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A n a l y t i c  noise 
In the numerical implementation of quadratic distributions, an analytic part 

of the signal is commonly used, rather than the signal itself. The analytic part 
of noise can be written as ca(n) = e ( n ) +  jeh(n), where eh(n) = 7-/[e(n)] is the 
Hilbert transform of e(n). Spectral power density of ca(n), within the basic period 
Ifl < 1/2, for a white noise e(n), is Seoea(f) - 2(T2U(f), where U(f)is  the unit 
step function. The variance follows from (9.1.11) in the form 

fl/2 fd(f ,e) 2 (n f ) -  2o .4 [~(/],~)[2 d~du 
(Tee ' J - l ~ 2  J - d ( f , ~ )  

1 
for 12f[ _< ~, (9.1.12) 

where the integration limits are defined by d(f, ~) = larcsin(sin(Tr(2f - ~)))l/Tr (for 
details see [3]). 

The kernel {7(u, ~c) is mainly concentrated at and around the (u, ~) origin and 
- 0 axis. Having this in mind, as well as the fact that l{7(u, ~)12 is always positive, 

2 (n, f) is for f -- 0. The we may easily conclude that the minimal value of ace 
maximal value will be obtained for If] = 1/4. It is very close to [3]: 

f l / 2  f l / 2  
m a x { ~ ( n ,  f)} ~-2o -4 - 2a~ ~-~t ~--~.m IG(m,/)12 

J - 1 / 2 J - 1 / 2  

Rea l  noise 
2 In Now consider a real stationary white Gaussian noise e(n) with variance a e . 

this case, variance (9.1.8) contains all terms. It can be written as: 

4 12 G* 2 (n, f) - a e E l  Z r n  jIG(re' l) + G(m, l) (m,-1)e -j87r/l] (9.1.13) (Tee 

For distributions whose kernel is symmetric with respect to l, a(m,  t) = a ( r n , - / )  
holds. The FT is therefore applied to the positive and even function IG(rn,/)l 2. The 
transform's maximal value is reached at f = 0, and Ifl = 1/4. Accordingly: 

max {ae2e(n, f )}  - 2a~ E l  E m  ]G(m, l)] 2 . (9.1.14) 

The crucial parameter in all previous cases is the kernel energy }-]-I ~ m  la(m, t)l 
Its minimization is thoroughly studied in [4]. It has been concluded that, out of 
all the quadratic distributions satisfying the marginal and time-support conditions, 
the Born-Jordan distribution is optimal with respect to this parameter. 

9.1.3 Noisy Signals 
Analysis of deterministic signals s(n) corrupted by noise, x(n) = s(n)+ e(n), is 
highly signal dependent. It can be easily shown [3,4], that the distribution variance 

2(n, f )  consists of two components: (Tp 

f) + (n, f). (9.1.15) 



Analysis of Noise in Time-Frequency Distributions 377 

The first variance component, and the distribution mean value, have already been 
studied in detail. 3 For the analysis of the second, signal dependent, component 

2 (n, f)  we will use the inner product form of the Cohen class of distributions: O's~ 

px(n, f; G) - E l  E m  G(m, l) [x(n + m)e -j2"fm] [x(n + 1)e-J2"ll] * , (9.1.16) 

where C_,(m, l) - G((m + 1)/2, (m - l)/2). Calculation of (~(m, l) is described in the 
next section. For a real and symmetric G(m, 1), and complex noise, we get 

a~ , G(mx, ll)(~* (m2,12)s(n + ml)s (n + m2) 

xR~(n  + 12, n + ll)e -j27rf(ml-ll-m2+12), 

what can be written as 

~ z  (n, f)  - 2 E m  1 E m  2 ~)(~1 , T/~2) [8(TL -~- TY~ l ) e - j 27r fm l ] [ s (  T~ 2i- ~ 2 ) e - - J 2 7 r f m 2 ]  * , 

(9.1.17) 
where the new kernel ( I ) (ml ,  m 2 )  reads 

~(TTtl, m 2 )  -- ~-~11 ~-~12 d(ml'll)d*(m2'12)e-J2=f(z2-Zl)Ree(n+12' n+ll). (9.1.18) 

The signal dependent part of the variance a 2 (n, f )  is a quadratic distribution of the 

2(n f ) =  2ps(n f; #P). signal, with the new kernel (~(ml,m2), i.e., asc , 

Special case 1: W h i t e  s t a t i o n a r y  complex  noise, when R~(n + ll, n +/2) - 
26(/1 /2), produces O- c m 

~)(ml, m 2 ) -  cr~ ~-~lG(mx,1)G*(m2,1). (9.1.19) 

For time-frequency kernels we assumed realness and symmetry throughout the 
article, i.e., (~* (m2, l) -_ (~l,  m2). Thus,_ for finite limits (9.1.19) is a matrix multi- 

2G G* - 2G2 Boldface letters, without arguments, will be plication form, �9 - a~ �9 a~ . 
used to denote a matrix. For example G is a matrix with elements G(m, l). Thus, 

as ~2 (n, f)  - 2ps (n, f; a~2~2). (9.1.20) 

Note: Any two distributions with k e r n e l s  GI(?Tt, l) -- G 2 ( m , - 1 )  have the same 
variance, since 

Gl(?Ttl,/)G~(Trt2 l ) -  E/G1(17~1 -/)G~(ITt 2 - l ) -  E/G2(?Ttl /)G~(?Yt 2 l) E 1  ' ' ' ' ' " 

Corollary: A distribution with real and symmetric product kernel g(pT) and the 
distribution with its dual kernel gd(~T) -- 9~--~.,#--.~ [g(afl)] have the same variance. 

3An analysis of the bias, i.e., kernel influence on the form of ps(n, f; G) may be found in [1]. 
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Proof: Consider all coordinates in the analog domain. The time-lag domain 
forms of g(vT), G(t,T) -- Jc,--,t[g(vT)], and gd(VT), Gd(VT) -- ~,--,t[gd(VT)] are 
related_ by _G(t,~-) - Gd(~',t). In the rotated domain this relation produces 
G(tl ,  t2) - Gd(tl,--t2),  what ends the proof, according to the previous note. 

Example" The WD has the kernel g(vT) = 1, G(m, l) - 5(m + l). According 
to the Corollary, the WD has the same variance as its dual kernel counterpart,  
with g(v7) - 5(V,T), G(m,l)  = 5 ( m -  1). This dual kernel cor responds to  the 
signal energy ~ m  [x(n + m)[ 2 (see (9.1.16)). Thus, the WD and the signal energy 
have the same variance. The same holds for the smoothed spectrogram, and the 
S-method [1], [Article 6.2], whose kernels are G(m,l)  = w(m)p(m + l)w(l), and 
G(m, l) - w(m)p(m -1)w(1), respectively. Their variance is the same. 

Eigenvalue decomposition: Assume that  both the summation limits and values 
of (~(m, l) are finite. It is true when the kernel G(m, l) is calculated from the well 
defined kernel in a finite Doppler-lag domain, G(m,l)  - .T,~m[g(v,l)], using a 

2 (n, f )  can finite number of samples. The signal dependent part of the variance as~ 
be calculated, like other distributions from the Cohen class, by using eigenvalue 
decomposition of matrix G, [5, 6]. The distribution of non-noisy signal (9.1.16) is 

N/2-1 

ps(n, f )  = E )hSs(n, f; qi) = ps(n, f;)~, q), (9.1.21) 
i=-g/2 

where Ai and qi(m) are eigenvalues and eigenvectors of the matrix (~, respectively, 

§ and Ss(n, f; qi) - z-.~i--N/2 is the spectrogram of signal 

2~2 its eigenvalues s(n) calculated by using qi(m) as a lag window. Since (~ -- a~ , 
2 ]2 and eigenvectors are a~ IAi and qi(m), respectively. Thus, according to (9.1.20) 

N/2-1 

2 (n, f)  Ss(n , f ;q i )  2a2ps(n,f;  I,kl 2 q). (9.1.22) 
O ' S e  - - -  _ _  

i----N~2 

2 (n f )  kernel: According Relation between the original kernel and variance a~r , 
to (9.1.21), we can conclude that  the original kernel in the Doppler-lag domain 

~N/~.-~ 
can be decomposed into g(u, l) - ,--.,i=-N/2 .Xiai(u, 1), where ai(u, l) are ambiguity 

functions of the eigenvectors qi(m). The kernel of ps(n, f; I~12 , q), in (9.1.22), is 
ga(l],  l) - -  ~-- ,N/2-1 2 z-.~=-Y/2 [A~[ hi(V, l). A detailed analysis of distributions, with respect 

to their eigenvalue properties, is presented in [6], [Article 6.4]. In the sense of 
that  analysis, the signal dependent variance is just "an energetic map of the time- 
frequency distribution" of the original signal. 

The mean value of variance (9.1.17) is: 

_ 2 (n, f )d f  - 2a 2 E m  ~(m,  m)Is (n  + m)] 2 (9 1.23) ae~r f )  J-i/2 a~r . . 
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Fig. 9.1.1: Time-frequency representations of a non-noisy signal (First column); One realization of 
time-frequency representations of the signal corrupted by a white stationary complex noise (Second 
column); Variances of the distributions, obtained numerically by averaging over i000 realizations (Third 
column): (a) Spectrogram, (b) Smoothed spectrogram, (c) S-method, (d) Choi-Williams distribution, 
(e) Pseudo Wigner distribution. 

For frequency modulated signals s(n) - a exp[jr it is a constant proportional 
to the kernel energy [4]. 

Special case 2: For n o n s t a t i o n a r y  whi te  complex  noise, (9.1.18) results in: 

N/2-1 
~(ml,  m2) : E I (n  +/)G(ml, 1)G*(m2, l), (9.1.24) 

i---n~2 

or �9 -- GI~G, where In is a diagonal matrix, with the elements I (n  + l). For the 
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quasi-stationary case, I(n + ll)5(ll -12) -~ I(n)5(ll -12), we have Pi = I(n) I,~il 2, 
with all other parameters as in (9.1.22). 

Special case 3: In the case of co lo red  s t a t i o n a r y  c o m p l e x  noise ,  relations 
dual to those in Special case 2, hold (like (9.1.9) and (9.1.11)). 

Special case 4: Let x(n) = s(n)(1 +p(n)), where p(n) is a m u l t i p l i c a t i v e  noise .  
We can write x(n) = s(n) + s(n)p(n) = s(n) + e(n), where e(n) = s(n)p(n) is an 
additive noise. Thus, the case of this kind of multiplicative noise can be analyzed in 
the same way as the additive noise. For example, if the noise #(n) is a nonstationary 
white complex one with R , , ( m ,  n) = I t , (n)5(n-  m), then R~(m,  n) = I~(n)5(n-  
m), where I ~ ( n ) -  Is(n)] 2 It,(n ). 

9.1.4 Numerical Example 
Consider the signal 

x(t) - exp(j l100(t  + 0.1) 2) + e -25(t-~ exp(j l000(t  + 0.75) 2) 

+e -25(t-~ exp(j l000(t  - 0.4) 2) + exp(j2850t) + e(t), 

within the interval [0, 1], sampled at At = 1/1024. A Hanning lag window of the 
2 2 width Tw = 1/4 is used. Stationary white complex noise with variance a~ = 

is assumed. The spectrogram, smoothed spectrogram, S-method, Choi-Williams 
distribution (CWD), and the WD, of signal without noise are presented in the first 
column of Fig. 9.1.1, respectively. For the CWD, the kernel g(u, T) = exp(--(UT) 2) 
is used, with normalized coordinates -v/TrN/2 <_ [27ru] < V/TrN/2, -v/TrN/2 <_ 
IT[ < V/TrN/2, and 128 samples within the intervals. Elements of the matrix G 
were calculated as, [6] 

p=-N/2 g(pA~, (m -/)A~-) exp(- j27r(m + 1)p/(2N))A~. (9.1.25) 

The normalized eigenvalues of the matrix ,I, were Ai - {1 , -0 .87,  0 .69,-0.58,  0.41, 
-0.30,  ...} and #i - jail 2 - {1, 0.76, 0.47, 0.33, 0.17, 0.09, ...}. In the spectrogram 
and smoothed spectrogram the whole signal dependent part of variance is "located" 
just on the signal components, while in the WD it is "spread" over the entire time- 
frequency plane. Variance behavior in other two distributions is between these two 
extreme cases. As it has been shown, the variances in the smoothed spectrogram 
and the S-method are the same [Fig. 9.1.1(b) and (c)]. 

9.1.5 Summary and Conclusions 
The variance values for a white nonstationary complex noise, with R~(m,n )  - 
I(n)5(m - n), I(n) >_ O, for some distributions, are summarized next. 
-Pseudo Wigner distribution Ws(n, f; w), with G(m, l) - w(m)5(m + l)w(1): 

2 (n, f )  + 2 (n, f )  - Wi(n, 0; w 2) + 2Wi,isl2(n, 0; w2), (9.1.26) a~vD(n, f )  -- a~ a,~ 
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where Wt,lsl 2 denotes the cross Wigner distribution for I (n)  and Is(n)[ 2. 

-Spectrogram Ss(n, f; w), with G(m, l) - w(m)w(1)" 

2 (n, f)  - Si(n, 0; w 2) + 2Fi(n, O" w2)Ss(n, f" w). C r S P E C  : : (9.1.27) 

The STFT of I(n),  calculated using the window w2(m), is denoted by Fi(n ,  f ;  w2). 
-A general quadratic distribution, with kernel G(rn, l) - G((rn + 1)/2, (m - / ) / 2 ) ,  in 
(9.1.6) or (9.1.16), and G being a matrix with elements G(rn, l ) :  

2(n, y) - pi(~, o; IGI 2) + 2p~(n, f .  GI~G) (9.1.28) O ' p  , . 

The first two formulae are special cases of (9.1.28). Expressions for stationary 
2 Dual expressions hold for a colored stationary white noise follow with I (n)  - cry. 

noise. Further details can be found in [7]. 
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9.2 STATISTICAL PROCESSING OF DISPERSIVE SYSTEMS 
AND SIGNALS o 

9.2.1 Processing Tools For Time-Varying Systems and Signals 
Time-frequency representations (TFRs) such as the Wigner distribution (WD) are 
powerful tools for analyzing deterministic signals whose spectral characteristics vary 
with time. In many applications, one can observe linear time-varying (LTV) sys- 
tems (e.g. wireless communication or sonar channels) and nonstationary random 
processes (e.g. noisy signals with random parameters). Due to their time fluctua- 
tions, both of these can exhibit time-frequency (TF) characteristics that  could be 
embedded in the model design of a system or in the autocorrelation function of a 
random process. Thus, it would be ideal to design transforms or TFRs that  would 
extract useful information from these characteristics [1-5]. The transforms could 
preserve some important system or random process changes. Specifically, signals 
propagating over LTV systems may be shifted by a constant amount in frequency 
or shifted in a non-linear time-dependent manner due to a dispersive change in 
the signal's instantaneous frequency (IF). Note that dispersive implies that  the IF 
change or shift varies non-linearly with time. Information of a constant frequency 
change, for example, is very useful in improving the Doppler diversity of a com- 
munications channel (see [6] and Article 13.2). Furthermore, information of an IF 
change on the input signal to a dispersive system can be used to improve system 
performance. 

An appropriate analysis tool for LTV systems and random processes is a class of 
TFRs called TF symbols [1-5] which are 2-D functions that depend on an integral 
operator s defined as (s = f_oo Tz.(t,T)x(T)dT. The kernel Tx:(t,T) of the 
operator can be considered as the time-varying impulse response of an LTV system 
or the autocorrelation function of a nonstationary random process. 

Narrowband Weyl Symbol The narrowband Weyl symbol (WS) of a linear oper- 
ator L: on L2(R), defined as 

( W S L ( t , f ) -  TL t + ~ , t -  
cx:) 

is an important tool for analyzing LTV systems and nonstationary random processes 
characterized by constant TF shifts and scale changes [1, 2]. It can be interpreted 
as a time-varying transfer function of an LTV system (see [1] and Articles 4.7 & 
12.4) or as a time-varying spectrum of a nonstationary random process (Article 9.4). 
When L: is the autocorrelation operator 7~z of a random process x(t) whose kernel 
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(boud@ele.uri.edu). Reviewers: A. M. Sayeed and G. Matz. 
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Table 9.2.1: Summary of some commonly used operators. Depending on the sign of t, sgn(t)=-t-1. 

Operators Operator Definitions 
(S~x)(t) 
(g~) x)(t) 

(MvX)(t) 
(~(J) x)(t) 
(~x)( t )  
(7~ x)(t) 
(E~x)(t) 
(Cax)(t) 

(Sa ~) x)(t) 

(~v~ ~)(t) 

�9 (t ~) 
(w/-~ s,~r we x)(t) 
x(t) e j2"vt 

x(t) ~ ~ ( ~ )  - ( w (  ~ M z / .  w~ ~)(t) 

x(t) eJ2rt31n ( ~ ) 
t --1 x(t) e j2~zsgn(t) I~1" 

x(t) e j 2 ~ / ~  
1 x(t  , /~  ~) 

(~V(I Ca W~ X)(t) 

X (tr~ -1 (~r ) ) I  try  ( tr~-I ( t -~) )  I 1/2 

is the autocorrelation function Tn~ (t, 7-) = E{x( t )x* (T)} ,  the WS of 7~x is the 
expected value of the WD, i.e. WSnz(t,  f)  = E{WDx(t,  f)} (called the Wigner- 
Ville spectrum in [7] and Section 2.2.1). Here, E{.} denotes statistical expectation 
and the WD is defined as WDx(t, f)  = f-~c~ x(t  + ~ ) x * ( t -  ~ )e  -j27rT/dT. When 
/: is an innovations system, the squared magnitude of (9.2.1) is known as the Weyl 
spectrum in [8]. Note that the WS has been used to provide a definition of a TF 
concentration measure [2], and is useful in TF detection applications [7, 8]. 

The WS satisfies many desirable properties. Specifically, it preserves constant 
TF shifts, and scale changes (see Table 9.2.1) on LTV systems and nonstationary 
random processes. For example, the WS of the autocorrelation operator 7~x of a 
nonstationary random process x(t)satisf ies [1] 

y(t) = (ST x)(t) -- x(t  -- 7) =~ WSny (t, f)  - WSnx (t - T, f)  

y(t) - (My x)(t) = x(t) ~j~v~ ~ w s ~  (t. f )  - w s ~  (t. f - ~) 
1 ( t )  ( t )  

y(t) - (Ca x)(t)  = V ~  x =~ WSn,~ (t, f)  = WSnx -'a a f  

(9.2.2) 

(9.2.3) 

(9.2.4) 

where TL(t, T) and T~r(t, T) are the kernels of the operators s and Af, respectively. 
This is an important property for preserving energy or norms. Since it is unitary, 

?/? W S c ( t , f ) W S k ( t , f ) d t d f  - Tc(t ,T) T ) ( t , T ) d t d T  (9.2.5) 
OO OO CK) OO 

where ST, Ad. and Ca are the constant time-shift, constant frequency-shift and scale 
operators, respectively. The WS also satisfies the unitarity property given by 
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the WS is associated with the unitary WD and preserves the quadratic form 

( s  x* (t) dt - WSc(t, f)  WDx (t, f )  dt df  . (9.2.6) 
o o  o o  ( x )  

Here, the correlation of the WS of a system s with the WD of the system's input 
x( t )  results in the correlation of the system's output ( s  with x( t )  [1,2]. 

Narrowband Spreading Function The spreading function (SF) of a linear operator 
s is defined as the 2-D Fourier transform of the WS, 

i_ 1? SFL(T, 1,') = WSL(t, f )  e - j 2" ( t~ - f r )  dt df  
o o  o o  

- T L t + 2 ' t -  7 dt .  (9.2.7) 
CK) 

Using the SF, the output of an LTV system s can be interpreted as a superposition 
of TF shifted versions of the input signal each weighted by the SF [2] 

( s  - SFc(7, u) e - j ' ' "  x ( t  - 7) e j2'~t d7 du . (9.2.8) 
o o  O o  

The system output interpretation in (9.2.8) is comparable to that of a linear time- 
invariant (LTI) system, and it can be used to formulate TF receiver structures. 
For example, it can provide critical information on the output signal of a time and 
frequency selective wireless communications channel. The SF is also used in the 
classification of operators as underspread or overspread [1]. 

Wideband Weyl Symbol The TF version of the affine WS , introduced in [2], is 

a/2 it is defined as called P0-Weyl symbol (PoWS) in [3,4], and for A(c~) = s i n h  ( c ~ / 2 ) '  

( ) PoWS~(t, f)  - f FB fA(a)e~,  fA(a)e-~  A(a)e j2'~st~ d a ,  f > O, 
o o  

where ( B X ) ( f )  - f o  FB(/, ~ ) X ( , ) d u ,  and rB(f,  ~) is the kernel of the frequency 
domain operator 13 on L2(I~+). The PoWS is a unitary symbol that is associated 
with the unitary Bertrand P0-distribution [9]. The wideband SF (WSF) is the 2-D 
modified Fourier transform of PoWSB(t, f)  [2], and they are both important for an- 
alyzing random processes and LTV systems characterized by constant or hyperbolic 
time shifts and scale changes [2-4]. 

9.2.2 Dispersive Time-Frequency Symbols 
In nature, there are systems and random processes characterized by dispersive time 
or frequency shifts (see [9] and Article 5.6). For example, the ocean is a system 
that can cause echoes with power dispersive characteristics from acoustic waves 
reflected from immersed spherical shells [10]. The WS is not well-suited to analyze 
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such systems and processes as it is better matched to constant TF shifts [1, 3, 4]. 
Instead, as will be shown next, modified versions of the narrowband WS and SF 
were developed for analyzing random processes and LTV systems characterized by 
dispersive (such as power) IF shifts [3]. Note that  extensions of the wideband PoWS 
for arbitrary dispersive analysis is provided in [5]. 

Dispersive Weyl Symbol Let the linear operator Z, defined in the time domain 
on L2([p, q]), be ( Z x ) ( t )  - f ;  Tz( t ,  T)x(~-)dr, with kernel T z ( t ,  7). The dispersive 

Weyl symbol, DWS~ ) (t, f) ,  of Z is defined in [3] as 

DWS~) (t, f )  fcc d I~ d~ (9.2.9) - T z ( l ( t , ~ ) ,  l ( t , - ~ ) )  e-J2~'--~ ] v ( l ( t , ~ ) ) v ( l ( t , - ~ ) ) ] � 89  

=wsw, zw; ~ t~ ~ U ' t~ v(t)  

t 1 t where/ ( t ,  ~) - tr ~-l(~c(K ) + 2~), ~- (~(b)) - b, v( t )  = d ~ ( K )  , and the integration 
range [c, d] in (9.2.9) and [iv, q] above depend on the range and domain, respectively, 
of ~(.). Note that  tr > 0 is a reference time point that  is needed for unit precision 
(unless otherwise stated, it could be taken as t~ = 1). Thus, the DWS is obtained 
by warping the operator Z and the WS in (9.2.1) using a unitary transformation 
( [3, 9, 11] and Article 5.6) based on the one-to-one warping function ~C(b). With 
( W (  1 W~ x)( t )  - x(t), the unitary warping operator W~ in (9.2.10) is given by 

1/2 

The DWS preserves dispersive IF shifts on a random process x(t), i.e. 

y(t)  - x ( t ) e J2"Z~(~  ) =~ DWS (~) (t f )  - DWS (~) (t f - ~ v ( t ) )  (9.2.11) 7~., , 7~x , , 

where 1 y(t)  - (M(~) x) ( t )  - x ( t ) e  j2~z~(~), .~(~) is the IF shift operator, and fi v ( t )  
is the change in IF. This follows as the WS preserves constant frequency shifts 
( A / l , x ) ( t )  in (9.2.3), and the warping in (9.2.10)yields W~ -1A/tZ/t~ I/Y~ = M(~) .  
Because of this important property, the DWS is potentially useful in analyzing 
random processes or LTV systems with characteristics that  may be constant (when 
~C(b) = b) or dispersive (when ~C(b) is non-linear). The DWS also preserves warped 

time shifts ( , ~ )  x)( t )  - (l/Y( 1 $t~r W~ x)( t )  (cf. (9.2.2)) and warped scale changes 

(C(~) x) ( t )  - (W~ -1 Ca W~ x) ( t )  (cf. (9.2.4)) as defined in [3]. 
The importance of the DWS is further emphasized when used to analyze random 

non-linear frequency modulated (FM) signals x( t )  - aLo(t)eJ2~Zr ) with phase 
function r and random amplitude a (see [9] and Article 5.6). When the phase 

1The tilde above operators indicates the warped versions of the operators in (9.2.2)-(9.2.4). 
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function of the non-linear FM signal is matched to the warping function ~(b) used 
t 1/2 1 /2 ,  in the DWS, i.e. when r = ~(b) and co(t) - ] d r  ] = Iv(t)] then the 

DWS of the autocorrelation operator of the process produces an ideally localized 
representation, 

DWS (~) (t, f ) -  E{[a] 2 n~ } 5 ( f  - / 3  v(t)) , 

provided that the range of ~(b) is R. The DWS is localized along the curve f = 
/3 v(t), corresponding to the IF of the non-linear FM signal. 

Dispersive Spreading Function The dispersive spreading function (DSF) is ob- 
tained as the SF in (9.2.7) of the warped operator [3] ~V~ Z )4)~ -1, 

DSF~ ) (r - SFw, z w[ '  (tr r fl/tr) . (9.2.12) 

For an LTV system Z, the DSF provides an interpretation of the operator output 
as a weighted superposition of warped TF shifted versions of the input signal x(t), 

?F  (Zx)( t)  = DSF~ ) (r e -j'~r (M(~) 8~) x)(t) de dfl. 
o o  o o  

(9.2.13) 

Depending on the warping function ~(b), the formulation in (9.2.13) simplifies to a 
specific interpretation on the operator output. For example, when ~(b) - ~ln(b) = 

lnb, then (~ (~ ln )~ ln )x ) ( t )  - e-~ x ( t e - r  j2~z ln(~), and (9.2.13) describes the 
operator Z as a weighted superposition of hyperbolic IF shifts and scale changes 
(by e r on the input x(t) [3]. 

Unitarity and Quadratic Form Properties of the DWS 
unitarity property in (9.2.5) since [3] 

The DWS satisfies the 

q D W S ~ ) ( t , f ) D W S ~ ) * ( t , f ) d t d f  - T z ( t ,T )  T*x(t,T)dtdT.(9.2.14 ) 
o o  

t [ ) which is the The DWS is associated with DWD(~)(t, f)  = WDw~x t r~(U ), try(t) 
] 

IF shift covariant version of the WD (see [9] and Article 5.6). Using the DWS, a 
general expression of the quadratic form in (9.2.6) is 

(Zx) (t) x* (t)dt = DWS~ ) (t, f)  DWD (~) (t, f )  dt df 
(x) 

(9.2.15) 

with potential detection applications for non-linear TF processes [3]. 

9.2.3 Special Cases of Dispersive Time-Frequency Symbols 
Depending on the warping function ~(b), the DWS may simplify to TF symbols that 
are matched to linear or non-linear (dispersive) TF structures. Note that the trivial 
case of ~(b) = b simplifies the DWS to the WS. Some other examples are described 
below. 
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Hyperbol ic  W S  and SF The hyperbolic Weyl symbol (HWS) is obtained as the 
warped version of the WS when ~(b) = ~ln(b) = ln b in the DWS formulation in 
(9.2.10) and (9.2.11). That  is, for a linear time domain operator ,7 on L2(R +), 

( ( t )  t-/-) t > 0 "  Thisyields HWSs( t  f)  - DWS '~) (t f )  - WS~/~(ln , j  (ln , , w-1  t r ln  g ' t~ ' 

HWSs( t ,  f ) -  t J ~  
o o  

T s (te r te -r e -j2€162 d~ (9.2.16) 

where T j ( t ,  T) is the kernel of ,7 [3]. The HWS is significant for processing sys- 
tems and nonstationary signals with hyperbolic TF characteristics. Specifically, it 
preserves hyperbolic IF changes on a random process x(t) 

y ( t )  -- x ( t )  e j27r/3 In ( ~ )  =~ HWSn,~ (t, f )  - HWSn~ t, f - 7 

where y(t) - (Ad~,ln)~-4, x)(t) - (7-l~ x)(t) is the hyperbolic IF shift operator (obtained 
when ~(b) = In b in (9.2.11)). The HWS also satisfies the scale covariance property 

in (9.2.4) since - -  ~ l n )  _ Cer [3]. The HWS satisfies the unitarity property in (9.2.14) 
with ~(b) = In b and [p, q] = [0, oc). It is associated with the dual form of the Altes 
Q-distribution ([9] and Article 5.6). 

As an example of the HWS, if the output of a system ,7 is the scale convolution of 
an input signal x(t) and some function g(t), then the HWS in (9.2.16) is the Mellin 

cx~ 1 e - j27r t f  In ( ~ )  dy. This is intuitive transform of g(t), i.e. H WSj ( t ,  f )  - fo g (T ) -~  
as the Mellin is a natural transform for scale operations. For comparison, the WS 

in (9.2.1) W S j ( t  f ) -  f o  v~ ( t + r / 2 )  -j2~Tf , , t-T~2 g trt_~/2 e dT, of the same operator ,7 

is difficult to interpret. 
The hyperbolic spreading function (HSF) is obtained from (9.2.12) when ~(b) = 

, , -1 (try, ~/tr)  yielding [3] ~ln(b) - - l n b  as H S F j ( r  ~ ) -  DSF~'n)(~ /3) - -  SF~42~ln,J~ln 

HSFj(~, /3)  - fro ~ 
Tj ( t e r  te-r e-J2"Zln(~)dt 

It is related to the HWS using a modified Fourier transform and a Mellin trans- 
form as HSFs(( , /3)  - f_o~ f ~  HWSs(t , f )eJ2~r e_J2~Zln(~)dtdf  [3]. The HSF 
provides an alternative interpretation of the operator output as a weighted superpo- 
sition of hyperbolic IF shifted and scale changed versions of the input signal where 
the weight is the HSF, i.e., 

(yz)(t) - / ?  
o o  o o  

H S F j  (~,/3) e -j€162 (TlZ Cer x)(t) d~ d/3, t > O .  

It is useful for analyzing systems characterized by hyperbolic IF shifts and scale 
changes. The hyperbolic version of the quadratic form in (9.2.15) with ~(b) = 
In b is useful in detector formulations when signals in noise have hyperbolic TF 
characteristics [3]. 
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t Power WS and SF When ~(b) - ~C~(b) - sgn(b)ibl ~ and v~(t)  - d ~ ( K ) ,  the 
DWS in (9.2.9) and the DSF in (9.2.12) simplify, respectively, to the nth power WS 
(PWS) and the t~th power SF (PSF) for 12 E L2(R) 

PSF (~) (~,/3) - DSF~ ") (~, 13) - SFw,.  Lw~,: ( t ~ ,  f i / t~) 

t ) 1 t --1/2 w h e r e  - x It,v,<(t, 2 ( m ) ) l  �9 
The PWS preserves power IF shifts on a random process x(t) ,  i.e. 

where y(t)  - ( M ( f ~ ) x ) ( t )  - (P~ x)( t )  is the power IF shift operator (the operator 
in (9.2.11) when ~(b) = ~(b)) .  The PWS also preserves scale changes since warped 

scale covariance simplifies to the scale covariance in (9.2.4), i.e. C(f~) - Cf~/~(a). 
The corresponding operator output can be interpreted as a weighted superposition 
of power IF shifted and power warped time-shifted versions of the input signal. Also, 
the PWS is unitary as it satisfies (9.2.14) and it is associated with the power WD 
( [9] and Articles 5.6 & 15.3) in the quadratic form in (9.2.15) when ~(b) = ~(b)  [3]. 

Exponential WS and SF For a linear operator s defined on L;(R), the expo- 
nential WS, EWSL(t, f)  - WSw~L~v/1 (tre t/tr, f e - t / t r ) ,  and the exponential SF, 

ESFL(~, fi) = SF~v~L~v/1 (trY, ~ / t r ) ,  are given as exponentially warped versions of 
t the narrowband WS and SF, respectively. Here, ()4;~ x) (t) - X(tr l n ( K ) ) ~ r / t ,  

t > 0. The EWS and the ESF are obtained from the DWS in (9.2.9) and the DSF 
in (9.2.12), respectively, when ~(b) = e b. The EWS preserves exponential IF shifts 
on a random process x(t), 

y(t)  - x(t) d 2~B ~ ' / ~  = ~  EWS% (t, f )  - EWS~,  (t ,  f - ~ e t/t~ I t s )  

where y(t)  - (7:) (~) x)( t )  - ($~ x)( t) .  Also, the EWS preserves constant time shifts 

in (9.2.2) since C(~) - S t r  in a, is unitary, and satisfies the quadratic form in (9.2.15) 
with association with the exponential WD (see [9] and Article 5.6). 

9.2.4 Analysis Application Examples 
When a process or system has distinct TF characteristics in a particular application, 
it is important to choose an adequate analysis tool. As shown next, a dispersive WS 
produces an ideally localized spectrum of a process when they both have similar 
dispersive TF characteristics. Fig. 9.2.1 demonstrates the advantage of the HWS 
over the WS when used to analyze signals with hyperbolic TF characteristics. The 
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Fig. 9.2.1: (a) Narrowband Weyl symbol, and (b) hyperbolic Weyl symbol of a random process 
consisting of signal components with random amplitude and hyperbolic instantaneous frequency. 

deterministic signal components are weighted by random, zero mean amplitudes, 

i.e x(t) [ 3  ] 
�9 - }-~,~=1 amsm(t) w(t) where w(t) is a shifted Hanning window, and am 

are uncorrelated random variables with zero means and constant variances a 2 
a m  �9 

Also, sin(t) - -~t ej47rrn In (t-tj), t > 0, is a deterministic hyperbolic FM signal 

in time, with hyperbolic IF (see [9] and Article 5.6). For the ideal case without 

windowing, the theoretical HWS of the process 2(t) 3 
- -  Em--1 amSm(t) is 

HWST~ (t, f ) -  E E{lam } HWST~m (t, f ) -  ~- E a2am (~ f -  
m =  l rn= l 

, t > O .  

It consists of three Dirac delta functions centered along the hyperbolae f = 2m/t,  
corresponding to the hyperbolic IF of sin(t), m = 1, 2, 3. Both the WS and the 
HWS produce no outer cross terms between neighboring hyperbolae since the ran- 
dom amplitudes am are uncorrelated. However, the WS in Fig. 9.2.1(a) has inner 
interference terms inside each hyperbola since it does not match the hyperbolic TF 
characteristics of the process. The HWS in Fig. 9.2.1(b) is an ideally concentrated 
TFR without any interference terms as it is matched to the process. 

Fig. 9.2.2 demonstrates the advantage of the n = 3 power WS over the nar- 
rowband WS when the analysis random process is a power FM signal x(t) = 
ave( t )  eJ2~Z~(~ ) (also with ~ - 3) [see [9] and Articles 5.6 & 15.3]. The power 
WS in Fig. 9.2.2(b) results in an ideal TFR for this process since, unlike the WS 
in Fig. 9.2.2(a), it matches the signal's power TF characteristics without any inner 
interference. 
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Fig. 9.2.2: (a) Narrowband Weyl symbol, and (b) power Weyl symbol of a random process consisting 
of a signal component with random amplitude and power instantaneous frequency. 

9 . 2 . 5  S u m m a r y  and Conclusions 

This article discussed the use of TF symbols for the statistical signal processing of 
linear time-varying systems and nonstationary random processes. These symbols 
form the time-varying counterparts of transfer functions for systems and of power 
spectral densities for random processes. The Weyl symbol has been successfully 
used for narrowband systems with constant TF structures whereas the P0-Weyl 
symbol has been used for wideband systems with either constant or hyperbolic 
TF characteristics. For systems with non-linear dispersive structures, new symbols 
were presented for appropriate matched processing. For example, such non-linear 
TF symbols would be suitable for analyzing tetherless underwater communication 
systems in dispersive mediums. 
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9.3 ROBUST TIME-FREQUENCY DISTRIBUTIONS~ 
Study of the additive Gaussian noise influence on time-frequency (TF) distributions 
is an important issue (see Article 9.1). However, in many practical applications, es- 
pecially in communications, signals are disturbed by a kind of impulse noise. These 
noises are commonly modeled by heavy-tailed (long-tailed) probability density func- 
tions (pdfs) [1]. It is well known that the conventional TF distributions are quite 
sensitive to this kind of noise, which is able to destroy sensitive signal informa- 
tion. The minimax Huber M-estimates [2] can be applied in order to design the 
periodogram and TF distributions, robust with respect to the impulse noise. For 
nonstationary signals, the robust TF distributions are developed as an extension of 
the robust M-estimation approach. 

9.3.1 Robust Spectrogram 
The standard short-time Fourier transform (STFT) at a given point (t, f) ,  intro- 
duced in Section 2.3.1, can be alternatively defined as a solution of the following 
optimization problem: 

Fz(t, f )  - arg {mimnI(t , f ,m) } , (9.3.1) 

N/2-1 

I(t, f, m) - E w(nAt)F(e(t,  f , n)). (9.3.2) 
n=-N/2 

Here, the loss function is given as F(e) - ] e l  2, w(nAt) is a window function and At 
is a sampling interval. The error function has the form: 

e(t, f, n) - z(t + nAt)e -j2~fnAt - m, (9.3.3) 

where m is a complex-valued optimization parameter in (9.3.1). The error function 
can be considered as a residuum expressing the "similarity" between the signal and 
a given harmonic exp(j27rfnAt). 

The solution of (9.3.1) easily follows from 

OI( t , f ,m)  
Om* = 0  (9.3.4) 

in the form of the well-known standard STFT (cf. Section 6.5.5)" 

N/2-1 
1 

Fz(t, f )  - E w(nAt)z( t  + nAt)e -j2~fnAt, (9.3.5) 
aw n=-N/2 
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gineering, Kyoto institute of Technology, Kyoto 606-8585, Japan (igordj@serverl.cis.cg.ac.yu), on 
leave from the University of Montenegro; LJubi~a Stankovid,  Elektrotehnicki fakultet, University 
of Montenegro, 81000 Podgorica, Montenegro (1.stankovic@ieee.org). Reviewer: S. Stankovid. 
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where 
N/2-1 

a w -  E w(nAt). (9.3.6) 
n=-N/2  

The corresponding spectrogram is defined by 

Sz(t, f) = ]Fz(t, f)l 2. (9.3.7) 

The maximum likelihood (ML) approach can be used for selection of the ap- 
propriate loss function F(e) if the pdf p(e) of the noise is known. The ML ap- 
proach suggests the loss function F(e) ~ - logp(e ) .  For example, the loss function 
F(e) = le] 2 gives the standard STFT, as the ML estimate of spectra for signals cor- 
rupted with the Gaussian noise, p(e) ~ exp(-]e]2). The standard STFT produces 
poor results for signals corrupted by impulse noise. Additionally, in many cases the 
ML estimates are quite sensitive to deviations from the parametric model and the 
hypothetical distribution. Even a slight deviation from the hypothesis can result in 
a strong degradation of the ML estimate. The minimax robust approach has been 
developed in statistics as an alternative to the conventional ML in order to decrease 
the ML estimates sensitivity, and to improve the efficiency in an environment with 
the heavy-tailed pdfs. The loss function 

F(e) = le[ = V/~ 2{e} + ~2{e} (9.3.8) 

is recommended by the robust estimation theory for a wide class of heavy-tailed 
pdfs. It is worth noting that the loss function 

f(~) -I~{~}1 + I~{e}l (9.3.9) 

is the ML selection for the Laplacian distribution of independent real and imaginary 
parts of the complex valued noise. 

Nonquadratic loss functions in (9.3.1) can improve filtering properties for impulse 
noises. Namely, in [3,4] it is proved that there is a natural link between the problem 
of spectra resistance to the impulse noise and the minimax Huber's estimation 
theory. It has been shown that the loss function derived in this theory could be 
applied to the design of a new class of robust spectra, inheriting properties of strong 
resistance to impulse noises. 

In particular, the robust M-STFT has been derived by using the absolute error 
loss function F(e) = ]e] in (9.3.1)-(9.3.4) [3]. It is a solution of the nonlinear 
equation: 

N/2-1 
1 

Fz(t, f) - aw(t, f) E d(t, f ,n)z(t  + nAt)e -j2~/nAt, (9.3.10) 
n=-N/2  

where: 
d ( t , f , n )  - w ( n A t )  

Iz(t + n A t ) e  -j2 f  t - Fz(t ,  f ) ] '  (9.3.11) 
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and 
N/2-1 

aw(t, f )  - E d(t, f , n). (9.3.12) 
n---N~2 

If real and imaginary parts of the additive noise are independent, the statistically 
optimal robust estimation theory requires replacement of (9.3.1) with [4]: 

N/2-1 

II(t, f ,  m) - E w(nAt )[F(~{e l  }) + F(~{el})] 
n---N~2 

(9.3.13) 

(9.3.14) 

where el is an error function of the form 

ez (t, f ,  n) = z(t + n a t ) -  me j2~/n~t. (9.3.15) 

For F(e) = ]el, the robust STFT (9.3.13) can be presented as a solution of (9.3.10), 
where d(t, f ,  n) is given by: 

I~{el(t,f,n)}l + I~{el(t,f,n)}J 
d(t, f ,  n) - w(nAt )  i~--~e-z (~i-f , n-~2 + ]~{el (t, f, n)}l 2" (9.3.16) 

The robust spectrogram defined in the form 

Sz (t, f )  = I1 (t, f ,  O) - I1 (t, f ,  Fz (t, f ) )  (9.3.17) 

is called the residual spectrogram, in order to distinguish it from the amplitude 
spectrogram (9.3.7). For the quadratic loss function F(e) the residual spectrogram 
(9.3.17) coincides with the standard amplitude spectrogram (9.3.7). In [4] it has 
been shown that, in a heavy-tailed noise environment, the residual robust spectro- 
gram performs better than its amplitude counterpart. 

The accuracy analysis of the robust spectrograms, as well as a discussion on 
further details on the minimax approach, can be found in [3, 4]. 

9.3.2 Realization of the Robust STFT 

9.3.2.1 Iterative Procedure 

The expression (9.3.10) includes Fz(t, f)  on the right hand side. Therefore, to get 
the robust STFT we have to solve a nonlinear equation of the form x = f (x ) .  Here, 
we will use the fixed point iterative algorithm xi = f ( x i -1 ) ,  with the stopping rule 
I x i -  X~-ll/Ixil < 7, where 7/defines the solution precision. This procedure, applied 
to (9.3.10), can be summarized as follows. 

Step  (0)" Calculate the standard STFT (9.3.5)" F (~ (t, f )  - Fz(t, f ) ,  and i -- 0. 
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S t e p  (i)" Set i - i  + 1. Calculate d(i)(t,f,n) for F(i-1)(t,f) determined from 

(9.3.11) or (9.3.16). Calculate F (i) (t, f )  as: 

F(zi) (t, f ) - 
N/2-1 

1 
E N/2-1 d(i)(t f ,n) ~N/2 n=-N/2 ' n=- 

d (i) (t, f,  n)z(t + nAt)e -j2crfnAt. (9.3.18) 

S t e p  (ii): If the relative absolute difference between two iterations is smaller 
than q: 

[Fz (~) (t, f )  - F (i-1) (t, f)[ _< v, (9.3.19) 

[F(z~) (t, f)] 

then the robust STFT is obtained as Fz(t, f ) -  F (0 (t, f). 

9.3.2.2 Vector Filter Approach 

Note that  the s tandard STFT (9.3.5) can be treated as an estimate of the mean, 
calculated over a set of complex-valued observations: 

E (t'f) - {z(t + nAt)e-J2~fnAt'n e [-N/2, N/2)}. (9.3.20) 

If we restrict possible values of m in (9.3.1) to the set E (t'f), the vector filter con- 
cept [5-7] can be applied to get a simple approximation of the robust estimate of the 
STFT.  Here, the coordinates of vector-valued variable are real and imaginary parts 
of z(t + nAt)e -j2~fnAt. The vector estimate of the S T F T  is defined as Fz (t, f) = m, 
where m E E (t'f), and for all k c [ - N / 2 ,  N/2) the following inequality holds: 

N/2-1 

F(lm- z( t  + I) ___ 
n=-N/2 

N/2-1 

F( ]z ( t  + kAt)  - z ( t  + (9.3.21) 
n=-N/2 

For F(e) = [el this estimate is called the vector median. 
The marginal median can be used for independent estimation of real and imag- 

inary parts of Fz(t, f). It results in 

~{Fz(t, f)} = median {~{z(t  + nAt)e-J27r:fnAt}:n C [-N/2, N/2)}, 
~{Fz(t, f )}  = median {~{z(t  + nAt)e-J2~fnAt}:n C [-N/2, N/2)}(9.3.22) 

The separate estimation of the real and imaginary parts  of Fz(t, f)  assumes inde- 
pendence of the real and imaginary parts  of z(t + nAt)e -j2~fnAt, what in general 
does not hold here. However, in numerous experiments the accuracy of the median 
estimates (9.3.21) and (9.3.22) is of the same order. A simplicity of calculation is 
the advantage of these median estimates over the iterative procedures. 
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9.3.3 Robust Wigner Distribution 
The standard (windowed) Wigner distribution (WD) of a discrete-time signal is 
defined as 

N/2 
1 

Wz(t, f )  - E w(nAt)z(t  + n A t ) z * ( t -  nAt)e -j47rSnAt, (9.3.23) 
aw n=-N/2 

with the normalization factor 

N/2 

a w -  E w(nAt) (9.3.24) 
n=-N/2 

(cf. Article 6.1). It can be interpreted as a solution of the problem 

Wz(t , f )  - a r g { m i m n J ( t , f , m ) } ,  (9.3.25) 

N/2 

Y(t, f , m) - E w(nAt)F(Iz(t  + nAt)z*(t - nAt)e -j4~ynAt - ml), (9.3.26) 
n=-N/2 

where f (e )  - l e l  2. For the loss function f (e )  - ] e ] ,  solution of (9.3.25)-(9.3.26)is a 
WD robust to the impulse noise. It can be obtained as a solution of the nonlinear 
equation [8] 

N/2 
1 

Wz(t, f )  - (t, f )  E d(t, f, n)z(t + nAt)z*(t - nAt)e -ja~ynAt, (9.3.27) 
awe n---N/2 

with 

 ( zxt) (9.3.2s) 
d(t, f, n) - Iz(t + n A t ) z * ( t -  nAt)e-Ja~S nat - Wz(t, f) l '  

N/2 

awe(t, f )  - ~ d(t, f , n). 
n=-N/2 

An iterative procedure similar to the one described for the robust STFT can be 
used to find Wz(t, f )  from (9.3.27)-(9.3.28). 

9.3.3.1 Properties of the Robust WD 

(1) The robust WD is real-valued for real and symmetric window function: 

W~(t, f )  - 

1 N/2 w*(nAt)z*(t + n A t ) z ( t -  nAt)e j4~fnAt 

a~e(t, f )  n=~N/2 Iz*(t + n A t ) z ( t -  nAt)eJ4~Y nat - Wz(t  , f)l 
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Fig. 9.3.1: TF representations of signal corrupted by impulse noise: (a) Standard spectrogram; (b) Ro- 
bust spectrogram; (c) Standard WD; (d) Robust WD. 

N/2 
1 w* ( - n A t ) z ( t  + nAt)z* ( t -  nAt)e -j4rfnAt 

= awe(t,f) Z Iz(t + n A t ) z * ( t -  nAt)e-J4~Y n a t -  Wz( t , f ) l  = Wz( t , f ) .  
n=-N/2 

(9.3.29) 
(2) The robust WD is TF  invariant. For signal y(t) = z ( t -  to)d 2~y~ we get 

Wy(t, f )  = Wz(t - to, f - fo). 
(3) For linear FM signals z(t) = exp(jat2/2 + jbt), when w ( n A t ) i s  very wide 

window, the WD is an almost ideally concentrated TF  distribution. 

9.3.3.2 Median WD 

For rectangular window, the standard WD can be treated as an estimate of the 
mean, calculated over a set of complex-valued observations 

G ={z( t  + n A t ) z * ( t -  nA t )e -J4r fnA t :n  C [ - N / 2 ,  N/2]}, (9.3.30) 
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i.e., 

N/2 
1 

Wz(t, f )  = N + 1 E z(t + nAt)z*(t - nAt)e -j4€ (9.3.31) 
n=-N/2 

From (9.3.29) follows that the robust WD is real-valued, thus the minimization of 
J(t, f ,  m) can be done with respect to the real part of z ( t+nAt ) z* ( t -nAt )e  -j4~fnAt 
only. A form of the robust WD, the median WD, can be introduced as: 

Wz(t, f)  = median {N{z(t + nAt)z*(t - nAt)e-J4~ynAt}:n e [-N/2,  N/2]}. 
(9.3.32) 

Generally, it can be shown that any robust TF distribution, obtained by using 
the Hermitian local auto-correlation function (LAF), Rz(t, nAt) = R : ( t , - n A t )  in 
the minimization, is real-valued. In the WD case this condition is satisfied, since 
Rz(t, nAt) = z(t + nAt)z*(t - nat) .  For a general quadratic distribution from the 
Cohen class with a Hermitian LAF, the proposed robust version reads 

pc(t, f )  - median {~{Rz(t,  nAt)e-J4~lnat} 'n E [-N/2,  N/2]}, (9.3.33) 

where Rz(t, nat )  includes the kernel in time-lag domain. 
Note, that for an input Gaussian noise the resulting noise in the WD has both 

Gaussian and impulse component, due to the WD's quadratic nature. Thus, as it 
is shown in [9], robust WD forms can improve performance of the standard WD, 
even in a high Gaussian input noise environment. 

9.3.4 Example 
Consider the nonstationary FM signal: 

z(t) = exp(j204.87rt]tl) , (9.3.34) 

corrupted with a high amount of the heavy-tailed noise: 

r - 0.5(~3(t) + jr (9.3.35) 

where ~(t) ,  i = 1,2 are mutually independent Gaussian white noises A/'(0, 1). We 
consider the interval t E [-7/8,  7/8] with a sampling rate At = 1/512 for spectro- 
grams, and At -- 1/1024 for WDs. The rectangular window width is N = 256 in all 
cases. The standard spectrogram and the WD (Figs. 9.3.1(a),(c)) arecalculated ac- 
cording to (9.3.5) and (9.3.23). The robust spectrogram (Fig. 9.3.1(b)) is calculated 
by using iterative procedure (9.3.18)-(9.3.19). In this case, similar results would 
be produced by residual spectrogram (9.3.13)-(9.3.17), vector median (9.3.21), and 
marginal median (9.3.22). The robust WD (Fig. 9.3.1(d)) is calculated by using 
expression (9.3.32) for the considered TF point. It can be concluded from Fig. 9.3.1 
that the robust spectrogram and the robust WD filter the heavy-tailed noise signif- 
icantly better than the standard spectrogram and the standard WD. Note that the 
standard and the robust WD exhibit higher TF resolution in comparison with the 
corresponding spectrograms. 
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9.3.5 Summary and Conclusions 
The TF  distributions are defined within the Huber robust statistics framework. The 
loss function F(e) = lel gives distributions robust to the impulse noise influence. 
They can be realized by using: the iterative procedures, the vector median, or 
the marginal  median approach. All calculation procedures produce accuracy of the 
same order of magnitude.  

Articles 6.1 and 6.5 further discuss the definition and computa t ion  of discrete- 
time TFDs.  
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9 . 4  TIME-VARYING POWER SPECTRA OF NONSTATION- 
ARY RANDOM PROCESSES o 

9.4.1 Nonstationary Random Processes 
The second-order statistics of a (generally nonstationary) random process I x(t)  
are characterized by the correlation function rx( t , t ' )  = E{x ( t ) x* ( t ' ) }  (with E{-} 
denoting expectation). In the special case of a (wide-sense) stationary random 
process, the correlation function is of the form rx(t, t') = ~x(t - t') and the Fourier 
transform of ~x (7), 

/? Px( f )  - ~x(7) e - j2~/" d7 >_ O, (9.4.1) 
o o  

is known as the power spectral density (PSD) [1]. The PSD describes the distribu- 
tion of the process' mean power over frequency f and is extremely useful in statistical 
signal processing. The time-frequency dual of stationary processes is given by white 
processes with correlation functions of the form rz(t,  t') = q~(t)5(t  - t'). Here, the 
mean instantaneous intensity qx(t) >_ 0 is the time-frequency dual of the PSD. 

In many applications, the random signals under analysis are nonstationary and 
thus do not possess a PSD. Various extensions of the PSD to the nonstationary case 
have been proposed, such as the generalized Wigner-Ville spectrum [2-7] and the 
generalized evolutionary spectrum [7, 8]. In this article, we will briefly discuss these 
"time-varying power spectra" and show that they yield satisfactory descriptions for 
the important class of underspread nonstationary processes. 

9.4.2 The Generalized Wigner-Ville Spectrum 
The generalized Wigner-Ville spectrum (GWVS) of a nonstationary process x(t)  is 
defined as [2-7] 

// W: ~) (t, f)  ~- r (~) (t, T) e-J2=/ 'd7 
o o  

with 

t +  , (9.4.2) 

where c~ is a real-valued parameter. The GWVS equals the generalized Weyl symbol 
(see Article 4.7) of the correlation operator Rx (the linear operator whose kernel is 
the correlation function r x ( t , t ' ) =  E{x(t)x*(t ')}) and, under mild assumptions, it 
equals the expectation of the generalized Wigner distribution [5] of x(t).  For c~ = 0, 

~ G. M a t z  and F. H lawa t sch ,  Institute of Communications and Radio- 
Frequency Engineering, Vienna University of Technology, Gusshausstrasse 25/389, 
A-1040 Vienna, Austria (email: g.matz@ieee.org, fhlawats@pop.tuwien.ac.at, web: 
http:/ /www.nt. tuwien.ac.at /dspgroup/t ime.html).  Reviewers: M. Amin and A. Papandreou- 
Suppappola. 

1in what follows, all random processes are assumed to be real or circular complex as well as 
zero-mean. 
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the GWVS becomes the ordinary Wigner-Ville spectrum, and for c~ = 1/2 it reduces 
to the Rihaczek spectrum [2-7,9]" 

W~ ( t , f )  - rz t + 7 , t -  dT, 
(X) 

/? ( t ,  f )  - t - . 

O 0  

The GWVS W~ (~) (t, f )  is a complete characterization of the second-order statistics 
of x(t) since the correlation function rx(t, t') can be recovered from it. Integrat ion 
of the GWVS gives the marginal  properties 

I? W (~) (t, f )  dt - E{[X(f)12}, W~ ~) (t, f ) d f  - E{lx(t)12}, 
O<3 O(3 

provided that  the expectations on the r ight-hand sides exist. In this sense, the 
GWVS can be considered as a time-frequency (TF) distr ibution of the mean energy 

m(0) 
of x(t). However, in general the GWVS is not real-valued; for c~ - 0, W x (t, f )  
is real-valued though possibly not everywhere nonnegative. For further interesting 
properties of the GWVS, see [2-7, 9]. 

We next discuss the GWVS of three fundamental  types of processes. 

�9 The GWVS of a s ta t ionary process with correlation function rx(t , t ' )  = 

?=x(t- t ') reduces to the PSD P~(f) for all t, i.e., W~ (~) (t, f )  - Px(f) .  

�9 The GWVS of a (generally nonstat ionary)  white process with correlation func- 
tion rx(t, t') - qx( t )a( t -  t') reduces to the mean instantaneous intensity qx(t) 

for all f ,  i.e., W (~) (t, f ) -  qx(t). 

�9 The GWVS of a s ta t ionary white process with correlation function r~(t, t') - 

5 ( t -  t') is given by W:  c~) (t, f )  - r/ (i.e., constant mean energy distr ibution 
over the entire TF  plane). 

These results show tha t  the GWVS is consistent with the PSD of s ta t ionary pro- 
cesses and the mean instantaneous intensity of white processes. 

The GWVS will be further considered in Section 9.4.6. Before that ,  we consider 
an alternative definition of a "time-varying power spectrum" in the next section. 

9.4.3 The Generalized Evolutionary Spectrum 
The PSD of a s ta t ionary random process x(t) can alternatively be defined using an 
innovations system representation. Here, x(t) is viewed as the output  of a linear, 
t ime-invariant system H with impulse response h(T) (the innovations system) that  
is driven by s ta t ionary white noise n(t) with PSD Pn(f)  = 1, i.e., x(t) = (Hn)( t )  = 
f _ ~  h(7-)n(t - T)dT. The PSD of x(t) can then be wri t ten as 

P z ( f ) -  IH(f)l  2, (9.4.3) 
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where H ( f )  = f-~oo h(T)e - j2rf"  dT is the transfer function (frequency response) of 
H. 

A similar innovations system representation is also possible in the nonstationary 
case. The innovations system H of a nonstationary random process x(t) is a linear, 
time-varying system defined by H H  + = Rx (here, the superscript + denotes the ad- 
joint [101). Note that H is not uniquely defined; indeed, all innovations systems can 
be written as H = HpV where Hp is the positive (semi-) definite [10] innovations 
system (which is unique) and U is a linear operator satisfying U U  + = I [8]. 

In analogy to the PSD expression in (9.4.3), the generalized evolutionary spec- 
trum (GES) of a nonstationary process x(t) is now defined as [7,8] 

G (~) (t, f )  -~ ]L(H ~) (t, f)]2. (9.4.4) 

Here, L(H a) (t, f )  is the generalized Weyl symbol (see Article 4.7) of an innovations 
system H of x(t), i.e., 

L(H a) (t, f )  A h t + -~ - ~ v, t - -~ + a T e dT (9.4.5) 
(x)  

where h(t,t ')  is the kernel of H. Note that the nonuniqueness of H implies a 
corresponding nonuniqueness of the GES. For c~ : 1/2, c~ : - 1 / 2 ,  and a : 0, 
the GES reduces to the ordinary evolutionary spectrum 2 [11, 12], the transitory 
evolutionary spectrum [8,13], and the Weyl spectrum [8], respectively. 

In contrast to the GWVS, the GES is a nonnegative real-valued function. How- 
ever, it is not a complete second-order description of x(t) since in general the cor- 
relation function rx(t, t') cannot be recovered from it. For c~ : 4-1/2 and normal 
innovations system (i.e., H satisfies H H  + : H + H  [10]; note, in particular, that  Hp 
is always normal), the GES satisfies the marginal properties, i.e., 

/? /5 G (+1/2) (t, f )  dt - E{]X(f)12}, G (:i=1/2) (t, f )  df - E{]x(t)]2}. 
(x)  o o  

Other properties of the GES are discussed in [7, 8]. 
Next, we consider the GES of our three fundamental types of processes, assuming 

that  the positive (semi-) definite innovations system Hp is used in the GES definition 
(9.4.4). 

�9 For a stationary process with PSD Pz(f) ,  Hp is time-invariant with frequency 

response Hp(f)  = v/P~(f).  Here, the GES reduces to the PSD P~(f) for all 

t, i.e., V(")(t, f ) -  Px(f) .  

�9 For a (generally nonstationary) white process with mean instantaneous inten- 
sity qx(t), Hp is "frequency-invariant" with kernel hp(t, t') = v/qx(t) 6 ( t -  t'). 

The GES here reduces to q~(t) for all f ,  i.e., G(~)(t, f )  - qx(t). 

2We note that Priestley's original definition of the evolutionary spectrum was based on a 
conceptually different approach using "oscillatory processes" [11, 12]. 
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�9 For a stationary and white process with correlation function rx(t, t I) - rl 5 ( t -  
t/), we have Hp - v ~ I  with I the identity operator. Thus, the GES is given 

by G(~ ) (t, f)  = rl. 

In Section 9.4.5, we shall consider conditions allowing the interpretation of the 
GWVS and GES as a "time-varying power spectrum." The formulation of these 
conditions will be based on a further TF representation of nonstationary processes, 
to be discussed next. 

9.4.4 The Generalized Expected Ambiguity Function 
The generalized ezpected ambiguity function (GEAF) is defined as [6-S] 

( x )  

r (~) (t, r )e  -j2€ dt, 

with r(~)(t, T) as in (9.4.2). The interpretation of the GEAF is quite different 
from that of a "time-varying power spectrum:" For a given frequency lag p and a 
given time lag T, the GEAF A(~)(t~, T) quantifies the statistical correlations of all 
process components separated in frequency by u and in time by T [6]. Hence, the 

extension of _A(~)(u, ~-) about the origin of the (~, T) plane indicates the amount of 

"TF correlations" of x(t). In particular, if fi~(a)(u, 7) extends far in the u direction, 
this indicates that  x(t) has a large spectral correlation width (i.e., x(t) is highly 

nonstationary), and if fi~(a)(u, T) extends far in the 7 direction, this indicates that  
x(t) has a large temporal correlation width. 

The GEAF equals the generalized spreading function (see Article 4.7) of the 
correlation operator Rx. Like the GWVS, the GEAF is a complete second-order 
statistic. GEAFs with different a values differ merely by a phase factor, i.e., 

Therefore, the GEAF magnitude is independent of a, Iris(a1)(-, T ) [ -  Iris(a2)(-, r)l ,  
and we may thus simply write lAb(r, u)l. GWVS and GEAF are related by a 2-D 
Fourier transform, 

W(~ ) ( t, f ) - / :  / :  
o o  o o  

A(~) (~,, T)e -j2€ d, d'r ; (9.4.6) 

this extends the Wiener-Khintchine relation (9.4.1) to the nonstationary case. 
Again, it is instructive to consider our three process types (see Fig. 9.4.1; this 

figure should be compared to that in Section 4.7.3)" 

�9 The GEAF of a stationary process x(t) with correlation function r~(t,t') - 

~ x ( t -  t ' ) i s  given by .A(a)(u, ~ - ) -  5(u)~x(T) (i.e., only temporal correlations 
that  are characterized by ~x(T)). 
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(a) (b) (c) 

Fig. 9.4.1" Schematic representation of the GEAF magnitude of some (classes of) random processes: 
(a) stationary process, (b) white process, (c) stationary white process. 

�9 The GEAF of a (generally nonstationary) white process x(t)  with correlation 

function rx( t , t ' )  - q x ( t ) 5 ( t -  t') is given by ft.(a)(,, 7-) = Qx(u)5(7),  where 
Q~(u) is the Fourier transform of the mean instantaneous intensity qx(t) (i.e., 
only spectral correlations that are characterized by Q~(u)). 

�9 The GEAF of a stationary and white process x(t) with correlation function 

rx(t,  t') - ~ 5(t - t') is given by A(~) (~, 7) - 77 5(~,)5(7") (i.e., neither temporal 
nor spectral correlations). 

9.4.5 Underspread Processes 
A nonstationary random process is said to be underspread if its GEAF is well con- 
centrated about the origin of the (u, T) plane, thus implying a small "TF correlation 
width." In contrast, a process with large TF correlation width is termed overspread. 
We will see in Section 9.4.6 that  the GWVS and GES of an underspread process are 
approximately equivalent and can be interpreted as "time-varying power spectra." 

There are two alternative mathematical definitions of underspread processes 

[6, 7]. The first one [6] assumes that  the GEAF fi.(~)(~, T) is supported in a compact 
region Gx about the origin of the (~, 7) plane, i.e., I.~x(~, T)I -- 0 for (~, T) r Gx. 

Let ~x A max(~,r)e~. ItJl and Tx -~ max(v,r)e~x 171 denote the maximum frequency 
lag and time lag, respectively, for which the process x(t) features TF correlations. 
The TF correlation spread of x(t) is defined as az _n 4~xTz, which is the area 
of the rectangle [ - ~ ,  ~x] • [--T~, Tx] enclosing Gx. The process x(t)  is considered 
underspread if az << 1 [6]. 
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Fig .  9.4.2" Schematic representation of the GEAF magnitude of various types of nonstationary pro- 
cesses: (a) underspread process with small /Tt(zl'l); (b) underspread process with small m(l '~176 

, (0 1) (c) 'chirpy" underspread process [7]" (d) quasi-stationary process (small m s '  ); (e) quasi-white process 
_(1,0) (small ,,~x ). 

An alternative description of the GEAF's  extension that  avoids the assumption 
of compact GEAF support uses the normalized weighted GEAF integrals 3 [7] 

(3o o o  

o o  o o  

Here, r ~-) is a nonnegative weighting function satisfying r T) _> r 0) = 
0 and penalizing GEAF contributions located away from the origin. Important  

special cases are the GEAF moments m (k'l) -~ m (r obtained with the weighting 
functions Ck,t(u, ~-) = I~lzlT-I k with k, 1 C N0. A random process x(t) can now be 
considered underspread if suitable weighted GEAF integrals or moments are "small." 
Processes that  are underspread in the compact-support sense considered previously 
are easily shown to be a special case of this extended, more flexible definition of 
underspread processes. 

Examples of underspread processes are illustrated in Fig. 9.4.2 (this figure should 
be compared to that  in Section 4.7.4). We caution that  the concept of underspread 
processes is not equivalent to that  of quasi-stationary processes: indeed, a quasi- 
stationary process may be overspread if its temporal correlation width is very large. 
Finally, note that  according to the Fourier transform relation (9.4.6), the GWVS of 
an underspread process is a smooth function. 

9.4.6 Time-Varying Spectral Analysis of Underspread Processes 
For underspread nonstationary processes, the GWVS and GES can be interpreted 
as "time-varying power spectra" that  generalize the PSD of stationary processes and 
the mean instantaneous intensity of white processes. Indeed, small weighted GEAF 

_(k,l) 
integrals m(x r (or small moments ,,~x or a small TF  correlation spread az) ensure 
the validity of the approximations described in what follows [6-8]. 

3Further definitions of weighted GEAF integrals and moments can be found in [7]. 
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Fig. 9.4.3: GWVS and GES of an underspread process x(t): (a) Wigner-Ville spectrum W (~ f),  
(b) real part of Rihaczek spectrum ~(1/2)( t ,  f) ,  (c) Weyl spectrum G (0) (t, f),  (d) evolutionary spec- 
trum G (1/2)(t, f).  In this and subsequent simulations, signal duration is 256 samples and normalized 
frequency ranges from -- 1 /4  to 1/4.  

Approximate equivalence. In general, the GWVS and GES of a given process 
x(t) may yield very different results which, moreover, may strongly depend on the 
parameter a used. However, for an underspread process x(t), all these results are 
approximately equal, i.e., 

w~ (:')(t, f) ~ w~ (::)(t, f), 
G(~')(t, f )  ~ G(~)(t ,  f )  , 

W (a~) (t, f )  ~ G (a2) (t, f ) .  

Indeed, it can be shown [7] that  the approximation error W. (a ' )  (t, f ) -  W.. (a2) (t, f )  
is upper bounded as 

IW~ (a') (t, f )  - W..~ (<~2) (t, S)l -< 27r lal-a2111A~II~ ~()'~), (9.4.7) 

with [[Ax[[1 - f _ ~  f-~oo ]fi.z(u, 7)ldu d7. Thus, for an underspread system where 

m 0'1) is small, W(~l)(t, f )  and W..(~2)(t, f )  will be approximately equal as long as 
In1 - a 2 ]  is not too large. Similar bounds can be developed for the approximation 

errors G ?  ~) (t, f)  - G ('~2) (t, f)  and W. (el) (t, f)  - G (a2) (t, f )  [7]. 
We can conclude from these results that for an underspread process, the choice 

of a specific spectrum is not critical. An example is shown in Fig. 9.4.3. For 
this example, the maximum normalized differences between the spectra shown are 

all around 0.03 (e.g. maxt,f [W.. (~ (t, f )  - a (~ (t, f )[ /maxt ,s  ]W (~ f)l  = 0.029). 
A counterexample involving an overspread process is shown in Fig. 9.4.4. Here, 
the results obtained with the various spectra are seen to be dramatically differ- 
ent, and indeed the maximum normalized differences range from 1 to 8.5 (e.g. 

maxt,s IW.. (1/2)(t, f )  - G (1/2)(t, S)[/maxt,s IW..J s)l = 2.13). i t  can be seen 
that  all spectra contain oscillating components (so-called statistical cross-terms) 
which are indicative of TF correlations [7]. Such statistical cross-terms are reduced 
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Fig. 9.4.4: GWVS and GES of an overspread process x(t): (a) Wigner-Ville spectrum ~(0) ( t ,  f) ,  (b) 
real part of Rihaczek spectrum W (1/2) (t, f), (c) Weyl spectrum G (0) (t, f) ,  (d) evolutionary spectrum 
G 0/2)  (t, f ) .  

in extensions of the GWVS and GES that contain a TF smoothing [2-5, 7]. For 
underspread processes, on the other hand, a TF smoothing does not cause a big 
difference. 

Approximate real-valuedness and positivity of the GWVS. The PSD of station- 
ary processes and the mean instantaneous intensity of white processes are real- 
valued and nonnegative. This is also true for the GES of arbitrary processes. In 
contrast, the GWVS is real-valued only for a = 0 and generally not everywhere 
nonnegative. In the case of underspread processes, however, it can be shown [7] 
that the imaginary part of the GWVS is approximately zero and the real part of 
the GWVS is approximately nonnegative, i.e., 

{Wx (~) (t, f)} ~ 0, Re {Wx (~) (t, f )} >~ 0. 

Upper bounds on the associated approximation errors (similar to (9.4.7)) can again 
be provided [7]. 

As an example, we reconsider the underspread process from Fig. 9.4.3. The 
normalized maximum of the imaginary part of the Rihaczek spectrum (the real 

part is shown in Fig. 9.4.3(b))is maxt,l I.~{W(1/2)(t , f)}l/maxt,i  IW(1/2)(t,f)l = 
0.024 and the normalized maximum of the negative real part is maxt,l { -  

R e { W  (1/2) (t, f)} } /max t , f  IW (1/2> (t, f)l - 0.006. 

Approximate input-output relations. If a stationary process x(t) with PSD Px(f) 
is passed through a time-invariant linear system with impulse response k(T) and 
transfer function K(f ) ,  the output y(t) = ( x .  k)(t) is also stationary and its PSD 
equals P~(f)  = IK( / ) I  2 P~(f). Similarly, the response y(t) = w(t)x(t) of a lin- 
ear frequency-invariant system (see Article 4.7) to a white process x(t) with mean 
instantaneous intensity qx(t) is again white with qy(t) = Iw(t)] 2 q~(t). A similar 
input-output relation does not exist for a general nonstationary process x(t) that 
is passed through a general time-varying linear system K. However, for an under- 
spread process that is passed through an underspread system (i.e., a time-varying 
linear system introducing only small TF shifts, see Article 4.7), one can show the 
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Fig. 9.4.5: Approximate input-output relation for the GWVS: (a) Wigner-Ville spectrum W (~ (t, f )  of 
input process x(t), (b) Weyl symbol L~ ) (t, f) of LTV system K, (c) Wigner-Ville spectrum W (0) (t, f) 

of filtered process y(t) = (Kx)(t), (d) approximation IL(K ~ (t, f)12 W(o) (t, f). 

following approximate input-output relations of the GWVS and GES: 

G(y~)(t, f) ~ IL(K~)(t, f)l 2 G(~)(t, f ) ,  

with y(t) - (Kx)(t). Note that the generalized Weyl symbol L(a)(t, f )  of K (see 
(9.4.5)) takes the place of the transfer function K( f )  or w(t). An example for 
the Wigner-Ville spectrum (GWVS with a = 0) is shown in Fig. 9.4.5. In this 

W (~ (t, f)  - example, the normalized maximum approximation error is m a x t , / { l " y  

IL~ ) (t, f)[ 2 --(o) --(o) Wx (t, f ) l } / m a x t , i  IWy (t, f)l - 0.017. 

Discussion.  The above approximations (more can be found in [6-8]) corroborate 
the interpretation of the GWVS and GES of underspread processes as time-varying 
power spectra. A mathematical underpinning of these approximations is provided 
by explicit upper bounds on the associated approximation errors [7]; these bounds 

involve the GEAF parameters rn (r _(k,z) , ~x or a= defined in Section 9.4.5. In the 
underspread case, these GEAF parameters are small and thus the approximations 
are guaranteed to be good. On the other hand, we caution that the approximations 
are not valid for overspread processes (cf. Fig. 9.4.4). 

9.4.7 Summary and Conclusions 
In this article, we have shown that for the practically important class of underspread 
processes (i.e., processes with small time-frequency correlations), the generalized 
Wigner-Ville spectrum and generalized evolutionary spectrum can be interpreted in 
a meaningful way as time-varying power spectra. Indeed, for underspread processes 
the generalized Wigner-Ville spectrum and the generalized evolutionary spectrum 
(approximately) satisfy desirable properties that any reasonable definition of a time- 
varying power spectrum would be expected to satisfy. We note that applications of 
the generalized Wigner-Ville spectrum in statistical signal processing are considered 
in Articles 12.1 and 12.4. 
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9.5 T IME-FREQUENCY CHARACTERIZATION OF RANDOM 
TIME-VARYING CHANNELS o 

9.5.1 Time-Varying Channels 
In many practical communication systems, the channel is modeled as linear but 
time-varying and random. Examples are the mobile radio, ionospheric, tropo- 
spheric, and underwater acoustic channels [1-7]. In this article, we will discuss 
time-frequency (TF) descriptions of both the channel (see also Article 4.7 for more 
details) and its second-order statistics. 

The input-output relation of a linear, time-varying, random channel H is 

/? r(t) = ( H s ) ( t )  - h(t ,  t') dr' - s  r) s(t-r) dr, (9.5.1) 
CXD (X)  

where s(t) is the transmit signal, r(t) is the received signal, h(t, t') is the (random) 
kernel of H, and/~(t, T) = h(t, t -  r) is the (random) impulse response of H. Two 
major physical phenomena underlying practical channels are multipath propagation 
and Doppler spreading. Multipath propagation (i.e., several different propagation 
paths from the transmitter to the receiver via various scattering objects) causes 
the received signal to consist of several delayed versions of the transmit signal. 
Doppler spreading is due to the movement of transmitter and/or receiver and/or 
scatterers; for a narrowband transmit signal s(t), it causes the multipath signals to 
be frequency-shifted. The received signal r(t) thus consists of several TF shifted 
(i.e., delayed and modulated) versions of the transmit signal s(t) [1-4], 

N 
- 

k=l  

Here, N is the number of scatterers and 7k, ~'k, and ak are respectively the (random) 
delay, Doppler frequency, and reflectivity of the kth scatterer. The above relation 
can be extended to a continuum of scatterers (corresponding to a continuum of 
delays T and Doppler frequency shifts u) as 

r(t) = S(H ~) (u, T) S (~) (t) dT du (9.5.2) 
O(D O0 V~T 

with ~(~) ~,,r(t) -- s ( t -  7)e j27rut e j27rvr(c~-1/2) where c~ is a real-valued parameter 1 

that is arbitrary but assumed fixed and S(H ~) (u, T) denotes the generalized (delay- 

~ G.  M a t z  and F.  H l a w a t s c h ,  Insti tute of Communications and Radio- 
Frequency Engineering, Vienna University of Technology, Gusshausstrasse 25/389, 
A-1040 Vienna, Austria (email: g.matz@ieee.org, fhlawats@pop.tuwien.ac.at, web: 
h t tp : / /www.nt . tuwien .ac .a t /dspgroup/ t ime.h tml) .  Reviewers: P. Flandrin and A. Sayeed. 

1The parameter  c~ in ^(~) ~u,r (t) corresponds to the infinitely many ways of defining a joint TF  shift 
by combining time shifts and frequency shifts. In particular, the case c~ = 1/:2 corresponds to first 
shifting in t ime and then shifting in frequency, whereas c~ = - 1 / 2  corresponds to first shifting in 
frequency and then in time. 
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Doppler) spreading function (GSF) of the channel [1] (see also Article 4.7). The 
GSF is defined as 

~ / _ ~  ( ( 1 ) ( 1  ) ) _j2~tdt .  (9.5.3) S(a)( - -  o o  h t+  ~-a 7, t -  -~ +a T e 

It can be shown that the input-output relation (9.5.2) is mathematically equivalent 
to (9.5.1). 

In what follows, we will also use the generalized Weyl symbol (GWS) 

L (~)(t,f) a_ h t+  - ~ - ~  T,t-- -~+a T e-J2~frdT (9.5.4) 
OO 

IT J? = S(H '~) (u, T) e j2€ dv du. (9.5.5) 
(DO O 0  

The GWS can be interpreted (with certain precautions, see Article 4.7) as a "TF 
transfer function" of H. 

In the mobile communications literature, the parameter a is usually chosen as 
1//2. In this case, (9.5.3)and (9.5.4) become 

/? f? S~/2) (u, T) -- [z(t, T)e - j2~t  dt , L~/2) (t, f )  - [z(t, T) e -j2€ dT . 
O 0  OO 

9.5.2 WSSUS Channels 

(~) (t, f) ,  and impulse Since the channel H is random, its GSF S(a)(u, r), GWS L H 
response h(t, T) are 2-D random functions (random processes). Hereafter, these ran- 
dom processes will be assumed zero-mean. The second-order statistics of H are char- 
acterized by the 4-D correlation functions E{ S (a) (u, T) S(~)*H (pt, 7.r } , E { L ~  ) (t, f)  

L(H ~1. (t', f ' )} ,  and E{/~(t, 7)/~* (t', T')}, which are all mathematically equivalent. 

Definition and description of WSSUS channels. An important simplification re- 
sults from the assumption of wide-sense stationary uncorrelated scattering (WSSUS) 
[1,2, 4, 6, 7]. For WSSUS channels, by definition, the reflectivities of scatterers cor- 

responding to paths with different delay or Doppler are uncorrelated. In terms of 
the GSF S(H ~) (u, 7), this means 

s +* E {  . (.. ( . ' . ) }  - (9.5.6) 

i.e., S (a) (u, T) is a wide-sense white random process. The mean intensity function 
of this white random process, CH(U, ~-) _~ 0, is known as the scattering function 
[1-8]. 

Together with the Fourier transform relation (9.5.5), the WSSUS relation (9.5.6) 
implies that 

E{L(a)( t , f )  L(~)*(t' ,f ')} - RH( t - - t ' , f - - f ' ) ,  (9.5.7) 

with the TF correlation function [1-7] 
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FF _RH(/Nt, A f) - CH(/Y, T) e j2~(~At-r dT d~. 
o o  o o  

(9.5.8) 

The TF correlation function satisfies IRH(At, Af)] _< RH(0, 0) and R ~ ( - A t , - A  f)  

= RH(At, Af) .  Eq. (9.5.7) shows that the GWS L(H~)(t,f) of a WSSUS chan- 
nel is a 2-D wide-sense stationary process. According to (9.5.8), the scattering 
function CH(U, 7) is the Fourier transform of the correlation function RH(At, A f)  
of L(i_i~)(t, f). Thus, CH(~', T) can be interpreted as the power spectral density of 

L (c~) (t, f). The path loss [31 is defined as 

f?/? p~ A R H ( 0 , 0 ) -  E{lL(Ha)(t,f)l 2} - CH(.,T) dTd. .  
o o  o o  

Finally, in terms of the impulse response h(t,T), the WSSUS property is ex- 
pressed as 

E{h(t,T) h*(t',T')} = rH(t--t',T) 5(~'--~"), 

where rH(At, T) is related by Fourier transforms to CH(V,T) and RH(At, Af) .  
Thus, h(t, 7-) is wide-sense stationary with respect to time t and uncorrelated for 
different delays 7. Note that this stationarity with respect to t refers to the second- 
order statistics of the channel and does not imply that the channel's realizations 
are time-invariant systems (cf. the first of the examples given below). 

The 2-D functions CH(/] ,T),  RH(At, Af) ,  and rH(At, T) are mathematically 
equivalent descriptions of the second-order statistics of a WSSUS channel. They 
are related by Fourier transforms and do not dependent on a. 

The composition (series connection) H2H1 of two statistically independent WS- 
SUS channels H1 and H2 can be shown to be again a WSSUS channel. Its scattering 
function and TF correlation function are given by 

- ( c . .  

RH2H1 (At, A f) -- RH2 (At, A f) RH1 (At, A f ) ,  

where ** denotes 2-D convolution. Note that H2H1 and HIH2 have the same 
second-order statistics. 

From the 2-D functions CH(~, T) and RH(At, A f), several 1-D channel descrip- 
tions can be derived. In particular, the delay power profile and Doppler power profile 
are respectively defined as [3] 

F PH(T) -~ CH (L', T)dL', 
o o  F QH(~) A CH(~, 7")dT. 

c o  

Their Fourier transforms, 

F pH(Af) A PH(T) e -j2€ dT -- RH(0, A f ) ,  
o o  

F qH(At) a__ QH(/]) e j2~vAt d~' - -  R H ( A t ,  0 ) ,  
o o  
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are known as t ime correlation func t ion  and frequency correlation func t ion ,  respec- 
tively. Often, for the sake of simplicity, a separable model is assumed for the scat- 
tering function and the TF correlation function, i.e., CH(//, 7.) -- pl--kQg(//) PH(7-) 

and RH(At, A f)  - -  9--~n qH(At)pH(Af) .  

Examples of WSSUS channels. In the following, we briefly present some special 
cases and important examples of WSSUS channels. 

�9 T ime- invar ian t  W S S U S  channel. The impulse response of a time-invariant 
channel has the form h(t,  7.) - g(7.). The WSSUS property here implies 
E{g(7.) g*(7')} - PH(7)5(7. -- 7.'). It follows that  CH(//, 7.) -- (~(//) PH(T) 
~nd Rn(/xt,  A f)  - pn(Af ) .  

�9 Frequency- invariant  W S S U S  channel. Next, we consider a "frequency-invar- 
iant" channel with impulse response h(t,  7.) - w(t)5(7.) ,  i.e., the input signal 
is simply multiplied by w(t) .  With W(//) denoting the Fourier transform of 
w(t), the WSSUS property here implies E{W(//)W*(// ' )} - QH( / / )5 ( / / - / / ' ) .  
It tbllows that  CH(//, 7-) - -  QH(V)5(7.) and RH(At, A f)  -- qH(At). 

�9 R a n d o m  TF  shift. The GSF of a channel effecting a random frequency shift 
by//0 and a random time shift by 7.0 is given by S(~)(//, 7.) - 5 ( / / - / /0 )5(7 . -7 .o) .  
It can be shown that this channel is WSSUS with scattering function 
Cg(v,  7.) -- f~o,To (v, 7.), where f~o,To (//, 7.) is the joint probability density 
function of' (v0, 7.0) [9]. Furthermore, R H ( A t ,  A f )  - @~o,~o(At,-Af),  with 
~-o,~o (At, A f)  - f-~o~ f - ~  f,o,~o (u, 7.) e j27r(vAt+rAf)  du dr  being the charac- 
teristic function of (u0, 7.0). 

�9 Typical mobile radio channel. A channel model popular in the mobile radio 
literature [3] uses a separable scattering function CH(//, 7) -- -~HHQH(//)PH(7) 

with an exponential delay power profile 

( . . 2  
_ > 0,  (0.5.0) 

( O, r < O ,  

and a Jakes Doppler power profile 

P~ I~1 < //max, 
QH(V) -- zrv///2max _ / / 2 '  - (9.5.10) 

0, I~l > ~m~x- 

The associated TF correlation function is RH(At,  A f)  -- ~-~H qg(At  ) pH(Af) ,  

with 

p n ( A f )  -- 
p~ 

1 + j 2 7 r T o A f '  
qg(At)  -- p~ J0(27r//maxAt), 

where Jo(') denotes the zero-order Bessel function of the first kind. 
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Statistical input-output relations for WSSUS channels. The scattering function 
and TF correlation function are useful for formulating input-output relations that 
show how the second-order statistics of the channel output signal r(t) depend on the 
second-order statistics of the input signal s(t). Let s(t) be a nonstationary random 
process that is statistically independent of the random channel H. The second-order 
statistics of a nonstationary random process x(t) with correlation operato~ Rx can 

be described by the generalized Wigner-Ville spectrum W(a)(t f )  ~- L(~)(t, f )  or, ' l : t x  

alternatively, by the generalized expected ambiguity function A(~) (v, T) ~- S (~) (v, T) x R x  

which is the 2-D Fourier transform of W (a) (t, f )  (see Article 9.4). It can then be 
shown that 

/?/? W (")  (t, f )  - CH(V, T) ~(" ) ( t - -T ,  f - -v)  dT dr,  (9.5.11) 
c o  c o  

- (9.5.12) 

For a (wide-sense) stationary transmit signal s(t) with power spectral density 
Ps(f) and autocorrelation rs(T), the received signal r(t) is stationary as well and 
(9.5.11) and (9.5.12)reduce to 

F P~(f) - QH(V) P~(f - v ) d r ,  
o o  

= 

Furthermore, E{Ir(t)l 2} - p~ E{Is(t)12}. Dual results are obtained for a nonsta- 
tionary white transmit signal s(t). 

Finally, if s(t) is cyclostationary with period T, cyclic correlation function 
r~k)(7-), and cyclic spectral density p(k) (f) [10], the received signal r( t ) is  cyclo- 
stationary with the same period T and we have 

F p(k) (f) _ Q(H k) (~) p(k)(f  _ ~) d~, 
o o  

= 

where q(H k) (At) -- RH(At, k/T) and Q(I_I k) (v) - f _ ~  q(H k) (At) e - j2~At  dAt. 

9.5.3 Underspread WSSUS Channels 
A fundamental classification of WSSUS channels is into underspread and overspread 
channels [2,4, 7]. As we will show in this section, underspread WSSUS channels have 
some interesting properties. We note that the underspread property for WSSUS 
random channels is analogous to the underspread property for deterministic time- 
varying systems that was considered in Article 4.7. 

Definition of underspread channels. A WSSUS channel is underspread [4, 7] if 
its scattering function is highly concentrated about the origin. 2 The underspread 
property is practically relevant as most mobile radio channels are underspread. 

2For simplici ty,  we assume t h a t  the  sca t t e r ing  funct ion is centered  a b o u t  T -- 0, which means  

t h a t  an overall  delay ~'0 > 0 has been spli t  off from the  channel .  
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A simple method for quantifying the concentration of the scattering function 
CH(v,r)  is based on the assumption that the support of CH(V,T) is contained 
within a rectangle [-Vmax,/-'max] X [--Tm~x, Tm~x] about the origin of the (u, "1) plane. 

(This implies that, with probability one, the GSF S (~) (u, 7-) is supported within 
this rectangle as well.) The channel's delay-Doppler spread is then defined as the 
area of this rectangle, aH -~ 4/JmaxTmax, and the channel is said to be underspread 
if aH _< 1 and overspread if aH > 1 [4, 7]. 

An alternative characterization of scattering function concentration that avoids 
the assumption of compact support uses normalized weighted integrals of the form 

1FF 
P~I oo cr r T) CH (u, T)du dT = 

; / ;  r T) CH (u, T) du dT 
o o  o o  

; / ?  CH(/], T) du dT 
o o  o o  

where r T) _> 0 is a weighting function that satisfies r T) >_ r 0) = 0 and 
penalizes scattering function components lying away from the origin. Special cases 

are the moments ~(H k'z) -~ ~(H r obtained with the weighting functions Ck,Z (u, T) = 
]~l l Irl k with k, l C No. Of particular importance are the delay spread ~'H and Doppler 
spread VH that are obtained with k - 2, 1 = 0 and k - 0, l - 2, respectively: 

/ 5  7~ a _(2,0) = 1 ~ Te T) du dT (9.5 13) 
- m .  00 c H ( - ,  , 

//5 u~ ~- ~(~,2) = 1 ~ u2 T) du dr (9.5.14) 

Within this framework, a WSSUS channel is called underspread if specific weighted 
integrals and moments of the scattering function are small. 

Approximate eigenfunctions and eigenvalues of underspread channels. It is 
known [2, 4, 7] that signals with good time and/or frequency concentration can 
pass an underspread WSSUS channel almost undistorted, i.e., merely multiplied by 
a random complex factor. We will analyze this effect using the approach in [11]. 
We note that similar results in a deterministic context are reported in Articles 4.7 
and 13.3. 

A normalized transmit signal s(t) that remains undistorted, i.e., (Hs)(t) = 
As(t), is an eigenfunction of the system H; the associated eigenvalue is given by 

= (Hs, s). Since H is random, the relation (Hs)(t) = (Hs, s} s(t) is  more appro- 
priately formulated in the mean-square sense, i.e., 

E{IrH -  / 112} = 0. 

The eigenfunctions of a WSSUS channel H are random and generally do not possess 
a specific structure. However, in the underspread case, TF translates of a function 
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g(t) with good TF concentration are approximate eigenfunctions. Specifically, con- 
sider the TF translates 

gto,fo (t) - g ( t - t o )  j 2 , :o t  , 

where g(t) is a normalized function that is well concentrated about the origin of the 
TF plane. One can show 

E{ IlHg o,fo - (Hgto,:o, gto,:o} gto,yo II =}  (Ii r , (9.5.15) 

with r T) - 1 - I A(~) (u, T)I 2 where A (~) (u, T) -- f _ ~  g(t  + (�89 --a)T)  g* (t -- (1 + 
a)T) e -j2€ dt denotes the generalized ambiguity function of g(t). Therefore, if 
the channel is underspread, i.e., the channel's scattering function is concentrated 

about the origin (where IA (~) (u, T)I 2 ~ IA (~) (0, 0)12 - 1 and thus r T) ~ 0), the 

weighted integral ~ )  will be small and one has the approximation (valid in the 
mean-square sense) 

(Hgto,fo)(t) ,,~ (Hgto,yo, gto,:o) gto,:o(t) . (9.5.16) 

This shows that gto,fo (t) is an approximate eigenfunction of H. Furthermore, it can 
be shown that 

E{l(Hg o,fo,g o,fo)- L(H )(t0, f0)l < r , (9.5.17) 

with r w) - I1 - A(a)(u, T)I 2. Thus, under the same conditions as before, we 
have 

(Hgto,:o, gto,:o) ,~ L(")(to, fo) (9.5.18) 

(again valid in the mean-square sense), which shows that the approximate eigenvalue 
(Hgto,fo, gto,:o) is approximately equal to the GWS at the TF point (to, fo). 

In contrast to the exact eigenfunctions of H, the approximate eigenfunctions 
gto,:o (t) are TF translates of a single prototype function g(t) and thus highly struc- 
tured; they do not depend on the specific channel realization and their parameters 
to, f0 have an immediate physical interpretation. 

To illustrate the above eigenfunction/eigenvalue approximations, we simulated 
the transmission of a signal gto,:o (t), with g(t) a Hanning window of duration Tg = 
128 #s, over a WSSUS channel. The channel's scattering function was CH(U, T) -- 

1 QH(U) PH(T) with exponential PH(T) (nq. (9.5.9) with TO -- 1 #S) and Jakes-type 

QH(U) (Eq. (9.5.10) with Um~x - 305 Hz). Fig. 9.5.1 illustrates the approximations 
(9.5.16) and (9.5.18) for a single channel realization. It is seen that the received 

signal (Hgto,:o)(t) and the approximation L~/2) (to, f0) gto,:o (t) are practically iden- 
tical. Furthermore, we used 500 realizations of H to estimate the normalized mean- 

square error E{llHgto,f  o -(Hgto,fo,gto, fo} gto,:oll2}/P~-i (see (9.5.15)). The result, 
9 .10  -4, confirms the validity of the eigenfunction/eigenvalue approximation. The 

associated upper bound ~(r (see (9.5.15)) was calculated as 5 .  10 -3 Finally, " " H  
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Fig. 9.5.1" Eigenfunction/eigenvalue approximation for an underspread WSSUS channel: (a) 
Wigner distribution [12] (top) and real and imaginary parts (bottom) of received signal r( t)  = 
(Hgto,fo)(t), (b) Wigner distribution (top) and real and imaginary parts (bottom) of approximation 
LH(1/2) (to, fo) gto,fo (t). 

the normalized mean-square error E{l(Hg~o,fo, g~o,fo) - L~/2)( to ,  fo)]2}/p~I (see 

(9.5.17)) was estimated as 5 .10  -6 and the associated upper bound ~(r was cal- 
culated as 2 .10  -3. 

Sampling approximation for underspread channels. Next, we consider 2-D sam- 

pling of the channel's transfer function (GWS) L(H~)(t, f) .  This is important for 
simplified channel representations that are used e.g. in the context of orthogonal 
frequency division multiplexing (OFDM)modulation [13,14]. 

Consider the representation of a WSSUS channel H by the samples L~ ) (kT, 1F) 
of its GWS taken on the uniform sampling grid (kT, 1F). The reconstructed (inter- 
polated) GWS is given by 

Z(s~) (t, f ) -- 
CX:) OO 

(~ ( t -  kT))sinc( 7r ) E L(H")(kT' 1F)sinc ~ - f ( f -  1F) , 
k=-e~l=-~x~ 

with sinc(x) - sin(x)/x. For WSSUS channels with scattering function CH(U,T) 
compactly supported within a rectangular area [-Umax, Umax] • [--Tmax, Tmax] and 
for sampling grid constants satisfying T < 1/(2Um~x) and F < 1/(27m~x), the 

above reconstruction can be shown to be exact in the sense that  E{IL(H~)(t, f ) -  

L(H ~) (t, f)]2} _ 0. Note that a smaller channel spread aH -- 4Umax~-m~x allows for a 
coarser sampling grid and thus for a more parsimonious channel representation. 

If the above conditions are not satisfied, the reconstructed GWS L(H ~) (t, f )  will 
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Fig. 9.5.2: Sampling approximation for an underspread WSSUS channel: (a)IL~/2)( t ,  f) l  2 and (b) 

IL~/2) (t, f)l 2 (in dB; time in ms, frequency in MHz). 

contain errors due to aliasing. 
bounded as 

However, it can be shown that these errors are 

E{ ]L(H")(t, f ) L ( " ) ( t , f ) ]  2 - H } <_ 2p~ (T~F 2 + u2T2),  (9.5.19) 

where TH and /]H are the delay spread and Doppler spread as defined in (9.5.13), 
(9.5.14). Thus, for WSSUS channels with small TH and/or small UH, i.e., for under- 
spread channels, a sampling of the transfer function will result in negligible errors 
provided that the sampling periods T and F are chosen appropriately. Specifically, 
the upper error bound in (9.5.19) is minimized when T / F  = TH/VH. 

For the WSSUS channel with exponential/Jakes scattering function that was 
considered further above, and for sampling periods T - 138 #s, F = 136.72 kHz, 

the normalized mean-square error E{]L~/2) (t, f)-L~_i/2) (t, f)l 2 }/P~-I was estimated 
from 500 channel realizations as 6.4.10 -3, and the upper bound 2 (T~F 2 + u~T 2) 
was calculated as 3 .2 .10 -2 . Fig. 9.5.2 shows the squared magnitude of the true 

channel transfer function L(1/2)( t , H  f)  and of the reconstruction L~/2)(t, f)  for a 
specific channel realization. 

9.5.4 Summary and Conclusions 
In this article, we have considered time-frequency characterizations of (the second- 
order statistics of) random linear time-varying channels satisfying the assumption 
of wide-sense stationary uncorrelated scattering (WSSUS). We have shown that the 
practically important class of underspread WSSUS channels allows some interest- 
ing approximations. In particular, underspread WSSUS channels possess approx- 
imate eigenfunctions with time-frequency shift structure (which suggests the use 
of OFDM), and they can be discretized by means of a time-frequency sampling. 
Related considerations and results can be found in Articles 13.2 and 13.3. 



Time-Frequency Characterization of Random Time- Varying Channels 419 

References 
[1] P. A. Bello, "Characterization of randomly time-variant linear channels," IEEE Trans. 

Communication Systems, vol. 11, pp. 360-393, December 1963. 

[2] R. S. Kennedy, Fading dispersive communication channels. New York: Wiley, 1969. 

[3] J. D. Parsons, The Mobile Radio Propagation Channel. London: Pentech Press, 1992. 

[4] J. G. Proakis, Digital Communications. New York: McGraw-Hill, 3rd ed., 1995. 

[5] T. S. Rappaport, Wireless Communications: Principles ~ Practice. Upper Saddle 
River, N J: Prentice-Hall, 1996. 

[6] K. A. Sostrand, "Mathematics of the time-varying channel," in Proc. NATO Advanced 
Study Inst. on Signal Processing with Emphasis on Underwater Acoustics, vol. 2, pp. 25.1- 
25.20, 1968. 

[7] H. L. L. Van Trees, Detection, Estimation, and Modulation Theory, vol. III: "Radar- 
Sonar Signal Processing and Gaussian Signals in Noise". New York: Wiley, 1971. 
Reprinted Malabar, FL: Krieger, 1992. Reprinted New York: Wiley, 2001. 

[8] H. Art,s, G. Matz, and F. Hlawatsch, "Unbiased scattering function estimation during 
data transmission," in Proc. IEEE Vehicular Technology Conf. (VTC'99-Fall), pp. 1535- 
1539, Amsterdam, 19-22 September 1999. 

[9] P. Flandrin, Time-Frequency/Time-Scale Analysis. San Diego: Academic Press, 1999. 
Original French edition: Temps-frdquence (Paris: Hermes, 1993). 

[10] W. A. Gardner, ed., Cyclostationarity in Communications and Signal Processing. 
Piscataway, N J: IEEE Press, 1995. 

[11] W. Kozek and A. F. Molisch, "On the eigenstructure of underspread WSSUS chan- 
nels," in Proc. IEEE-SP Workshop on Signal Processing Advances in Wireless Commu- 
nications (SPA WC'97), pp. 325-328, Paris, 16-18 April 1997. 

[12] W. Mecklenbr~uker and F. Hlawatsch, eds., The Wigner Distribution--Theory and 
Applications in Signal Processing. Amsterdam: Elsevier, 1997. 

[13] J. A. C. Bingham, "Multicarrier modulation for data transmission: An idea whose 
time has come," IEEE Communications Magazine, vol. 28, pp. 5-14, May 1990. 

[14] W. Kozek and A. F. Molisch, "Nonorthogonal pulseshapes for multicarrier communi- 
cations in doubly dispersive channels," IEEE J. on Selected Areas in Communications, 
vol. 16, pp. 1579-1589, October 1998. 



This Page Intentionally Left Blank



Chapter 10 

Instantaneous Frequency 
and Localization 

Estimation 

A critical feature of a non-stationary signal is provided by its instantaneous fre- 
quency (IF), which accounts for the signal spectral variations as a function of time. 
This chapter presents methods and algorithms for the localization and estimation 
of the signal IF. The topic is covered in five articles with appropriate internal cross- 
referencing to this and other chapters. 

The first conventional approach for IF estimation used the spectrogram. To 
account for its window-dependent resolution, improvements were made by intro- 
ducing iterative methodologies on the estimate provided by the first moment of 
the spectrogram (Article 10.1). Another approach uses an adaptive algorithm for 
IF estimation using the peak of suitable TFDs with adaptive window length (10.2). 
This method was extended to the case of multicomponent signals using the modified 
B-distribution (10.3). When the signals considered have polynomial FM character- 
istics, both the peak of the polynomial WVD and higher-order ambiguity functions 
can be used (10.4). In the special case when the signals are subject to random am- 
plitude modulation (or multiplicative noise), IF estimation procedures are described 
using the peak of the WVD for linear FM signals, and the peak of the PWVD for 
non-linear FM signals (10.5). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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10.1 ITERATIVE INSTANTANEOUS FREQUENCY 
ESTIMATION FOR RANDOM SIGNALS 0 

10.1.1 IF Estimation: Introduction and Background 
The instantaneous frequency (IF) is a basic parameter which may be used to describe 
the nonstationarity in a process (see Article 1.3). It is used in many areas such as 
seismic, radar, sonar, communications and biomedical applications [1-3]. 

The concept of IF is often introduced in the context of frequency modulation 
in communication theory. The IF of a signal at time to could be viewed as the 
frequency of the sinusoid which locally fits the signal at that time. Using the 
definition of Gabor and later Ville [4], the IF, f(t),  of a signal x(t) can be defined 
in terms of the derivative of the phase of its analytic signal z(t); i.e., 

1 d arg(z(t)). (10.1.1) 
f (t) = 2~ dt 

Another interpretation of the IF comes from the time-frequency distribution 
(TFD) point of view, where the IF of a signal at time t is defined as the weighted 
average of the frequencies which exist in the signal at time t [5]; i.e., 

](t) = f - ~  f P(t, f ) d f  
f P ( t , )-) (lo.1.2) 

where/5(t, f)  is the TFD estimate. 
The IF has many applications in time-frequency signal analysis. For example a 

matched spectrogram, which uses chirp windows, is shown to perform better than 
a regular spectrogram for chirp-like signals when the chirp rate of the window is 
matched to the IF of the signal [6]. The IF can also be utilized to obtain distributions 
mainly concentrated along the IF for monocomponent signals. For example, [7] 
shows how to obtain distributions infinitely concentrated along the IF for pure 
tones and for amplitude- and frequency-modulated signals, and considers kernel 
functions for bilinear distributions with these properties. 

There are many ways to estimate the IF of a signal. The current IF estimation 
algorithms can be grouped as phase differencing methods, signal modeling methods 
(e.g., short time AR modeling, time-varying AR modeling), phase modeling meth- 
ods, and time-frequency-representation methods. A good review of these methods 
can be found in [8]. 

One important time-frequency-representation method is the iterative cross 
Wigner-Ville IF estimation technique [8], in which, at each iteration, we construct 
a constant-amplitude FM signal whose IF matches the previous IF estimate, then 
take the cross Wigner-Ville distribution between the constructed signal and the 

~ A m r o  EI - Ja roud i  and M u s t a f a  K. Emresoy ,  348 Benedum Engineering 
Hall, Dept. of Electrical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA 
(amro@ee.pitt.edu, emresoy@siglab.ee.pitt.edu). Reviewers: M. Mesbah and G. R. Putland. 
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signal under analysis, and then use the cross-WVD to produce a new IF estimate. 
This method is shown to perform very well at low signal-to-noise ratios (cf. Subsec- 
tion 3.1.2.3, especially at item 2). 

In the next two Sections, we present an iterative algorithm to estimate the IF 
and matched spectrogram of a nonstationary sinusoidal signal, and then analyze the 
convergence of the algorithm. Our algorithm is similar to the cross Wigner-Ville 
algorithm in that we use a time-frequency representation iteratively to obtain an 
estimate of the IF. The iterative IF estimation method can be used to improve the 
performance of many time-frequency methods [9,10]. 

10.1.2 Iterative Algorithm for IF Estimation 
The basic idea behind the iterative IF estimation is to use a time-frequency esti- 
mator (in this case, the spectrogram) to obtain an IF estimate using (10.1.2) above, 
then use this IF estimate to recalculate the spectrogram. This process is repeated 
until convergence is reached. The principle at work here is that improving the IF 
estimate makes the matched spectrogram estimate better and vice versa. Conse- 
quently each iteration will lead to improvements in both quantities. 

We will assume that the signal under analysis is a complex signal of the form 

x(t) - A(t) e jr (10.1.3) 

where A(t) is the time-varying amplitude and r is the phase of the signal. 
In the iterative algorithm given below, the instantaneous frequency and the 

spectrogram as a TFD are estimated by using the whole frequency axis. Then the 
signal is "demodulated" by subtracting the phase estimate (obtained by integrating 
the IF estimate) from the phase of the signal. This demodulation shifts the spectrum 
of the nonstationary signal around zero frequency. The demodulated signal is then 
reanalyzed. Consequently we do not restrict the definition of the IF to use only 
positive frequencies, since after the first iteration the signal under analysis has 
non-redundant information over positive and negative frequencies. But when the 
algorithm is applied to real signals, we use the analytic signal to start the iterations, 
ensuring that the first IF estimate is not trivially zero. Note that although we use 
the analytic signal at first, the demodulated signal used in the subsequent iteration 
is not analytic. The outputs of the algorithm are the estimated IF and the matched 
spectrogram of the signal. 

Algorithm: 

1. Calculate the spectrogram/5(t, f)  of the signal (or of the analytic component 
if the signal is real). 

2. Estimate fi(t) by using the first moment of the spectrogram at each time and 
find the phase estimate 

f - o o f  i ( t , f )  df 
(10.1.4) 



424 Chapter 10: Instantaneous Frequency Estimation and Localization 

- 

(X) 

(10.1.5) 

3. Demodulate the signal along the estimated IF 

2i(t) - A(t) e -j(r = A(t) e -j$~(t). (10.1.6) 

4. Take the spectrogram Pi(t, f )  of 2(t) and compensate for the demodulation 
to obtain a new matched spectrogram estimate 

/)i+1 (t, f)  --/5i (t, f -- J?i (t)). (10.1.7) 

5. Go to step 2. 

The algorithm is stopped once the IF estimate has converged. The convergence 
can be checked by comparing the difference between consecutive iterations with 
stopping threshold. 

While the algorithm seems very simple, we show below that its convergence can 
be guaranteed given certain conditions on the analysis signal. 

10.1.3 Convergence of the Estimation Algorithm 
In order to examine the convergence of the iterative algorithm, we derive an expres- 
sion for the IF estimate after each iteration. The IF estimate of the complex signal 
in (10.1.3) obtained by using the first moment of a spectrogram with a real analysis 
window, h(t), is given by [5] 

1 ~ Mk(t) r 
](t) - ~ k! (t) (10.1.8) 

k=0 

where 

Mn(t) - f A2(t+7) h2(T)TndT 
f A 2 (t + T) h 2 (T) dT 

(10.1.9) 

and r is the ( n + l )  TM derivative of the phase of the signal, with 

Mo(t) 
O! = 1. (I0.I . i0) 

Our hypothesis is that the general expression for the IF estimate at the end of 
the n TM iteration is 

in(t) -- f ( t )  Jr ( -1)  (n+l) 1 ~-~. ~ . ~ 1 7 6  oo Mi~(t) { .  { Millt  ) r ) 
" i l .  

in=l  i1"-1 

( 1 0 . 1 . 1 1 )  
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1r where f (t) - ~ (t). 
We prove the hypothesis using the method of induction. To show that the 

equation (10.1.11) is true for the first iteration, we remove the summations i2 to in 
and substitute n -  1 in equation (10.1.11), obtaining 

1 k Mi~ (t) r +l) (t). L (t) -- f ( t )+ ~ i1! 
i1:1 

(10.1.12) 

This is the same as equation (10.1.8); i.e., equation (10.1.11) is true for n -  1. 
For the inductive step, we assume that equation (10.1.11) is true for iteration 

( n -  1), so that 

j~n-l(t) -- f ( t )+ (_1) n ~1 ~~  "" Zc~ Mi,,_l(t)in__Tii {' ' '{ Mi~It)il. r 
i,,_1 = 1 i 1 = 1 

(10.1.13) 
and show that it is also true for the n th iteration. Following the algorithm given in 
the previous section, the phase error r at the n TM iteration is given by 

i ~n (t) - -  r - -  2 fT  L--1  (T) dT. oo 
(10.1.14) 

By combining the previous two equations, we obtain 

& ( t ) -  ... in-Tii { {  il. 
i , , , , - 1  : 1 �9 : oo 

(10.1.15) 
The IF estimate at the end of n TM iteration can be found by adding the IF estimate 
from iteration n -  1 and the IF estimate of the signal ~(t) whose phase is given by 
(10.1.15); that is, 

]n( t ) -  fn - l ( t )  + ~--~ in! 
in =0 

(10.1.16) 

Substituting for ] n - l ( t )  and Cn(t) in the above equation, we find that the IF esti- 
mate at the end of the n TM iteration is 

fn(t) - f ( t )  + (_1) n ~l Ec~ ""Ec~ Min_l(t)~n_l! {'''{ Millt)il. r  

in_l=1 i1=1 

-J-(-- 1) (n+l) in=0E "'" i1=1~ Min(t)in! it___ (x) {...{ Milil . T)r ..}(in-~-l)d T 

which simplifies to equation (10.1.11), as claimed. This completes the proof. 
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In equation (10.1.11), the first term represents the actual IF whereas the second 
term represents the error in the IF estimate at the end of the nth iteration. In general 
the error term is very difficult to analyze, being affected by both the amplitude and 
phase variations in the signal. Assuming, however, that  the spectrogram window is 
Gaussian, and that the phase function of the signal has bounded derivatives of all 
orders, and that the signal is dominantly FM modulated (i.e. has constant or slowly 
varying amplitude), we may show that the iteration in (10.1.11) converges to the 
true IF of the signal. Let the spectrogram window be 

h(t) - (~)1/4  e - a t 2 ~ 2 ,  (10.1.17) 

and let the amplitude A(t)  be approximated by the constant A within the window, 
so that  

x( t )  = A e jr (10.1.18) 

Making these two substitutions in (10.1.9), we find 

7{ n+l ) (I+(-I) n) , 2 
Mn = 

{o 
- -  l--in~2 (n+(2k- 1))V~ 

1 lk -0  c~,~/2 

if n is odd 

if n is even. 

(10.1.19) 

( 0.1.20) 

Then, from (10.1.11), the general expression for the IF estimate is 

fn ( t )  -- f ( t )  + ( -1 )n  2--~1 E~176 
il ,i2,... ,in =2 

(t). 
i1! i2!..in! 

(10.1.21) 

If we define 

Cm ~ E 
il q-i2-}-...+in =m 

then (10.1.21) can be written as 

il!i2!...in! ' 
(10.1.22) 

oo 

A ( t )  - f ( t )  + ( -1 )n  E Cmr (10.1.23) 
2~" 

m=2 

It is important  to note that {Cm} are independent of the analysis signal and are 
mainly a function of the window parameter a. It is easy to show that  after each 
iteration, two coefficients of the coefficient series {Cm} become zero and overall the 
coefficients decay rapidly to zero. It is clear that,  as n --. co, the coefficients go 
to zero. If we assume that  the phase of the signal is continuous and has bounded 
derivatives, then the sum in equation (10.1.23) also goes to zero which implies 

]n (t) --~ f (t). 
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Convergence properties: 

�9 Equation (10.1.20) implies that the convergence rate of the algorithm is pro- 
portional to an/2. That  is, for small a (long window) the convergence is slow 
whereas for large a (short window) the convergence is very fast. 

�9 The convergence rate is also affected by the rate of change of the IF. For signals 
whose IF's have nonzero higher order derivatives, the convergence is slower. 
But for signals with polynomial phases, the algorithm theoretically converges 
with an iteration number equal to half of the degree of the polynomial. This 
can be seen by examining equation (10.1.21). At iteration n the first 2n 
coefficients in equation (10.1.23) become zero. 

�9 If the phase of the signal has discontinuities at some points t i ,  the derivatives 
of r go to +c~. Then we cannot expect the algorithm to converge exactly 
to the f ( t ) .  If r has bounded derivatives for all orders and for all t, then 
the algorithm converges to f ( t ) .  

10.1.4 Summary and Conclusions 
In this article, we presented an iterative algorithm to estimate the instantaneous 
frequency (IF) and matched spectrogram of nonstationary sinusoidal signals. The 
matched spectrogram obtained by this method is concentrated along the IF for 
monocomponent signals. The convergence analysis and the properties of the IF 
estimation algorithm are presented. 
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10.2 ADAPTIVE INSTANTANEOUS 
TION USING TFDs~ 

FREQUENCY ESTIMA- 

Instantaneous frequency (IF) estimators based on maxima of time-frequency rep- 
resentations have variance and bias which are highly dependent on the lag window 
width. The optimal window width may be determined by minimizing the estima- 
tion mean squared error (MSE), provided that some signal and noise parameters 
are explicitly known. However, these parameters are not available in advance. This 
is especially true for the IF derivatives which determine the estimation bias. In this 
article, an adaptive algorithm for the lag window width determination, based on the 
confidence intervals intersection, will be presented [1-5]. This algorithm does not 
require knowledge of the estimation bias value. The theory and algorithm presented 
here are not limited to the IF estimation and time-frequency analysis. They may 
be applied to a parameter value selection in various problems. 

10.2.1 Optimal Window Width 
Consider a noisy signal" 

x ( n A t )  - s (nA t )  + e(nAt), s(t) - aexp ( j r  (10.2.1) 

with s (nA t )  being a signal and e(nAt) being a white complex-valued Gaussian noise 
2/2. Sam- with mutually independent real and imaginary parts of equal variances a~ 

pling interval is denoted by At. Consider the problem of the IF, f i ( t )  = r 
estimation from the discrete-time observations x ( n A t ) ,  based on maxima of a time- 
frequency distribution px(t, f),  

f( t)  - arg{m~xpx(t, f)}. (10.2.2) 

Let A f ( t )  - f i ( t ) -  f ( t )  be the estimation error. The MSE, E { ( A f ( t ) ) 2 } ,  is used 
for the accuracy characterization at a given time instant t. Asymptotically, the 
MSE for commonly used time-frequency representations (e.g. the spectrogram, the 
pseudo Wigner distribution (WD), and its higher order versions) can be expressed 
in the following form [2-6] [Articles 10.3, 10.4] 

V 
E ~- - J ( A f ( t ) ) 2  ~ ~ ~ - ~-~ + B(t)h ~, (10.2.3)  

where h is a lag window Wh (t) width, such that wh(t) -- 0 for Itl > h/2.  It is related 
to the number of samples N by h - N A t .  The variance and the bias of estimate, 
for a given h, are 

a2(h) - V / h  m, bias (t, h) = v / B ( t ) h  n. (10.2.4) 

~ LJubi~a Stankovid, Elektrotehnicki fakultet, University of Montenegro, 81000 Pod- 
gorica, Montenegro (1.stankovic@ieee.org). Reviewers: B. Barkat, I. Djurovi6 and V. Ivanovi6. 
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The expression for B(t) is a function of the IF derivatives. 
For example, for the WD with a rectangular lag window we have [3] 

6a 2At 1 
j" ,~ " l , ] , ( A j ( t ) ) 2  S _ (2~a) 2 h 3 E 

~_ ( r  2 
80~ ha' (10.2.5) 

corresponding to m = 3 and n = 4 in (10.2.3). Values of m and n for some other 
distributions are indicated in Table 10.2.1, according to the results from [2-5]. 

The MSE in (10.2.3) has a minimum with respect to h. This minimum occurs 
for the optimal value of h given by 

hopt ( t ) -  [mV/(nB(t))] 1/(m+~). (10.2.6) 

Note that  this relation is not useful in practice, because its right hand-side contains 
B(t) which depends on derivatives of the unknown IF. 

10.2.2 Adaptive Algorithm 
Here, we present an adaptive method which can produce an estimate of hopt(t) 
without having to know the value of B(t). For the optimal window width, according 
to (10.2.3), holds 

= - m  + nB(t )h  n-1 = Oih=hopt. (10.2.7) 
Oh h m+l 

Multiplying (10.2.7) by h, we get the relationship between the bias and s tandard 
deviation, (10.2.4), for h - -  hopt, 

bias (t, hopt ) ~/ :-~ = a(hopt). (10.2.8) 

It will be assumed, without loss of generality, that  the bias is positive. The IF 
estimate s  (obtained from (10.2.2) by using the lag window of width h) is a 
random variable distributed around the true IF f~(t) with the bias bias (t, h) and 
the s tandard deviation a(h). Thus, we may write the relation: 

(10.2.9) 

where the inequality holds with probability P(n)  depending on parameter  n.1 We 
will assume that  n is such that  P (a )  --, 1. 

1 If we assume, for example, that the random variable ]h(t) is Gaussian, with the mean value 
M -  fi(t)+ bias(t, h)and the standard deviation a(h), then the probability that ]h(t) takes a 
value within the interval [ i  - na(h), U + na(h)] is P(a) - 0.95 for a -- 2, and P(a) - 0.997 for 
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Let us introduce a set of discrete dyadic window-width values, h E H, 

H =  {hs l hs = 2hs - l ,  s = l, 2, ..., J } . (10.2.10) 

Define the confidence intervals Ds = [Ls, Us] of the IF estimates, with the following 
upper and lower bounds 

Ls = fh~(t) - (t~ + A~)a(hs) ,  Us - fh.~ (t) + (~ + A~)a(hs) ,  (10.2.11) 

where fh~(t) is an estimate of the IF, for the window width h - hs ,  and a(hs)  is 
its standard deviation. Assume that a window width denoted by hs+ E H is of hopt 
order, hs+ ~ hopt. Since hopt does not correspond to any hs from the set H, for the 
analysis that follows we can write hs+ = 2Phopt, where p is a constant close to 0. 
According to (10.2.10) all other windows can be written as a function of hs+ as 

hs - hs+2 (s-s+) = hopt2 s-s++p, ( s -  s +) - . . . , - 2 , - 1 , 0 ,  1, 2, .... (10.2.12) 

With this notation, having in mind (10.2.8), the standard deviation and the bias 
from (10.2.4) can be expressed by 

a(hs)  - v / V / h s  m - a(hopt)2 -(s-s++p)m/2, (10.2.13) 

bias (t, hs) = v / B ( t ) h y  - v / m / n  a(hopt)2 (s-s++p)n/2. 

For small window widths hs, when s << s +, the bias of fh~ (t) is negligible, thus 
f~(t) e Ds (with probability P(~ + A~) ~ 1). Then, obviously, Ds-1 A Ds ~= O, 
since at least the true IF, fi(t), belongs to both confidence intervals. For s >> s + 
the variance is small, but the bias is large. It is clear that for bias (t, hs) ~ 0 there 
exists such a large s that D s N D s+l = 0 for a finite ~ + A~. 

The idea  b e h i n d  the  a l g o r i t h m  is that A~ in Ds can be found in such a way 
that the largest s, for which the sequence of the pairs of the confidence intervals 
D s-1 and D s has at least a point in common, is s = s +. Such a value of A~ 
exists because the bias and the variance are monotonically increasing and decreasing 
functions of h,  respectively, (10.2.13). As soon as this value of At~ is found, an 
intersection of the confidence intervals Ds-1 and Ds,  

[/h~_l(t) - fhs(t)] <_ (~ + A ~ ) [ a ( h s _ l ) +  a(hs)], (10.2.14) 

works as an indicator of the event s = s +, i.e., the event hs = hs+ ~ hopt. The 
value of hs+ is the last hs when (10.2.14) is still satisfied. 

10.2.2.1 Parameters in the Adaptive Algorithm 

There are three possible approaches to choosing algorithm parameters t~, A~, and 
p. Their performance do not differ significantly. 

(1) When our knowledge about the variance and bias behavior, given by (10.2.3), 
is not quite reliable, an approximative approach for t~, A~,  and p determination 
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T a b l e  10 .2 .1 :  Parameters in the adaptive algorithm for various m,n ,m:  m = 3, n = 4 for the 
spectrogram, Wigner and L-Wigner distribution based IF estimators; rn = 3, n = 8 for the fourth order 
polynomial Wigner-Vil le distribution, and local polynomial distribution based IF estimators; m = 1, n -- 
4 for the Wigner distribution as a spectrum estimator. 

m 1 1 3 3 3 3 3 

rt 4 4 4 4 4 8 8 

t~ 2 3 2 3 5 2 3 

A n  0.86 1.29 0.39 0.58 0.97 0.09 0.14 

p 0.99 1.22 0.34 0.51 0.72 -0.13 -0.03 

P l  1.18 1.41 0.59 0.76 0.97 0.19 0.30 

3 

8 

5 

0.23 

0.11 
. ,  

0.43 

can be used. Then, we can assume a value of n --- 2.5, such that P(n) -~ 0.99 
for Gaussian distribution of estimation error. The value of A~ should take into 
account the bias for the expected optimal window width (10.2.8). It is common to 
assume that, for the optimal value of h, the bias and variance are of the same order, 
resulting in Ate -~ 1. Then we can expect that the obtained value hs+ is close to 
hopt, thus p -~ 0, and all parameters for the  key a l g o r i t h m  e q u a t i o n  (10.2.14) 
are defined. This simple heuristic form has been successfully used in [2] and [3], 
and it is highly recommended for most  of practical applications. Estimation of the 
standard deviation cr(h~) will be discussed within the Numerical example. 

(2) When the knowledge about the variance and bias behavior is reliable, i.e., 
when (10.2.3) accurately describes estimation error, then we can calculate all al- 
gorithm parameters. According to the algorithm basic idea, only three confidence 
intervals, Ds+_I,D~+, and D~++I, should be considered. The confidence inter- 
vals Ds+_ 1 and D~+ should  have, while Ds+ and D~++I should  not  have,  at 
least one point in common. Assuming that relation (10.2.9) holds, and that the 
bias is positive, this condition means that the minimal possible value of upper 
Ds+- i  bound, (10.2.11), denoted by min{U~+_l}, is always greater than or equal 
to the maximal possible value of the lower D~+ bound, denoted by max{Ls+ }, i.e., 
min{U~+_l} > max{Ls+}. The condition that Ds+ and Ds++l do not intersect is 
given by max{Us+} < min{L~++l}. According to (10.2.9) and (10.2.11) the above 
analysis results in 

bias (hs+ -1) + A~a(hs+ - 1  ) --~ bias (hs+) - Ana(hs+ ), 

bias (hs+)+  (2n + An)a(hs+)  < bias ( h s + + l ) -  (2n + An)o(hs++l).(10.2.15) 

Since the inequalities are written for the worst case, we can calculate the algorithm 
parameters by using the corresponding equalities. With (10.2.13) we get 

A ~  - 2n/[2 (re+n)~2 - 1], (10.2.16) 

2 p - [ A t ~ v / n / m  (2m/2 + 1 ) / / ( 1 -  2-n /2 )]  2~(re+n) " 



Adaptive Instantaneous Frequency Estimation Using TFDs 433 

Fig .  10.2.1: Optimal window width (straight thick line), and adaptive window widths (end of the 
vertical lines, starting from the optimal window width line) for m = 3, n = 4, V - I. The variance to 
bias ratio V/B(t) is logarithmically varied. The adaptive width ha = hs+/2m is obtained from hs+, 
according to (10.2.14), after correction for the corresponding values of p l  given in Table 10.2.1. 

V a l u e s  o f  t h e  p a r a m e t e r s  A s  a n d  p for v a r i o u s  d i s t r i b u t i o n s ,  i .e. ,  for  v a r i o u s  v a l u e s  

o f  m a n d  n,  a r e  g i v e n  in T a b l e  10.2 .1 .  

For further, and very fine t u n i n g  o f  t h e  a l g o r i t h m  p a r a m e t e r s ,  one may want that  the 
adaptive window is unbiased in logarithmic, instead of in linear scale (due to definition (10.2.10)). 
The estimation bias and variance are exponential functions with respect to m and n, (10.2.13). 

Thus the confidence interval limits vary as  2 (s-s+)(m+n)/2. The mean value for this exponential 
function, for two successive confidence intervals, for example ( s -  s +) = 0 and ( s -  s +) = 1, 

is (1 + 2(m+")/2) /2 .  It is shifted with respect to the geometrical mean x/2(m+n)/2 of these 
two intervals, by approximately Ap -~ [log 2 ((1 + 2(rn+n)/2)/2)] 2 1 resulting in the total 

logarithmic shift pl = P + Ap, presented in Table 10.2.1. Therefore the adaptive window width 
(as an estimate of the optimal window width) should be hopt = hs+/2  pl. 

Note that  the set H of window widths h is a priori assumed. Therefore, as long as we can 
calculate P l ,  we can use it in the following ways: a) To calculate distribution with the new window 
width ha = hs+/2 pl as  the best estimate of hopt, b)  To remain within the assumed set of hs C H, 
and to decide only whether to correct the obtained hs+ or not. For example, if [Pl[ <_ 1/2 the 
correction is smaller than the window discretization step. Thus, we can use ha = hs+. For 
1/2 < Pl <_ 3/2 it is better to use ha = hs+/2 = h~+_l ,  as the adaptive window width value. 
Fortunately, the loss of accuracy for the adaptive widths ha, as far as they are of hopt order, 
is not significant since the MSE varies slowly around its s tat ionary point. Thus, in numerical 
implementations we can use only the lag windows from the given set H. 

10.2.2.2 Illustration 

W e  h a v e  s i m u l a t e d  t h e  I F  e s t i m a t e s  as  a r a n d o m  v a r i a b l e  

f h ( t )  -- a v / V / h  m + v / B ( t ) h  n + f i ( t ) ,  (10 .2 .17)  

h a v i n g  t h e  M S E  g i v e n  b y  (10 .2 .3 ) ,  w h e r e  a -  Af (0 ,  1) is a G a u s s i a n  ( z e r o - m e a n ,  

u n i t y - v a r i a n c e )  r a n d o m  v a r i a b l e ,  m = 3, n = 4, a n d  V = 1. F o r  t h e  t r u e  I F  v a l u e  
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fi(t), at a given t, any constant can be assumed. The bias parameter B(t) in fh(t) 
l log2(mV/nB(t)) C [-4,3] with step 0.05. logarithmically varies within ~ 

-For each value of parameter B(t) we have calculated optimal window width 
according to (10.2.6), and plotted log2(hopt ) as a thick line in Fig. 10.2.1. 

-The value of ]h (t) was simulated for each B(t) and hs c H. The assumed set of 
possible window widths was H = {1/16, 1/8, 1/4, 1/2, 1,2,4,8,  16,32}, and n = 2. 
The key algorithm relation (10.2.14) was tested each time, with the known standard 
deviation a(hs) = v /V/h  m. The largest value of hs when the key equation (10.2.14) 
was still satisfied was denoted by hs+. Value An = 0.39, corresponding to m = 3, 
n = 4, n = 2, was used (Table 10.2.1). The adaptive values ha = hs+/2 pl , Pl = 0.59 
(Table 10.2.1), produced in this way, are connected with the optimal window line, 
by thin vertical lines in Fig. 10.2.1. 

-The same simulation is repeated with n = 3 and n = 5. 
-We can conclude that the presented algorithm almost always chooses the width 

h~ from H which is the nearest to the optimal one. However, for relatively small 
n = 2 there are few complete misses of the optimal window width, since (10.2.9) 
is satisfied only with probability P(2) = 0.95. For n = 2, two successive confi- 
deuce intervals do not intersect when the bias is small, producing false result, with 
probability of 2(0.05) 9. ~ 10 -2 order. 

(3) The third approach for the parameter (n + An) estimation is based on the 
statistical nature of confidence intervals, and a posteriori check of the fitting quality 
[2]. This approach is beyond the scope of this article. 

10.2.3 Numerical Example 

In the example we assumed a signal of (10.2.1) form, with the given IF, 

f i (nAt)  = 128 arctan(250(nAt - 0.5))/~ + 128, 

and the phase r  - 2~At ~-~m=O fi(mAt) .  The signal amplitude was a = 1, and 
201og(a/a~) = 10[dB] (a/a~ = 3.16). Considered time interval was 0 < n a t  < 1, 
with At -- 1/1024. The IF is estimated by using the discrete WD with a rectangular 
lag-window, wh(t ,  f )  = DFTn__.f [wh(nAt)x(t + nAt)x*(t  - nat ) ] ,  calculated with 
the standard F F T  routines. 

T h e  a l g o r i t h m  is implemented as follows" 
(1) A set H of window widths hs, corresponding to the following number of 

signal samples N - {4, 8, 16, 32, 64,128,256,512}, is assumed. In order to have the 
same number of frequency samples, as well as to reduce the quantization error, all 
windows are zero-padded up to the maximal window width. 

(2) For a given time instant t = nat ,  the WDs are calculated starting from the 
smallest toward the wider window widths hs. 

(3) The IF is estimated using equation (10.2.2) and whs( t , f ) .  
(4) The confidence intervals intersection, (10.2.14), is checked for the estimated 

IF, /hs (t), and a(h~) = v/3a2At/(2~ea2h3) with, for example, ~ + A~ - 6, when 
p~ -~ 1, and P(n)  ~ 1 (see Table 10.2.1, and the Comment that follows). 
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Fig. 10.2.2: Time-frequency analysis of a noisy signal: (a) Wigner distribution with N = 16 ; (b) 
Wigner distribution with N = 256; (c) Estimated instantaneous frequency using the Wigner distribution 
with N = 8; (d) Estimated instantaneous frequency using the Wigner distribution with N = 256; (e) 
Wigner distribution with adaptive window width; (f) Adaptive window width as a function of time; (g) 
Estimated instantaneous frequency using the Wigner distribution with the adaptive window width; (h) 
Absolute mean error as a function of the window width; the line represents the mean absolute error 
value for the adaptive window width. 

(5) T h e  a d a p t i v e  w indow w i d t h  ha - h~+/2  is o b t a i n e d  f rom the  last  hs - hs+ 

when  (10 .2 .14 ) i s  still satisfied. Back  to (2). 
Comment :  Es t ima t ion  of the  signal and noise pa rame te r s  a and a 2 can be done by using I&l 2 +Se  2 = 

-~1 Y]n=N 1 [x(nAt)l 2. The  variance is es t imated  by 52 = &2r + ae i^2 , where  

5r = { median  ( x ~ , i ( n A t )  - Xr,i((n - 1)At)l �9 n -- 2, .., N)}/(0.6745v/-2),  (10.2.18) 

with xr(nAt)  and xi(nAt)  being the real and imaginary  par t  of x(nAt) .  It is assumed tha t  N is 
large, and At  is small  [2-5]. For this es t imat ion we oversampled the  signal by factor of four. 

The  W D s  wi th  c o n s t a n t  window wid ths  Ns - 16 and  Ns - 256 are p r e sen t ed  
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in Fig. 10.2.2(a), and Fig. 10.2.2(b), respectively. The IF estimates using the WDs 
with constant window widths Ns = 8, and Ns = 256 are given in Fig. 10.2.2(c) 
and Fig. 10.2.2(d). Fig. 10.2.2(e) shows the WD with adaptive window width. Val- 
ues of the adaptive window width, determined by the algorithm, are presented in 
Fig. 10.2.2(f). We can see that  when the IF variations are small the algorithm uses 
the widest window in order to reduce the variance. Around the point n a t  = 0.5, 
where the IF variations are fast, the windows with smaller widths are used. The IF 
estimate with adaptive window width is presented in Fig. 10.2.2(g). Mean absolute 
error, normalized to the discretization step, is shown in Fig. 10.2.2(h) for each con- 
sidered window width. The line represents value of the mean absolute error for the 
adaptive window width. 

10.2.4 Summary and Conclusions 
An algorithm that  can produce an accurate estimate of the optimal window width, 
without using the bias value, is presented. The IF estimates obtained by using this 
algorithm and the WD have lower error than by using the best constant-window 
width, which also is not known in advance. Additional examples, including distribu- 
tions with adaptive order, the WD as a spectrum estimator, algorithm application 
to the sensor array signal tracking, as well as other realization details can be found 
in [2-5, 7]. 
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10.3 IF E S T I M A T I O N  FOR M U L T I C O M P O N E N T  SIGNALS~ 

10.3.1 Time-Frequency Peak IF Estimation 
There is a wide range of applications where we encounter signals comprised of M 
components with different IF laws f,~(t) and different envelopes am(t), in additive 
noise. It is often desired from such an observed signal, to determine the number of 
components M, the IF law of each component and the corresponding envelope am (t). 
This can be achieved by representing the observed signal z(t) in a time-frequency 
(t-f) domain and use time-frequency filtering methods to recover the individual 
components [1]. Another approach involves extending algorithms for IF estimation 
of monocomponent FM signals to the case of multicomponent signals and design 
an algorithm that simultaneously tracks the various IF components of the observed 
signal [2,3]. Both approaches require the use of time-frequency distributions (TFDs) 
with very specific properties such as high time-frequency localization of the IF 
components and high reduction of cross-terms interferences. 

The basic concept of instantaneous frequency is described in Pt. 1 of reference [4] 
and in Chapter 1 of this book. Methods of IF estimation are reported in Pt. 2 of [4] 
and in Chapter 10. Essential results are reproduced below, for greater clarity. 

10.3.1.1 Spectrogram Peak IF estimation 
Various approaches for IF estimation of monocomponent signals exist [4]. Most 
of these algorithms are suited to a particular class of signals, and both fixed and 
adaptive algorithms have been proposed. Our aim here is to approach the problem 
from a general viewpoint in order to define a general IF methodology that  would be 
suitable for the largest class of signals found in practical applications. To illustrate 
this approach, we thus consider from the outset multicomponent signals in additive 
noise, which can be expressed as follows: 

M M 
z(t)- Z + am(t)  + (10.3.1) 

m - - 1  m - - 1  

where the amplitudes am(t) are the component amplitudes, era(t) are the compo- 
nent phases, and ~(t) is a complex-valued white Gaussian noise process of indepen- 
dent and identically distributed (i.i.d.) real and imaginary parts with total variance 

2 The individual IF laws for each component are given by [1]" O'(:. 

1 dCm(t) ; m = 1 , . . . , M .  ( 1 0 . 3 . 2 )  f m ( t ) - ~ - ~  dt 

~ Zahir M. Hussain and Boualem Boashash, Signal Processing Research Cen- 
tre, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia 
(zahir.hussain@rmit.edu.au, b.boashash@qut.edu.au; Z. M. Hussain is now at the School of Elec- 
trical and Computer Systems Engineering, RMIT, GPO Box 2476V, Melbourne, Victoria 3001, 
Australia). Reviewers" LJ. Stankovi5 and V. Katkovnik. 
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Fig .  10.3.1:  Left: The spectrogram of a bat signal using a small analysis window. Right: The modified 
B-distribution of the same signal with parameter/~ = 0.05. Total signal length is N = 400 and sampling 
interval /kt = 1. The spectrogram cannot show the weakest component. 

A conventional approach to represent and analyze such signals for IF estimation 
is to take the spectrogram of z(t) and search for the peaks in the t-f domain (see 
Article 10.1). Curves formed by a continuum of these peaks describe the IF laws of 
the individual components of the observed signal z(t), as illustrated in Fig. 10.3.1 
using a bat signal. Analytically, this can be expressed as follows: 

fro(t) -- arg[m~x pro(t, f)]; 0 <_ f <_ f s /2  (10.3.3) 

where pro(t, f )  is the mth peak of the spectrogram. 
This spectrogram based approach has several advantages: it is easy to under- 

stand, easy to use, and there are no cross-terms producing unwanted interferences. 
A major disadvantage though is that the time-frequency resolution of the spectro- 
gram for closely spaced components is often poor, especially if one of the compo- 
nents is much weaker, as illustrated in Fig. 10.3.2 for a two-component linear FM 
signal with one component weaker than the other. Fig. 10.3.2 also compares the 
performance of the spectrogram with the modified B-distribution (MBD) that was 
designed specifically for multicomponent IF estimation, as discussed later. 

10.3.1.2 Peaks of WVD, PWVD, and RIDs 

To improve upon the resolution of the spectrogram, various TFDs were proposed 
for IF estimation, one of the most important being the Wigner-Ville distribution 
(WVD). IF estimation using the peak of the Wigner-Ville distribution (WVD) is 
optimal for linear FM signals with high to moderate signal-to-noise ratios (SNRs) [4], 
but its performance degrades significantly at low SNRs, and in this case the cross 
WVD (XWVD) peak can be used as an IF estimator [5]. For polynomial FM 
signals it was shown that the polynomial WVD (PWVD) gives the best performance, 
especially at high SNRs (see [6] and Article 10.4). However, both WVD and PWVD 
suffer from cross-terms when used to analyze multicomponent signals. These cross- 
terms generate artifacts that obscure the (t-f) representation of the signal, leading to 
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Fig .  10.3 .2:  Performance comparison between the spectrogram Spect(t ,  f )  and the modified B- 
distribution (MBD) for/3 = 0.06 using a two-component noise-free linear FM signal at the sampling 
instant n = t /A t  = 64. Total signal length is N = 128 and the sampling interval is A t  = 1. The right 
component is five times larger in amplitude than the left component. Left: Spectrogram with small 
analysis window length (A = 23). Right: Spectrogram with large analysis window length (A = 83). 
In both cases the spectrogram fails to resolve the two components. In addition, time resolution is bad 
for a large window length. 

the development of reduced interference distributions (RIDs) to remedy the problem 
[7]. Straightforward IF estimation using the peak of RIDs give an IF estimate that  
is biased from the true IF law, and this bias is different for different RIDs. Although 
reduced, cross-terms still exist and can obscure weak components, hence the need to 
define special purpose RIDs with efficient cross-terms reduction, high time-frequency 
resolution and minimum bias from the true IF laws, such as the MBD [3, 8]. 

10.3.2 Properties of IF Estimates Based on Quadratic TFDs 
10.3.2.1 IF Estimates and Window Length 
We consider an analytic signal z(t) of the form z(t) = ae jr -t-e(t) where the 
amplitude a is constant, and e(t) is a complex-valued white Gaussian noise with 
independent identically distributed (i.i.d.) real and imaginary parts with total vari- 

2 The IF of z(t) is given by eq. (10.3.2), and it is assumed to be an arbitrary, a n c e  (7 e . 

smooth and differentiable function of time with bounded derivatives of all orders. 
The general equation for quadratic time-frequency representation of the signal z(t) 
is given by [1] 

pz(t, f )  - ~ [a(t, r) . K;( t ,  r)] 
r ~ f  (t) 

where G(t,T) is the time-lag kernel, Kz(t,~') - z(t + ~ ) z * ( t -  ~) is the signal 
kernel or the instantaneous autocorrelation function (IAF), and �9 denotes time 

(t) 
convolution. For smoothing and localization on the IAF we apply a window function 
Wh(7) -- -h--zXtw(~) on the instantaneous autocorrelation Kz(t ,  T), where w(t) is a 

1 real-valued symmetric window with unity length, i.e., w(t) - 0 for [ t l> 7; hence 
the window length is h. 
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The TFD is now dependent on the window length h as follows: 

Pz h(t, f) - ~ [Wh(T)C(t, T) �9 Kz(t T)]. 
' ~ - ~ f  ( t )  ' 

(10.3.4) 

If pz,h(t, f) is discretized over time, lag, and frequency then we have 

N s  - 1 N s  - 1 

pz,h(n,k) -- E E wh(mAt)Kz(1At, 2mAt)G(nAt - lAt, 2mAt)e-J2~2~ 
l = - N s  m = - N ~  

(10.3.5) 
where 2Ns is the number of samples and At is the sampling interval. 

The IF estimate is a solution of the following optimization 

j~(t) -- arg[rn~x pz,h(t, f)] ; 0 < f < fs /2 (10.3.6) 

where fs = 1~At is the sampling frequency. 

10.3.2.2 Bias and Variance of the IF Estimate 

By extending the results in [9], the estimation bias and variance are found to be [3] 

2 2 Eh 
E[Afh(t)] - L h ( t )  var(A]h( t ) ) - -  cr~ [1+ a~ ] (10.3.7) 

2Fh ' 21a I = 21a I = F~ 

where 

1 r  zxf (t)- - Fh = wh(mAt)(27rmAt)2G(u, 2mAt)du 
(X:) m - - - - c x : )  F oo 

Lh(t) -- E wh(mAt)Ar mAt)(27rmAt)G(t - u, 2mAt)du 
O0 m - - - - o o  

Eh-- E wh(mAt)2(27rmAt)2G(u'2mAt)du 
(X) m - - - - ( x )  

where Ar T) -- r + r/2) -- r -- r/2) -- Tr (t). 
Equations (10.3.7) and (10.3.8)indicate that the bias and the variance of the 

estimate depend on the lag window length h for any kernel G(t, T). To see how the 
bias and the variance vary with h, asymptotic analysis as At --~ 0 is necessary for 
the chosen TFD. 

10.3.2.3 TFD Properties Needed for Multicomponent IF Estimation 

The results above indicate that a general method for IF estimation of multi- 
component FM signals in additive Gaussian noise that is based on quadratic 
time-frequency distributions requires the quadratic TFDs to satisfy the following 
conditions [3]: 
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(1) p(t, f )  should have a high time-frequency resolution while suppressing cross- 
terms efficiently so as to give a robust IF estimate for mono- and multicomponent 
FM signals. 
(2) p(t, f )  should enable amplitude estimation for the individual components of the 
signal, as the amplitude is necessary for evaluating the variance of the IF estimate 
for each component [2, 3, 9], and to allow for the reconstruction of the individual 
components of the signal. 
(3) the choice of the lag window length should lead to a bias-variance tradeoff (see 
eqs. (10.3.13)and (10.3.14)). 

Although some TFDs, like Choi-Williams distribution (CWD) and the spectro- 
gram, can satisfy some of these conditions, they do not meet the second requirement, 
i.e. allowing direct amplitude estimation. The design of TFDs which satisfies all of 
these required properties is considered next. 

10.3.3 Design of Quadratic TFDs for Multicomponent IF Estimation 
10.3.3.1 Desirable Time-Lag Kernel 
A TFD referred to as the B-distribution (BD) was proposed and shown to be su- 
perior to other fixed-kernel TFDs in terms of cross-terms reduction and resolution 
enhancement [10]. As it does not allow direct component amplitudes estimation [2], 
as per the second condition on TFDs required for multicomponent IF estimation 
listed above, the BD kernel was modified as [3] 

V(t ,  T) - Ge(t ) - ke/cosh2e(t)  (10.3.9) 

where ~ is a real positive number and k e = F(2fl)/(2 2e-1 F2(fl)), F stands for the 
gamma function. This modified B-distribution MBD(t, f )  is also referred to as the 
hyperbolic T-distribution (HTD) in  [8]. 

10.3.3.2 Relevant Properties of the Modified B-Distribution (MBD) 
Most of the desirable properties of time-frequency distributions relevant to IF 
estimation (as explained in [1] and [4]) are satisfied by the MBD kernel. In 
particular, realness, time-shift and frequency shift invariance, frequency marginal 
and group delay, and the frequency support properties are satisfied. The time 
support property is not strictly satisfied, but it is approximately true [3]. The three 
required conditions listed in Subsection 10.3.2.3 are discussed in detail below. 

(1) R e d u c e d  i n t e r f e r ence  and resolut ion:  This property is satisfied by MBD. 
For example, consider the sum of two complex sinusoidal signals z(t)  = zl ( t ) +  
z2(t)  = a l e  j (27rf l t+01)  -+- a 2 e  j(27rf2t+02) where al, a2, 01 and 02 are constants. The 
TFD of the signal z(t) is obtained as [3] 

MBD(t, f )  - a~ 5 ( f  - f l )  -t- a 2 5( f  - f2) + 2ala27z(t)  5[f - ( f l  + f2)/2] (10.3.10) 
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/ \ 
where 7z(t) - IF(/3 + j ~ ( f l  - f2))] 2 cos [2~(f l  - f2) t  + 01 - 02)/F2(~).  The cross- 

terms are oscillatory in time and depend on the frequency separation between signal 
components. If f l  and f2 are well separated then the term ]F(~ + jT~(fl - f2))l 2 
can be substantially reduced, while F2(~) can be made high if ~ is small. When fl  
and f2 are not well separated, the MBD still performs better than most quadratic 
TFDs (see Article 7.4). 

(2) D i r e c t  a m p l i t u d e  a n d  IF  e s t ima t ion :  The MBD allows direct IF estimation 
by peak localization, i.e., at any time instant t, it has an absolute maximum at 
f - 2 ~ l  dr for linear FM signals . For non-linear FM signals this estimate is biased, 
but this bias can be accounted for in the adaptive IF estimation, as presented next. 

For an FM signal of the form z ( t ) =  a e jr the MBD is approximated by [3] 

c ~  

MBD(t, f )  ~l a ]2 f G z ( t -  u) 5 [ 1 r  ( u ) -  f l d u  = [a[eG~( t -  r 1 6 2  (f)  
J _  o c  

(10.3.11) 
, r 

where r is the inverse of ~-~r i.e ( r  = f .  Assuming that  (f) is not a 
highly peaked function of f and knowing that  G z ( t -  r  is peaked at t - r  
the absolute maximum of MBD(t, f )  for any time t would be at r  = t, or 

1 ' f = ~--~r (t), which is the IF of the FM signal z(t) .  For non-linear FM signals, the 
energy peak of the MBD is actually biased from the IF because of the extra term 

Ek=3(kC<) odd) k!2 k-l~'k-1 r (u). The major contribution in this term is due t o  r  

Therefore at the instants of rapid change in the IF law the bias is not negligible and  
eq. (10.3.11) would not be an accurate approximation to the MBD unless suitable 
windowing in the lag direction is used. 

For linear FM signals we have r -- 0 for k >_ 3. Assuming that  z( t)  = 
aeJ27r(fot+-~ -t2) , where fo and 3o are constants, we have 

1 lal2Gf ~ ( t _  1 MBD(t, f )  - -~o -~o(f - fo ) )  (10.3.12) 

which has an absolute maximum at f - fo + ~ot, the IF of the linear FM signal z( t) .  
As ~o -~ 0, i.e., z(t)  approaches a sinusoid, we have MBD(t, f )  -~ la125(f - fo),  
in accordance with eq. (10.3.10). 

As for amplitude estimation, eqs. (10.3.11) and (10.3.12)indicate that  the MBD 
can support amplitude estimation [3]. 

(3) A s y m p t o t i c  F o r m u l a s  Us ing  M B D :  The asymptotic formulas for the vari- 
ance and the bias as At -~ 0 using a rectangular lag window are given by [3]" 

2 At 
( A ~ (  ~ 

O" c 
[ 1 +  ] var,_~.o,t , ,  = 27r2 i a 12 2[al 2 - ~  (10.3.13) 
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and 

h 2 / j  A(u)du 
E ( A A ( t ) ) -  ~ o0 cosh2Z(t- u) ; 

M2 h 2 E(A fh(t)) <_ --40 (10.3.14) 

where A(t) = f(2)(t + ~'1) + f(2)(t - 71), f(2)(t) is the second derivative of the IF, 
and sup]f(2)(t)] _< M2. For small h, the optimal window length that minimizes the 

t 

mean squared error is obtained by extending the result in [6] as: 

2 

[ 
hopt(t) = 7c21a12(f(2)(t )(t) �9 1/cosh2Z(t)) 2 " 

Thus, the optimal window length depends on the second derivative of the in- 
stantaneous frequency f(2)(t), which is time and signal dependent. Eqs. (10.3.13) 
and (10.3.14) indicate that the variance and bias of the IF estimate using MBD 
have the same rates of change with respect to the window length h as those using 
WVD [9]. 

10.3.3.3 Examples of Quadratic TFDs Suitable for Multicomponent IF Esti- 
mation 

TFDs with time-only (or lag-independent) kernels constitute a subclass of the 
quadratic class of TFDs. These TFDs share the important properties of cross- 
terms suppression, high-resolution, and supporting amplitude estimation, making 
them well suited for multicomponent IF estimation. The modified B-distribution 
(a. k. a. hyperbolic T-distribution)was defined earlier in this section. Another 
example is the exponential T-distribution, which is defined in terms of its time-lag 
kernel as [8] 

G(t, T) = G~(t) - ~ exp(-r/t  2) 

where r/is a real parameter and v/-~-/Tr is a normalization factor. The resulting TFD 
used for multicomponent IF estimation is then given by eq. (10.3.4). 

10.3.4 An Adaptive Algorithm for Multicomponent IF Estimation 
Eq. (10.3.15) shows that the optimal window length using the MBD is a function of 
time and depends on the second derivative of the IF law f(2)(t); it decreases when 
the IF law f(t) has a high variation. Hence a time-varying window length is needed 
to optimize the estimation. The Stankovi(~-Katkovnik adaptive algorithm developed 
in [9] for monocomponent FM signals can be used since the IF estimation variance 
is a continuously decreasing function of h while its bias is continuously increasing, 
as shown in eqs. (10.3.13) and (10.3.14); see also Article 10.2. These conditions 
are necessary for bias-variance tradeoff such that the algorithm converges at the 
optimum window length that resolves this tradeoff. It is shown in [9] that, if h is 
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small enough then the IF estimate fh(t) is inside the confidence interval D defined 
as follows 

D - [ f h ( t ) -  2~v/var(Afh(t)), fh( t )+ 2~;v/var(Afh(t))] (10.3.16) 

with Gaussian probability P(~;), ~ being a parameter (usually 2); while for large h, 

fh(t) is outside D. Hence, if we consider an increasing sequence of window lengths 
{hr[r = 1 : N} (N being the number of samples) and calculate the MBD (and 

hence fhr(t)) for each hr, then all {Dr} have at least one point in common (which 

is j?hr (t)) if hr is sufficiently small. The first hr for which Dr-1 and Dr have no 
point in common is considered optimal as it decides the bias-variance tradeoff. 

2 The estimates for the amplitude of the signal a and the variance of noise a~ 
[used in eq. (10.3.13) and implicitly in eq. (10.3.16)] were given in [9] as: 

i ~ 2 I N 
~ 2  2 

- 2 . . ,  , a ~  - 2N 
~2 + ~  -N I z(nAt) . ~-2 _ y~, [ z ( n A t ) - z ( ( n - 1 ) A t )  [ (10.3.17) 

n = l  n=2 

where N is the number of samples. For further details of this adaptive algorithm 
see [9]. 

For a multicomponent analytic signal of the form stated in eqs. (10.3.1) and 
(10.3.2), with {am} constant, we can use the extension of the monocomponent IF 
estimation algorithm in [9] for multicomponent signals as described in [2, 3]. This 
algorithm tracks component maxima in the time-frequency plane and requires a 
threshold Tp(t) so as to ignore the local maxima caused by the cross-terms and 
windowing. In fact, Tp(t) is application and distribution dependent. 

The algorithm requires the knowledge of the confidence intervals Dr, m for each 
component, where r refers to the window length (hr) and m refers to the signal 
component. The calculation of Dr,m depends on the estimation of the individual 
amplitudes am of the components. Using the MBD, the actual amplitudes [am[ can 
be estimated as shown in [3]. Using I~m] 2 and ~2 to calculate var(Aj~(t)) [given by 
eq. (10.3.13) for MBD(t, f)], we can define the confidence intervals {Dr,m} for all 
components as in [2, 3]. The IF fm (t) is contained in at least one of the confidence 
intervals {Dr, m} if hr is sufficiently small, and the optimal window length is the 
first hr (from the increasing sequence {h~[r = 1: N}) for which D~-l,m and D~,m 
have no point in common. 

E x a m p l e :  We consider a three-component FM signal z(nAt) with amplitudes al = 
0.5, a2 - 1, and a3 - 1.5 and non-linear IF laws: fl - -  47+2.5 s inh- i (20(nAt-0 .2) ) ,  
f2 - 30+ 2.hsgn(40(nAt-0.6)) ,  and f3 - 10+ 2 s in(10(nAt-0.7)) ,  with S N R  - 15 
dB, ~ -  0.1, ~ - 2, 0 _< na t  <_ 1, and At = 1/128. Fig. 10.3.3 shows the result of 
the tracking adaptive algorithm for IF estimation of z(nAt) using the peaks of the 
MBD and the spectrogram. 

Fig. 10.3.4 shows the conventional peak IF estimation for the same signal using 
MBD and the spectrogram. Both TFDs fail to give a robust IF estimation at the 
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Fig. 10.3.3: Left: Adaptive IF estimation using the peak of the MBD for a three-component FM 
signal with total length N = 128, SNR = 15 dB, and A t  = 1/128. Dashed lines represent the true IF 
laws. Right: Adaptive IF estimation using the peak of the spectrogram for the same signal, assuming 
that component amplitudes are known. 

Fig. 10.3.4: Left: IF estimation for the three-component FM signal as in Fig. 10.3.3 using the conven- 
tional (constant window) peak estimation. Left: MBD peak IF estimation. Right: Spectrogram peak 
IF estimation. (in addition to failure of IF estimation at instants of rapid frequency change, the spec- 
trogram has poor tracking performance. Note also that both methods cannot track the continuously 
varying frequency of the third component.) 

instants of rapid frequency change. In addition, the spectrogram has poor time- 
frequency resolution, both in adaptive and constant-window IF estimation. 

10.3.5 Summary and Conclusions 
Concurrent IF estimation of the separate components of a multicomponent FM 
signal using TFD peaks location requires conditions on the selection of a suitable 
quadratic TFD. Required properties are: (1) high time-frequency resolution while 
suppressing cross-terms eMciently, (2) the TFD to enable direct amplitude estima- 
tion for the individual components, (3) the variance of the IF estimate using the 
TFD should be a continuously decreasing function of the lag window length while 
the bias is continuously increasing. Quadratic time-frequency distributions that 
satisfy these conditions were presented and discussed. A constant-window tracking 
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algorithm may not give a robust IF estimate if the IF changes rapidly with time 
due to the effect of the higher-order derivatives of the IF law. Hence an adaptive 
algorithm is used for robust multicomponent IF estimation. 
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10.4 ANALYSIS  OF P O L Y N O M I A L  FM SIGNALS IN A D D I T I V E  
NOISE ~ 

In this article, we focus our study on the analysis of polynomial frequency modulated 
signals (a.k.a. polynomial phase signals), corrupted by additive Gaussian noise. 
A noiseless complex polynomial frequency modulated (FM) signal, z(t), can be 
expressed as: 

z(t) - A . exp(jr  = A . e x p  j E aktk 
k-O 

t : [0, T]. (10.4.1) 

Here A is the signal amplitude, r is the signal phase, P is the polynomial phase 
order, the {ak} are arbitrary parameters and T is the signal duration. Polynomial 
FM signals are found in many important applications such as radar, sonar and 
telecommunications. The FM law of the signal corresponds to the instantaneous 
frequency (IF) trajectory, defined by: 

P 
1 de(t) 1 

fi(t) - 27r dt = 27r E kaktk-1 t - - [0 ,  T]. (10.4.2) 
k--1 

In most applications, polynomial FM signals are immersed in noise. 
noise, the signal model can be re-written as: 

In additive 

y(t) - z(t) + w(t) - A . e x p  j E aktk 
k=0 

+ w(t) t = [0, T], (10.4.3) 

where w(t) is complex, Gaussian noise. It is often desired to estimate the IF of the 
class of signals defined by Equation (10.4.3). In the following text, we describe a 
method which can perform this task in an accurate way. 

10.4.1 
10.4.1.1 

The Polynomial Wigner-Ville Distributions 
IF Estimation 

If the order of the polynomial phase in Equation (10.4.1) is equal to 1, then the 
signal, z(t), is a complex sinusoidal (i.e. linear phase) signal. For this special case, 
the IF is a constant independent of the time variable. It can easily be estimated 
by using classical spectrum analysis methods. For instance, the frequency at which 
the Fourier transform of the data has its peak can be used as an estimate of the IF. 
The Fourier transform proves to be a useful tool in this case because it concentrates 
the signal energy in frequency (i.e. about the IF), while dispersing the noise energy 

~ P. O'Shea, School of Electrical and Electronic Systems Engineering, QUT, Bris- 
bane, Australia, 4001 (pj.oshea@qut.edu.au), and B. Barkat, Nanyang Technological Univer- 
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(ebarkat@ntu.edu.sg). 
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over a wide band. In the Fourier (frequency) domain, the signal energy tends to be 
quite peaked, while the noise contribution tends to be broad and relatively low. The 
Fourier transform peak actually provides an optimal estimator for the frequency of 
a complex sinusoidal data sequence, assuming the noise is white and Gaussian [1]. 

If the order of the polynomial phase in Equation (10.4.1) is larger than 1, then the 
signal, z(t), is a non-linear phase signal. For this general case the IF is not constant, 
but varies with time. The Fourier transform in this case is far less effective for IF 
estimation; the signal energy is spread over a continuum of frequencies and the 
signal-to-noise ratio (SNR) in the spectrum is reduced compared with the complex 
sinusoidal case. It would be convenient if an operator could be applied which could 
transform the non-linear phase signal into a linear phase one with frequency equal 
to the IF. Then the Fourier transform could be applied to estimate the IF. 

One technique that  can transform a polynomial FM signal into a sinusoid for a 
given time instant was proposed in [2] and is described in Articles 5.4 and 5.5. The 
general form for this transform is 

I 

KP(t,T) -- r l z ( t  +ciy) k` . z , ( t _ c i y )  k~ t - [ 0 ,  T], (10.4.4) 
i--1 

where the ci are the coefficients of the transformation, K P, and I is the total 
I number of distinct ci values. The order of the transformation is q = Y'~i=l 2ki. A 

general procedure to obtain the ci, ki and q for a fixed polynomial phase order, P,  
is outlined in [3]. For example, for P - 2 , we find q = 2 and cl - 0.5. For P - 3 
or P = 4 we find q = 6, cl = 0.62, c2 = 0.75 and c3 = -0 .87  [3]. 

By applying the Fourier transform to the "kernel", K P, of the signal we can 
determine the IF estimate. That  is, the peak of the function, 

F wP(t ,  f )  = KP(t,  w) . e-J2~f~dT, (10.4.5) 
c o  

yields the IF of the signal, z(t). The function wP(t ,  f )  is known as the polyno- 
mial Wigner-Ville distribution (PWVD) [2]. This terminology has arisen because 
W P (t, f )  may be considered to be a generalization of the Wigner-Ville distribution 
(WVD), which has long been known to be effective for IF estimation of quadratic 
phase signals. 

Figure 10.4.1 displays the PWVD of a quadratic (P  = 3) FM signal. The plot on 
the left is the PWVD of a noiseless signal, while the plot on the right is the PWVD 
of the same signal immersed in Gaussian noise. In the latter case, the IF law of 
the original signal is still apparent, despite the degradation in the time-frequency 
distribution due to the noise. That  is, the PWVD is useful for estimating the IF of 
noisy signals. 

The PWVD is very good for analyzing polynomial phase signals at high signal- 
to-noise ratio (SNR) [4], but is very poor for low SNR signals. In order to achieve 
accurate IF estimation at low SNR values, one can use an iterative procedure [5]. 
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Fig.  10.4.1" PWVDs of a noiseless (left) and noisy (right) quadratic FM signal. 

The first step involves forming a preliminary estimate of the IF law, ]i(t), by using a 
method which has a low SNR threshold but possibly limited accuracy (e.g. the peak 

of the short-time Fourier transform). ]i(t) is then used to reconstruct an estimate, 
~)(t), of the noisy observation, y(t). ~)(t) is used together with y(t) to form a Cross 
Polynomial Wigner-Ville Distribution (XPWVD)" 

F X W y  P (t, f )  - X K  ff (t, T) . e-J2~/~dw, 
O 0  

(10.4.6) 

where 

I 
X K f f  (t, T) - y(t-~ClT)a'~)*(t--clT) al l -I  ?)(t+ciT)a~'y*(t-ciT)a~ ; t -- [0,T]. (10.4.7) 

i = 2  
,P 

XPWVD peak extraction is then used to form a new estimate of the IF law, which 
in turn is used to form an updated estimate of y(t). 

The process of (i) XPWVD formation, (ii) IF law estimation and (iii) re- 
estimation of y(t) is repeated iteratively until there is an acceptably small difference 
between successive signal estimates. The SNR threshold of this method is typically 
very similar to that of the preliminary IF estimation method, but the accuracy 
tends to be much greater. More details about the technique can be found in [5]. 

10.4.1.2 Discrete-Time Implementation 
In practice it is often necessary to operate on discrete-time signals. In this article 
z(n),  y(n) and K ff (n, m) signify the discrete-time signals obtained by sampling z(t),  
y(t) and K~( t ,  T) respectively with a sampling rate of 1. The number of samples 
available from both z(n) and y(n) is denoted N(..~ T). The discrete-time version of 
the PWVD is: 

W P(n ,  f )  - DTFT K g(n ,  m) (10.4.8) 

m - - ,  f 



450 Chapter 10: Instantaneous Frequency Estimation and Localization 

where the DTFT operation specifies discrete-time Fourier transformation from the 
m to f variables. It should be noted that to form the kernel term, KP(n, m), in 
the above expression, one must obtain samples of y(t) at non-integer values of time. 
This typically means that in practice one must use interpolation of the discrete- 
time observation, y(n). To limit the number of samples which must be obtained by 
interpolation it is convenient to introduce some 'lag scaling' and 'frequency scaling' 
operations into the definition for the discrete-time PWVD. The resulting definition 
then becomes: 

P(n,m) (10.4.9) WP (n, f ) - DTFT Ky s 
m--~ $ 

C/max 

where 

H Ci Ci 
K P (t, 7) - y t + ~- �9 y* t T , (10.4.10) 

i=  1 C/max Cimax 

and K P (n, m ) i s  obtained from Ky P (t, 7) by sampling at a rate of 1. Cimax is the ci 
value with the largest magnitude. The discrete-time PWVD defined above can be 
used for obtaining low variance IF estimates from discrete-time measurements. A 
derivation of the variance of such estimates is given in the Appendix. 

10.4.1,3 Polynomial Phase Parameter Estimation 

The PWVD can also be used to estimate the ak parameters themselves, rather 
than simply the IF. It will be assumed for this estimation task that discrete-time 
measurements are available and that the noise on these measurements is white and 
Gaussian. Basically, the estimation procedure involves (a) forming P PWVD slices, 
(b) determining P IF estimates from these slices, (c) fitting a polynomial IF law 
to these P IF estimates, (d) deducing the ak parameters from this polynomial IF 
law, and (e) performing a spectral zoom type technique to refine the parameter 
estimates. The procedure is specified mathematically below: 

1. For the observation, y(n), form the set of PWVD slices, 

Wy P (f) - [WP(nl, f)  WP(n2, f )  ... WP(nP, I)]T, (10.4.11) 

where nl, n2 , . . . ,  np are different, well-spaced discrete-time positions. There 
is some flexibility in the selection of {nl, n2 , . . . ,  np}. Having them equally 
spaced between 0.25N and 0.75N is typically a good choice, i.e. 
n i = 0 . 2 5 N + 0 . 5 N ( i - 1 ) / ( P - 1 ) ,  i = l , . . . , P .  

2. Estimate a vector of IF estimates according to: 

f i -  arg  m a x  {WyP(f)}, (10.4.12) 
/ 

where arg  m a x  here denotes the vector argument of a vector (row by row) 
maximization. 
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3. Determine the vector of initial coarse estimates for the polynomial phase 
parameters estimates. This vector is denoted e~i = [dil di2 di3 . . .  dip] T 
and is obtained by evaluating the matrix equation: 

iii -- 2 7 r X - l f i  (10.4 .13)  

where 
1 2nl 3n 2 . . .  p n  P-1 

X - -  1 2n2 3n~ . . .  Pn  g-1 (10.4.14) 

1 2up 3n~ . . .  Pn~ -~ 

4. Dechirp the observation by thees t imated  polynomial phase law: 

yd(n) -- y ( n ) e x p ( - j ( d i l n  + di2 n2 + . . .  + dipnP)). (10.4.15) 

(The dechirped observation will now have spectral content which is highly 
localized around DC). 

5. Filter yd(n) with an ideal low-pass filter whose bandwidth is B. Decimate 
the result by a factor, 1/B,  to obtain yo(n). 

6. Unwrap the phase of yo(n). The vector of unwrapped phase values, 
V - [ V ( 0 )  V(1) . . .  V ( N B -  1)] T, is also modeled as a (noisy) polynomial 
phase signal with phase parameters, ad=[ad0 adl . . .  adp] T. One can then 
estimate ad with the following linear regression: 

a:d = ( G T G ) - I G T v ,  (10.4.16) 

where 
1 0 . . .  0 
1 1 . . .  1 P 

G - 1 2 . . .  2 P , (10.4.17) 

1 N B -  1 . . .  1) 

7. Use the results from Step 6 to refine the parameter estimates from Step 3: 

a f  - ai  + a~d.B (10.4.18) 

where B - [ 1  B B 2 . . .  BP] T, and a-d.B denotes element by element 
multiplication of ad and B. 

Note that  at least P + 1 samples of yo(n) are required for the regression in Step 
6 to be properly defined. In practice, it is recommended that  a large number of 
samples be obtained. Note also that  if y(n) is white then yo(n) will also be white, 
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and being a filtered version of y(n), will have a higher SNR (by a factor of 1/B) .  
The unwrapped phase of yo(n) will also be very close to white, provided that the 
SNR of yo(n) is above about 9dB [6]. The overall algorithm yields estimates which 
are asymptotically optimal above threshold. The threshold can be predicted with 
the formulae in [7]. 

10.4.2 Higher Order Ambiguity Functions 
An alternative approach for analyzing polynomial phase signals has been provided 
by Peleg, Porat and Friedlander [8], [9]. The first step in the method is to apply a 
transform to convert an arbitrary pth order polynomial phase signal into a linear 
phase one whose frequency is proportional to the ag parameter. This can be done 
with "Higher order ambiguity functions (HAFs)". After the transformation in the 
first step, it is possible to estimate the ag parameter with the Fourier transform. 
The second step in the method is to reduce the original signal to a ( P -  1) th order 
polynomial phase signal by "de-chirping" the highest order phase term out of the 
signal. A similar process can then be used to estimate the ap-1 parameter, and 
subsequently all lower order parameters. The formal algorithmic specification for 
the phase parameter estimators in [8] is: 

1. Let p -  P and let y(P) (n) - y(n), 1 <_ n <_ N.  

N Calculate the ap estimate using the formula: 2. Set ~-p - ~-. 

- -  - w I - I q = ~  y S q  (n - e - j~n 
s  - -  P !Tp 1 argmax E p-1 

n - - ( M - - 1 ) T p + l  

1 
= P! 7~_1 argrrax {IHAFy(w, Tp)l}, (10.4.19) 

where ySq(n) -- { y*(n)Y(n) ifif qqisiseVenodd ' * signifies complex conjugation, and 

HAFy(w, Tp) denotes the pth order "higher order ambiguity function". 

3. Set y(p-1)(n) - yP(n)exp(- j~pnP) .  Then set p - p - 1. 

4. If p > 1, go back to Step2. Else proceed. 

5. a0 -a rg{y~  A -  ly~ �9 

The parameter estimates obtained with the above algorithm are good but not 
optimal [9]. The estimates can be refined (to the point of optimality) with either a 
Newton algorithm or with a procedure similar to the one outlined in Steps 4-7 of 
Section 10.4.1.3. 

Once the co, a1, . . .  ,ag parameters have been estimated, (10.4.1) can be used 
to obtain a reconstruction of the entire signal phase (and using (10.4.2), the IF). 
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Like the PWVD approach this method performs very well at high SNR, but suffers 
from threshold effects at low SNR. As with the PWVDs, an iterative method can 
be used to improve performance at low SNR, the details being provided in [10]. 

10.4.3 A Comparison of the Polynomial Wigner-Ville Distributions and 
the Higher Order Ambiguity Functions 

10.4.3.1 Single Component Analysis 
For analyzing a single polynomial phase signal the computational burdens of the 
PWVD and HAF methods are similar. The asymptotic variances of the ak param- 
eter estimates using the PWVD method are also similar. In fact, if the estimate 
refinement scheme outlined in Steps 4-7 of Section 10.4.1.3 is used for both methods, 
then the two techniques are both optimal above threshold. The SNR thresholds for 
the HAF and PWVD techniques are similar for lower order phase laws (i.e. third 
order and lower), while for higher order laws the PWVDs tend to have lower thresh- 
olds. Formulae for the threshold values are given in [8] and [7]. 

10.4.3.2 Multiple Component Analysis 
Both the PWVDs and the HAFs are non-linear transforms and hence produce "cross- 
terms" when operating on a sum of two or more polynomial phase signals. These 
cross-terms complicate the task of analyzing such "multi-component" signals. The 
PWVDs produce cross-terms which are often spectrally concentrated, while the 
HAFs give rise to cross-terms which are spectrally dispersed. The spectrally dis- 
persed cross-terms prove to be more conducive to analysis, because they appear 
more like white noise. 

In analyzing multiple components with the HAFs one can proceed by first es- 
timating the parameters of the highest amplitude component, and then removing 
the estimate of this component from the signal [11]. Then the next highest ampli- 
tude component can be analyzed. The process can be repeated until all components 
have been accounted for. Pre-requisites for the effective analysis of multi-component 
signals include (1) higher required SNR thresholds than for single component anal- 
ysis, (2) good separation of the various components in the HAFs, and (3) phase 
polynomial orders of the constituent signals which are not too high. Requirement 
(2) is necessary because the level of dispersion of the cross-terms is related to the 
extent of the separation of the components in the HAFs. Requirement (3) is neces- 
sary because the energy of the cross-terms relative to the auto-terms increases with 
increasing HAF order. 

10.4.4 Appendix: Asymptotic Mean-Square Error of a PWVD-Based IF 
Estimate 

It is assumed that the IF of a polynomial phase signal is to be estimated, using the 
peak of the discrete-time PWVD. It is further assumed that the signal is embedded 
in complex, white, Gaussian noise with power, cr 2, and that the estimate of the IF 
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is required at time, n - 0. This appendix derives the asymptotic mean-square error 
(a.m.s.e.) of the IF estimate. 

The PWVD based IF estimate, evaluated at n = 0, is defined by: 

]0 - arg m~x{Wg(n,  f)ln=0} - arg m~x{WP(f )} ,  (10.4.20) 

where 
P(n-O,m) (10.4.21) W P ( f )  = D T F T  Ky, 

m---+ [ 
C/max 

The PWVD of a noisy polynomial phase signal, evaluated at n = 0, is: 

(N-1) /2  I 

wP (f) - E H [y(mci/Cim~x) " Y* (--mci/Cima,,)] k' e -j2=fm/c'm~'' �9 
m = - ( N - 1 ) / 2 i = l  

(10.4.22) 
In the absence of noise W f (f)  has a global maxima at f = f0, where fo is the value 

of the IF at n - 0. The perturbation of w g ( f )  which occurs when noise is added 
to the observation is given by: 

( N - l ) / 2  

5wP (f) = E zw(m)e-J2~Sm/~'m~"' (10.4.23) 

m = - ( N - 1 ) / 2  

where 

I 

z~(,~) - I I  [Y(mo,/O,m..)Y* (-mo,/O,m..)] k' -[z(m~,/O,m..)z* ( -m~, /o , . . . ) ]  k' . 
i=l 

(10.4.24) 
With this perturbation, the peak of W f (f) shifts from f = f0 to f = fo + 5f. This 
appendix derives the a.m.s.e, of 5f (i.e. the a.m.s.e, of the IF estimate). To achieve 
this, a formula for the asymptotic mean-square fluctuations of the maximum of a 
real valued random function is used [12]. This formula, re-expressed for the scenario 
in this section, is: 

E - E L Of 2 

- 2  

(10.4.25) 

where E{.} denotes the expected value. 
Under the simplifying assumption that  all samples of the kernel are uncorrelated, 

relevant terms on the right hand side of (10.4.25) are found to be: 

02wP(fo) -4~?AqN 3 
(10.4.26) 

Of 2 12C2m~ ~ ' 
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oswy(fo) 
of 

- j27r 

N/2 

m=-N/2 
m .  z w ( m ) e  -j2rfm/cimax , 

E [ Of "~ 

4 ~2 A 2q N 3 Vkern 

12 

where gkern, the "noise to signal ratio" in the kernel, is [4], [13]: 

Vkern -- [ ( ~  I kl 2 
\i=0 i ) 

o'2i / 2 
x . . .  x /s / ki ii - 

\ i = o  i "A--~ 

(10.4.26) and (10.4.28) can be substituted into (10.4.25) to obtain: 

(10.4.27) 

(10.4.28) 

1. (10.4.29) 

12-c  2 " Ykern 
E {6/2} ~ l m a x  (10.4.30) 

4~-2. N 3 �9 

10.4.5 Summary and Conclusions 
In this article the problem of analyzing polynomial FM signals in additive noise 
has been addressed. Two different approaches have been described, the polynomial 
Wigner-Ville distributions and the higher order ambiguity functions. Both methods 
perform well at high SNR, and with some modifications, can be made to work well 
even at low SNRs. A brief comparison of both methods has been made. 

References 
[1] D. C. Rife and R. R. Boorstyn, "Single-tone parameter estimation from discrete-time 
observations," IEEE Trans. Information Theory, vol. 20, pp. 591-598, September 1974. 

[2] B. Boashash and P. J. O'Shea, "Polynomial Wigner-Ville distributions and their rela- 
tionship to time-varying higher order spectra," IEEE Trans. Signal Processing, vol. 42, 
pp. 216-220, January 1994. 

[3] B. Barkat and B. Boashash, "Design of higher order polynomial Wigner-Ville distribu- 
tions," IEEE Trans. Signal Processing, vol. 47, pp. 2608-2611, September 1999. 

[4] B. Barkat and B. Boashash, "Instantaneous frequency estimation of polynomial FM 
signals using the peak of the PWVD: Statistical performance in the presence of additive 
Gaussian noise," IEEE Trans. Signal Processing, vol. 47, pp. 2480-2490, September 1999. 

[5] B. Ristic and B. Boashash, "Instantaneous frequency estimation of quadratic and cu- 
bic polynomial FM signals using the cross polynomial Wigner-Ville distribution," IEEE 
Trans. Signal Processing, vol. 44, pp. 1549-1553, 1996. 

[6] S. A. Tretter, "Estimating the frequency of a noisy sinusoid by linear regression," IEEE 
Trans. Information Theory, vol. 31, pp. 832-835, November 1985. 



456 Chapter 10: Instantaneous Frequency Estimation and Localization 

[7] D. C. Reid, A. M. Zoubir, and B. Boashash, "Aircraft flight parameter estimation 
based on passive acoustic techniques using the polynomial Wigner-Ville distribution," J. 
Acoustical Soc. of America, vol. 102, pp. 207-23, July 1997. 

[8] S. Peleg and B. Porat, "Estimation and classification of polynomial-phase signals," 
IEEE Trans. Information Theory, vol. 37, pp. 422-430, March 1991. 

[9] B. Porat and B. Friedlander, "Asymptotic statistical analysis of the high-order ambi- 
guity function for parameter estimation of polynomial phase signal," IEEE Trans. Infor- 
mation Theory, vol. 42, pp. 995-1001, May 1996. 

[10] P. O'Shea, "An iterative algorithm for estimating the parameters of polynomial 
phase signals," in Proc. Fourth Internat. Symp. on Signal Processing and its Applica- 
tions (ISSPA '96), vol. 2, pp. 730-731, Gold Coast, Australia, 25-30 August 1996. 

[11] S. Peleg and B. Friedlander, "Multicomponent signal analysis using the polynomial- 
phase transform," IEEE Trans. Aerospace ~ Electronic Systems, vol. 32, pp. 378-386, 
January 1996. 

[12] S. Peleg and B. Porat, "Linear FM signal parameter estimation from discrete-time 
observations," IEEE Trans. Aerospace ~ Electronic Systems, vol. 27, pp. 607-616, July 
1991. 

[13] G. Reina and B. Porat, "Comparative performance analysis of two algorithms for 
instantaneous frequency estimation," in Proc. Eighth IEEE Workshop on Statistical Signal 
and Array Processing (SSAP-96), pp. 448-451, Corfu, Greece, 24-26 June 1996. 



IF Estimation o f  FM Signals in Mult ip l icat ive Noise 457 

10.5 IF EST IMATION OF FM SIGNALS IN MULTIPL ICATIVE 
NOISE ~ 

10.5.1 Random Amplitude Modulation 
Most IF estimation techniques, such as those presented in the previous articles of 
this chapter, assume that the signal of interest has a constant amplitude. While 
this is a valid assumption in a wide range of scenarios, there are several important 
applications in which this assumption does not hold. Indeed, in many situations 
the signal may be subjected to a random amplitude modulation which behaves as 
multiplicative noise. Examples include fading in wireless communications [1], fluctu- 
ating targets in radar [2], and structural vibration of a spacecraft during launch and 
atmospheric turbulence [3]. In this article, we focus on non-parametric methods. 
In particular, we show that the Wigner-Ville distribution (defined in Section 2.1.4) 
is able to display the IF of a signal affected by multiplicative noise, and that  this 
representation is optimal in the sense of maximum energy concentration for a lin- 
ear FM signal. For higher-order polynomial FM signals, the use of the polynomial 
Wigner-Ville distribution (PWVD), presented in Article 5.4, is shown to give opti- 
real representations. Statistical performance of each case will be presented here. 

10.5.2 Linear FM Signal 
In this section, we study the case of a linear FM signal and assume that  the multi- 
plicative noise is a real-valued process. 

10.5.2.1 Optimality of the Wigner-Ville Spectrum 
First we show that the Wigner-Ville spectrum (WVS) is optimal, in the sense of 
IF localization, for the time-frequency analysis of linear FM signals affected by 
multiplicative noise. Consider the signal y(t) given by 

y(t) - a(t) . z(t) (10.5.1) 

where a(t) is a non-zero-mean real-valued stationary noise and z(t) is a deterministic 
FM signal given by z(t) = exp{jC(t)}. For a linear FM signal, r is a second- 
order polynomial. Using the expectation operator notation, the autocorrelation of 
the signal above can be expressed as 

- E [y(t - i )  y* (t + i ) ]  

= E [ a ( t -  ~)a( t  + ~)] .  { z ( t -  ~) z*(t + ~)} 

-- T~a(T)I(z(t, T). (10.5.2) 

~ B. Barkat, Nanyang Technological University, School of Electrical & Electronic En- 
gineering, Block $2, Nanyang Avenue, Singapore 639798 (ebarkat@ntu.edu.sg), and B. Boashash, 
Queensland University of Technology, Signal Processing Research Centre, GPO Box 2434, Bris- 
bane, Q 4001, Australia (b.boashash@qut.edu.au). Reviewers: Dr. F. Sattar and S. Gulam Razul. 
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The WVS of y(t), which is defined as the Fourier transform of Ey(t,  7) [4], can be 
expressed as 

)/Yy(t, f )  - J%_.f {ICy(t, ~-)} (10.5.3) 

= ~ _ ~ f  { z ( t -  ~i)z*(t + ~)} . f  ~__.f {E [ a ( t -  ~)a( t  + ~)]} (10.5.4) 

= Wz(t, f )  . f  Sa( f )  (10.5.5) 

where , f  is the convolution operation in the frequency space. 
If' we express the non-zero-mean random process a(t) as a(t) = ~a +ao(t),  where 

p~ is a constant mean of a(t) and ao(t) is a zero-mean noise with autocorrelation 
Rao (T), we can re-write the WVS of y(t) as 

W y ( t , f )  - # 2 W z ( t , f )  + Sao(f) *f W z ( t , f ) .  (10.5.6) 

For the case of a linear FM signal, the Wigner-Ville distribution (WVD) is given in 
Article 2.1 by [4] 

Wz(t,  f )  = 5( f  - f i( t)) ,  (10.5.7) 

where f i( t)  is the signal IF and 5 is the Dirac delta function. In this case, we obtain 

Wy(t,  f )  - #25( f  - f i( t))  + Sao(f  - f i( t)) .  (10.5.8) 

Note that  Eq. (10.5.8) exhibits the presence of a spectral line at the frequency f~(t) 
for all time instants. This means that, theoretically, the WVS always localizes the 
IF of a linear FM signal. This makes it a powerful tool in the analysis of linear FM 
signals affected by multiplicative noise. Also note that  when #a = 0, the WVS will 
not exhibit a peak at the signal IF, indicating a breakdown of the WVS to analyze 
the noisy signal. 

As an illustration, consider a unit-modulus linear FM signal sampled at 1 Hz, 
whose frequency range lies between 0.1 Hz and 0.4 Hz. The signal length (in samples) 
is chosen as N = 511. This signal is multiplied by a real-valued i.i.d. Gaussian 
noise with a standard deviation aa = 1 and a mean equal to 0 and 1, respectively. 
Fig. 10.5.1 displays the WVS (one realization) of the noisy signal for both values of 
the mean. As expected, the WVS for the zero-mean case cannot reveal the signal 
IF; however, it can do so for the other case. In this last case, the peak of the WVS 
can be used to estimate the IF of the signal. In what follows, we will evaluate the 
statistical performance of such an estimator. 

10.5.2.2 Statistical Performance Evaluation 

Here, for a more complete study, we consider the presence of additive noise as well 
as the multiplicative noise. The objective is to derive the asymptotic variance of 
the IF estimator, based on the peak of the WVS, for this case. 

Let the discrete-time version of the noisy signal be 

y(n) - a(n)e  jr + w(n) , n = O , . . . , N - 1 .  
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Fig.  10.5.1: The Wigner-Ville spectrum of a linear FM signal affected by a real-valued Gaussian 
multiplicative noise. The noise variance is I (both plots) and its mean is 0 (left plot) and 1 (right plot). 

The process a(n) is considered to be a real-valued s ta t ionary Gaussian noise with 
2 respectively. The complex zero-mean ad- mean and variance given by pa and Ca, 

ditive process w(n)  is assumed to be stationary, white, circular and Gaussian with 
2 In addition, both noises are assumed to be independent.  variance equal to a w. 

The WVS used to estimate the signal IF is defined, in the discrete-time domain, 
using the expression given in Article 6.1, as [4] 

W z ( n ,  f )  - E 2 ~ y(n  + m) . y*(n - m)  e - j4~fm . (10.5.10) 
m - - - M  

Using straightforward derivations, we can show that ,  for increasing window 
length (2M + 1), the WVS converges in probabili ty to # 2 5 ( f -  f i ( t ) )  [5]. We can 
also show that  the IF est imator asymptotic  variance is approximately equal to [5] 

Va r ( f i ( n ) )  - (27r)2,5. (2M + 1) a 2 + ~ + ~ (10.5.11) 

where Sa - 2 2 2 p~/a~ and $~ - p a / a  2. Note that" 

(i) When #a = 0, the variance goes to infinity indicating tha t  the WVS based 
est imator  breaks down. This result confirms the analysis presented earlier. 

(ii) When #a = A where A is a constant and aa = 0, i.e., the signal under 
consideration is just a constant ampli tude linear FM signal embedded in noise, 
the variance expression can be-rewrit ten as 

2 3a212A 2 + a~] 
Var ( ] i (n ) )  - (27r)2A4(2 M + 1) 3 . 
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F i g .  10 .5 .2 :  Theoretical (dashed curve) and estimated ( '+ ' )  variances of a linear FM signal corrupted 
by multiplicative and additive noise. Left plot is for 8w = 0 dB and right plot is for Sw = 5 dB. 

2 If, in addition, we assume high signal-to-noise ratio (SNR) (i.e., A 2 :>> aw) 
the asymptotic variance expression reduces to 

Var  (fi (n)) - 
(27r)2(A2)(2M + 1) 3 

which is similar to the result obtained in [6]. 

The above theoretical results were confirmed by Monte-Carlo simulations. 
Specifically, we estimate the IF estimator variance using 5000 realizations of the 
signal given by (10.5.9). In Fig. 10.5.2, we display the theoretical (dashed curve) 
and the estimated ( '+ ')  variances plotted against ,S'a for Sw = 0 and 5 dB, respec- 
tively. 

If the signal under consideration is not a linear FM but a higher-order polynomial 
FM signal, the WVS becomes inappropriate because it introduces some artifacts 
which might hide the real features of the signal and its peak based IF estimator 
is biased for such signals [6]. In this situation, a different tool is needed for the 
analysis. This is the topic of the next section. 

10.5.3 Polynomial FM Signals 
Compared to the previous section, the extension here is two-fold: (i) the signal 
considered is assumed to be a polynomial FM signal of arbitrary order and (ii) the 
multiplicative noise is no longer limited to a real-valued process but is assumed to 
be a non-zero complex circular Gaussian process. Based on this, the noisy signal 
y(t) is now written as 

y(t) = a(t) . z(t) + w(t) (10.5.12) 

where the stationary processes a(t) and w(t) are both assumed circular, complex, 
2 Gaussian and independent with means and variances given by (Pa, a 2) and (0, aw), 
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respectively. The noiseless polynomial FM signal z( t )  is given by 

z( t )  -- e jr -- exp j E aiti  
i--0 

(10.5.13) 

where the ai are real coefficients and P is the order of the polynomial phase. Note 
that  in the derivation below we do not require the knowledge of the coefficients ai; 
we only assume a polynomial FM signal. 

The IF of the signal z( t )  is given in Article 1.3 by 

P 
1 de(t) = ~ i a i t i _  1 

f i ( t ) =  2rr dt 
i--1 

and our primary objective here is to estimate f i ( t )  from the noisy signal y(t) .  For 
that  purpose, we use the polynomial Wigner-Ville distribution (PWVD) defined in 
Article 5.4 as 

w}q)(t, f )  - z ( t  + ciT)z*(t  + c _ i 7 ) e - J 2 " f r d 7  (10.5.14) 
cx~ i--1 

- K(q)( t ,  7 ) .  e - J 2 ~ f ' d T  (10.5.15) 
oo 

where q is an even integer which indicates the order of non-linearity of the PWVD. 
The coefficients ci and c-i  (i = 1, 2 , . . . ,  q/2)  are calculated so that  the PWVD is 
real and equal to 

w(q) (n ,  f )  - 5 ( f  - f i ( t ) ) ,  

for signals given by Eq. (10.5.13). Note that  the realness of the PWVD implies 
that  ci = - c - i .  Also note that  the WVD is a member of the PWVDs class with 
parameters q = 2 and cl = - c - 1  = 0.5. Full details of the design procedure may 
be found in [7] and Articles 5.4 and 5.5. 

The choice of the PWVD stems from the fact that  it yields a continuum of delta 
functions around the IF for a given polynomial FM signal. This property implies 
that  the peak of the PWVD can be used as an IF estimator for polynomial FM 
in a noisy environment. In [8], the statistical performance of this estimator was 
evaluated for noisy signals described by Eq. (10.5.12). It shows that  this estimator 
is unbiased and its asymptotic variance is approximately equal to [8] 

2 nl  2 
6 (0 .2 -{--0.w) E i - - 1  ki  

Var( f i (n ) )  - (2rr)21#a12(2M q- 1) 3 . (10.5.16) 

In the above expression, nl represents the number of the different coefficients ci in 
the PWVD kernel, while ki (for i = 1 , . . . ,  nl)  represents the multiplicity of each of 
these coefficients ci, and (2M + 1) is the window length considered in the PWVD 
discrete-time implementation. Note that: 
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(i) When #a = 0, the variance goes to infinity indicating that  the PWVD based 
estimator breaks down. 

(ii) When #a = A where A is a constant and aa = 0, i.e., the signal under 
consideration is just a constant amplitude polynomial FM signal embedded in 
complex Gaussian noise, the variance expression can be-rewritten as 

2 n l  2 6 a~ ~i=1 k~ 
Var(j~) = (27r)2A2(2 M + 1) 3 . 

The above expression is exactly similar to the result obtained in [6], which 
treats constant amplitude polynomial FM signals only. 

10.5.3.1 Monte-Carlo Simulations 
To confirm the validity of the above theoretical results, we consider the IF estimation 
of a quadratic FM signal at the middle of the signal interval. The peak of the sixth- 
order P WVD, whose signal kernel is given by [7] 

= [y(t + 0.62 ) y*(t  - [y(t + 0.75 ) y*(t  - 0.75 )] 

• [y(t - 0 .sTy)  y*(t  + 

is used here as the IF estimator. The noisy signal y(t) is generated as suggested 
by Eq. (10.5.12). For this example, we choose the sampling period equal to T = 1, 
the signal length N equal to 129, the window length equal to (2M + 1 = N = 129) 

2 _ a2).  In the simulations, the overall and the noise variances to be equal (i.e., a a 
signal-to-noise ratio, defined as 

2 SNRwl = lO loglo(l#al2/(a 2 + aw)), 

is varied in a 1 dB step from 0 to 15dB. Monte-Carlo simulations for 1000 realiza- 
tions are run for each value of SNRwl. The results of two different experiments, 
one performed for l ~ a l  - -  0 . 0 1  and the other performed for I#al - 1, are displayed 
in Fig. 10.5.3 (left plot). We observe that, above a certain threshold, the estimated 
variances represented by '+ '  (for IPa[ = 0.01) and 'o' (for I#al = 1) are in total 
agreement with the theoretical ones given by Eq. (10.5.16) and represented by the 
continuous lines (superimposed). 

Simulations run under the same noise conditions for other polynomial FM signals 
using the appropriate PWVD order also confirm the theoretical results presented 
above. One such case is when y(t) is a linear FM signal and the PWVD considered 
is the second-order PWVD. The results of this experiment are displayed in the right 
plot of Fig. 10.5.3. 

10.5.4 Time-Varying Higher-Order Spectra 
Time-Varying Higher-Order Spectra (TV-HOS) based on the polynomial Wigner- 
Ville distribution are defined as the expected value of the PWVD [9], namely 

w(q)(t, f )  = E rW(q)(t, f)] (10.5.17) 
L J 
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Fig. 10.5.3: Results of the experiments for a quadratic (left plot) and a linear (right plot) FM 
signal corrupted by complex (;aussian multiplicative and additive noise processes. The continuous 
lines (superimposed) represent the theoretical variances while '+ '  and 'o' correspond to the estimated 
variances for I ~ 1  = 0.01 and I~ol = 1, respectively. 

where w(q)(t, f) is the qth-order PWVD defined by (10.5.14). Interchanging the 
expectation operator with the integration in the PWVD, one obtains 

]/Y~q) (t, f) - E z(t + ci~')z* (t + c_iT) e-J2=f'dT (10.5.18) 
oo Li--1 

= (t, ( 1 0 . 5 . 1 9 )  
o o  

where/fi (q) (t, T) represents a slice of a time-varying qth-order moment function [9]. 

If the quantity/C (q) (t, ~-) is absolutely integrable, then, l/Y (q) (t, f )  can be interpreted 
as a form of the time-varying higher-order moment spectrum. In [9], the authors 
showed that TV-HOS combine the advantages of classical time-frequency analysis 
with the benefits of higher-order spectra. To avoid the problem of non-superposition 
of the higher-order moments, the authors in [9] used higher-order cumulants instead. 

It is important to note that since non-stationary random signals are non-ergodic, 
the ensemble averaging above cannot be replaced by time averaging. In this situa- 
tion, local ergodicity has to be assumed. 

Readers interested in TV-HOS are referred to [9] for more details, including 
examples of the efficacy of TV-HOS in the analysis of random FM signals affected 
by multiplicative noise. (See also Section 14.5.4 and the references in [9].) 

10.5.5 Summary and Conclusions 
The Wigner-Ville spectrum (WVS) and polynomial Wigner-Ville distributions 
(PWVDs) are considered tbr the analysis of polynomial FM signals corrupted by 
multiplicative and additive noise. In the noisy linear FM case, the WVS is shown 



464 Chapter 10: Instantaneous Frequency Estimation and Localization 

to give optimal IF localization. Accordingly, the peak of the WVS is proposed as an 
IF estimator.  A statistical performance test shows tha t  this es t imator  is very accu- 
rate  even at low signal-to-noise ratio values. For the case of the noisy higher-order 
polynomial FM signal, the peak of the P W V D  is shown to be a very consistent and 
accurate IF estimator.  
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Chapter 11 

Time-Frequency 
Filtering 

Synthesis and 

To model and predict accurately the effects of linear systems on non-stationary sig- 
nals in applications such as signal cleansing and enhancement, we need the capabil- 
ity to design time-varying linear systems with precise time-frequency specifications. 
This topic is covered in four articles with appropriate cross-referencing to other 
chapters. 

The design of time-varying filters is useful in applications where it is desired to 
separate, suppress or reduce undesirable non-stationary signal components. This 
can be achieved with a number of methods such as the STFT and Gabor trans- 
tbrm (Article 11.1). In particular, the use of the Gabor expansion for time-varying 
filtering is illustrated on an application to monitoring machine vibrations (Arti- 
cle 11.2). Another illustration of the procedure for designing a time-varying filter 
is provided in the context of an application involving hands-free telephone speech 
signals (11.3). Another important application of time-varying filtering, namely sig- 
nal enhancement, is described using an iterative algorithm based on time-frequency 
peak filtering (11.4). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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11.1 LINEAR TIME-FREQUENCY FILTERS~ 
11.1.1 Time-Frequency Design of Linear, Time-Varying Filters 
Linear, time-varying (LTV) filters are useful in many applications, especially for 
weighting, suppressing, or separating nonstationary signal components. The input- 
output relation of an LTV filter H with kernel (impulse response) h(t, t') reads 

F y(t) - (Hx)(t) = h(t, t') x(t') dt' . 
o o  

(11.1.1) 

The nonstationary nature of input signal x(t), output signal y(t), and LTV filter 
H suggests the use of time-frequency (TF) representations for analyzing, designing, 
and/or implementing LTV filters. 

There are two fundamentally different approaches to a TF design of LTV filters, 
namely, the "explicit" and "implicit" design philosophies [1,2]. Both are based on 
a prescribed TF weight function M(t, f )  that provides a TF specification of the 
desired filtering characteristic. 

�9 Expl ic i t  design:  The impulse response h(t, t ~) of the LTV filter H is cal- 
culated (designed) such that a TF representation of H is equal to or best 
approximates the TF weight function M(t, f).  In this article, the TF repre- 
sentation of H will be chosen as the generalized Weyl symbol (see Article 4.7). 
An alternative explicit design of LTV filters using the Wigner distribution of 
an LTV system has been considered in [3]. The filtering itself is performed in 
the time domain according to (11.1.1). 

�9 Impl ic i t  design:  The LTV filter H is designed implicitly during the filtering, 
which is a three-step analysis-weighting-synthesis procedure. First (analysis 
step), a linear TF representationmsuch as the short-time Fourier transform-- 
of the input signal x(t) is calculated. Second (weighting step), this TF repre- 
sentation is multiplied by the TF weight function M(t, f).  Third (synthesis 
step), the output signal y(t) is calculated in a linear manner from the TF 
function obtained in Step 2. Since all processing steps are linear, the overall 
procedure amounts to an LTV filter. 

In this article, we will consider explicit TF filter designs based on the generalized 
Weyl symbol [1,2,4,5] and implicit TF filter designs based on the short-time Fourier 
transform [1,2,6-10] and the Gabor transform [2,11,12]. In particular, we will show 
that the resulting filters tend to perform similarly if the TF weight function M(t, f )  
is sufficiently smooth. 

~ F. Hlawa t sch  and G. Matz ,  Institute of Communications and Radio- 
Frequency Engineering, Vienna University of Technology, Gusshausstrasse 25/389, 
A-1040 Vienna, Austria (email: fhlawats@pop.tuwien.ac.at, g.matz@ieee.org, web: 
http://www.nt.tuwien.ac.at/dspgroup/time.html). Reviewers: M. Amin and D. L. Jones. 
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11.1.2 Explicit Design~The Generalized Weyl Filter 
The generalized Weyl symbol (GWS) of an LTV system H is defined as 

L(~)(t,f) ~ h t+ -~ - a  w , t -  -~ +a 7 dr, (11.1.2) 
o o  

where a is a real-valued parameter.  The special cases a = 0 and a = 1/2 give the 
Weyl symbol and Zadeh's time-varying transfer function, respectively. For under- 
spread LTV systems (i.e., LTV systems that  produce only moderate TF  displace- 
ments), the GWS can be interpreted as a TF transfer function describing the T F  
weighting produced by the system (see Article 4.7). Hence, a conceptually simple 
TF  design of an LTV filter H from a prescribed TF  weight function M(t, f) is based 
on setting the filter's GWS equal to M(t, f)  [1,2, 5], 

L (~) (t, f) - M(t, f) (11.1.3) HGWF 

The impulse response of the LTV filter HGWF thus defined is obtained via the 
inverse of (i I. 1.2), i.e., 

hGwr(t,t')-- M (-~+a t+(-~-a f e '2~/ df. (11.1.4) 
oo 

The filter HGWF in (11.1.4) is termed generalized Weyl filter [1]; it depends on the 
choice of the GWS parameter  a used in (11.1.3). In particular, the choices a = 0 
and a = 1/2 lead to the Weyl filter and Zadeh filter, respectively. For a = 0, a 
real-valued weight function M(t, f) will result in a self-adjoint [13] Weyl filter. 

D e p e n d e n c e  on a.  The dependence of HCWF on a effectively disappears in the 
case of a smooth TF weight function M(t, f) (yielding an underspread LTV system 
HGWF as discussed in Article 4.7; also note that  smoothness of M(t, f) is incom- 

patible with a sharp TF  cutoff) Let ~(1) and ~(2) be two generalized Weyl �9 - ' G W F  - -GWF 
filters designed according to (11.1.4) with GWS parameter  a l  and a2, respectively. 

Then, one can show that  the difference (1) [~(2) (HawFX)(t)  - x)(t) of the output k~GWF 
signals of these filters satisfies 

I - I G w F X -  "GWFXII2  < s z~ [c~1-a2[ Or Of 2 

Ilxll  - 

where I1" ]]2 denotes the L2 norm. Thus, it is seen that  the generalized Weyl filter 
design is almost independent of a if cl is small, i.e., if M(t, f) is a smooth function. 

TF projection filter. Formally, (11.1.3) can be viewed as the solution to the (un- 

constrained) minimization problem HGWF -- argminH I[M L (a) - H [[2" Solving this 
minimization problem under the side constraint that  H be an orthogonal projec- 
tion operator 1 yields the TF projection filter Hp introduced in [4]. More specif- 
ically, let uk(t) and Ak denote the eigenfunctions and eigenvalues, respectively, of 

1 An orthogonal projection operator is characterized by being self-adjoint (H + = H) and idem- 
potent (HH : H)[13]. 
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+ + 
(HowE + HGWF)//2, where HGW F denotes the adjoint of HGWF [13]. Then, the 
impulse response of Hp can be shown [4] to equal 

h (t, t') = u (t) 
k E ~  

where I is the set of indices k for which/~k > 1/2. 
The TF projection filter is only able to pass or suppress signal components, with 

no other weights possible. It is advantageous in some situations since it is capable 
of realizing very sharp TF cutoff characteristics. However, compared to HGWF, the 
calculation of Hp requires the additional solution of an eigenproblem. An efficient 
online implementation of the TF projection filter is proposed in [14]. 

11.1.3 Implicit Design I ~ T h e  STFT Filter 
An S T F T  filter consists of the following three steps [1,2, 6, 7, 9,10]: 

�9 Analysis: Calculation of the short-time Fourier transform (STFT) [9, 10] of 
the input signal x(t), 

/? F2 (t, f )  = x(t') "/t*/(t') dt' , 
o o  

where O/t,/(t') - " / ( t ' - t ) e  j2~ft' with ~,(t) being an analysis window (see 
Section 2.3.1). 

�9 Weighting: Multiplication of the STFT by the TF weight function M(t,  f ) ,  
i.e., calculation of M(t,  f )  F2(t, f ) .  

�9 Synthesis: The output signal y(t) is obtained via an inverse STFT [9,10], 

y(t) = [M(t', f ' )  F:(t ' ,  f ')] gt,,/,(t) dt'df' . 
( x )  o o  

Here, gt,/(t') = g ( t ' - t ) e  j2~/t' where g(t) is a synthesis window that is usually 
assumed to satisfy f _ ~  g(t)V* (t)dt = 1 (this guarantees perfect reconstruc- 
tion for M(t,  f ) -  1). 

These steps implement an LTV filter~hereafter denoted H~,g~that  depends on 
the TF weight function M(t,  f )  and the windows v(t) and g(t). 

Multiwindow STFT filter. An extension of the STFT filter H~,g is the multiwin- 
dow S T F T  filter [2, 8] 

N N 

HN A Er/iH~(i),g(i), with E T ] i -  1, ?~iC]l~. 
i--1 i--1 

This is a linear combination of N STFT filters H~(~),g(,) with the same TF weight 

function M(t,  f )  but different analysis windows 7(i)(t) and different synthesis win- 
dows g(i)(t). Note that the STFT filter H.y,g is a special case with N = 1. Using a 
larger number N of STFT filters yields increased flexibility of design at the expense 
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Fig.  11.1.1" lllustration of the case where the effective support of S(C~)(v, ~-) covers the effective 
support of rn(~, "r). 

of increased computational complexity. The impulse response of the multiwindow 
STFT filter H N can be calculated as 

hg(t,  D - M(t ' ,  f ' )  p ( t - t ' ,  [ - t ' )  e j2~I' (t-~) dt' dr', 
o o  ( x )  

with p(t,t ')  - ~ - 1  r]~ g(i)(t)7(i)*(t'). Furthermore, the GWS of HN is obtained as 

L (~) (t, f )  - M(t,  f )  ** L(~)(t f )  (11 1.5) 
H N  ~ ~ " 

where ** denotes two-dimensional convolution and P is the LTV system with im- 
pulse response p(t, t'). 
Comparison with generalized Weyl filter. Comparing (11.1.5) with (11.1.3), we 
see that the multiwindow STFT filter HN using TF weight function M(t,f) is 
equivalent to a generalized Weyl filter using the modified TF weight function 

.~(t,  f )  - M(t ,  f )  �9 �9 L(p ~) (t, f ) .  For nonnegative coefficients r/i, M(t ,  f )  will be 
a smoothed version of M(t,  f) .  However, for qi = ( -1 )  i and N --~ oc, it is possible 

to have L (~) (t, f )  --~ M( t  f )  and thus HN -+ HGWF i.e. the multiwindow STFT HN ' ~ 

filter approaches the generalized Weyl filter using the TF weight function M(t,  f) .  
It can be shown that  the difference (Hyx) ( t )  - (HGwFx)(t) of the output signals 
of HN and HGWF (both based on the same TF weight function M(t,  f ) )  satisfies 

I]HNx -- HGWFXl]2 < c2 A ]rn(u, ,)]211 -- S (a) (u, 7)]2 du d7 . 
xll  - 

( 1 1 . 1 . 6 )  

Here, m(~, 7) - f _ ~  f _ ~  M(t,  f )  e -j2~('t-~f) dt df and S (a) (u, 7) is the generalized 
spreading function of P (see Article 4.7) The constant ~2 is related to the operator P 
that  characterizes the effect of the windows 7 (~) (t), g(i)(t), in particular, c2 will be 

small if the effective support of S (~) (1,,, 7) covers the effective support of m(u, 7), so 

that [1 S(pa)(.,"r)l 2 - ~ 0 on the support of re(u, r) (see Fig. I i . i . I ) .  This is favored 
by a smooth TF weight function M(t,  f) .  Here, re(u, T) is well concentrated about 

the origin and thus its effective support can easily be covered by S(pa)(u, T), even 
using a small N. Hence, for a smooth TF weight function M(t,  f) ,  the generalized 
Weyl filter can easily be approximated by the (multiwindow) STFT filter. This will 
be verified experimentally in Section 11.1.6. 
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11.1.4 Implicit Design II---The Gabor Filter 
The Gabor transform is the STFT evaluated on a TF lattice (nT, kF) with n, k E Z 
[12]. A Gabor filter (see [2,11] and Article 11.2) consists of the following steps: 

�9 Analysis: Calculation of the Gabor coefficients of the input signal x(t) [12], 

/? Cn,k = x(t) "Yn,k* (t) dt , 
O 0  

where 7n,k(t) = 7(t -- nT) e j27rkgt with 7(t) being a suitable analysis window. 

�9 Weighting: Multiplication of the Gabor coefficients by the weights Mn,k = 
M(nT, kF), i.e., calculation of Mn,k Cn,k. 

�9 Synthesis: The output signal y(t) is obtained via Gabor synthesis [12], 

OO (X) 

y(t) - E E Mn,k Cn,k gn,k(t) , 
n - -  - -  c x ~  k = - cx:)  

where gn,k(t) = g ( t -  nT) e j2~kFt with g(t) being a suitable synthesis window. 

This scheme implements an LTV filter that  will be denoted HT,g. The windows 
7(t) and g(t) are usually assumed to satisfy the perfect-reconstruction (biorthogo- 
nality) condition f _ ~  g(t) 7" ( t -  ~) e -j2rkt/T dt = 5n 5k, which presupposes critical 
sampling (TF = 1) or oversampling (TF < 1). 

Multiwindow Gabor filter. An extension of the Gabor filter HT,g is the multiwin- 
dow Gabor filter [2] 

N N 

HN ~ ?']i H~(~) ,g(,), with r/i = 1, r/i E R,  
i--1 i = 1  

i.e., a linear combination of Gabor filters H7(~),9(~) with the same TF weights Mn,k 
but different analysis windows 7 (0 (t) and different synthesis windows g(O(t). The 
Gabor filter HT,g is reobtained with N - 1. Using a larger number N of Gabor 
filters allows to reduce the TF sampling density TF (cf. [15]). The impulse response 

A~ 

of the multiwindow Gabor filter HN is given by 

OO C O  

hN(t,t') = E E Mn,k p( t -nT ,  t ' - n T ) e  j2~kF(t-t'), 
n -  - -  C ~  k - -  - cx:)  

with p(t, t') N (i) - ~]i=l ~i g (t)7(0*(t'), and the GWS of HN is 

OO OO 

L(- ~) (t, f )  = E E Mn,k L(p")(t-nT, f - k F )  
HN 

n - -  - -  cx: )  k - -  - ( : x )  

where P is the LTV system with impulse response p(t, t~). 
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Fig. 11.1.2" Illustration of windowing and aliasing effects involved in the Gabor filter design. The 
dark gray ellipse indicates the effective support of re(u, T). The light gray ellipses indicate the effective 
support of m ( ~ -  ~,  T -  ~-) for (n, k) # (0, 0). 

Comparison with generalized Weyl filter. We next analyze how close the multi- 
window Gabor filter HN (using TF weights Mn,k -- M(nT, kF)) is to the generalized 
Weyl filter HCWF (using TF weight function M(t, f)). One can show that 

Ilngx- I-I~ _< ~2 + ~a, 

Ilxll2 

where ~2 was given in (11.1.6) and c3 is defined as 

 [FF 
o o  o o  

( ~  
nr 
k#O 

2 

d~' dT"] 
1/2 

As in the case of the STFT filter, the term c2 is related to the operator P that 
describes the effect of the windows 7(i)(t), g(i)(t). If M(t, f) is smooth so that 
m(u, 7) is well concentrated about the origin, a suitable choice of P allows to cover 

the effective support of re(u, 7) by the effective support of S (~) (u, 7), which results 
in a small value of c2 (cf. our discussion in Section 11.1.3). The additional term 
e3 is mainly due to potential aliasing errors which are caused by the sampling 
Mn,k = M(nT, kF) that distinguishes the Gabor filter from the STFT filter. For 

~3 to be small, it is necessary that the effective support of S(~)(u, T) does not 
overlap with the periodic repetitions m ( u -  ~, T -  ~) of re(u, 7-) (see Fig. 11.1.2). 
This can be achieved if (i) re(u, T) is well concentrated about the origin and thus 
m ( u -  ~, T -  k)  is well localized about (~,  ~) and (ii) T and F are small enough 

to ensure that the periodic repetitions m ( u -  ~, 7 - k)  are sufficiently separated. 
For m(u, T) well concentrated, the latter condition can be met even for TF > 1. 
Hence, we conclude that for a smooth M(t, f), the generalized Weyl filter can be 
accurately approximated by the (multiwindow) Gabor filter. 

11.1.5 The Discrete-Time Case 
While our discussion of TF filters has so far been placed in a continuous-time frame- 
work, practical implementation of these filters calls for a discrete-time formulation. 
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The input-output relation of a discrete-time LTV system H reads 

( x )  

y[n] - (Hx)[n] - E h[n, n'] x[n'] , 
n t - -  - -  ( : x )  

with h[n, n ~] being the impulse response of H. The GWS with arbitrary c~ is not 
easily reformulated in a discrete-time setting. However, for c~ - 0 (Weyl symbol) 
and c~ = 1//2 (Zadeh's time-varying transfer function), which are the main cases of 
practical interest, discrete-time formulations are given by 

cx:) 

m - - - - -  o o  

(2<3 

(n, 0) = 
/ } ' t - -  - -  (:X3 

Here, 0 denotes normalized frequency. We note that in order for L~ ) (n, 9) to be in 
one-to-one correspondence to h[n, n~], H has to be a hal]band system, i.e., an LTV 
system that accepts input signal components only within a specified halfband (e.g., 
0 c [ -1/4 ,  1/4)) and maps them to a halfband output signal [2]. 

The TF system representations L(~ ) (n, 0) and L(~/2) (n, O) can be used to design 
discrete-time LTV filters from a TF weight function M(n,  O) via an explicit filter 
design (cf. Section 11.1.2)[2]. The discrete-time Zadeh filter (c~ = 1 /2) i s  defined 

by setting L (1/2) (n 0) - M(n,  0); its impulse response is obtained as H 

f 
l/2 

- M(n,  O) e j2~rO(n-n') dO. h[n, n'] y - 1/2 

In a similar manner, the discrete-time Weyl filter (a = 0) is obtained as 

fi 
l / 4  

bin+m, n - m ]  - M(n,  O)e j27r~ dO. (11.1.7) 
J-l~4 

Since L~ ) (n, 0) is meaningful only for halfband systems, M(n,  9) here is specified 
on the halfband [-1/4 ,  1/4). According to (11.1.7), the impulse response h[nl, n:] 
of the discrete-time Weyl filter is obtained only for nl + n: even (since nl + n2 = 
n + m + n - m  = 2n). If we assume H to be a halfband system, h[nl,n2] is 
completely specified by these samples. The missing samples (for nl H-n2 odd) could 
be obtained by interpolation; however, this is not necessary since the entire filtering 
can be performed using only the even-indexed samples [2]. We note that in some 
cases (especially for "chirpy" TF weight functions), the Weyl filter design results in 
better filtering performance than the Zadeh filter design [2]. 

Discrete-time versions of the implicit filter design methods from Sections 11.1.3 
and 11.1.4 can be obtained in a straightforward manner; see [2,6,9,10] for discrete- 
time STFT filters and [2,11] for discrete-time Gabor filters. 
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Fig. i i . I . 3 :  Comparison of explicit and implicit TF filter designs: (a) Specified TF weight function 
M(t, f), (b)-(d) spectrogram (top) and real part (bottom) of (b)input signal x(t), (c) output signal 
y(t) obtained with Zadeh filter, and (d) output signal y(t) obtained with STFT filter. The dashed lines 
in the spectrograms indicate the TF pass region. The time duration is 2048 samples; the (normalized) 
frequency interval shown is [ -  1/2, 1/2). 

11.1.6 Simulation Results 
Our first simulation example, shown in Fig. 11.1.3, compares the performance of 
the Zadeh filter HCWF (generalized Weyl filter with a = 1/2) and the STFT filter 
H~,g. The TF weight function M(t, f) (see Fig. 11.1.3(a)) models a bandpass filter 
with sinusoidally time-varying center frequency and time-varying gain. The gain 
is 1 in the first (earlier) half and 1/2 in the second (later) half, with a roll-off in 
between. The two filters were applied to an input signal x(t) consisting of two chirps 
(see Fig. 11.1.3(b)). The resulting output signals (shown in Figs. 11.1.3(c),(d)) are 
seen to conform to the specified TF weighting. Furthermore, they are effectively 
identical (we obtained IIH~/,gX- HGWFX]]2/IIHGwFXll 2 -- 0.047), which is due to 
the smoothness of M(t, f)  and confirms our approximation in (11.1.6). 

The application of a multiwindow Gabor filter HN to speech enhancement (de- 
noising) is considered in Fig. 11.1.4. The speech signal s(t) and its noisy version 
x(t) = s( t )+ n(t) (where n(t) is white noise with an SNR of 0dB) are shown 
in Fig. l l . l .4(a) ,(b) .  The multiwindow Gabor filter has N = 5 branches and 
lattice parameters T = 5.8ms, F = 172.25Hz. The analysis/synthesis windows 
7(i)(t) - g(i)(t) and the branch weights ~i were chosen as discussed in [2, Section 
4.6.5]. The weights Mn,k were computed from the multiwindow Gabor coefficients 

c(~) ~ 7(i,), ~,k - f - ~  x(t) (t) dt in a signal-adaptive online manner that does not require 
knowledge about the clean speech signal or its statistics [2, Section 4.7.3]. The filter 
output is shown in Fig. 11.1.4(c); the SNR improvement is 4.92dB. 
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Fig. 11.1.4: Speech enhancement using a multiwindow Gabor filter HN. The figure shows the 
smoothed pseudo-Wigner distribution (top) and the time-domain signal (bottom) of (a) the clean 
speech, (b) the noisy speech (input of HN), and (c) the enhanced speech (output of HN). The time 
duration is 4096 samples; the (normalized) frequency interval shown is [0, 1/2). 

11.1.7 Summary and Conclusions 
We have discussed "explicit" and "implicit" time-frequency (TF) designs of linear, 
time-varying filters. These design methods are useful for filtering nonstationary 
signals if the filter characteristic can be specified in the TF domain via a TF weight 
function. All filters discussed (except the TF projection filter) tend to perform 
similarly if the TF weight function is sufficiently smooth. In the opposite case, 
however, different designs may result in filters that perform very differently [2]. 

We finally note that the application of TF filtering to nonstationary signal esti- 
mation and detection is considered in Article 12.4. Other TF approaches to time- 
varying filtering are described in Articles 11.2-11.4. 
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11.2 T I M E - V A R Y I N G  FILTER VIA GABOR EXPANSION o 

11.2.1 Filtering a Six-Cylinder Engine Sound 
One of the most important applications of the Gabor expansion is in time-varying 
filtering. It is well understood that the Fourier transform can be employed to 
effectively study a signal's frequency behavior as long as the signal's frequency 
content does not evolve during the period of observation. However, this is not the 
case when the signal's frequency changes rapidly. 

Fig. 11.2.1 illustrates a sound waveform recorded during the run-up of a six- 
cylinder engine. Intuitively, the sound will be created not only by the engine rota- 
tion, but also by the other parts that vibrate due to the engine rotation. The sound 
waveform plotted in the bottom is indeed a combination of all kinds of vibrations 
caused by engine rotation. Moreover, the vibration frequencies are multiples of 
the fundamental frequencyNthe engine rotation speed. When the engine speed is 
constant, the classical Fourier transform can well isolate the vibrations. When the 
engine runs up/down, the fundamental frequency and its multiples increase/decrease 
with time. The corresponding frequency bandwidths will become wide and overlap 
each other, as shown in the left plot. Consequently, the Fourier transform based 
power spectrum will no longer be able to distinguish different individual vibrations. 
In the automobile industry and some other industries, such time-varying harmonics 
are named as orders to distinguish them from the time-invariant harmonics. To 
evaluate a vibration, engineers use adaptive filters, such as Kalman filter [1], to 
extract the time waveform corresponding to a particular order. Based on the time 
waveform, engineers can then further compute other information, such as phase and 
amplitude. Recently it has been discovered that the order tracking process can also 
be effectively achieved by the Gabor expansion (see Section 2.3.3 on the connection 
between the Gabor transform and the STFT). The middle plot of Fig. 11.2.1 shows 
the magnitudes of the Gabor coefficients for the sound signal. While neither the 
time waveform nor the Fourier transform based power spectrum gives us an idea 
about the structure of the engine sound, orders have distinct signatures in the joint 
time-frequency plot. Taking this advantage, we can select the desired Gabor coeffi- 
cients and perform the Gabor expansion to obtain the corresponding time waveform. 
Such processing can be thought of as time-varying filtering. 

11.2.2 Discrete Gabor Expansion 
Before investigating the nature of the Gabor expansion based time-varying filter, 
first we shall briefly review the discrete Gabor expansion. For a discrete time signal 
s[k], its Gabor expansion is defined as [2] 

N - 1  

s[k] - E E Cm,n h[k - roT] e j2~nk/g (11.2.1) 
m n = O  

~ Shie  Qian,  National Instruments Corp., Austin, TX 78759, USA (shie.qian@ni.com). 
Reviewers: X.-G. Xia and F. Munk. 
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Fig. 11.2.1: Gabor expansion based Time-varying Filter for Order Tracking. The bottom plot illus- 
trates the original engine run-up sound (light color) vs. the extracted sixth-order (dark color) time 
waveforms. The dark line in the Gabor coefficients plot marks the Gabor coefficients corresponding to 
the sixth order. 

where the Gabor coefficients, am,n, a r e  computed by the regular STFT (short-time 
Fourier transform), i.e., 

c.~,n - ~ s[k] 7*[k - roT] e -j2~nk/y. (11.2.2) 
m 

The parameters T and N denote the time sampling interval (or decimation) and 
the number of frequency bins (or bands). The ratio of N and T determines the 
sampling rate. When this ratio is equal to one, we have critical sampling; in this 
case there is no redundancy for the resulting Gabor coefficients. When the sampling 
rate is greater than one, we have oversampling. For stable reconstruction, the ratio 
of N and T must be greater than or equal to one. 

Note that the window functions h[k] and q,[k] are exchangeable. In other words, 
either of them can be used as the analysis or the synthesis function. They satisfy 
the so-called dual relation. The central issue of the Gabor expansion is how to 
compute the dual function for a given function (either h[k] or q,[k]). Over the years, 
many schemes of computing the dual function have been proposed. Each method 
has its pros and cons. A special feature of the approach presented here is that the 
resulting dual window function always has the same length as the given function. 

Without loss of generality, let us assume that the given window function is 
h[k] with L points. Moreover, h[k] has unit energy. Then, the corresponding dual 
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function v[k] can be solved by T independent linear equations, i.e., 

At~l = g l ,  / = 0 , 1 , . . . , T -  1 (11.2.3) 

where the elements of the matrix Ak, and vectors VL and gl are defined as 

az [q, p] - 5[l + pT + qN] 

71[P] - V[/+ pT] 
ul[q] = (N-1  O, ,O,...)T 

where 0 <_ p < LIT.  The periodic auxiliary function 5[k] is defined as 

h[k] 
5[k + i ( 2 L -  N ) ] -  0 

0 _< k < L, 2L 
L < _ k < 2 L - N ,  0 _ < q <  ~ - - 1 .  (11.2.4) 

If the window length is equal to the signal length, the periodic auxiliary function 
5[k] is simply 

L 
5[k + iL] = h[k] , O <_ q < -~. 

Note that the solution of (11.2.3) is not unique for oversampling. To ensure 
that the analysis and synthesis window functions are both concentrated in the joint 
time-frequency domain, we require that the dual function is optimally similar, in 
the sense of LMSE (least mean square error), to the given window function, i.e., 

F= minll 
A'r--u 

When the error is small, i.e. when ~ ~ h, eq. (11.2.2) becomes 

Cm,n - ~ s[k] h*[k - roT] e -j2~nk/g. (11.2.5) 
m 

Then (11.2.5) and (11.2.1) form an orthogonal-like Gabor transform pair. In this 
case, the Gabor coefficients Cm,n are exactly the signal's projection on the synthesis 
window function h[k]. 

Since at critical sampling the pair of dual functions cannot be simultaneously 
concentrated in both the time and frequency domains, usually we always employ the 
oversampling scheme. Consequently, the resulting Gabor transformation is redun- 
dant. In this case, the Gabor coefficients will be the sub-space of two-dimensional 
functions. In other words, for an arbitrary two-dimensional function, there may be 
no corresponding time waveform. For example, assume that we have a modified 
two-dimensional function 

Crn,n - -  C m , n C m , n  

where Cm,n denotes a binary mask function, equal to either zero or one. Apply the 
Gabor expansion (11.2.1) to obtain 

N - 1  

~[k] - ~ ~ Cm,n h[k - mT] e j2~'~k/g. (11.2.6) 
m n--O 
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Then we find that 

S[k] 7*  [k - ?T~T] e -j27rnk/N ~ Cm,n. 

m 

The Gabor coefficients of the reconstructed time waveform g[k] will not be inside 
the masked area determined by the mask function Cm,n �9 

11.2.3 Time-Varying Filtering 
To overcome this problem, we will introduce an iteration approach as follows. That  
is, for a set of two-dimensional Gabor coefficients, first determine a binary mask 
matrix. Apply the mask to the two-dimensional Gabor coefficients to reserve desir- 
able and remove unwanted coefficients. Then, compute the Gabor expansion. Once 
the time waveform is obtained, compute the new Gabor coefficients. Repeat this 
process until the time waveforms converge. For the sake of an efficient representa- 
tion, let us rewrite the pair of the Gabor expansion (11.2.1) and (11.2.2) in matrix 
form, i.e., 

C - G ~  

F - H TG~ 

where H and G denote the analysis and synthesis matrices, respectively. Note that 
for oversampling 

H T G  = I,  G H  T 7~ I. 

Then, the iterative process can be described as 

~ - r  

~1 _ H T ~ I  

C 2 - G~ 1 - G H  T ~ C  

~ 2  _ O C  2 

-- H T 5 2  

C 3 - Gs-e = G H T O G H T O C -  (GHTO)2  C 

. . .  

C k - ( G H T O ) k - 1 C  

It can be shown [3] that i f  and only if  

~ - - 1  L 1 N N 

E ?*J ig  + k]h[ ig  + k + r o T ] -  E h*[iN + k]v[iN + k + mT] (11.2.7) 
i=0  i=0  

for 0 _< k < N and 0 _< m < M, where M is equal to the number time sampling 
points and L denotes the window length, then 

1. C k and ~ converge. 
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2. C k = OCk ,  k ~ oc. That  is, the support of C k in the time-frequency 
domain is inside the masked area. 

Two trivial cases tbr (11.2.7) are 

1. the critical sampling, N = T. Note that  in this case the analysis and syn- 
thesis windows cannot both be localized in the joint time-frequency domain. 

2. 7[k] = h[k]. In this case the Gabor coefficients C 2, after the first iteration, 
are closest in the LMSE sense to the masked Gabor coefficients O C  (that is, 
desirable Gabor coefficients). 

The second case usually implies heavy oversampling (or huge redundancy) and 
is therefore impractical due to the computation speed and memory consumption. 
Usually, we pursue the orthogonal-like representation introduced early. It has been 
found that  for those commonly used window functions, such as Gaussian and Han- 
ning windows, the difference between the analysis and synthesis windows would be 
negligible when the oversampling rate is four. 

11.2.4 Numerical Simulation 
Fig. 11.2.1 illustrates the application of the Gabor expansion based time-varying 
filter to order tracking. The dark waveform in the bot tom plot depicts the sixth 
order extracted by the Gabor expansion based time-varying filter. In this example, 
h[k] is the Hanning window. The oversampling rate was selected high enough (four) 
so that  the dual function 7[k] has a form that  is almost identical to h[k]. It has 
been found that  after a few iterations, the difference (LMSE) between ~ and ~ - 1  
reduces to 10 4. The resulting time waveform is found to be almost identical to that  
computed by other methods. 

11.2.5 Summary and Conclusions 
In this article, the basic concept and a real-world application of the Gabor expansion 
based time-varying filter are introduced. Compared with other time-varying filter 
schemes, the method presented here is much simpler and thereby has great potential 
in wide range of applications. 
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11.3 TIME-FREQUENCY FILTERING OF SPEECH SIGNALS 
IN HANDS-FREE TELEPHONE SYSTEMS 0 

Time-varying filtering of noisy speech signals is a very attractive challenge, with 
the main question: what does the most appropriate time-varying filter scheme look 
like? Speech signals are of highly nonstationary and multicomponent nature. If we 
deal with filtering of noisy speech signals, as they occur in hands-free telephone sys- 
terns, then the desired scheme would provide a signal-to-noise ratio (SNR) greater 
than approximately 12dB. At the same time it should be suited for real-time im- 
plementation, with time delay less than 39ms for mobile telephony, and 2ms for 
circuit-switched telephony. The second requirement can cause additional difficul- 
ties and restrictions on finding an appropriate time-varying filter procedure. 

The most commonly used approach in the filtering of speech signals is the so 
called quasi-stationary approach, where it is assumed that  the signal is stationary 
in the time interval T, with T between 20ms and 40ms being often used [1, 2]. In 
this interval of time, classical speech enhancement schemes such as those given in 
Table 11.3.1 are used [3,4]. 

The noise is reduced by applying frequency-dependent suppression factors ac- 
cording to the various filtering rules given in Table 11.3.1. From the aspect of 
time-varying filtering we can say that  this technique is quasi time-varying filtering. 
Thus, we have a sliding window of duration T along the signal where the filtering is 
performed after every T or after every T/2 (the second case is used in an overlap-add 
scheme in order to avoid block effects). 

From the point of view of time-frequency analysis, having in mind the high non- 
stationarity of speech signals, we can conclude that  the quasi-stationary approach 
of filtering is approximate in nature, and that  it will more or less satisfy subjective 
perception requirements. If we want to achieve more accurate and more objec- 
tive filtering of speech signals, time-varying filtering needs to  be applied. Since a 
unique definition of time-frequency spectra does not exist (as is shown by the va- 
riety of TFDs derived in Chapter 2), several approaches to time-varying filtering 
have been proposed. We will use the one based on the Wigner distribution. It uses 
the Wigner spectrum, where the statistically independent cross-terms in Wigner 
distribution are averaged out. However, in order to calculate the Wigner spectrum 
it is necessary to have many different realizations of the same random process at 
a given instant. Obviously, in the case of real-time applications, the processing 
has to be based on a single noisy speech realization. It is the reason for using an 
approximation, in the sense that  the Wigner spectrum is replaced by a cross-terms 
free (reduced) time-frequency distribution. According to the additional criterion 
of realization simplicity, special attention will be devoted to the filtering based on 
the spectrogram and distributions whose realization is directly related to the spec- 
trogram. The use of other reduced interference time-frequency distributions in the 

~ Srdjan Stankovid, Elektrotehnicki fakultet, University of Montenegro, 81000 Pod- 
gorica, Montenegro (srdjan@cg.ac.yu). Reviewers: J. Tilp and LJ. Stankovi6. 
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Table 11.S.I :  Filter transfer function for different algorithms, where S2x(w) and S2e(w) are the 
power spectra of the noisy signal and noise respectively, and A is an overestimation factor. 

Algorithm 

Filter 
tran. fun. 

Wiener 

s~(~) 
s~(~) 

Spectral 
subtraction 

i// ~sL (~) 1 s~(w) 

Maximum 
likelihood 

111 + V/1 s~(,~) s~(~)] 

Magnitude 
subtraction 

1 ,/S~r (~) 
s~(~) y 

filtering, in place of the spectrogram, is straightforward. 

11.3.1 Time-Variant Filtering of Speech Signals 
By analogy with the filtering of stationary signals, nonstationary time-varying fil- 
tering of a noisy signal can be defined by [5-7]" 

; 7 T)x(t + T)dT. (Hx)(t) -- h(t + -~, t -  -~ 
( X )  

(11.3.1) 

The signal 
z ( t )  = + , ( t )  

is a noisy one with the desired signal s(t) and the noise e(t). Impulse response of 
7"  7 .  the time-varying filter is h(t + 7, t -  7)" The optimal transfer function 

F 7" T 
LH(t, f) -- h(t + -~, t -  -~)x(t + T)e--J2~YT.dT 

O 0  

is defined by the relation [8-11]" 

u 

W~(t ,  /)  = LH(t, / ) W ~ ( t ,  f), (11.3.2) 

where 

Wxx(t, f)  - E{Wxx(t, f)} - E{x(t + -~)x*(t - )}e-J2~f~dT 
O 0  

(ii.3.3) 

is the mean value of the Wigner distribution Wxz(t, f) of signal x(t) (i.e. the Wigner 
spectrum of signal z(t) [12]). We can conclude that (11.3.2) is of the same form as 
the Wiener filter for the stationary case. 

If the signal and noise are not correlated, we have" 

m 

Wss(t, f)  
LH(t, f)  = Wss(t, f) + W,,(t,  f)" (11.3.4) 
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Consider now relation (11.3.4). Obviously, the mean value E { W s s ( t , f ) }  - 
Ws~(t, f )  will eliminate uncorrelated cross-terms in the Wigner distribution, since 

7- * ( t - -  7" E{si( t  + ~)sj  ~ ) } - 0  for  i T~ j, 

as long as components si(t) and sj(t) are not correlated [12]. However, if we have to 
perform filtering on the base of a single realization, the Wigner distribution should 
be used instead of the Wigner spectrum in (11.3.4). For filtering of multicomponent 
signals equation (11.3.4) is useless because emphatic cross-terms will appear. The 
problem of cross-terms will be partially overcome if we modify the definition (11.3.4) 
so that we apply some of the cross-terms reduced distributions p(t, f )  instead of the 
Wigner distribution. In this case we have: 

pss( t , f )  
LH(t, f )  -- pss(t, f )  + p~(t, f)" (11.3.5) 

It is clear that  definition (11.3.5)is an approximation of (11.3.4) with p( t , f )  
approximating the Wigner spectrum. 

In order to obtain a more efficient filter, for numerical implementation, the 
previous definitions can be slightly modified by using their pseudo form: 

f_ ~ r r )W(T)x(t + r)dr. (Hx)(t)  - h(t + -~, t -  -~ 
O 0  

Here, a lag window w(r) is introduced. It can be shown that,  for frequency modu- 
lated signals, w(r) does not influence the output signal (Hx)(t)  if w(0) - 1 [6]. By 
using Parseval's theorem, (11.3.6) can be written in the form: 

F (Hx)(t)  - LH(t, f )Fx(t ,  f )d f  
O 0  

(11.3.7) 

where 

/? Fx (t, I )  - + 
CO 

is the short-time Fourier transform of the signal x(t). 
The choice of p( t , f ) ,  in (11.3.5) will play a crucial role in the time-varying 

filter scheme. Obviously, for an efficient time-varying filtering, it is desired that  the 
chosen p(t, f )  satisfies three main conditions: 

(1) satisfactory noise reduction, 
(2) appropriateness for real-time realization, 
(3) its auto-terms are close to those in the Wigner spectrum. 
The simplest and most commonly used p(t, f ) ,  for which the real-time applica- 

tion is very well studied, is the spectrogram (see Section 2.3.1), which is the squared 
modulus of the short-time Fourier transform: 

S=(t, f )  - IF~(t, f)l 2 - z(t + 
CO 
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Fig. 11.3.1: Spectrogram of: (a) the clean speech signal, (b) the noisy signal filtered by a high-pass 
filter. 

The main problem of using the short-time Fourier transform (and the spectro- 
gram) is in determination of the window width w(t). A narrow window produces 
better time resolution, while a wider window gives better frequency resolution. The 
window should be chosen by a compromise of these two opposite requirements. 

Having in mind that  a speech signal is approximately stationary within the 
interval T between 20ms and 40ms, for a sampling rate of fs = 8kHz, we conclude 
that  we can use a lag window width of N = 256 samples, corresponding to T = 32ms. 
In order to achieve a more accurate calculation of integral (11.3.7), zero padding up 
to 1024 samples will be used. 

Consider now the spectrogram-based filtering of noisy speech signals, recorded 
in a car cruising along the highway. Estimations of the spectrogram of noise are 
performed in only one time instant during a speech pause. This assumption is 
made in order to have the worst filtering situation as in a real case. Since the noisy 
signal contains significant noise components in the low frequency range (below 98Hz) 
where, in our application, no speech components exist, the signal is prefiltered by 
using a high-pass filter with cut-off frequency 98 Hz. In this realization we will apply 
the time-varying Wiener filter definition (11.3.5), with the spectrogram instead of 
p(t, f), and the time-varying version of the spectral subtraction definition: 

S~(t,f) (11.3.8) 
LHw(t, f )  -- 1 - Sx(t, f)" 

LHSS(t, f )  = i l  -- A ~  
S~(t,f) 
Sx(t,f) 

(11.3.9) 

In (11.3.9) A is an overestimation factor applied in order to give some correction 
of the errors caused by the assumption that  the noise is stationary in the interval 
between two pause estimations. The value A = 4 is used. Modifications of the 
equations (11.3.8) & (11.3.9) are used after introducing a spectral floor [2]: 

Luw(t ,  f )  = max {LHw(t, f) ,  #} (11.3.10) 
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and 
LHSS(t, f)  = max {LHss(t, f) , /3}.  (11.3.11) 

In our examples the spectral floors are set to 3 = 0.12 and/3 = 0.08 (in (11.3.10), 
and (11.3.11) respectively). 

Note that by increasing A, better noise reducing is obtained, but the distortion 
of signal becomes significant. By increasing fl more noise remains in signal, but 
speech distortion is audible. Thus, these two factors are chosen by compromise. 

The time-frequency representations of a clean signal and a noisy signal are shown 
in Fig. 11.3.1(a) and (b), respectively. Time-frequency representation of denoised 
signal, filtered by using the time-varying Wiener filtering, and the time-varying 
spectral subtraction filtering, based on the spectrogram, are shown in Fig. 11.3.2(a) 
and (b). It is obvious that  the noise suppression is better when the time-varying 
spectral subtraction filter definition is used, because overestimation factor A provides 
better estimation of the spectrogram of noise. 

Now, there is the question whether it is possible to use some other time-frequency 
distributions, in order to further improve the filtering results. The answer is yes. 
Namely, we can use reduced interference distributions which belong to the general 
Cohen class 1 of distributions [13]: 

pxx(t, f )  - g(7-,u)x(u + -~)x*(u - -~ -J2~f'eJ2'~UdudOdT 
O 0  O 0  O 0  

(11.3.12) 
where the kernel g(T, ~) specifies the distribution. The most commonly used distri- 
butions include the Choi-Williams distribution, Zao-Atlas-Marks distribution, Born- 
Jordan distribution, Zhang-Sato distribution, S-method, etc. 

When we use the reduced interference distributions, it is important  to know 
that, in the case of a noisy signal, the distance between two auto-terms during 
voiced segments of speech is approximately equal to the value of the fundamental 
frequency in the case of a signal without noise. In the noisy case, we also have 
harmonically shaped components of noise, which can occur between the auto-terms 
of speech, causing additional cross-terms and errors in filtering [14]. 

A very simple and flexible implementation can be obtained by using the S- 
method (SM) [15], [Article 6.2], whose realization is straightforwardly based on the 
short-time Fourier transform. The result of this fact is that  time-varying filtering 
based on the SM is a simple extension of the spectrogram-based filtering. Addition- 
ally, the SM of rnulticomponent signals: 

N 

re(t) -- E xi(t), (11.3.13) 
i=1 

can assume the form SMxx(t, f)  ~ N 
- -  ~i=1 Wx~x~ (t, f ) ,  being a desired approximation 

of the Wigner distribution auto-terms. 

1Tha t  is, the  q u a d r a t i c  class; see p. 68n. 
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The SM is defined in the form" 

F SM~(t ,  f)  = 2 P(O)Fx (t, f + O)F~ (t, f - O)dO. 
o o  

(11.3.14) 

where P(0) is a rectangular window in the frequency domain. 
Discretization of the SM (11.3.14), taking a rectangular window for P(1), pro- 

duces: 

L 

SMzx(n, k) = E Fx(n, k + 1)F~(n, k - l) 
l = - L  

L 

= IFx(n,k)l 2 + 2 a e { E F z ( n , k  + l ) F x ( n , k - 1 ) }  , (11.3.15) 
/=1 

From the previous equation we see that the SM realization is based on the 
spectrogram. Thus, filtering based on the SM will be a straightforward extension 
of the previously considered filter schemes: 

SM,(t, f)  ~7} 
LHw(t, f)  - max 1 - S-~x~: f ) '  (11.3.16) 

and 

LHss( t , f )  = max { ~  1 - A SM~(t' f)  SMx(t, f ) ' /~}"  (11.3.17) 

In our experiments we have used the SM with L = 3, and spectral floors ~ = 0.12 
and ~ = 0.08, respectively [16]. 

The denoised signals by using the time-varying Wiener filtering and the time- 
varying spectral subtraction filtering, based on the SM, are shown in Fig. 11.3.2(c) 
and (d). By comparing the results with the ones produced by using the spectrogram 
based filtering, the improvements are obvious. It is important to note that the SM 
has a form very suitable for simple hardware realization. This property is attractive 
for on-line applications. 

11.3.2 Summary and Conclusions 
Time-varying filtering of speech signals disturbed by car noise is presented. On the 
base of the time-varying Wiener filter form, the time-varying spectral subtraction 
form of filtering is introduced. The filtering is performed on the base of the spec- 
trogram and the S-method. The proposed filter schemes are efficient and suitable 
fbr hardware realization. 
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11.4 SIGNAL E N H A N C E M E N T  BY T I M E - F R E Q U E N C Y  PEAK 
FILTERING 0 

11.4.1 Signal Enhancement and Filtering 
Time-frequency peak filtering (TFPF) may be regarded as an unconventional alter- 
native to the filtering methods described earlier in this chapter [1]. The signals con- 
sidered are assumed to be sums of arbitrary numbers of band-limited non-stationary 
components in additive noise. For high SNR situations many signal processing al- 
gorithms work well but most perform poorly when SNR decreases below a given 
threshold [2]. In this case, signal enhancement algorithms are required to improve 
the SNR by reducing the distorting effects of noise. To this effect, both adaptive and 
fixed methods have been developed in the case of non-stationary signals in noise. 
Adaptive techniques are generally superior in performance to fixed methods, but 
they perform poorly in certain conditions, such as filtering of a non-stationary sig- 
nal whose spectral content changes rapidly with time. For example, filters designed 
using a least-mean-square (LMS) approach may not adapt quickly enough to track 
the rapidly changing signal due to the delayed convergence of the algorithm. Fur- 
ther, adaptive methods require that the structure of the filter (such as the number 
of the taps) and an estimate of SNR be imposed for optimal performance. This is 
often not possible as assuming a model may lead to suboptimal results and even 
to erroneous conclusions about the signal. This suggests the need for a more gen- 
eral filtering method when the SNR is low and the underlying signal statistics vary 
rapidly with time. 

The TFPF method is based on encoding the noisy signal as the IF of a unit 
amplitude frequency modulated (FM) analytic signal. The instantaneous frequency 
(IF) of the analytic signal is then estimated using standard time-frequency peak 
detection methods [2] to obtain an estimate of the underlying deterministic signal. 
For some signals, TFPF using a windowed WVD results in a significant enhancement 
of signals for SNR as low as - 9  dB. 

11.4.2 Time-Frequency Peak Filtering 
11.4.2.1 Background and Definitions 
Let us consider signals expressed as follows: 

p 

s(t) - x(t) + n(t) - E xk(t) + n(t) (11.4.1) 
k=l 

where n(t) is an additive white Gaussian noise (WGN) and xk(t) are band-limited 
non-stationary deterministic components that may have overlapping frequency spec- 
tra. It is desired to recover the signal x(t) given the observation of s(t). 

~ B o u a l e m  B o a s h a s h  and M o s t e f a  M e s b a h ,  Signal Processing Research 
Centre, Queensland University of Technology, Brisbane, Australia (b.boashash@qut.edu.au, 
m.mesbah@qut.edu.au). Reviewers: M. G. Amin and D. L. Jones. 
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The IF of an analytic signal, z(t)  = a(t)e j2~r is defined in Chapter 1 and 
reference [2]: 

I de(t) (11.4.2) 
f z ( t ) -  27r dt 

where r is the instantaneous phase and a(t) is the instantaneous amplitude of 
the analytic signal z(t)  which can be expressed as [3]: 

z(t) - a(t)e j2~ f~-~ Yz(X)dX (11.4.3) 

Among the existing techniques for IF estimation [2], we adopt the method that 
estimates the IF by taking the peak of the signal's TFD for its simplicity of imple- 
mentation. The WVD is a natural first choice as a TFD for peak filtering given 
that the other quadratic TFDs are simply smoothed versions of the WVD [3]. The 
WVD of the analytic signal z(t) is defined (in Section 2.1.4) as: 

F Wz(t ,  f )  - z( t  + T/2)z*( t  -- T/2)e--J2"YrdT. 
CO 

(11.4.4) 

For monocomponent FM signals, the WVD will produce a time-frequency represen- 
tation of the signal exhibiting significant energy concentration around the signal's 
IF. When the signal's IF is linear, delta functions will appear at the positions of the 
IF providing a perfect signal IF estimate. The IF estimate is found by maximizing 
the WVD over frequency [2]; that is 

]z(t) - argmax[Wz (t, /)] (11.4.5) 
/ 

The IF estimate based on the peak of the WVD is unbiased and has variance 
approaching the Cramer-Rao lower bound for signals with linear IF laws in additive 
white zero-mean noise with moderate to high SNR [2]. However, as the order of the 
polynomial IF increases, the delta functions will be replaced by less peaky functions. 
The peak of these functions will lie away from the true IF, resulting in IF estimates 
which are biased. To remedy this, a windowed WVD is used, such that the signal 
IF is as close to linear as possible across the entire window length. 

11.4.2.2 Basic Principle 

Time-frequency peak filtering consists of a two step procedure whereby the signal 
to be filtered is first encoded as the IF of a unit amplitude FM modulated analytic 
signal. Then, the IF is estimated by taking the peak of a time-frequency distribution 
(TFD) to recover the filtered signal. This may be summarized as follows: 

Step 1. Encode the noisy signal s(t) via FM modulation as" Zs(t) = e j2~u fo s(~)d~ 

where # is a scaling parameter analogous to the FM modulation index. 
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Step 2. Estimate the peak of the WVD of the analytic signal z~(t): 

~ ( t )  - L ( t )  - a r g m a x [ W z s  (t, f)] /# 
I 

11.4.2.3 Properties 
The properties of the encoding and IF estimation steps of TFPF  are derived for the 
case of WVD only. The use of other TFDs will lead to slightly different properties. 

Proper ty  1: The encoding step converts the additive noise n(t) to multiplicative 
noise zn(t) that modulates the signal component zx(t); that is 

z(t) - d 2~t'.fo s(~)d~ = zx(t)zn(t) (11.4.6) 

where the encoded noise and deterministic signal components are given by 

z ~ ( t )  - e J 2 " . l o  x(~)d~ and z ~ ( t )  - eJ2~".f3 ~(~)~ (11.4.7) 

Proof: Equation 11.4.6 is obtained by a direct substitution of 11.4.1 into 11.4.3. 

Proper ty  2: The Wigner-Ville Spectrum of the signal zs(t) is given by : 

WVSzs (t, f )  - E[W~ (t, f)] - WVSzn (t, f )  ~ Wz~ (t, f )  (11.4.8) 

where El.] is the expectation operator, WVS~. (t, f )  = E[W~, (t, f)], and �9 repre- 
f 

sents the convolution operation in the frequency domain. 

Proof: This property follows from property 1 and the direct application of the 
expectation operator to the WVD of the encoded signal zs(t). 

This latter is given by: 

E[Wz~ (t, f)] - f-~c~ Rz.,, (t, 7-)Kz~ (t, w)e-J2=frd7 " ( 1 1 . 4 . 9 )  

where the time-dependent autocorrelation function of Zn(t) is 

f t + T / 2  
Rz,~ (t, T) -- E[zn(t + T / 2 ) z ~ ( t -  7 / 2 ) ] -  E[eJ2"uJ~-'/2 n(~)d~] (11.4.10) 

and the time-dependent bilinear product function of zx(t) is 

�9 I ' t + r / 2 x ( , , ~ ) d ~  
Kz~ (t,  ~-) - z~(t + ~ / 2 ) z ; ( t -  ~/2) - ~"--~/~ (11.4.11) 

Equation (11.4.8) is then obtained by using the fact that the Fourier transform 
of a product in time is equivalent to the convolution in frequency. 
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Equation (11.4.8) shows that additive noise smears the encoded signal WVD, 
Wz~(t,f), through convolution. Therefore, the bias of TFPF  is dependent on 
the encoded signal zx(t) as well as the shape of the encoded noise spectrum 
WVSz,, (t, f) .  By restricting the shape of the encoded noise spectrum, a class 
of noise can be defined which does not introduce bias to the IF estimation. An 
example from this class is the WGN as will be seen next. 

Property 3: The time dependent autocorrelation function of the encoded noise, 
rt+Tl2n(A)dA; Rz. (t, 7; p), is equal to the characteristic function of q(t, T) - 27~ Jt-~/2 

that is 
Rz~ (t, T, p) -- E[e j2€ - Oq(t, T, p) (11.4.12) 

where (I)q(t, T, p) is the characteristic function of q(t, T) defined by [4]: 

~ q ( t , w , # ) - E [ e J ' q ( t ' ~ ) ] - e x p ( ~  kqi(t'~-)(j#)i ) ii (II.4.13) 
i = I  

and kqi(t, ~-) is the ith cumulant of q(t, w). 

Proof: Equation 11.4.12 is obtained by forming the autocorrelation function of 
Zn(t) in equation 11.4.7 and using the above definition of q(t, T). 

11.4.3 Accurate TFPF 

Equation (11.4.8) suggests that in general, a bias in IF estimation is introduced 
by the time-frequency distribution of zx(t) (deterministic bias) and/or the noise 
(stochastic bias). In the case where the encoded signal s(t) is composed of a deter- 
ministic signal x(t) that is linear in time and embedded in stationary WGN n(t), 
TFPF gives an unbiased estimate of the signal x(t). 

Proof: Consider the signal s(t), given in (11.4.1), to be filtered using TFPF.  For 
the case where n(t) is stationary WGN, the ith cumulant of n(t) is such that 
kni - 0  for i > 3 and q(t, T) is Gaussian with kqi - 0  for i > 3. Furthermore, 
if the noise is a zero-mean independent process, i.e. Rn(T) -- kn26(T), then [5, 
page 369] 

kql (t, T) - 0 and kq2(t, T) - 4~2[~-]kn2 (11.4.14) 

The characteristic function given in (11.4.13) becomes 

(~q(t, 7, p) = e -2~2t'2'TIk"2 (11.4.15) 

Taking the Fourier transform of this expression gives 

4~2kn2P 2 
E[Wn(f, $)] -- (27r2kn2#2)2 + (27rf) 2 (11.4.16) 
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This shows that the encoded noise spectrum is low-pass with a maximum at 
the frequency OHz. Hence, WGN will not introduce any bias to the estimate 
of the IF. By replacing this last expression in (11.4.8) we obtain: 

47r2kn2# 2 
W~. (t, f )  - Wzx (t, f )  } (2rr2kn2.2)2 + (2rrf) 2 (11.4.17) 

This expression shows that the bias in the IF using the peak of Wzs (f, t) could 
only come from Wz:,, (t, f). For the case where the signal x(t)  is linear in time; 
that is x(t) - at  + C, where a and C are constants, equation 11.4.17 becomes 

47r2kn2# 2 
Wzs (t, f )  - d ( f  - x(t))  ~ (27r2kn2#2)2 + (27r/) 2 

47r2kn2p 2 
m 

+ (2 f- 2 x(t)) 

(11.4.18) 

(11.4.19) 

The delta function ensures that the peak of this function occurs at x(t) .  There- 
fore if the signal x(t)  is linear in time and embedded in stationary WGN, TFPF 
gives an unbiased estimate. 

Equation 11.4.17 shows that in the general case where the signal x(t)  is a non- 
linear function of time, the WVD-based TFPF is biased, requiring an appropriate 
windowing of the data. The window is chosen such that the signal within this 
window behaves almost linearly [6] (see Section 11.4.4). In the special case where 
the signal x(t)  is a finite-order polynomial in time, the deterministic bias can be 
completely eliminated if the WVD is replaced by the polynomial WVD (PWVD) 
of an appropriate order since the PWVD exhibits delta functions along the IF law 
for polynomial FM signals [7]. 

11.4.4 Discrete-Time Algorithm for TFPF 
The implementation of TFPF using the windowed WVD requires both signal scaling 
before encoding to prevent aliasing, and the selection of the window length for 
reduced bias. These two aspects are discussed next. 

11.4.4.1 Signal Scaling 
FM modulation of un-scaled discrete time signals can lead to aliasing which produces 
discontinuities in the estimated IF at the frequency boundaries of the time-frequency 
plane. This is avoided by amplitude scaling of the noisy signal before frequency 
encoding. Without loss of generality and unless otherwise specified we assume that 
the signal s(t) is sampled at a normalized sampling frequency of 1Hz.  

The scaled signal, so(m), is obtained by using the following transformation. 

( a -  b) 
s(m)  - min[s(m)] 

max[s (m)] -  min[s(m)] 
+ b (11.4.20) 
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where S[.] is the scaling operator and the parameters a and b, which satisfy the 
constraint .5 >_ a - max[sc(rn)] > b = min[sc(m)] >_ O, are chosen to provide 
suitable frequency limits on the encoded signal. The operators max[.] and mini.] 
are the maximizing and minimizing functions respectively. The estimate of the 
desired signal, 2(m), is recovered by an inverse scaling operation; that  is 

~" t~ , ,J .r rm~] _ (:~(m) - b)(max[s(m)] - min[s(m)]) 
~?(m) I 

a - b  
+ minis(m)] (11.4.21) 

where 3Cc(m) is the scaled signal obtained using TFPF  on sc(m) .  

11.4.4.2 Reduced-Bias Window Length Selection 
The bias-variance tradeoff is a key in the practical implementation of T F P F  with 
the windowed WVD. Bias reduction requires a small window length to minimize 
the non-optimal nature of the WVD for higher than quadratic phase signals. On 
the other hand, variance reduction is achieved by increasing the window length 
to provide the local estimate with more information. To reduce the variance of 
the estimate while maintaining bias performance it becomes necessary to increase 
the sampling rate. Thus there is a tradeoff between estimator bias and sampling 
frequency which results in a relationship between window length and bias, for a given 
sampling frequency. Results relating to TFPF  window lengths are derived in [6]. 
The basic results for window length Tw, sampling frequency fs and maximum value 
of IF, fp are given below. For the case of signal estimation: 

0.634]'8 
Tw <_ (11.4.22) 

This equation gives the maximum window length as a function of maximum signal 
IF and sampling frequency. In a typical application a specified window length is 
required fbr a given SNR. The signal is sampled at a high enough rate to satisfy 
(11.4.22). 

11.4.4.3 The Iterative TFPF Algorithm 

In the first application, T F P F  may not remove as much additive noise as desired. 
If this situation occurs, reapplication of the procedure to the filtered signal is rec- 
ommended. This leads to a 3 step iterative process: 

1. Scale and encode noisy signal. 

2. Apply T F P F  to yield a signal estimate 2(t). 

3. If ~?(t) contains substantial noise, go to step 1; else terminate the process. 

Simulations demonstrate the convergence of the repeated scheme to a stable esti- 
mate ~:(t) [1]. 
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Fig. 11.4.1: B-distributions of a synthetic signal (left column) and an EEG signal (right column), 
showing the original signal (top row), and the noisy signal before enhancement (middle row) and after 
enhancement (bottom row). 
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11.4.5 Examples and Results 
E x a m p l e  1 (A M u l t i c o m p o n e n t  s ignal  in W G N )  Let us consider a multicom- 
ponent signal, x(m), expressed by: 

- 

0.85 sin(0.055m + 3.75 • 10 .4 s in(0.000625m)m)+ sin(0.035m) 
+ sin(0.020m), 0 < m < L/2 
0.85 sin(0.055m + 3.75 x 10 -4 sin(0.000625m)m) 
+2(1 - re~L)sin(0.035m + 2.75 x 10-11(m - L/2)  3) 
+2(1 - re~L)sin(0.020m- 2.75 x 1 0 - 1 1 ( m -  L/2)3), L/2 < m < L 

where the data length L is taken as 32768 data points. For a time-frequency illus- 
tration of this signal, the B-distribution (BD) with smoothing parameter ~ = 0.01 
is shown in Fig. 11.4.5(a). 1 White Gaussian noise was added to the above signal 
giving an SNR of - 9  dB; the BD of the noisy signal is shown in Fig. 11.4.5(b). The 
windowed WVD peak filter was then implemented to recover x(m) from the noisy 
signal. A window length of 15 data points was chosen to satisfy the window length 
constraints given in (11.4.22). Fig. 11.4.5(c) shows the clean recovery of the signal 
after three T F P F  iterations. Note that  the WVD is used as the vehicle for signal 
recovery while the B-distribution is used only for presentation of the results. 

E x a m p l e  2 ( N e w b o r n  E E G  d a t a  in W G N ) :  Fig. l l . 4 .5 (d ) shows  a time- 
frequency representation of a real newborn EEG signal using the B-distribution 
with ~ = 0.01. WGN is then added to the signal at S N R  = - 9  dB. The noisy 
signal in Fig. 11.4.5(e) shows that  the time-frequency patterns of the EEG signal 
are not clearly visible. Using a window length of 20 data points, four iterations of 
the T F P F  were used to recover a cleaner signal. The filtered signal in Fig. 11.4.5(f) 
demonstrates the efficiency of TFPF .  

11.4.6 Summary and Conclusions 
T F P F  is a tool for signal enhancement, applicable to a large class of signals if 
the windowed WVD T F P F  is used for reduced bias. This class includes those 
signals which may be represented as a sum of band-limited non-stationary processes 
in additive WGN. Testing on simulated and real data indicates that  the method 
significantly enhances signals of this class by filtering out most of the additive noise. 
Further details of the time-frequency peak filtering method are provided in [8]. 
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Chapter 12 

Detection, 
Estimation 

Classification and 

Methods for the detection, estimation and classification of non-stationary signals 
can be enhanced by utilizing the time-frequency characteristics of such signals. Such 
time-frequency formulations are described in this chapter. The topic is covered in 
four articles with appropriate internal cross-referencing to this and other chapters. 

The structure of TF methods is suitable for designing and implementing opti- 
real detectors. Several approaches exist, such as decomposition of TFDs in sets of 
spectrograms (Article 12.1). For both analysis and classification, a successful TF 
methodology requires matching of TFDs with the structure of a signal. This can 
be achieved by a matching pursuit algorithm using time-frequency atoms adapted 
to the analyzed signals (12.2). We can perform system identification by exciting 
linear systems with a linear FM signal and relating TFDs of the input and output 
using time-frequency filtering techniques (12.3). Methods for time-frequency signal 
estimation and detection can be carried out using time-varying Wiener filters (12.4). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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12.1 OPTIMAL TIME-FREQUENCY DETECTORS~ 
12.1.1 Time-Frequency Detection 

The most predominant application of time-frequency representations (TFRs) is ex- 
ploratory signal analysis: using TFRs to expose time-varying spectral characteristics 
of signals. TFRs are widely used in this mode in applications ranging from speech 
analysis to biomedical signal analysis to geophysical exploration. However, the 
structure of TFRs can also be fruitfully exploited for designing and implementing 
optimal processors for detecting a variety of nonstationary signals in noisy environ- 
ments. Perhaps the simplest and best-known examples are the short-time Fourier 
transform (STFT) and the cross-ambiguity function in radar/sonar processing [1]. 

The goal of this article is to highlight the key ideas behind the role of TFRs in op- 
timal detection. Essentially, TFRs are useful for detecting nonstationary stochastic 
signals that exhibit certain unknown parameters, called nuisance parameters, such 
as unknown time or frequency shifts. The statistical characteristics of the signal 
are matched via proper choice of the TFR kernel and the nuisance parameters are 
dealt with by exploiting the covariance of TFRs to time and frequency shifts. The 
structure of optimal TFR detectors also suggests a design approach for suboptimal, 
low-complexity TFR detectors that can potentially deliver competitive performance 
in scenarios in which optimal detectors are prohibitively complex. The notion of 
time-frequency detectors also naturally generalizes to a certain class of quadratic 
signal representations that extend the concept of time and frequency. 

The next section reviews relevant TFR concepts. Section 12.1.3 presents a class 
of detection scenarios for which TFRs are optimal and provides a characterization 
of the TFR detectors. Section 12.1.4 briefly discusses some extensions of the de- 
tection framework to generalized TFRs as well as suboptimal detectors. Finally, 
Section 12.1.5 provides some concluding and bibliographic remarks. 

12.1.2 Time-Frequency Representations 
The most widely used linear TFR is the STFT that correlates the signal of interest, 
r(t), with TF shifted copies of a prototype (window) signal g(t) 

(t, f )  - ]" r(T)g* (T -- t)e-J2~f~dT. (12.1.1) 

One of the most important quadratic TFRs is the real-valued Wigner distribution 
(WD) that essentially correlates the signal with time-frequency shifted copies of a 
time-reversed version of itself: 

f r(t + T/2)r* (t -- T/2)e-J2~frdT. (12.1.2) w (t, f) 
J 

~ A k b a r  M. Sayeed, Department of Electrical and Computer Engineering, University 
of Wisconsin, Madison, WI 53706, USA (akbar@engr.wisc.edu). Reviewers: P. Flandrin and 
A. Papandreou-Suppappola. 
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A whole class of quadratic TFRs, sometimes called Cohen's class [2], can be gener- 
ated from the WD via time-frequency filtering with a two-dimensional kernel 

(12.1.3) 

where the entire class is characterized by different choices of the kernel 7(t, f). 
A characterizing property of TFRs in Cohen's class is that they are covariant to 
time-frequency shifts in the signal: 

r(t) ~ r(t - to)e j2~f~ :, pr(t, f )  ~ p r ( t -  to, f - fo). (12.1.4) 

The magnitude squared STFT, often called the spectrogram, is a member of Co- 
hen's class with the kernel given by the WD of the window function: IF~(t, f)l 2 = 

p~(t, f ; 7 - Wg). 
An important relation in the context of detection is Weyl correspondence that 

relates a quadratic form to the WD 

<Lx, x> - //x*(tl)L(tl,,2)x(t2)d, ldt 2 - //Wx(t,f)WSL(t,f)dtd f (12.1.5) 

where L a linear operator defined by the kernel L(tl ,  t2) and WSL(t, f)  denotes the 
Weyl symbol of the operator defined as [3] 

WSL(t, f )  - / L(t + 7/2, t - ~-/2)e-J2~f~dT. (12.1.6) 

If L(tl,  t2) - Rs(tl ,  t2) - E[s(tl)s*(t2)], the correlation function of a random signal 
s(t), then the Weyl symbol of Rs(tl , t2)  is also the Wigner-Ville spectrum of s(t) 
defined as [2] 

f 
WVS~(t, f )  - C[W~(t, f)] - / R~(t + 7/2, t - T/2)e-J2~J'td7 -- WSR. (t, f). 

J 

(12.1.7) 
The Wigner-Ville spectrum is a generalization of the notion of power spectral density 
to nonstationary processes and is an equivalent characterization of the second-order 
statistics of s(t). 

The kernel 7(t, f)  can be interpreted as the WS of an operator L~ by inverting 

/ ( t l + t 2  ) (tl-t2 
L~(tl, t2) - 7 2 ' f eJ2"f )df . (12.1.8) 

If 7(t, f)  generates a real-valued TFR then L~ is a Hermitian operator and under 
certain conditions (e.g, if it is a Hilbert-Schmidt operator) it admits an eigen- 
decomposition L~(tl , t2) = ~-~kAkuk(tl)u~(t2) where {Ak} are the real-valued 
eigenvalues and {uk(t)} are the corresponding orthonormal eigenfunctions. Us- 
ing this eigendecomposition, the kernel can be expressed as a weighted sum of 
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WDs, 7(t, f )  = E k  Ak Wuk (t, f) ,  and the corresponding T F R  can be expressed as a 
weighted sum of spectrograms 

pr(t,f;v) = E Ak / /'Wr(u,v)Wuk(U- t ,v- f)dudv 
k 

= ~ - ~ A k I F ~ ( t , f ) l  2. (12.1.9) 
k 

This decomposition in terms of spectrograms (discussed in Article 6.4) provides 
an intimate connection between linear and quadratic TFRs  and is very useful for 
efficient implementation of TFR-based detectors. 

12.1.3 Time-Frequency Detection Framework 
We motivate TFR-based detection by considering the classical binary hypothesis 
testing problem encountered in radar. Let v(t) denote the complex baseband trans- 
mitred signal of duration To and bandwidth Bo. The received signal r(t) is processed 
over an observation interval [Ti, T/] to detect the presence of a target. The two hy- 
pothesis on r(t) are 

Ho : r ( t ) =  ~(t), t e [Ti, :/1/] 

Hi : r(t) = as(t; to, fo) + c(t), t e [Ti, T/] . (12.1.10) 

Under the null hypothesis, H0, the signal contains only the zero-mean complex addi- 
2 Under the active hypothe- tive white Gaussian noise (AWGN), c(t), of variance a c . 

sis, H1, a TF  shifted version of the transmitted signal, s(t; to, fo) = v(t - to)e j2~/ot, 
is received in the presence of noise. In (12.1.10), a denotes an unknown com- 
plex gain parameter.  The unknown time and frequency parameters, (to, fo), rep- 
resent the delay and Doppler shift of the received signal relative to the trans- 
mitted signal and correspond to the unknown distance and velocity of the tar- 
get. Let $ = [Tmin,Tmax] • [-Fmax, Fmax] denote the possible range of val- 
ues for the nuisance parameters (to, f o). The required observation interval is 
[Ti, Tf ] = [Train, To + Tmaz] in this c a s e .  

For any given value of (to, fo) E $, the optimal decision statistic, derived from 
the likelihood ratio [1,4], is the noncoherent matched filter statistic 

2 

D(t~176 = I(r's(t~ f~ - .IT" r(t)v*(t -- to)e-J2~/~ - I F / ( t o ,  fo)J 2, 

(12.1.11) 
which correlates the received signal with the reference signal s(t; to, fo) and can be 
computed via a spectrogram with v(t) as the window. The unknown nature of the 
nuisance parameters is usually accounted for via a generalized likelihood ratio test 
(GLRT) corresponding to the decision statistic 

D ( r ) -  max D( t ' f ) ( r )=  max IF~(t, f)[ 2 (12.1.12) 
(t,f)ES (t,f)ES 
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which represents the peak of the spectrogram over $. The statistic D(r) is compared 
to a threshold to declare the presence (H1) or absence (H0) of a target. Thus, the op- 
timal detector correlates the received signal with all possible time-frequency shifted 
versions of the transmitted signal and picks the largest correlation as the decision 
statistic. The location of the peak is in fact a maximum likelihood (ML) estimate of 

the unknown parameters: (to,/o)ML - -  argmax(t , f )es  D (t'f). The GLRT detector 

(12.1.12) is the statistic (12.1.11) computed at (to,/o)ML. The detector perfor- 
mance is governed by the shape of the magnitude squared of the auto-ambiguity 
function of the transmitted signal 

Av(~', u) - f v(t + T/2)v* ( t -  T /2 )e -J2" td t  (12.1.13) 

near the origin [1]. Note that  IA,(T,u)[ 2 = IFW(T,u)I 2 = ffW.(u,v)W.(u- 
T, v - u)dudv. Ideally, Av(T, u) should approximate a two-dimensional Dirac delta 
function for perfect resolution in delay and Doppler. Waveforms with large time- 
bandwidth products, such as those derived from pseudo-random codes used in 
spread-spectrum communications [5], can be used to approximate this "thumbtack" 
function. 

The simple detector (12.1.12) is based on a rank-1 quadratic 1 TFR.  Higher- 
rank quadratic TFRs  can realize detectors for a much richer class of nonstationary 
stochastic signals. The next subsection describes this quadratic T F R  detection 
framework. In turn, in many cases low-rank approximations of T F R  detectors, 
implemented via a bank of a few spectrograms, suffice. 

12.1.3.1 Quadratic Time-Frequency Detectors 
Quadratic TFRs  can be exploited for detection scenarios of the form (12.1.10) where 
the signal s(t; to, fo) is a time-frequency shifted version of some underlying stochas- 
tic signal whose Wigner-Ville spectrum is relatively localized in time and frequency. 
This represents a fairly rich class of detection scenarios for modeling the inherent 
randomness in the signal as well as measurement uncertainties that  manifest them- 
selves as unknown time-frequency shifts. For example, radar applications in which 
the transmit ted signal v(t) encounters a randomly time-varying scatterer or channel 
may be modeled this way [1]. Similarly, signals involved in machine fault diagnostics 
may exhibit random characteristics along with timing jitters and frequency offsets 
due to physical mechanisms. The essential idea behind quadratic T F R  detectors is 
to capture the signal statistics via the kernel 7(t, f )  and the nuisance parameters 
via the time-frequency covariance property (12.1.4). 

Suppose that  the signal s(t; to, fo) in (12.1.10) is a time-frequency shifted version 
of a zero-mean Gaussian signal w(t); that  is, s(t;to, fo) = w ( t -  to)e j27r$~ and 
Rs(to,fo)(tl, t2) - Rw(tl - to, t2 - to)e j2~f~ In this case, for any given (to, fo), 

aThe rank of a TFR is the number of significant nonzero eigenvalues of 7(t, f) in (12.1.9). 
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the opt imum decision statistic is [4, 6, 7] 

D(to,fo) (r) - (Rs(to,lo)r, r) = <Wr, WS~(,o.,o) ), (12.1.14) 
A 

2I)-lRs(to,io) is an operator defined by the signal where RS(to,fo) - (RS(to,fo) + (7~ 
correlation function and the second equality follows from (12.1.5). The simpler 

choice RS(to,fo) - Rs(to,fo) in (12.1.14) yields the locally optimum 2 detector [4]. 
The unknown nuisance parameters are again accounted for by exploiting the 

covariance property (12.1.4) which implies that  WSRs(,o,~o)(t, f )  = WSR~( t - to ,  f - -  
h 

( t , f )  - WSh ( t - to  f - f o )  where Rw - ( R ~ + a 2 I ) - I R ~  [7]. 3 fo) and WSfis(,o,lo ) ~ , , 

Consequently, the quadratic decision statistic in (12.1.14) can be expressed as 

D (t~176 ffw (u,,)ws  (U-to, V-fo)dud, 
- p~(to, f o ; 7 - W S ~ , , , ) .  (12.1.15) 

A 

Similarly, the locally optimal detector corresponds to Rw = Rw in (12.1.15). Thus, 
the decision statistic corresponding to different values of (to, fo) can be computed 
via a T F R  with kernel WS~w. The overall GLRT detector for unknown (to, fo) is 
given by 

D(r) = max p~(t f ; WS~ ) 
(t,f)ES ' 

max f / Wr(u, v)WS~ (u - t, v - f )dudv 
(t,f)E8 

(12.1.16) 

where S = [Train, Tmax] x [-Fmax, Fmax]. If WVSw(t, f )  = 8[Ww(t, f)] is 
supported on (t, f )  e [0, Tw] x [-Bw,B~], the required observation interval is 
[Ti, Tf] = [Train, Tm~x + T~] and Wr(t, f )  in (12.1.16) is computed over the range 
[Tm{~, T m ~  + T~] x [ - B ~  - Fm~x, Bw + F,~x].  

The detector (12.1.16) has the intuitively appealing interpretation of nonsta- 
tionary spectral correlation: the WD of the observed waveform is correlated with 
all possible time-frequency shifted versions of WS&~ which is the WVS of w(t) 
in the case of the locally opt imum detector and the WVS of a modified version 
of w(t) in the case of the optimal detector. This interpretation of opt imum T F R  
detection is illustrated in Fig. 12.1.1. The location of the maximum in (12.1.16) 
is the ML estimate of (to, fo). Estimator  performance is related to the shape of 
F(T, v) = f f WVSw(u, v)WVSw(u - T, V -- v)dudv near the origin. 

2The first term in the expansion of the likelihood ratio as a function of signal-to-noise ratio 
(SNR) [4]. This decision statistic is useful in low-SNR scenarios. 

3We note that both ~ and Rw have the same eigenfunctions; the eigenvalues of P~w are 
2 to each. obtained from those of Rw by adding ae 
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Fig. 12.1.1: Illustration of nonstationary spectral correlation underlying TFR detection. (a) The 
Wigner-Ville spectrum, WVSw(t, f ) ,  of the underlying stochastic signal w(t). (b) The idealized TFR, 
pr(t, f;~f - WVSw), in the absence of noise; that is, r(t) = s( t ; to , fo) .  (c) The WD of the noisy 
observed signal r(t). (d) The TFR, pr(t, f ;3 '  = WVSw), of the noisy signal. The TFR in (d) is 
computed by smoothing the WD in (c) with the WVS in (a) and consists of the idealized TFR in (b) 
and additive noisy components. The peak of the TFR in (d) represents the decision statistic that is 
compared to a threshold to make a decision. The location of the peak represents ML estimates of the 
unknown delay and Doppler shift of the target. 

A 

The correlation function Rw(tl, t2) is related to Rw(tl, t2) by 

A Ak 
Rw(tl, t2) -- E Ak -F o-2 uk(tl)U~(t2) 

k 

where {Ak} and {uk} denote eigenvalues and eigenfunctions, respectively, of 
Rw(tl,t2). Analogous to (12.1.9), the decision statistic (12.1.15) can be expressed 
as a weighted sum of spectrograms 

D(t~176 - E Ak IF~k(to, fo)l 2 (12.1.17) 
k 
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where Ak -- ~k+o~ in the case of optimum detection and Ak -- Ak in the case 

of locally optimum detection. The importance of the above decomposition stems 
from the fact that many signals encountered in practice exhibit few dominant eigen- 
values. This implies that the quadratic TFR detector (12.1.16) can be efficiently 
implemented via a bank of a few spectrograms. 

12.1.3.2 An Illustrative Example 

We now illustrate the TFR detection framework in the context of an important 
application in which the transmitted signal v(t) travels over a randomly time-varying 
channel. Such a channel model is appropriate in many applications, including radar 
[1], wireless communications [5], and underwater acoustical communication [1]. In 
this case, the stochastic signal s(t; to, fo) is related to v(t) as 

j~0 Tm s(t; to, fo) - h(t, T)v(t -- T -- to)eJ2~/~ 

Bn 
(12,1.18) 

where h(t, T) is the time-varying channel impulse response and the equivalent repre- 
sentation, H(u, T) = f h(t, T)e-J2~tdt ,  is called the delay-Doppler spreading func- 
tion [5]. In (12.1.18), the received signal is modeled as a linear combination (with 
stochastic weights) of a continuum of time-frequency shifted copies of v(t). The 
parameters Tm and Bd are the multipath and Doppler spreads of the channel, re- 
spectively. The parameters (to, fo) represent the global delay and Doppler shift 
encountered during propagation, and Tm and Bd represent the local time-frequency 
spreading around (to, fo) produced by scattering. Each (u, T) e [--Bd, Bali • [0, Tm] 
represents a particular infinitesimal scatterer with stochastic gain H(~, T). Under 
the wide-sense stationary uncorrelated scattering (WSSUS) model, {H(v, T)} are 
modeled as a collection of uncorrelated Gaussian random variables [5]. 

The underlying Gaussian signal w(t) in this case is characterized by 

jf0Tm /Ba Rw(tl ,  t2) - M(~, T)v(tl -- w)v*(t2 -- T)eJ2~v(t~-t2)dudT. 
Bd 

(12.1.19) 

where M(v, T) = $[IH(v , T)I 2] is the channel scattering function which quantifies the 
relative power contributed by each scatterer. Note that WVSw(t, f)  is supported 
on [0, To + Tm] • [-Bo - Bd, Bo + Bd]. We focus on the locally optimum detector 

for simplicity which uses Rw - Rw in (12.1.16). Using the definition of the Weyl 
symbol in (12.1.6), it can be shown that the detection statistic (12.1.15) takes the 
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form 

D(t~176 = pr(to, fo; 7 = WVS~) 

= / / Wr(u, v)WVSw(u - to ,  v - fo)dudv (12.1.20) 

= M(, ,  r)IF;(to + r, fo + ~)12 dudr. (12.1.21) 
0 Bd 

Thus, the test for any given (to, fo) can be computed by smoothing Wr(t, f)  in 
the neighborhood of (to, f o) with WVSw(t , f )  or by smoothing IFrv(t,f)l 2 in the 
neighborhood of (to, fo) with M(u, T). The overall GLRT detector (12.1.16) can be 
realized by: (1) computing the Wr(t, f )  for (t, f )  E [Tmin, Tmaz+To+Tm]x[-Fmax- 
Bo - Bd, Fma= + Bo + Bd], or by computing IF~(t, f)l 2 for (t, f )  E [Train, Tmax Jc 
Tin] x [-Fmax - Bd, Fmax q- Bd], (2) computing D (t'I) over S by smoothing Wr(t, f )  
with WVSw(t, f)  as in (12.1.20) or by smoothing the spectrogram with M(u, T) as 
in (12.1.21), and (3) comparing the maximum of {D(t'/) : (t, f )  e S} to a threshold. 

While the detector (12.1.21) is in a fairly simple form, the low-complexity imple- 
mentation in terms of the eigenfunctions of Rw(tl, t2) takes an equally simple form. 
Due to the finite duration and bandwidth of v(t), the decision statistic (12.1.21) 
admits the following approximate sampled representation 

[T.,.Bo] rS.To] 

D(t~176 ~ ~ ~ M(m/To, l/Bo) IF~(to + I/Bo, fo + m/To)l 2 (12.1.22) 
l=o m=- rBdTo] 

i 

where M(t,, r) represents a smooth version of M(u, T) and the number of terms in the 
summation represents the number of delays and Doppler shifts that are resolvable at 
the receiver, which is also the number of dominant eigenvalues of Rw(tl, t2). Note 
that the number of dominant eigenvalues is approximately 2TmBdToBo which is 
typically relatively small since most practical channels are underspread (2TmBd << 
1) [5]. 

12.1.4 Extensions 
We now briefly discuss two extensions of the quadratic TFR detection framework 
described above. First, if the nuisance parameters are modeled as random with 
known probability density function, p(t, f) ,  the locally 4 optimum Bayesian test 

4The optimum Bayesian detector essentially corresponds to replacing pr(t,f;WSR,~) with 
e-Pr(t'f;wsR,~ ) in (12.1.23). 
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statistic can be realized in the time-frequency domain as 

# 
DBayes(r) -- ./~ fir(t, f ;  WVSw)p(t, f ) d t d f  

= w~( t ,  f )WVS~ (t, f ) d t d f .  (12.1.23) 

A 

where WVSw(t, f )  - f f  p(t ,  f)WVSw(u - t, v - f ) d u d v .  The Bayesian detector 
computes a test statistic based on our prior expectation of the likelihood of different 
values of the nuisance parameters. The time-frequency formulation of a quadratic 
detector in (12.1.14) has an interesting interpretation in view of the form of the 
Bayesian detector (12.1.23) and the quasi-energy densi ty  interpretation of the WD: 
the quadratic detector (12.1.14) weights the WD of the noisy received signal with 
our prior expectation of distribution of the signal energy in the time-frequency 
plane. This fact can be also be exploited in the design of rank-1 detectors when the 
underlying reference signal can only be inferred from noisy measurements [8]. In 
the rank-1 case, I(r, s)l 2 = (Wr, Ws),  and if Ws(t ,  f )  is mostly concentrate along a 
curve, for example Ws(t ,  f )  = 5 ( f  - u( t)) ,  it can be estimated more accurately (as 
opposed to s(t)  directly) due to higher SNR along the curve in the time-frequency 
plane. A matched filter for the underlying signal can then be inferred via the 
instantaneous frequency or the group delay defined by the curve. Such weighted 
averaging of the TFR can also be exploited (in a suboptimal manner) to design 
detectors that suppress unwanted signals whose TF support does not completely 
overlap the support of the desired signal. 

Another direction of generalization is going beyond TFRs to joint signal repre- 
sentations in terms of variables other than time and frequency - -  time-scale repre- 
sentations (TSRs), for example [9]. The GLRT detection framework described above 
is best suited to representations that possess some covariance property analogous 
to (12.1.4). For example, TSRs are covariant to time shifts and scale changes. In 
general, such covariance properties are imposed via a parameterized family of unity 
operators [10]. On the one hand, each family of unity operators defines a class of sig- 
hal representations and on the other hand the parameters of the unitary operators 
provide a model for nuisance parameters in GLRT detection scenarios. In essence, 
each family of unity operators defines a one-to-one correspondence between a partic- 
ular class of detection scenarios and a particular class of joint signal representations 
that serve as optimal detectors for such scenarios. 

12.1.5 Summary and Conclusions 
Time-frequency formulation of optimum quadratic detection, as in (12.1.14), along 
with a discussion of linear detectors was first developed by Flandrin in [6]; the basic 
ideas emphasizing the usefulness of a time-frequency approach to detection had been 
introduced earlier by Kumar  and Carroll (1984) and Kay and Boudreaux-Bartels 
(1985) (see the references in [6]). Some elements of Bayesian detection were also 
introduced in [6]. Altes also provided a time-frequency formulation of optimum 
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detection and classification in terms of spectrograms in [11]. The GLRT formula- 
tion emphasized in this article, exploiting the degrees of freedom in a T F R  (kernel 
and covariance properties), was developed in [7, 10]. The same general framework 
has been recently extended to design data-driven detectors and classifiers that infer 
the optimal processor directly from data [12]. While these formulations empha- 
size optimum detection, a potentially fruitful research direction, which is relatively 
unexplored, is the (suboptimal) combination of exploratory data analysis with deci- 
sion theory: exploiting the degrees of freedom in the T F R  to isolate essential signal 
features that can serve as inputs to pattern classifiers [13]. 
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12.2 T IME-FREQUENCY SIGNAL ANALYSIS AND 
CLASSIFICATION USING MATCHING PURSUITS o 

12.2.1 Signal Time-Frequency Structures 

Although time-frequency representations (TFRs) are the appropriate tools for non- 
stationary signal processing [1-3], it is important to match a TFR with the time- 
frequency (TF) structure of a signal for successful TF analysis and classification 
(see Section 1.1.5). In general, TFRs are ideally matched to one or two TF struc- 
tures based on the properties they satisfy. However, some signals have multiple 
components with distinctively different instantaneous frequency (IF). For example, 
in a sonar acoustics application, a received signal (e.g. a linear frequency-modulated 
(FM) signal) may be interfered by whistles from a group of dolphins (e.g. with hy- 
perbolic IF). The WAgner distribution (WD) can accurately represent signals with 
constant or linear IF whereas the Altes Q-distribution can accurately represent sig- 
nals with hyperbolic (dispersive) IF. However, neither one of the two quadratic 
TFRs will ideally analyze all the components of a signal consisting of both linear 
and hyperbolic IF as in the aforementioned example. The TF analysis and classi- 
fication of multicomponent signals is further complicated by the presence of cross 
terms when quadratic TFRs are used (see [3] and Article 4.2). 

Some TFRs that can analyze signals with multiple TF structures include the 
spectrogram [3], reassigned TFRs (see [4] and Article 7.2), and various adaptive 
TFRs [5]. The IF of various signals was also estimated using TFRs [6]. Although 
they work well in many applications, such TFRs do not automatically yield the IF of 
a signal in closed form, and do not always provide a well-concentrated representation 
without cross terms for analyzing signals with nonlinear TF structures. Thus, it is 
advantageous for an adaptive TFR to exactly match and classify signal components 
as many natural or synthetic signals have different linear and nonlinear IF. 

12.2.2 Matching Pursuits for Analysis and Classification 
The matching pursuit iterative algorithm of Mallat and Zhang decomposes a signal 
into a linear expansion of waveforms selected from a redundant and complete dictio- 
nary [7]. It uses successive approximations of the signal with orthogonal projections 
on dictionary elements. The dictionary consists of a basic Gaussian atom that  is 
TF shifted and scaled, i TFR (called the modified WAgner distribution in [7])is 
obtained as a weighted sum of the WD of each selected element. This TF R is free 
of cross terms, and preserves signal energy, TF shifts, and scale changes on the 
analysis signal. In order to analyze linear FM signals more efficiently with fewer 
waveforms, rotated Gaussian atoms were included in the dictionary in [8]. On the 
other hand, a wave-based dictionary consisting of wavefronts, resonances, and linear 

~ Antonia Papandreou-Suppappola, Telecommunications Research Center, De- 
partment of Electrical Engineering, Arizona State University, Tempe, AZ 85287-7206 USA (pa- 
pandreou@asu.edu), and Seth B. Suppappola, Acoustic Technologies, Inc., 1620 South Stapley 
Dr., Mesa, AZ 85204 USA (seth.suppappola@acoustictech.com). Reviewers: F. Auger and X. Xia. 
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FM signals was used to process scattering data in [9]. 
Although the matching pursuit algorithm in [7] works well for many signals, 

it uses many Gaussian atoms to represent a signal component with nonlinear TF 
characteristics. In addition, the modified WD is not well-concentrated along the 
nonlinear IF of some signal components. In order to be able to exactly match linear 
or nonlinear FM signals, a matching pursuit is used with a dictionary of waveforms 
that  includes complex sinusoids with linear or nonlinear phase functions such as 
logarithmic and power functions. The aim of the adaptive (modified) matching 
pursuit (AMMP) is to be able to analyze and correctly classify multicomponent 
signals where each component has a specific (and often different) monotonic phase 
function that can be written in closed form [10]. The advantage of using a dictionary 
that is matched to the analysis data is that only a small number of elements are 
used to decompose the signal, and the algorithm gives fast and parsimonious results. 
At each iteration, the algorithm a d a p t i v e l y  chooses the best dictionary element 
according to some condition, identifies its TF structure, and computes a specific 
TFR of the element. This TFR is adaptively chosen so that  it provides a well- 
concentrated representation (without interference terms) of the selected element. 
The resulting TFR is formed as a weighted linear superposition of these matched 
TFRs. In this respect, it is similar to the TFR obtained in [11]. The computation 
of the TFR is only necessary for signal analysis. The algorithm can also be used to 
identify and classify each signal component. This will be useful, for example, in the 
classification of multiple received signals in a detection application. Thus, as will 
be shown, the AMMP decreases the number of algorithm iterations, improves the 
TF concentration of different multiple nonlinear FMs, and correctly classifies the 
IF of each signal component. 

Adaptive matching pursuit and TFR The AMMP is based exclusively on the 
original algorithm in [7], but it has some major differences [10]. First, the AMMP 
uses more than one type of basic atom in the dictionary. Particularly, the dictionary 
consists of a large class of different basic atoms each of which has the form of a 
nonlinear FM signal [Article 5.6] 

g(t; v / I . ( t ) l  ) (12.2.1) 
which is uniquely specified by its FM rate A and its monotonic phase function ~(b). 
Note that  v(t) - d ~ ( ~ )  is the IF of the signal in (12.2.1), and tr > 0 is a reference 
time. The dictionary may consist of only one type of FM signal with fixed ~(b) in 
(12.2.1) or a linear combination of them including sinusoids with ~(b) - b, linear 
FM signals with ~(b) - sgn(b)lbl 2 (where sgn(b) is - 1  for b < 0 and 1 for b > 0), 
hyperbolic FM signals with ((b) - In b, power FM signals with ~(b) - sgn(b)lbl ~, and 
exponential FM signals with ( ( b )  - e b. The dictionary is formed by transforming 
the FM signal in (12.2.1) as 

= v / l a v ( a ( t  - T))I e ju= (~+~)~(~(~)) , 

e j 2 r  c~(a( t-~ -~--)) 

(12.2.2) 
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with the parameter vector 0_0_ - [c, a, T] E (O - R3). The dictionary is normally 
formed with a linear (i.e., grid) spacing of the parameters in 0, although this is not 

a requirement. The unitary operators G~ ~), Ca, and Sr result in an IF shift c, scale 
change a, and constant time shift r, respectively, of the FM signal. Specifically, 
the operators transform a signal x(t) as (G~)x)(t) = x(t)eJ2~c~(,-~ ) (where ~(b) 
is the same function as in (12.2.1)), (CaX)(t) = ~ x ( a t ) ,  and ($rX)(t) - x ( t -  
r). In (12.2.2), the transformation G(() results in a constant shift (from A to c + 
A) of the FM rate of the nonlinear FM signal instead of the constant frequency 
shift used in [7]. Hence, A is not a parameter of the optimization, and is instead 
used to specify a base FM rate in (12.2.1). Shifts in the FM rate are affected by 
varying the c parameter. This is performed in this way since the signals considered 
may be wideband as well as dispersive, thus a shift of the IF is a better matched 
transformation (that covers the entire TF plane) than a constant frequency shift. 
With appropriate normalization, the energy of g(t; ~, ;~, 0_) is restricted to be unity for 
every 0_ in order to ensure energy preservation when ~(b) is fixed [7,10]. The iterative 
procedure of the AMMP first projects the analysis signal x(t) = (Rox)(t) onto 
each element of the dictionary, and selects 1 g(t; ~o, )~, 0_o) based on the condition 2 
[( x, g(~o, A, 0_o)}] > [( x, g(~, A,_O))1, V_O E 0 and for all possible phase functions 
~(b) of the dictionary elements. This ensures that the signal component with the 
highest energy is separated first by being matched to the element g(t; ~Co, A,_Oo) that 
yields the largest correlation with the signal. This results in 

x(t) --/~0 g(t; ~0,)~,O0)+ (nlx)( t)  (12.2.3) 

with the expansion coefficient ~0 - ( x, g(~0, ~, 0_0_0) ). The function ~o(b) is the phase 
function of the first selected element. For example, if this element is a hyperbolic 
FM signal, then ~0(b) - ln b. 

The second major difference of the AMMP from the algorithm in [7] is that 
the algorithm does not compute the WD of selected elements to form the modi- 
fied WD. Instead, it adaptively uses the information that the first selected wave- 
form has phase function ~0(b) to compute its IF shift covariant dispersively warped 
Wigner distribution (DWD) [Article 5.6]. The DWD is a warped version of the 
WD, Wy(t, f )  - f _ ~  y(t + r/2)y*(t - 7/2)e-J27rfrdT, with the warping based on a 
monotonic and (possibly) nonlinear parameter function ~(b). In particular, 

W(r - Wu (tr~( t-) f ) t~ ' t~#(t) (12.2.4) 

t where tz(t) - ~ r  and y(t) - (WCx)(t) - t~l tz( t~r162 
[Article 5.6] is the warped signal. Note that a specific DWD is obtained simply by 
fixing its parameter function ((b). By matching ((b) in (12.2.4) to be equal to the 

1 Note that  a subscript n in the parameters  Rn, ~n(b), 0__~, r~, and Cn, and a superscript  n in 
a T F R  T'~(t, f )  indicate the algori thm parameters  at the (n + 1)th iteration. 

9The inner product  is defined as (x, g} = f--~c~ x(t)g* (t)dt. 
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phase function ~0(b) in (12.2.3) (i.e. if ~(b) = ~0(b)), an adaptive representation for 
multiple structures (ARMUS) TFR, at this first iteration, is simply given as 

T~ f ) -  [/~o[ 2 w(~~ (t f )  -g(~o,_Oo) , �9 

At the second iteration, the residual function (RlX)(t) is obtained by solving 
(12.2.3), and it is decomposed in a similar manner as the signal z(t). At the ( n + l ) t h  
iteration, the condition 

[(RnX, g(~n,On)}1 ~ ]{RnX, g ( ~ , O ) ) [ ,  V O e O  (12.2.5) 

is used to decompose the nth residual function (Rnx)(t) - ~ng(t; ~n,On)+ 
x)(t) 

Zn -- < RnX, g(~n,On) ) (12.2.6) 

is the expansion coefficient. The DWD of (Rnx)(t) is also obtained adaptively to 
match the TF structure of the nth residual function by letting ((b) = ~n(b) in 
(12.2.4). 

After a total of N iterations, the matching pursuit algorithm results in the signal 
decomposition 

N-1  

- g ( t ;  + ( 1 2 . 2 . 7 )  
n--0 

As the dictionary is complete [10], any signal can be represented as in (12.2.7) 
with N - oo (yielding (RN x)(t) -- 0) [7]. In actuality, when the signal components 
match the TF structure of the dictionary elements, the algorithm converges quickly. 
A maximum number of iterations and an acceptable small residue energy compared 
to the data energy are used as stopping criteria [7]. "The resulting ARMUS of the 
signal at the N th  iteration is the weighted sum of the corresponding DWD of each 
selected dictionary element 

N-1  
ARMUSx(t, f)  - TN-I(t  f)  -- E [~n[2 W(~n) (t, f )  (12.2.8) 

' 9 ( ~ , 0 . )  , 
n--0 

with the weights ]/~n] 2 defined in (12.2.6). Note that  the same DWD (with fixed ~(b)) 
may be used in (12.2.8) for components with the same TF structure but different 
FM rate. 

It is important  to note that  the success of the algorithm depends highly on 
the choice of dictionary elements. As a result, pre-processing the data might be 
necessary in order to avoid a poor algorithm performance due to a mismatch between 
the analysis data and the dictionary elements used. Although this analysis technique 
follows directly from the matching pursuit in [7] with some simple modifications, it 
is very powerful once the dictionary is matched to the data not only for analysis 
but also for classification. 
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Properties of the algorithm and the TFR An important property of the match- 
ing pursuit in (12.2.7) is its covariance to certain signal changes. Consider the 
decomposed signal x(t)  - }--~n~__0~ng(t; ~,A, 0__n) in (12.2.7) with g = cx~, and 
with identical WE structure dictionary elements (i.e. let ~n(b) - ~(b), V n). If the 
FM rate of a nonlinear FM signal x( t )  is shifted by a constant amount to form 

B ~ t y(t)  -- (G(~)x)(t) x( t )  e j2~u (~), then its matching pursuit is simply given as 

y(t)  - ~-]~n~176 g(t; ~,A,~n). Note that the expansion coefficients fin are not af- 

fected by this signal change. The parameter vector changes to ~n - [Cn + U, an, Tn] 
indicating that the time shifts Tn and the scale changes an remain the same, whereas 
the dictionary elements undergo a constant shift in their FM rate from (A + cn) to 
(A + Cn + U). Note that if ~(b) is a power or a logarithmic function, then we can 
show that the corresponding AMMP is also covariant to scale changes [10]. 

The ARMUS TFR in (12.2.8) also satisfies various properties that are desirable 
in many applications. By simply combining the DWDs of each selected dictionary 
element, no cross terms are introduced in the TFR. Also, the TFR preserves the 
underlying TF structure of each analysis signal component, and it provides a highly 
concentrated representation of each component as it does not apply any smoothing. 
Specifically, the DWD with parameter ~(b) of a nonlinear FM signal with phase 
function ~(b) results in the highly concentrated representation DWDg(~,~)(t, f; ~) = 

t Iv(t)l 5 ( f  - A v( t ) )  [Article 5.6] with v( t )  - d ~ ( K ) .  If a particular application uses 
signal components with only one type of TF structure, then we should form our 
dictionary using the corresponding nonlinear FM signal with matched IF. In such 
cases, the ARMUS satisfies other desirable signal properties such as the preservation 
of signal energy, and changes in the analysis signal's FM rate [10]. If the dictionary 
elements are either hyperbolic or power FM signals, then the TFR can also be shown 
to preserve scale changes. 

Implementation issues Since the algorithm parameters vary in order to form the 
dictionary elements for the matching pursuit, the computation is intensive. How- 
ever, if the data is pre-processed, one can form a dictionary with elements which 
approximately span the data in TF structure. Thus, the algorithm iterates more 
rapidly. Additional speedup is possible if the matched DWD of each dictionary 
element is computed ahead of time. Since the last operation on the basic atom in 
(12.2.2) is time shifting, the inner products in the AMMP condition in (12.2.5) can 
be computed as a cross-correlation instead of introducing another layer of dictionary 
elements over all possible time shifts. This increases the computational speed since 
correlations can be implemented using the fast Fourier transform (FFT). Also, the 
memory consumption by the dictionary is significantly reduced since additional dic- 
tionary elements are not needed for every time shift. Moreover, since the elements 
do not change, and the residual data is constant during a given AMMP algorithm 
iteration, additional speedup could be achieved by pre-computing and storing the 
FFTs of these sequences. 

If the signal components are well-separated in time, the algorithm can simply 
find the time support and phase function of each selected element, and then use the 
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information to analyze the actual data (instead of the selected waveforms) with its 
matched DWD. This will greatly reduce computation as only a few DWDs need to 
be obtained. If classification is needed without analysis, then there is no need to 
compute the TFR. The AMMP will provide the IF and the FM rate of each com- 
ponent. It can also provide other relevant parameters depending on how adapted 
the dictionary is to a particular application. 

12.2.3 Simulation Example 
A synthetic multicomponent signal is used to demonstrate the significance of the 
AMMP method. The signal is 512 points long (although it need not be a power 
of two) and consists of thirteen components: four windowed hyperbolic FM signals, 
five windowed linear FM signals, and four Gaussian waveforms, all with varying 
parameters. Their "ideal" TF representation shown in Fig. 12.2.1(a) is obtained by 
plotting the IF of each of the hyperbolic and linear FM signals (hyperbolae and lines 
with positive slope) and the characteristic TF curve of each Gaussian component 
(ellipses). The WD in Fig. 12.2.1(b) suffers from cross terms and makes it difficult 
to identify the true TF structure of each component. On the other hand, the 
spectrogram in Fig. 12.2.1(c) suffers from loss of resolution due to smoothing that 
complicates the identification of the exact number of signal terms. Furthermore, 
the spectrogram cannot provide parameter values for any signal component. 

The dictionary was formed using hyperbolic FM signals, linear FM signals, 
and Gaussian waveforms. Note that the Gaussian elements are not in the form 
of (12.2.1). However, they were included in the dictionary for a fair comparison 
with the matching pursuit in [7], and due to the a priori knowledge of their pres- 
ence in the data. The decomposition approximates the data very well after only 
twenty iterations as demonstrated by overlaying the signal with its expansion. The 
ARMUS TFR in Fig. 12.2.1(d) provides a highly concentrated representation for all 
thirteen components without outer cross terms or loss of resolution. This is because 
it adaptively computes the Altes Q-distribution for selected elements with hyper- 
bolic TF characteristics, and the WD for selected elements with linear or constant 
TF characteristics. Note that the mild spreading of the signal components as well 
as some inner interference terms are due to the fact that the data was windowed for 
processing. As the algorithm iterated twenty times, the ARMUS in Fig. 12.2.1(d) 
is a TFR of all twenty elements that the algorithm selected. However, only the 
thirteen elements matching the actual signal components are visible. This is be- 
cause the energy term of the signal residues was very small for, seven of the twenty 
iterations. If TFR analysis is not required, the ARMUS TFR computation step is 
removed from the algorithm, and the results are used only for classification. In this 
example, the components were classified in three signal types (hyperbolic FM, linear 
FM, and Gaussian). Furthermore, the values of the FM rate of each hyperbolic and 
linear wavefbrm as well as the variance of each Gaussian component were directly 
obtained and found to be very similar to the parameters of the actual data. 

For further comparison, the matching pursuit with only Gaussian dictionary 
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Fig. 12.2.1: (a) A linear combination of the ideal TF structure of each component of a signal consisting 
of four windowed hyperbolic FM signals, five windowed linear FM signals, and four windowed Gaussian 
signals. Note that the TF structure of a Gaussian waveform is represented as an ellipse delineating the 
approximate time and frequency support of the signal component. The signal is analyzed using (b) the 
Wigner distribution, (c) the spectrogram, (d) the ARMUS TFR, and (e) the modified WD in [7]. 
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elements was used to decompose the signal, and then analyze it using the modified 
WD [7] as shown in Fig. 12.2.1(e). After 275 iterations, the T F R  does not provide a 
concentrated representation that  can easily identify the TF  structure of the linear 
and hyperbolic FM components even though no cross terms are present. Also, the 
algorithm does not provide a closed form estimate of the IF and FM rate of the 
signal components for classification. On the other hand, as it is well-matched to 
Gaussians, the four Gaussian signal components are highly concentrated. 

For relative comparison purposes, the speeds of the various methods can be con- 
trasted as performed on a Pentium III based PC running MATLAB TM under Linux. 
Since the Wigner distribution and the spectrogram use no form of matching pursuit 
iteration, they are considered to provide essentially instant results requiring only a 
few seconds to generate a plot. The ARMUS representation required approximately 
five minutes to compute, whereas the modified Wigner distribution consumed ap- 
proximately forty-five minutes. The slowness of the modified Wigner distribution is 
primarily due to the high number of terms (i.e., iterations) required to approximate 
the analysis signal since Gaussian dictionary elements are not well matched to all 
of the analysis signal components. In fact, it takes several Gaussians to represent 
a single hyperbolic FM signal. The ARMUS representation, however, also contains 
hyperbolic and linear FM dictionary elements and is consequently better matched 
to the analysis signal. 

A real data example using the AMMP method for classification can be found 
in [12]. 

12.2.4 Summary and Conclusions 
In this article, we have presented a method of analyzing complex multicomponent 
time-frequency signal structures without the usual trade-off of T F  resolution versus 
cross terms. The iterative approach is based on the matching pursuit of [7] but 
extended to include non-Gaussian signal types. Additionally, we generate a T F R  
which is free of cross terms by summing TFRs  for the decomposed signal compo- 
nents. The T F R  for each individual component is chosen to be ideally suited for the 
particular signal type extracted by the algorithm. Finally, since the T F R  not only 
represents the individual components, but also parameterizes them, this algorithm 
lends itself nicely as a feature extraction tool for signal classification purposes. 
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1 2 . 3  SYSTEM IDENTIFICATION USING TIME-FREQUENCY 
FILTERING o 

12.3.1 Problem Description 

A discrete time system identification problem can be stated as follows: 

y[n] - E q[n - k]x[k] + e[n], (12.3.1) 
k 

where x[n] is a transmitted signal, q[n] is the impulse response of a linear time 
invariant (LTI) system, e[n] is an additive noise, and y[n] is the received signal. 
The problem is to identify the LTI system transfer function Q(w), i.e., the Fourier 
transform, of q[n] given the input and the output signals x[n] and y[n]. 

The conventional method for solving the above problem is the least-squares 
solution method that is equal to the cross-spectral method in stationary cases, i.e., 
the system transfer function Q(w)can be estimated by (see e.g. [1]) 

Szy(W) (12.3.2) 
Q(~) = S ~ ( ~ ) '  

where Szy(W) is the cross-spectrum of x[n] and y[n], and Sxz(w) is the auto-spectrum 
of x[n]. When the additive noise e[n] in (12.3.1) is a zero-mean Gaussian process 
and statistically independent of the input signal x[n], the estimate in (12.3.2) is 
asymptotically unbiased but the performance is limited by the noise variance, or 
the signal-to-noise ratio (SNR). When this SNR is low, the performance of the 
estimate in (12.3.2) is poor as we will also see later. Since the auto-spectrum of the 
input signal x[n] is in the denominator in the estimate (12.3.2), the input signal is, 
in general, chosen as a pseudo-random signal with flat spectrum. With this kind of 
input signals, noise reduction techniques before system identification do not apply. 

In the following, we introduce a different technique [2] for the system identifica- 
tion problem. The main idea is as follows. Instead of pseudo-random signal x[n], 
chirp type signals are transmitted as training signals, which have wideband charac- 
teristics in the frequency domain but are concentrated in the joint time-frequency 
(TF) domain. The TF concentration property usually holds after passing through 
an LTI system (this will be seen later). Since a joint TF distribution usually spreads 
noise and localizes signals, in particular chirps, the receiver may use a TF analy- 
sis technique to map the received signal y[n] from the time domain into the joint 
TF domain. In this way, the SNR can be significantly increased in the joint TF 
domain [3]. Furthermore, TF filtering can be used in the TF plane to reduce the 
noise and the SNR in the time domain can be increased and therefore the system 
identification after denoising can improved. 

~ Xiang-Gen Xia, Department of Electrical and Computer Engineering, University 
of Delaware, Newark, DE 19716, USA (xxia@ee.udel.edu). Reviewers: Paulo M. Oliveira and 
Shie Qian. 
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Fig. 12.3.1: TF filtering. 

12.3.2 Time-Frequency Filtering 
TF filtering (described in Chapter 11) includes three major components, namely a 
TF analysis or mapping, with a TF tool such as a TF distribution, from the time 
domain to the joint TF domain, a masking or filtering in the joint TF plane, and 
a TF synthesis from the joint TF plane back to the time domain, as illustrated in 
Fig. 12.3.1 for a chirp signal. 

Differently from what happens with the Fourier transform in the Fourier trans- 
form based filtering, the TF mapping in a TF filtering may not be onto. In other 
words, not every signal S[k, 1] defined in the joint TF plane corresponds to a time 
domain signal s[n] such that the TF mapping of the time domain signal s[n] is 
exactly equal to S[k, 1]. This causes problems in filtering in the TF domain, since 
the filtered signal in the TF domain may not correspond to any time domain signal 
as shown in Fig. 12.3.1 (a) and (e). An intuitive solution for this problem is to take 
the least-squares error (LSE) solution in the time domain, (see, for example, [4]). 
The LSE, however, usually does not have a desired TF characteristics in the TF 
domain. When a signal is very long, the computational load for the LSE solution 
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is significantly high because of the inverse matrix computation. Based on these 
observations, an iterative algorithm based on the discrete Gabor transform (DGT) 
was proposed in [5]; see Article 11.2. Conditions on the convergence, properties of 
the limit signals, and the relationship between the LSE solutions and solutions from 
the iterative algorithms were obtained in [6], where a significant improvement over 
the LSE solution was also shown. In the remainder of this article, we adopt the 
DGT as the TF analysis. 

12.3.2.1 Discrete Gabor Transform 

Let a signal s[n], a synthesis window function h[n] and an analysis window function 
7In] be all periodic with same period L. Then, 

M-1N-1 
s[k]- E E Cm,nhm,n[k], (12.3.3) 

m=O n=O 

L-1 
Cm,n - E s[k]7~,,~[k], (12.3.4) 

k=0 

hm,,~[k] - h[k - m A M ] W ~  Agk,  (12.3.5) 

7m,n[k] - 7[k - r n A M ] W ~  ANk, (12.3.6) 

and WL -- exp(j27r/L),  j -- x/%--1, where A M  and A N  are the time and the 
frequency sampling interval lengths, and M and N are the numbers of sampling 
points in the time and the frequency domains, respectively, M - A M  -- N .  A N  -- L, 
M N  > L (or A M A N  <_ L). The coefficients Cm,n are called the d i s c r e t e  G a b o r  
t r a n s f o r m  (DGT) of the signal s[k] and the representation (12.3.3) is called the 
inverse  d i s c r e t e  G a b o r  t r a n s f o r m  (IDGT) of the coefficients Cm,n. Let H and 
G be the following A M A N  by L and M N  by L matrices, respectively: the element 
at the (raN + n)th row and the kth column in H is 

h [ k -  mAM]W~,  ~xNk O < m < M - 1 0  < n < N -  l,O < k < L - 1  

and the element at the kth row and the ( m N  + n)th column in G is 

7 , ~ , ~ [ k ] - 7 * [ k - m A M ] W [  ~/'Nk, O < m <_ M -  l, O < n < N -  l, O <_ k <_ L - 1 .  

Then, the DGT and IDGT can be rewritten as 

C - Gs and s -  HC,  (12.3.7) 

where the following condition is needed 

H G -  I, (12.3.8) 

where I is the L x L identity matrix. (For more details, see [5] and Articles 4.9, 6.3 
and 11.2.) 
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1 2 . 3 . 2 . 2  Iterat ive TF Filtering Algor i thm 

Let D denote the mask in the TF  plane, i.e., an MN by MN diagonal matrix with 
diagonal elements either 0 or 1. Let s be a signal with length L in the time domain. 
The first step in the time-variant filtering is to mask the DGT of s: C1 = DGs, 
where D masks a desired domain in the TF  plane. Since the DGT G is a redundant 
transformation, the IDGT of C1, HC1,  may not fall in the mask. In other words, 
in general, 

GHC1 =/= DGHCI, (12.3.9) 

which is illustrated in Fig. 12.3.1(e). An intuitive method to reduce the difference 
between the right and the left hand sides of (12.3.9) is to mask the right hand side 
of (12.3.9) again and repeat the procedure, which leads to the following iterative 
algorithm: 

So = s, (12.3.10) 

Cl+l = DGsz, (12.3.11) 

sz+l = HCt+I ,  (12.3.12) 

1 - 0, 1, 2, .... 

For more details, see Article 11.2 and reference [6]. 

12.3.3 Denoising for Received Signals through a Noisy Channel 
We first describe some parameters. The training signal x[n] is 

cos(   - n = 0, 1, 499. (12.3.13) , ' ' ' ,  

The synthesis and analysis window functions h[n] and v[n] are the orthogonal-like 
functions from [5, 6] and Article 11.2. Fig. 12.3.2(a) shows the DGT of x[n]. 

We use 20 tap LTI systems in our numerical examples. The system model is 

N - 1  

y[n] - ~ q[k]x[n- k] + e[n], (12.3.14) 
k=O 

where N = 20, e[n] is additive white Gaussian noise, independent of x[n], and 

N - 1  

sin]- E q[k]x[n- k], (12.3.15) 
k = 0  

is considered as the signal. The original SNR for the received signal is calculated 
by 

 Inl 
1010g10 V,499 �9 = 
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In the following, we randomly generate the channel q[n]. As an example, a ran- 
dom channel, the noiseless signal sin], the received time waveform y[n] with SNR= 
-4.5dB,  and their Fourier spectrum are shown in Fig. 12.3.2(b). The DGT of the re- 
ceived signal y[n] with -4 .5dB SNR is shown in Fig. 12.3.2(c). In Fig. 12.3.2(c), one 
is still able to see the chirp pat tern in the joint time and frequency plane although 
that  is impossible in the time or the frequency domain alone in Fig. 12.3.2(b). 

12.3.3.1 Mask D Design 
The pattern in the DGT domain of the above signal s[n] in (12.3.15) is similar to 
the one for the signal x[n] in Fig. 12.3.2(a). This is not only true for this particular 
example, but has also been the case for our numerous examples. The reason can be 
found in the following analytic argument. 

Assume the chirp signal x[n] - exp(jcn r) for some constants r _> 2 and c :/: 0. 
Then, 

r - - 1  

s[n] - E q[kJx[n - k] - x[n] E q[k] exp(jc E c ,n 'k r - ' ) ,  
k k l -O  

which is dominated by the original chirp x[n] for finite tap LTI systems q[k]. It is 
because that  the highest chirp order of sin], r, and the corresponding chirp rate are 
the same as those of x[n], while the chirp order for the above multiplier of x[n] in 

r - - 1  

h[k] exp(jc E c,n' k r - ' )  
k / = 0  

is only r - 1. As a special case, when r - 2, s[n] - x[n]t~(2cn), where (~(w) is the 
Fourier transform of the signal q[n]x[n]" (~(w) - ~-]k q[k]x[k] exp( - j2cnk) .  When 
the channel q[n] has only a finite tap, the function Q(a;) is usually a smooth signal. 

Since the transmitted signal x[n] is known to both transmitter  and the receiver, 
by the above property its pat tern in the DGT domain may help in designing a 
mask in the DGT domain for filtering noise, which motivates the following design 
algorithm. 

A M a s k  D e s i g n  Procedure" 

S t e p  1. Implement the DGT, obtaining the coefficients Cm,n of the t ransmit ted 
signal x[k]. 

S t e p  2. Threshold the DGT coefficients Cm,n and have a mask Dx from Cm,n: 

I, 
D~(m,n)  - O, 

if I Cm,nl > to, 
otherwise, 

where to is a predesigned positive number that  is called a thresholding constant. 
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S t e p  3. Implement Steps 1-2 for the received signal y[k] and design a mask Dy 
with thresholding constant tl from the DGT coefficients of y[n] with another 
predesigned constant tl > 0. 

S t e p  4. The final mask is the product of D~ and Dy" D -- DzDy. 

Since the DGT of the signal x[n] usually dominates the DGT of the signal s[n], 
the pat tern in the DGT domain of the signal sin] is usually in a close neighborhood 
of the pat tern in the DGT domain of x[n]. Therefore, the mask Dx is usually 
designed so that  it covers a relatively large area, i.e., the thresholding constant to 
in Step 2 is usually chosen not too large. Since the received signal y[n] is from a 
noisy channel, the resolution of its DGT pattern may be reduced and therefore the 
thresholding constant tl in Step 3 is usually chosen not too small. Otherwise, the 
mask Dy will cover too much area you do not want. Let us see an example. The 
mask Dx from x[n], the mask Dy from y[n], their product D - D~Dy, and the 
mask Ds from the true signal s[n] are shown in Fig. 12.3.2(d), respectively. The 
SNR in this case is S N R = - I . 4 d B .  The thresholding constants in Steps 1-3 are to = 
O.12.max(DGT(y)) and tl = O.15.max(DGT(y)). It should be pointed out that  the 
above mask design procedure may be improved by using more sophisticated designs. 
Possible improvements are" (i) to find the optimal thresholding constants to and tl 
by training a large number of signals and systems; (ii) to use more sophisticated 
statistical detection method in the DGT domain for the received signal y[n] instead 
of a simple thresholding in Step 3; (iii) to smooth the mask D = DzDy since the 
true mask D s is usually smooth due to the nature of a chirp signal but Dy from 
the noisy signal y[n] may not be smooth. Some morphological operations, such as 
dilation, may be used for smoothing the mask D. 

12.3.3.2 Denoising Experiments 
We now implement the denoising using the iterative TF  filtering algorithm with 
three masking techniques: using the mask D = Dx from the transmitted signal; 
using the mask D = DyDz as designed by Steps 1-4; using the true mask D = Ds. 
We run 100 tests in terms of different LTI systems q[n] (randomly generated) and 
different additive white Gaussian noises e[n] for each masking method and take 
their mean SNR. Nine iterative steps are used in the iterative algorithm (12.3.10)- 
(12.3.12). Fig. 12.3.3(a) shows the curves of the mean SNR versus iterative steps 
for the three masking methods. 

12.3.4 System Identification 
In this section, we first use the iterative time-variant filter (12.3.10)-(12.3.12) devel- 
oped in the previous sections to reduce the additive white Gaussian noise c[n] from 
the received signal y[n]. In the iterative time-variant filter, for calculation simplicity 
we choose the first masking method, i.e., the mask D = Dx, throughout this section. 
With this mask, two iterations are used in the TF  filtering. We then implement the 
conventional system identification method, as shown in Fig. 12.3.3(b). 
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Fig. 12.3.2: (a) The discrete Gabor transform of signal x[n]. (b) An example of LT! channel q[n], 
signal s[n] and received signal y[n], and their Fourier spectrum, where the SNR=-4.SdB for the additive 
white Gaussian noise. (c) The discrete Gabor transform of a received signal y[n] with SNR=-4.5dB. 
(d) Example of masks Dx from x[n], Dy from y[n], the final mask D = DxDy and the true mask Ds 
from sin]. 

The conventional system identification method used here is the cross-spectral 
method: 

S$x(w) (12.3.16) 

where x[n] is the chirp signal defined in (12.3.13) and ~ is the signal after the 
denoising. It is compared with the conventional method without denoising, i.e., 

Qold~ (w) - Sx~(W) ' (12.3.17) 

where x[n] is also the chirp signal. Since the system identification performance 
usually depends on the signal x[n] you transmit, one might say that it is not fair to 
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Fig. 12.3.3: (a) The mean SNR curves of the iterative time-variant filtering with the following masks: 
D = Dx, D = DxDy,  and D = Ds. (b) New system identification method. (c) Comparison of 
system identification methods: the conventional method using chirp signals; the conventional method 
using pseudo-random signals; new method using chirp signals and time-variant filtering. (d) System 
identification examples: original spectrum IQ(~)I; identified spectrum without additive noise using 
the chirp signal; the conventional method with additive noise of SNR=-0.4dB; the new method with 
additive noise of SNR=-0.4dB. 

compare them using the chirp signal that is preferred here for denoising purposes, 
but might not be preferred for other methods. For this reason, we also compare our 
new method with the conventional method using pseudo-random sequences: 

Qotd:( ) = (12.3.18) 

where 2[n] is a pseudo-random sequence. 
Fig. 12.3.3(c) shows their performances, where 200 tests are used for the mean 

SNR curves for the system spectrum versus the original SNR. Our new method 
performs much better than others. Surprisingly, even for the conventional cross 
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spectral method, the chirp signal in (12.3.13) outperforms pseudo-random signals 
by approximately 6dB. In Fig. 12.3.3(d), some identification examples are shown, 
where the original SNR is -0 .4dB.  As a remark, all system identification calculations 
used in this article are based on the MATLAB T M  Signal Processing Toolbox. 

12.3.5 Summary and Conclusions 
System identification can be performed by transmitt ing chirp signals and applying 
iterative time-frequency filters based on a discrete Gabor transform/expansion. The 
filters are implemented by projecting the signal back and forth between the time 
domain and the joint time-frequency domain. This system identification method 
has better performance than the conventional methods at low signal-to-noise ratios. 
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12.4 T IME-FREQUENCY METHODS FOR SIGNAL 
ESTIMATION AND DETECTION o 

This article uses the generalized Wigner-Ville spectrum (GWVS) and the general- 
ized Weyl symbol (GWS) to develop time-frequency (TF) techniques for the esti- 
ruction and detection of underspread nonstationary processes. These TF techniques 
extend optimal signal estimators (Wiener filters) and optimal signal detectors for 
the stationary case to underspread nonstationary processes. They are conceptually 
simple and intuitively appealing as well as computationally efficient and stable. 

We will first review some fundamentals (for more details see Articles 4.7 and 
9.4). The GWVS of a nonstationary random process x(t)  with correlation function 
rx(t, t') = E{x(t) x*(t')} is defined as 

Wx (~) (t, f )  ~= rx t +  -~ - c~ 7, t - -~ + ~ T e-J2=/ 'dT,  
o o  

(12.4.1) 

where a is a real-valued parameter. The GWS of a linear, time-varying (LTV) 
system H with kernel (impulse response) h(t, t') is defined as 

L(H ~) ( t , f )  A h t +  -~ - a  7, t -  -~ + a  T e -J2~/ 'dT .  
o o  

In the case of a stationary process, the GWVS reduces to the conventional power 
spectral density. Similarly, for a linear, time-invariant (LTI) system, the GWS 
reduces to the conventional transfer function (frequency response). 

n nonstationary process x(t) is called underspread if components of x(t)  that are 
sumciently separated in the TF plane are effectively uncorrelated (see Article 9.4). 
Two random processes x(t), y(t) are called jointly underspread if they satisfy similar 
underspread conditions [1]. An LTV system H is called underspread if it produces 
only small TF displacements of the input signal (see Article 4.7). 

12.4.1 Nonstationary Signal Estimation 
The enhancement or estimation of signals corrupted by noise or other interference 
is important in many applications. Here, we consider estimation of a nonstationary, 
zero-mean random signal s(t) from a noise-corrupted observed signal x(t)  = s(t) + 
n(t) by means of an LTV system H. The signal estimate is thus given by 

F ~(t) = (Hx)(t) = h(t, t') x(t ')  dt'. 
( x )  

(12.4.2) 

The additive noise n(t) is nonstationary and assumed uncorrelated with s(t). 

~ F. Hlawatsch  and G. Matz ,  Institute of Communications and I~adio-Frequency 
Engineering, Vienna University of Technology, Gusshausstrasse 25/389, A-1040 Vienna, Austria 
(fhlawats@pop.tuwien.ac.at, g.matz@ieee.org). Reviewers: P. Flandrin and S. Carstens-Behrens. 
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The time-varying Wiener filter. The LTV system H that minimizes the mean- 
square error (MSE) E{ 116 - s 12 } is the time-varying Wiener filter [2, 3] 

Hw = R~(R~ + Rn) -1. (12.4.3) 

Here, Rs and Rn denote the correlation operators 1 of signal and noise, respectively. 
For stationary random processes, Hw is an LTI system whose frequency response 
is given by [2, 3] 

Ps(f) (12.4.4) 
Hw(f )  - Ps (f) + Pn(f) ' 

where P~ (f) and Pn (f) denote the power spectral density of signal and noise, respec- 
tively. This frequency-domain expression involves merely a product and a reciprocal 
of functions (instead of a product and an inverse of operators as in (12.4.3)) and 
thus allows a simple design and interpretation of time-invariant Wiener filters. 

TF formulation of time-varying Wiener filters. We may ask whether a simple 
ibrmulation similar to (12.4.4) can be obtained for the time-varying Wiener filter 

Hw by replacing Hw(f )  with the GWS L (") (t, f)  and P~(f) Pn(f) with the GWVS Hw 

Ws (~) (t, f),  I47.. ~ (~) (t, f). Indeed, for jointly underspread processes s(t) and n(t), it can 
be shown [1] that the time-varying Wiener filter Hw can be written as the sum of two 
components: (i) an overspread (i.e., not underspread)system component that has 
negligible effect on the system's performance (MSE) and thus can be disregarded, 
and (ii) an underspread system component, hereafter denoted as H~r that allows 
the approximate TF formulation 

W:~) (t, f ) 
r(") (t f ) ~  (12.4.5) __(~) 
~ u ~  , W:  ") (t, f ) + W n (t, f ) 

This TF formulation extends (12.4.4) to the underspread nonstationary case and 
allows a simple and intuitively appealing TF interpretation of the time-varying 
Wiener filter (see Fig. 12.4.1). Let 7~s and 7~  denote the effective support regions 

of W (~) (t, f)  and W.. (~) (t, f),  respectively. In the "signal only" TF region T~s\7~n, 

(12.4.5) gives L (~) (t, f)  ~ 1 Thus, H~v passes all "noise-free" components of x(t) H~ 
without attenuation or distortion. In the "noise only" TF region ~ n \ ~ s ,  (12.4.5) 

gives L (~) H~ (t, f)  ~ 0, i.e., H~v suppresses all components of x(t) located in TF 
regions where there is no signal. Finally, in the "signal plus noise" TF region 7~s NT~n, 

I~g~ r(~) (t, f)l assumes values approximately between 0 and 1. Here, H~v performs an 
attenuation that depends on the signal-to-noise ratio at the respective TF point. 

1The correlation operator 1~= of a nonstat ionary random process x(t) is the positive (semi-) 
definite linear operator whose kernel equals the correlation function ra(t, t ' )  = E{x( t )x*( t ' )} .  
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Fig. 12.4.1" TF interpretation of the time-varying Wiener filter Hw for jointly underspread signal and 
noise processes" (a) Effective TF support regions of signal and noise, (b) TF pass, stop, and transition 
regions of the time-varying Wiener filter. 

TF design of time-varying Wiener filters. The TF formulation (12.4.5) suggests a 
simple TF design of nonstationary signal estimators. Let us define the "TF pseudo- 
Wiener filter" Hw by setting its GWS equal to the right-hand side of (12.4.5) [1]" 

W(~) (t, f ) 
L(- ~) (t, f )  ~-- W(~) ~) . (12.4.6) 

Hw (t, f) + W ( (t, f) 

For jointly underspread processes s(t), n(t) where (12.4.5) is a good approximation, 
the TF pseudo-Wiener filter Hw will closely approximate (the underspread part of) 
the optimal Wiener filter Hw; furthermore, it can be shown that Hw will then be 
nearly independent of the value of a used in (12.4.6). For processes s(t), n(t) that 
are not jointly underspread, however, Hw must be expected to perform poorly. 

Whereas the TF pseudo-Wiener filter Hw is designed in the TF domain, the 
signal estimate g(t) can be calculated in the time domain according to (12.4.2). The 

impulse response of Hw is obtained from L (a) (t, f)  as (cf. Article 4.7) 
Hw 

S;D(-')( I -)' 7') dr. (12.4.7) . § § 

An efficient implementation of the TF pseudo-Wiener filter Hw that is based on 
the multiwindow short-time Fourier transform is discussed in [I, 4]. 

Compared to the Wiener filter Hw, the TF pseudo-Wiener filter Hw possesses 
two practical advantages. First, the prior knowledge required for calculating Hw is 

~(~) 
given by the OWVS W: .) (t, f) and W n (t, f )  that are more intuitive and easier to 
handle than the correlation operators R~ and Rn. Second, the TF design (12.4.6) 
is less computationally intensive and more stable than (12.4.3) since it requires 
pointwise (scalar) divisions of functions instead of operator inversions. 

Robust TF Wiener filters. The performance of the filters Hw and Hw is sensitive 
to deviations of the second-order statistics (correlations or GWVS) from the nominal 
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statistics for which these filters were designed�9 This motivates the use of minimax 
robust Wiener filters that optimize the worst-case performance (maximum MSE) 
within specified uncertainty classes of second-order statistics [5, 6]. 

Consider a partition of the TF plane into K mutually disjoint TF regions Hi, 
i = 1, ..., K. Extending the stationary case definition in [7], we define so-called p- 
point uncertainty classes $ and Af as the sets of all nonnegative TF functions (not 

necessarily valid GWVS) Ws (t, f)  and Wn (t, f)  that have prescribed energies si and 

ni, respectively, within Hi, i.e., f f n  Ws(t, f ) d t d f  = si and f f n  Wn(t, f ) d t d f  - ni 
for i = 1, ..., K. For these uncertainty classes, the GWS of the minimax robust TF 
Wiener filter H a  is given by [5, 6] 

K 

s~ In, (t, f )  (12.4.8) L (~) (t, f)  - E si + ni H a  

i - -1  

where In, (t, f)  is the indicator function of TQ (i.e., In, (t, f )  is 1 for (t, f)  inside 7~i 

and 0 outside Hi) Note that L (a) (t, f)  is piecewise constant, expressing constant 
�9 HFt 

TF weighting within Hi. The performance of HR is approximately independent of 
the actual second-order statistics as long as they are within S, Af [5, 6]. Signal- 
adaptive, online implementations of robust time-varying Wiener filters using local 
cosine bases have been proposed in [6, 8]. 

Simulation results. Fig. 12.4.2(a), (b) shows the Wigner-Ville spectra (GWVS 
with c~ = 0) of jointly underspread signal and noise processes. The Weyl sym- 
bols (GWS with c~ = 0) of the corresponding Wiener filter Hw,  of its underspread 
part H ~ ,  and of the TF pseudo-Wiener filter H w  are shown in Fig. 12.4.2(c)-(e). 

It is verified that the Weyl symbol of H w  approximates that of H ~ .  The mean 

SNR improvement achieved by the TF pseudo-Wiener filter H w  was obtained as 
6.11dB; this is nearly as good as that of the Wiener filter H w  (6.14dB). 

To illustrate the performance of the robust TF Wiener filter Ha ,  we used K = 4 
rectangular TF regions Hi to define p-point uncertainty classes S and Af as described 
above. The regional energies si and ni were obtained by integrating the nominal 
Wigner-Ville spectra in Fig. 12.4.2(a), (b) over the TF regions Hi. The Weyl symbol 
of the robust TF Wiener filter HR in (12.4.8) is shown in Fig. 12.4.2(f). Fig. 12.4.3 
compares the nominal and worst-case performance of the Wiener filter H w  (designed 
for the nominal Wigner-Ville spectra in Fig. 12.4.2(a), (b)) with the performance 
of the robust TF Wiener filter HR. It is seen that HR achieves a substantial 
performance improvement over H w  at worst-case operating conditions with only a 
slight performance loss at nominal operating conditions. 

12.4.2 Nonstationary Signal Detection 
Next, we consider the discrimination of two nonstationary, zero-mean, Gaussian 
random signals xo(t) and xl(t). The hypotheses are 

H 0 :  x( t )  = xo( t )  v s .  = 
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Fig. 12.4.2" TF representations of signal and noise statistics and of various Wiener-type filters: (a) 
Wigner-Ville spectrum of s(t), (b) Wigner-Ville spectrum of n(t), (c) Weyl symbol of Wiener filter 
Hw, (d) Weyl symbol of underspread part H~v of Hw, (e) Weyl symbol of TF pseudo-Wiener filter 
Hw, (f) Weyl symbol of robust TF Wiener filter HR. The time duration is 128 samples; normalized 
frequency ranges from - I /4  to 1/4. 

The optimal detector. The optimal likelihood ratio detector [2, 3] calculates a 
quadratic form of the observed signal x(t), 

/?/? A(x)- - (HLx,  x>--- h L ( t , t ' ) x ( t ' ) x * ( t ) d t d t ' ,  (12.4.9) 
OO OO 

with the operator (LTV system) Ha given by 

HL = Rxlo - R ~  = R - ~ : ( R x l - R z o ) R x : .  (12.4.10) 

The test statistic A(x) is then compared to a threshold to decide whether H0 or H1 
is in force. For stationary processes, A(x) can be expressed in terms of the Fourier 
transform X ( f )  of x(t)  and the power spectral densities of xo(t) and zl (t) as 

/? A(x) - [X(f)l 2 HL(f)df, with Ha(f)  = Pxl ( f )  - Pxo( f )  (12.4.11) 
Pxo( f )P=~( f )  �9 

This frequency-domain expression involves simple products and reciprocals of func- 
tions (instead of operator products and inverses as in (12.4.10)) and thus allows a 
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Fig. 12.4.3: Comparison of the performance (output SNR vs. input SNR) of the ordinary Wiener filter 
Hw and the robust TF Wiener filter HR for various operating conditions. 

where 

simple interpretation and design of likelihood ratio detectors in the stationary case. 

TF formulation of nonstationary detectors. It is known [9] that  the quadratic 
test statistic in (12.4.9) can be rewritten as 

/?/? A(x) - W(a)(t, f )  L(~)*(t, f )  dtdf  (12.4.12) 
c<) c~ H L  

Wx (~) (t, f )  - x t + (~ - t -  (~  + 
oo 

is the generalized Wigner distribution [10] of the observed signal x(t). Thus, A(x) 

can be interpreted as a weighted integral of W (a) (t, f ) ,  with the TF weight function 
being the conjugate of the GWS of the operator HE. 

In analogy to Section 12.4.1, a simplified approximate TF formulation of A(x) 
exists for jointly underspread processes x0(t), xl(t) .  Here, the operator HE can be 
written as the sum of an overspread component whose effect is negligible and an 
underspread component, denoted H~, whose GWS can be approximated as [11] 

w~,  ~) (t, f )  - W~o (t f) 
L(a) (t f ) . ~  ' . (12.4.13) 

H~ ' ~ ( a )  (t f )  W~ (~) (t, f )  
Xo ~ Xl 

Substituting this approximation of L (~) (t, f )  for L (~) (t, f )  in (12.4.12) we obtain H ~  H L  

the following approximate TF formulation of our test statistic, 

~ ~1 (t, f )  - W~o (t, f )  
A(x) ~ W(~)(t'  f )  - ~ . ( ~ t - - - ~ - ; - - ~ :  dtdf . (12.4.14) 

~ =o ( , f )  =, ( t ,J)  

This TF formulation extends (12.4.11) to the underspread nonstationary case and 
allows an intuitively appealing TF interpretation that  is analogous to the one given 
in Section 12.4.1 in the context of the approximation (12.4.5). 
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TF design of nonstationary detectors. The TF formulation (12.4.14) suggests a 
simple TF design of nonstationary detectors. In analogy to (12.4.12), we define the 
test statistic /?/: A(x) ~- W (a) (t, f )  L )* (t, f ) d t d f ,  

O0 O0 L 

where the operator (LTV system) HL is defined by setting its GWS equal to the 
right-hand side of (12.4.13) [11]" 

W ('~) (t, f) W (c~) (t, f) 
L(- ~)(t ,f)  A ..x, - - -xo  

HL - - ( ~ )  " %0 (t, f) ) (t, f)  

For jointly underspread processes xo(t), xl(t)  where (12.4.13) is a good approxi- 
mation, HL will closely approximate (the underspread part of) HL, and thus the 
performance of the TF designed detector A(x) will be similar to that of the opti- 
real likelihood ratio detector A(x). For processes xo(t), x~(t) that are not jointly 
underspread, however, A(x) must be expected to perform poorly. 

Whereas the detector A(x) is designed in the TF domain, it can be implemented 
in the time domain in complete analogy to (12.4.9). The impulse response hL(t, t') of 

HL can be obtained from L (~) (t, f)  by an inverse Weyl transformation (cf. (12.4.7)). 
HL 

An efficient implementation of the TF detector A(x) that uses the multiwindow 
short-time Fourier transform is discussed in [12]. 

Compared to the likelihood ratio detector A(x), the TF designed detector/~(x) 
is practically advantageous because the statistical a priori knowledge required for 
its design is formulated in the intuitively accessible TF domain, and because its 
design is less computationally intensive and more stable since operator inversions 
are replaced by pointwise divisions of functions. These advantages are analogous 
to the advantages of the TF pseudo-Wiener filter discussed in Section 12.4.1. Min- 
imax robust detectors that are analogous to the minimax robust Wiener filter in 
Section 12.4.1 are reported in [13]. 

Simulation results. We first consider xo(t) - n(t) and Xl ( t )  : 8(t) -~- n(t), where 
signal s(t) and noise n(t) are jointly underspread, uncorrelated, zero-mean, Gaus- 
sian processes with Wigner-Ville spectra as shown in Fig. 12.4.4(a), (b). From Fig. 
12.4.4(c), (d), we verify that the Weyl symbols of the optimal operator HL and the 

TF designed operator HL are effectively identical. Also, Fig. 12.4.4(e), (f) shows 
that the performance of the TF designed detector/~(x) closely approximates that 
of the likelihood ratio detector A(x). 

Our next example concerns the detection of knocking combustions in car engines 
(see Article 15.2 and refs. [12,14,15] for background and details). Here, xo(t) is the 
nonknocking signal and Xl (t) is the knocking signal. Estimates of the correlations of 
xo(t) and x~ (t) were computed from a set of labeled training data, 2 and estimates 

2We are grateful to S. Carstens-Behrens, M. Wagner, and J. F. Bhhme for illuminating discus- 
sions and for providing us with the labeled car engine data. 
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Fig. 12.4.4" Comparison of likelihood ratio detector A(x) and TF designed detector A(x): (a) Wigner- 
Villa spectrum of s(t), (b) Wigner-Ville spectrum of n(t), (c) Weyl symbol of HL, (d) Weyl symbol 
of ~IL, (e) receiver operator characteristics (ROC) [2] of A(x), (f) ROC of/~(x). The ROCs were 
obtained by Monte Carlo simulation. The time duration is 128 samples; normalized frequency ranges 
from -- 1/4 to 1/4. 

of the Wigner-Ville spectra (shown in Fig. 12.4.5(a), (b)) were derived according 
to (12.4.1). The likelihood ratio detector A(x) and the TF designed detector/~(x) 
were constructed using these estimated statistics, and the performance of these 
detectors was analyzed by applying them to a different set of labeled data. It can be 
seen from Fig. 12.4.5(c) that the TF designed detector performs significantly better 
than the theoretically optimal likelihood ratio detector. This is due to numerical 
problems that occurred in the design of the likelihood ratio detector. Specifically, the 
estimated correlation matrices 3 were poorly conditioned. Despite the use of pseudo- 
inverses, the inversion of these matrices (which is required for the design of the 
likelihood ratio detector) could not be stabilized sufficiently. In contrast, the design 
of the TF detector merely involves a pointwise division of the estimated Wigner- 
Ville spectra. This is much less affected by numerical problems since divisions by 
near-to-zero values can easily be stabilized by means of a thresholding. 

12.4.3 Summary and Conclusions 
The generalized Wigner-Ville spectrum (GWVS) provides a natural extension of the 
power spectral density to underspread, nonstationary random processes. Similarly, 

3In the discrete-t ime case, correlation operators  are replaced by correlation matrices. 
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Fig. 12.4.5: Detection of knocking combustions: (a) Estimated Wigner-Ville spectrum of nonknocking 
combustion process xo(t), (b) estimated Wigner-Ville spectrum of knocking combustion process Xl (t) 
(crank angle is proportional to time; signal leng~ch is 186 samples), (c) ROCs of likelihood ratio detector 
A(x) (dashed line) and TF designed detector A(x) (solid line). 

the generalized Weyl symbol (GWS) provides a natural extension of the transfer 
function (frequency response) to underspread, time-varying linear systems. In this 
article, we have considered the application of the GWVS and GWS to the estimation 
and detection of underspread, nonstationary random processes. Using the GWVS 
and GWS, it was possible to extend classical stationary estimators and detectors to 
the nonstationary case in an intuitive manner. We note that  the general approach 
replacing the power spectral density with the GWVS and the transfer function with 
the GWS-- is  applicable to other problems of statistical signal processing as well, 
as long as the nonstationary processes involved are (jointly) underspread. 

Further time-frequency methods for nonstationary signal estimation and detec- 
tion are discussed in Articles 8.3, 9.2, 12.1, and 15.2 as well as in refs. [15-18]. 
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Chapter 13 

Time-Frequency 
Communications 

Methods in 

The wide range of potential applications of time-frequency methods made them 
an important tool in most fields of science and engineering. A large number of 
approaches exist, depending on the application considered. Key time-frequency 
methodologies are presented on specific applications in this Part V of the book and 
illustrated using selected examples. Telecommunications is one of the key industries 
where time-frequency methods are already playing an important role. The topic is 
represented by four articles selected for this chapter, complemented by articles in 
other chapters such as Articles 8.5 and 11.3. 

Due to possible hostile jamming, broadband communication platforms use 
spread spectrum technology where interference protection is achieved by interference 
excision. By distributing the signature of received data over a time-frequency re- 
gion, it is possible to attenuate strong interferences (Article 13.1). Linear dispersion 
in wireless communication channels distorts the transmitted signal in both time and 
frequency. This is accounted for by a time-frequency scattering function. In CDMA 
systems, fading and multi-access interference can be dealt with using time-frequency 
processing. A time-frequency RAKE receiver is described which accounts for both 
spectral and temporal channel variations (13.2). Eigenfunctions of linear systems 
can be modeled by signals with a time-frequency distribution well localized in the 
time-frequency plane. The knowledge of the eigenfunctions of time-varying transfer 
functions enables us to optimize the transmission strategy and take advantage of the 
channel dispersive properties (13.3). Detection and parameter estimation of chirps 
in communication systems may be implemented using the fractional FT (13.4). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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13.1 T IME-FREQUENCY INTERFERENCE MIT IGATION IN 
SPREAD SPECTRUM COMMUNICATION SYSTEMS o 

13.1,1 Spread-Spectrum Systems and Interference 
In modern broadband communication systems, mitigation of correlated interfer- 
ence is an important aspect of system performance. Benign jamming sources exist 
ubiquitously in the transmission channel of multiple access systems like cellular 
telephony and wireless networks. Hostile jamming is certainly a significant issue 
in military communication systems. For these and many other reasons, broadband 
communication platforms employ spread spectrum (SS) technology, in which [1] 

(1) The signal occupies a bandwidth much in excess of the minimum bandwidth 
necessary to send the information. 

(2) Spreading is accomplished by means of spreading signal, which is often called 
a code signal that is independent of the data. 

(3) At the receiver, despreading for the recovering the original data is accom- 
plished by the correlation of the received spread signal with a synchronized replica 
of the spreading signal. 

A commonly employed SS technique called direct sequence (DS) is to superim- 
pose a pseudorandom noise (PN) sequence on the data bits. This effectively widens 
the signal bandwidth by a factor proportional to the ratio of the rate of the PN 
sequence divided by the data rate. The advantage of this spreading is that the wider 
bandwidth essentially marginalizes narrowband interference sources so they have a 
smaller effect on overall system performance. 

At the receiver, the cross correlation with the replica of the PN sequence transfers 
the information signal back to its original bandwidth while reducing the level of the 
narrowband interference by spreading it across the bandwidth occupied by the PN 
sequence. Since the availability of the code at the receiver enables despreading 
and recovery of data while spreading and suppression of interference, any level of 
interference rejection can be achieved by using sufficient processing gain. This, 
however, may entail increasing the bandwidth of the transmitted signal beyond the 
limits of the available frequency spectrum. Therefore, signal processing techniques 
have been used in conjunction with the DS spread spectrum receiver to augment 
the processing gain, permitting greater interference protection without an increase 
in bandwidth [2]. 

Typically, interference excision in DSSS systems is performed in the following 
domains [3]. 

Frequency Domain: the FFT of the data over the information bit is weighted 
by appropriate values and then transformed back to the time domain. This is an 
effective method for stationary narrowband interference. Sidelobes may present a 
problem in removing the interference without losing some of the signal energy. 

Time Domain: this includes clipping or gating the high energy regions. It also 

~ Moeness  G. Amin,  Villanova University, Villanova, PA, and Alan  R. Lindsey,  
Air Force Research Laboratory, Rome, NY. Reviewers: S. Batalama and D. L. Jones. 
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Fig. 13.1.1: Excision methods for nonstationary signals. 

includes Wiener filtering, adaptive linear predictors, and smoothers. Tracking is 
highly dependent on the signal-to-noise ratio (SNR) and often fails under rapidly 
time-varying interference. 

Time and Frequency Domains: a transversal filter is designed from the spectral 
information of the data. Spectral estimation methods combined with open-loop 
adaptive filtering have been shown to suffer from the same drawbacks as frequency- 
domain techniques. 

Wavelet/Gabor domain: the discrete wavelet transform (DWT) or the Gabor 
transform is applied to the data, and the coefficients of high energy are removed prior 
to the inverse transform. The DWT is appropriate for cases of pulse jamming or 
interference with burst characteristics. The Gabor transform is an effective excision 
tool only when the interference is consistent with the corresponding tiling of the 
time-frequency ((t, f)) plane. The same is true for the wavelet transform. 

None of the above methods is capable of effectively incorporating the time- 
varying nature of the interference frequency characteristics. These methods all suffer 
from their lack of intelligence about the other domain(s) and therefore are limited 
in their results and their applicability. To illustrate, Fig. 13.1.1 shows that most 
frequency-and time-domain excisions, in essence, respectively, remove all desired 
signal information over the frequency band A F  and time duration A T .  As such, 
in the case of time-varying interferences, frequency-domain methods ignore the fact 
that only few frequency bins are contaminated by the jammer at a given time. 
Dually, time domain excision techniques, do not account for the cases where only few 
time samples are contaminated by the jammer for a given frequency. Applying either 
method will eliminate the interference but at the cost of unnecessarily reducing the 
desired signal energy. 

The above example clearly demonstrates that nonstationary interferers, which 
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have model parameters that change with time, are particularly troublesome due to 
the inability of single-domain mitigation algorithms to adequately ameliorate their 
effects. In this challenging situation, and others like it, joint time-frequency tech- 
niques can provide significant performance gains, since the instantaneous frequency 
(IF), the instantaneous bandwidth, and the energy measurement, in addition to 
myriad other parameters, are available. The objective is then to estimate the time- 
frequency signature of the received data using time-frequency distributions (TFDs), 
attenuating the received signal in those time-frequency regions that contain strong 
interference. This is depicted by the region in between the fine lines in Fig. 13.1.1. 

13.1.2 Typical Signal Model 

The signal model r(t) arriving at a receiver is in the form 

r(t) = s(t) + n(t) + j(t) (13.1.1) 

which is composed of the desired spectrally spread signal s(t), the composite additive 
jamming signal j(t) which may be made up of several different jammers from various 
sources, and the obligatory uncorrelated thermal noise, n(t), commonly assumed to 
be white with a Gaussian distribution. 

13.1.3 A Time-Frequency Distribution Perspective 
A straightforward application of time-frequency methods in the underlying problem 
is the design of adaptive notch filters based on the instantaneous frequency of the 
jamming signal. Amin pioneered this approach in [3], using the assumption that 
n(t) and s(t) are spread across the (t, f)  plane and without features. In this model, 
the correlated features in j(t) rise conspicuously in the (t, f )  distribution performed 
at the input of the receiver, and subsequent instantaneous frequency information 
allows for the design of a strong notch filter that effectively excises only the portion 
of the (t, f)  spectrum contaminated by the jammer. The process is illustrated in 
Fig. 13.1.2. The notch filter developed from the TFD can be very short having been 
shown to be very effective with as few as three or five coefficients. 

Wang and Amin [4] considered the performance analysis of this system using a 
general class of multiple-zero FIR excision filters showing the dependence of the bit 
error rate (BER) on the filter order and its group delay. The effect of inaccuracies 
in the jammer IF on receiver performance was also considered, as a function of the 
filter notch bandwidth. Closed form approximations for signal to interference plus 
noise ratio (SINR) at the receiver are given for the various cases. The general form 
of the receiver SINR is given by 

E2[D~] 
S I N R -  Var(Ds) + Var (Dj )+  Var(Dn) (13.1.2) 

where the three quantities in the denominator represent the variances of the decision 
variable, due to the SS signal, the jammer, and the noise respectively. E[.] is the 
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Fig. 13.1.2: TFD Excision System of Amin et al. 

expectation operator, and with typical independent and uncorrelated characteristics 
of jammers and noise, it only leads to non-zero values when applied to the desired 
signal. If the jammer is fully excised then Var(Dj) = 0 .  It is clear from the above 
equation that one of the main goals of the excision process should be reducing the 
self-noise represented by the term Var(Ds). 

One of the drawbacks to the notch filter approach in [3] is the infinite notch 
depth due to the placement of the filter zeros. The effect is a "self-noise" inflicted 
on the received signal by the action of the filter on the P N sequence underlying the 
spread information signal. This problem led to the design of an open-loop filter with 
adjustable notch depth based on the jammer energy. The notch depth is determined 
by a variable embedded in the filter coefficients chosen as the solution to an opti- 
mization problem which maximizes receiver SINR cost function given in (13.1.2). 
The TFD is necessary for this work, even for single component signals, because 
simple IF estimators do not provide energy information. Amin, Wang, and Lindsey 
accomplished this work in [5], incorporating a "depth factor" into the analysis and 
redeveloping all the SINR calculations. The result was significant improvement in 
SINR, especially at mid-range jammer-to-signal ratios (JSRs), typically around 0 
to 20 dB. 

Barbarossa and Scaglione [6] proposed a two-step procedure based on dechirping 
techniques commonly applied in radar algorithms (see Article 13.3). In the first step 
the time varying jammer is converted to a fixed frequency sinusoid eliminated by 
time invariant filters. The process is reversed In the second step and the jammer-free 
signal is multiplied by the jammer TF signature to restore the DSSS signal and noise 
characteristics which have been strongly impacted in the first phase. Comparison 
of this technique with time-varying excision filters is yet to be conducted in terms 
of computational complexity and robustness to IF estimation errors. 

Synthesis of the interfering signal from information available at the receiver fol- 
lowed by direct subtraction [7] is an approach put forth by Lach, Amin, and Lindsey. 
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In many situations, it is possible to make assumptions about certain key parame- 
ters which describe fully the nature and composition of a jammer, and then utilize 
signal processing to extract these parameters from the received signal. Once the 
parameters are determined, a replica of the jammer can be derived and subtracted 
from the incoming signal to produce an essentially jammer free channel. However, 
for this process to work, a jammer of constant modulus and polynomial phase is 
required. These parameters are extracted at the receiver via time-frequency distri- 
bution where the optimally matched signal in a least squares sense is constructed. 
The jamming signal is projected to the constant modulus and then phase-matched. 
The result, especially in high SNR environments, is a signal matching the jammer 
in amplitude, frequency profile and phase. The last step of generating the differ- 
ence signal, which is theoretically also the desired signal after the subtraction of the 
jammer, is straightforward. 

To overcome the drawbacks of the least squares synthesis methods Amin, Rami- 
neni and Lindsey [8] proposed a projection filter approach in which the nonstation- 
ary interference subspace is constructed from its TF signature. Since the signal 
space at the receiver is not specifically mandated, it can be rotated such that a sin- 
gle jammer becomes one of the basis functions. In this way, the jammer subspace is 
one dimensional and its orthogonal subspace is jammer-free. A projection of the re- 
ceived signal onto the orthogonal subspace accomplishes interference excision with a 
minimal message degradation. The projection filtering methods compare favorably 
over the previous notch filtering systems. 

13.1.4 Example 
At this point, in order to further illustrate these excision methods, the work in [8] 
will be detailed since it includes comparisons between the two most prominent tech- 
niques based on time-frequency distributions currently being studied- notch filtering 
and projection filtering. The signal model is, as expected, given by (13.1.1), and 
the major theme of the work is to annihilate interference via projection of the re- 
ceived signal onto a "jammer-free" subspace generated from the estimated jammer 
characteristics. Fig. 13.1.3, reprinted from [8], clearly illustrates the trade-offs be- 
tween projection and notch filtering based on the JSR. In the legend, the variable a 
represents the adaptation parameter for the notch filtering scheme and N represents 
the block size, in samples, for a 128 sample bit duration in the projection method. 
Thus, N=128 means no block processing and N=2 corresponds to 64 blocks per bit 
being processed for projection. Since the projection and non-adaptive notch filter 
techniques are assumed to completely annihilate the jammer, their performance is 
decoupled from the jammer power, and therefore correctly indicate constant SINR 
across the graph. The dashed line representing the notch filter with a=0 is really 
indicating no filtering at all, since the adaptation parameter controls the depth of 
the notch. 

It is evident from Fig. 13.1.3 that without adaptation a crossover point occurs 
around 2 dB where filtering with an infinitely deep notch is advantageous. Thus 
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Fig. 13.1.3: Comparison between projection and notch filtering excision methods. 

when jammer power exceeds this point, presumably a user would flip a switch to 
turn on the excision subsystem. However, with adaptation this process happens au- 
tomatically, while giving superior performance in the midrange. For the projection 
technique, the block size determines receiver performance conspicuously (ceteris 
paribus). Most important to note, however, is the superior performance of projec- 
tion over all methods when the block size is equal to the bit duration, i.e. no block 
processing. It is feasible that computational complexity may warrant a trade-off be- 
tween SINR and block size, in which case a hybrid implementation may be of benefit 
- one that automatically switches between adaptive notch filtering and projection 
depending on the desired SINR. In any case, this example illustrates the parameters 
involved in the design of modern excision filters for nonstationary jammers. 

13.1.5 Summary and Conclusions 
The prime objective of interference suppression in broadband signal platforms is 
to cancel the interference with minimum distortions of the desired signal. Time- 
frequency signal representation provides the mechanism to achieve that objective 
for a large class of nonstationary interference signals. The signal localization in 
the time-frequency domain allows signal processing, acting on information of the 
instantaneous frequency and bandwidth, to play an effective role in enhancing the 
receiver performance and improving the bit error rates over existing techniques that 
deal with only the time-domain or the frequency-domain. 

We have presented the problem of interference excision from a quadratic time- 
frequency perspective. Joint time-frequency and time-scale linear transforms have 
also been successfully applied to suppress nonstationary jammers. Further citations 
in this area can be found in the references of [2] and [9]. 
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13.2 C O M M U N I C A T I O N  OVER LINEAR DISPERSIVE 
CHANNELS: A T I M E - F R E Q U E N C Y  PERSPECTIVE ~ 

13.2.1 Linear Dispersive Channels 
Linear dispersive channels are encountered in many applications, including mobile 
wireless communications and underwater acoustical communications [1]. In general, 
such channels disperse the transmitted signal in both time and frequency. Without 
proper system design, the effects of dispersion, such as signal fading, can signif- 
icantly limit system performance. However, appropriate signaling and reception 
can significantly mitigate the effects of dispersion. Accurate modeling of channel 
characteristics is critical in this regard. 

The effect of the channel on the transmitted signal intimately depends on the 
bandwidth-duration product (TBP) of the signaling waveforms. Narrowband sig- 
naling schemes with TBP .~ 1 typically suffer from significant intersymbol interfer- 
ence (ISI) requiring sequence (Viterbi) decoding at the receiver. Linear equalizers 
constitute a sub-optimal low-complexity solution for narrowband systems. In con- 
trast, wideband signaling schemes with TBP >> 1 can significantly mitigate ISI and 
side-step the requirement for equalization. In fact, wideband systems can actu- 
ally exploit the dispersion effects for improved performance. Time-frequency rep- 
resentations and methods provide useful insights in the analysis and design of such 
wideband communication systems. The goal of this article is to highlight the key 
aspects of this time-frequency perspective on wideband communication over linear 
dispersive channels. We develop the concepts in the context of spread-spectrum 
code division multiple access (CDMA) systems. However, the general ideas hold in 
other applications as well, including underwater acoustical communications. 

The next section describes a canonical time-frequency model for wideband dis- 
persive channels that lays the foundation of the time-frequency perspective. The 
model is used in Section 13.2.3 to discuss various key aspects of wireless CDMA 
communication system design. 

13.2.2 Time-Frequency Model for Dispersive Channels 
Let x(t) denote the transmitted complex baseband signal. The received signal after 
passing through a linear dispersive channel can be generally expressed as [1,2] 

- + = fo 
h(t, 7")x(t - 7)d7 + e(t), (13.2.1) 

where h(t, 7-) denotes the time-varying channel impulse response, s(t) is the complex 
baseband signal at the output of the channel, and c(t) is additive white Gaussian 

2 The maximum delay produced noise (AWGN) with power spectral density a c . 

~ Akbar M. Sayeed, Department of Electrical and Computer Engineering, University 
of Wisconsin, Madison, WI 53706, USA (akbarQengr.wisc.edu). Reviewers: S. Barbarossa and 
M. G. Amin. 
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by the channel, Tin, is called the multipath spread of the channel. The follow- 
ing equivalent channel representation is particularly relevant from a time-frequency 
perspective 

s(t) - H(~, T)x(t -- T)eJ2"~tdvd7, (13.2.2) 
JO J - -Bd 

where H(~, 7-) = f h(t, T)e-J2~tdt is the time-frequency spreading function of the 
channel [1,2]. The variable 7 corresponds to temporal (multipath) spreading pro- 
duced by the channel and the variable ~ corresponds to the spectral (Doppler) 
spreading produced by the channel. The maximum Doppler frequency produced 
by the channel, Bd, is called the Doppler spread of the channel. The representa- 
tion (13.2.2) states that the output signal s(t) is a linear combination of time- and 
frequency-shifted versions of the transmitted signal x(t). 

Canonica l  T i m e - F r e q u e n c y  Channe l  Mode l  
The channel model (13.2.2) in terms of a continuum of scatterers is difficult to 

incorporate in receiver design. The finite duration T and (essentially) finite one- 
sided bandwidth B of the signaling waveform x(t) can be exploited to derive a 
canonical time-frequency channel model that greatly facilitates system design. The 
canonical model asserts the following channel representation [2-4] 

L M L M 

s(t) ,~ hmzxmz(t) = I-I -~,-~ x t -  -~ 
l---0 m = -  M / - -0 m = -  M 

where L = [TmB1, M = [TBd], and {hmL} are samples of a smoothed version, 
H(~, T), of the spreading function. The model (13.2.3) is a canonical uniform time- 
frequency (multipath-Doppler) sampling of the channel induced by the finite du- 
ration and bandwidth of x(t). The sampling resolution in is AT = 1/B in time 
(multipath) and At, = 1/T in frequency (Doppler). 

The canonical representation (13.2.3) states that the output signal s(t) belongs 
to a subspace spanned by the basis functions 

Xml(t)--X t - - ~  , l = 0 , ' " , L ,  m = - M , . . . , M  (13.2.4) 

that are discretely time-frequency shifted versions of the transmitted signal. The 
dimension of this (active) subspace is Na = (L + 1)(2M + 1) ,,~ 2TBTmBd + TmB + 
2TBd + 1 which is proportional to the TBP (TB) of the signaling waveform as 
well as the channel spread factor TmBd. Typical channels encountered in practice 
are underspread: TmBd << 1. While (13.2.4) provides a fixed basis for representing 
the received signal, an alternative signal representation in terms of approximate 
eigenfunctions of underspread channels is developed in Article 13.3 in this volume. 
However, the eigenfunctions are not fixed and need to be computed for each chan- 
nel realization. Underspread channels imply that the output signal subspace is 
one-dimensional (Na = 1) for narrowband (TB = 1) systems, whereas it is Na > 1 
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dimensional for wideband (TB >> 1) systems. As we will see, this increase in 
dimensionality due to wideband signaling plays an important role in improved com- 
munication over dispersive channels. Note that once the signaling waveform x(t) 
and the channel spreads Tm and Bd are known at the receiver, all information about 
the channel is captured linearly via {hml} in (13.2.3). 

S ta t i s t ica l  C h a n n e l  C h a r a c t e r i z a t i o n  
Communication system performance depends on statistical channel character- 

istics. A widely used model is the wide-sense stationary uncorrelated scattering 
(WSSUS) model in which {H(u, T)} are modeled as uncorrelated Gaussian random 
variables [1,2]: $[H(u, T)H*(u', ~-')] = ~(u, T)5(7 -- ~")5(U -- U') where ~I,(u, T) is the 
time-frequency scattering function which quantifies the relative channel power at 
different delays and Doppler shifts. The support of ~I,(u, T) is limited to the chan- 
nel spreads: [0, Tm] • [-Bd, Bd]. Under the WSSUS assumption, it can be shown 
that the channel coefficients {hml} in the canonical time-frequency model (13.2.3) 
are approximately uncorrelated if ~(u, T) is sufficiently smooth. For simplicity, we 
focus on Rayleigh fading WSSUS channels in which {hmz} are zero mean, uncor- 
related Gaussian random variables. A more detailed characterization of randomly 
time-varying channels is developed in Article 9.5 in this volume. 

13.2.3 Communication over Dispersive Channels 
Signals with duration T and bandwidth B form a vector space of dimension 
No ..~ TB. Spread-spectrum waveforms used in CDMA system take the form 

N-1 (t nTc) where c[n] is the length-N spreading code associated q ( t ) -  }-~n:0 c[n]v - 

with the waveform q(t), Tc is the chip duration, and N = T/Tc is the processing 
gain. For CDMA signals, B ~ 1/Tc and N .~ TB  ..~ No. Given a particular spread- 
spectrum waveform q(t), a complete basis for the signal space can be generated via 
distinct waveforms of the form {qmL(t)} as defined in (13.2.4). The two most signif- 
icant factors affecting CDMA system performance are signal fading and multiaccess 
interference (MAI). Fading is due to the destructive combination of various time- 
frequency shifted signal copies and manifests itself large fluctuations in received 
signal power. MAI is caused by the multiple users simultaneously communicating 
over the channel and can drown the signal of the desired user. 

We first discuss the role of time-frequency processing in single-user CDMA sys- 
terns, highlighting the concept of diversity to combat fading. We then discuss the 
issue of interference suppression in multiuser systems via the notion of certain time- 
frequency subspaces. For simplicity, we focus on coherent receivers with binary 
phase shift keying (BPSK). We also make the assumption that Tm << T; that is, 
the ISI is negligible. Thus, symbol by symbol detection suffices. 

13.2.3.1 Time-Frequency RAKE Receiver 
Consider a single symbol transmission in a single-user system; that is, x(t)  = bq(t), 
where q(t) is the wideband signaling waveform and b c { - 1 ,  1} is the transmitted 
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bit. The channel model (13.2.3) dictates the following front-end time-frequency 
correlation at the receiver 

T L M 

- (r, qml) - [ r(t)q~l(t)dt = b E E (qm't',qml)hm't' + (c, qmz). Zml 
J U  l~=Orn~=-M 

(13.2.5) 
The correlator outputs {zml } form the Na-dimensional representation of the noisy 
received signal with respect to the basis {qmz(t)}. They are also the samples of the 
narrowband cross-ambiguity function, Ar,q(u, 7), between the received waveform 
r(t) and the signaling waveform q(t); that is, Zml - Ar,q (~, l )  where Ar,q(V, T) = 
f r(t)q* (t -- T)e-J~tdt [5]. The correlator outputs can be expressed in vector form 
as 

z = bQh + w (13.2.6) 

2Q), and Q is an Na x Na where h is the vector of channel coefficients, w ~ Af(0, a~ 
matrix of correlation between the different basis waveforms consisting of the entries 

(qm'l'  , qml) eJ2'~(m-m')l' T B  
_ _ A q q  ( m - m '  l - l ' )  

' T ' B " 

(13.2.7) 

For typical spread-spectrum CDMA waveforms, and with chip-rate multipath sam- 
pling (B = 1/Tc in (13.2.3)), the basis {qmz(t)} can be approximately orthogonal 
resulting in Q ~ I; that is, (qm'l', qmL) ~ 5t-l'Sm-m'. This implies that the sampled 
auto-ambiguity function of q(t) in (13.2.7) is approximately a "thumbtack" function 
with peak at the origin. 

Given estimates of the channel coefficients {hint}, the time-frequency correlator 
outputs {Zml } are coherently combined at the receiver to yield the final bit estimate 

/~ -- sign real E hmLzml 
/=0 m = -  M 

= sign {real [hHz~] ) - - s i g n  {real [bhHQh + h H w ] }  

where the superscript H denotes complex conjugate transpose. The receiver (13.2.8) 
is a time-frequency generalization of the RAKE receiver used in conventional CDMA 
systems [4]. The time-frequency RAKE receiver performs joint multipath-Doppler 
combining to account for spectral and temporal channel variations within a sym- 
bol in contrast to the multipath combining in conventional RAKE receiver. Con- 

A 

ditioned on the channel coefficients h, and with perfect estimates (h - h), the 
bit-error-probability (BEP) of the receiver is given by Re,fading(h) - Q(SNR(h)) 

1 x where SNR(h) - 2hHQh/a 2 and Q(x) = ~ fo e-t2/2dt" The unconditioned BEP 
is given by averaging over the statistics of the channel coefficients: Re,fading -- 
E[Pe,fading(h)] -- E[Q(SNR(h))]. 



Communication Over Linear Dispersive Channels 553 

13.2.3.2 Combating Fading with Time-Frequency Processing 
The performance of the receiver (13.2.8) operating over an AWGN channel with the 
same average SNR as the fading channel is given by P~,AWCN = Q(E[SNR(h)]) = 
Q(2 trace(QRh)/Cr~) where trace(.) denotes the trace of a matrix and Rh = E[hh H] 
is the channel correlation matrix. We note that Re,fading ~ Pe,AWGN and the loss in 
performance under fading due to the fluctuations in SNR(h) is quite significant. For 
example, achieving a BEP of 10 -3 over a Rayleigh fading channel requires about 18 
dB additional SNR compared to an AWGN channel with the same average SNR [1]. 

Diversity signaling and reception is a general technique for combating the effect 
of fading. The basic idea is to transmit the signal over multiple independent fading 
channels while keeping the total transmitted power constant. In the case of coherent 
reception, as the number of diversity channels increases, the performance of the 
diversity reception over a fading channel approaches that of an AWGN channel at 
the same average SNR [1]. 

The remarkable advantage of wideband signaling over WSSUS fading channels 
comes from the fact that  the different delayed and Doppler shifted copies of the 
signaling waveform in (13.2.3) serve as Na virtual diversity channels [3,4]. In essence, 
the receiver is able to resolve Na weakly correlated time-frequency shifted copies 
({qml(t)}) of the transmitted waveform that are linearly independent and serve as 
virtual diversity channels carrying the same information bit. Using the Karhunen- 
Lo~ve expansion, the SNR can be written as SNR(h) N 2 -- }-]n~=l ~nXn where {X2n } are 
independent chi-squared random variables each with 2 degrees of freedom and {A,,} 
are the eigenvalues of 2QRh/Cr~. Keeping the transmitted power constant, the law of 
large numbers dictates that S N R ( h ~ r ~  E [ S N R ( h ) ] -  trace(2RhQ/a2~) and thus 
P~,fadin N"-*'~ Pe,AWCN. Thus, as the number of time-frequency signal components 
increases in (13.2.3), the coherent receiver (13.2.8) completely combats the loss in 
performance due to fading. For given channel spread factor, TmBd, the larger the 
TBP of the signaling waveform, the higher the level of diversity. This advantage 
of wideband signaling is exploited in CDMA wireless communication systems via 
the use of direct-sequence spread-spectrum waveforms as well as in underwater 
acoustical communications via the use of linearly frequency-modulated waveforms. 
In particular, Doppler diversity, first introduced in [4], can be exploited in practice 
via time-selective signaling which increases the effective symbol duration [6]. 

13.2.3.3 Interference Suppression via Time-Frequency Subspaces 
In CDMA systems, interference stems from multiple users simultaneously using the 
channel. In underwater acoustics, reverberation is the major source of interference. 
In either case, the time-frequency channel model (13.2.3) can be fruitfully exploited 
for effective interference suppression. The key idea is the notion of time-frequency 
subspaces associated with the desired signal and interference [7, 8]. We illustrate 
the concept in the context of CDMA systems. 

Consider a CDMA communication system with K users. The k th user is assigned 
a signaling waveform qk(t). According to the model (13.2.3), each user is associated 
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with a canonical basis {qk,mL(t)}. For simplicity, we assume that  all users are 
transmitt ing synchronously. The signal at any receiver can be represented as 

K K Lk Mk 

r(t) .~ E sk(t) + n(t) = E bk E E hk,mlqk,ml(t) + n(t). (13.2.9) 
k = l  k = l  /=0 rn=--Mk 

Suppose that  we are interested in decoding the signal of the first user. We consider 
decentralized detection in which only the code of the desired user is known at the 
receiver [8]. In this case, bit detection is accomplished by projecting onto the 
waveforms {ql,ml} associated with the first user. For a discussion of centralized 
detection which uses information about all users, we refer the reader to [7]. 

Recall that  a subset of {ql,mz} provide a complete basis for the signal space. 
The key idea from the viewpoint of interference suppression is that  of active and 
inactive subspaces, Sa and $ia, respectively. The active subspace, Sa, is defined 
as the span of the basis elements that  lie within the the multipath-Doppler channel 
spread and form the diversity channels: Sa = span{ql,ml : l = 0, 1 , . . .  , L1, m = 
- M 1 , . . .  , M1}. The inactive subspace, $ia, is spanned by elements that  lie outside 
the channel spread: $ia = span{ql,mZ : 1 ~ {0 ,1 , . . .  ,L1}, rn ~ { - M I , . . .  ,M1}}. 

The N,-dimensional vector of correlator outputs corresponding to S,  can be 
expressed as 

K 

Za -- blQllhl  + E bkQlkhk + Wa = blSl + ia + Wa (13.2.10) 
k=2 

where the first terms represents the signal of interest (as in the single-user case), 
the second term represents the interference corrupting the active subspace, and the 
third term represents background noise. The matrix Qlk denotes the correlation 
between the active basis waveforms of the first and the k th user. Let Ni, <_ No - N~ 
denote the dimension of the inactive subspace. The vector of correlator outputs 
corresponding to $i~ is given by 

K 

2~ia -- E b k Q l k h k  2F Wia -- iia + Wia ( 1 3 . 2 . 1 1 )  

k=2 

where Qlk represents the correlation between the inactive basis waveforms of the 
first user and the active basis waveforms of the k th user. Note that  Zia does not 
contain the signal of interest it only contains interference (iia) and noise (Wia). 
By the very nature of spread-spectrum signals, i~ is correlated with iia and the basic 
idea is to use ii~ to suppress i~ corrupting the active subspace. After interference 
suppression, the "cleaned-up" version of Za can be coherently combined as in the 
single-user case (see (13.2.8)) to decode the bits of the desired user. The dimension 
of $ia controls the receiver complexity and the level of MAI suppression. 

A linear receiver may be used to accomplish both interference suppression and 
diversity exploitation in the multiuser case. The bit estimate for bl is given by 

D1 -- sign{real[g Hz]} -- sign{real[gHaza + giHzia]} (13.2.12) 
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where the Na + Nia dimensional filter g processes the active and inactive cor- 
relator outputs. If g is chosen to minimize the mean-squared-error (MSE) be- 

tween bl and bl, the linear filter admits an intuitively appealing decomposition: 
H H _ C  H gHz~ + gi~za -- ga [Za Zia]. In this decomposition, the matrix filter C forms 

a minimum MSE (MMSE) estimate of Za from Zia, thereby suppressing the in- 
terference corrupting the active subspace. The filter g~ then further suppresses 
any residual interference and exploits multipath-Doppler diversity to combat fad- 
ing. The processing of N~ dimensional active correlator outputs, z~, is necessary 
for maximal diversity exploitation. The inactive subspace serves the sole purpose 
of interference suppression. It's dimension can be progressively increased to sup- 
press any desired number of interfering users up to No - Na. Thus, the notion of 
active/inactive time-frequency subspaces provides a natural framework for inter- 
ference suppression and controlling the complexity of the multiuser time-frequency 
receiver. 

13.2.3.4 An Illustrative Example 

Recall that  the key parameters are the signal space dimension, No ,~ T B ,  which 
is proportional to the spreading gain N = T/Tc ,  and the products TmB and TBd  
that control the level of multipath and Doppler diversity, respectively. We consider 
a system with a spreading gain of N = 64 and a multipath spread of Tm = 2Tc. 

Consider first a single-user system to illustrate the effects of multipath-Doppler 
diversity. Suppose chip-rate sampling (B = 1/Tc) at the receiver so that  L = 2, 
and 0 < TBd  < 0.5 so that  M = 1. This results in an Na = 9 dimensional active 
subspace. Assume uniform power in all the multipath channel components. Let 
p E (0, 1/3) denote the ratio of the power in each of the m = -t-1 Doppler components 
relative to the total power in the three (m = -1 ,  0, 1) components. As TBd  ---* 0.5 
(faster fading), p -~ 1/3 to yield maximum Doppler diversity. 1 Figure 13.2.1(a) 
shows the BEP of the coherence time-frequency RAKE receiver (13.2.8) as a function 
of SNR for different values of p. It is evident that  time-frequency RAKE receiver 
yields significant gains over RAKE as p increases. We note that  while typical values 
of TBd  are relatively small in practice, 2 simple signaling schemes with longer symbol 
duration may be used to increase TBd  to achieve significant Doppler diversity [4]. 

Now consider a multiuser system to illustrate the role of active/inactive sub- 
spaces in interference suppression. We consider a slow-fading system (TBd = O) 
employing 4-fold oversampling (B = 4~To), resulting in a signal space dimension 
of No = 4N = 256 and Na = 9. There are are 27 interfering users at the same 
power as the desired user. The signal-to-interference-and-noise-ratio (SINR) at the 
output of the desired user's receiver is an appropriate performance metric in the 
multiuser case. Figure 13.2.1(b) shows the SINR of the MMSE receiver as a func- 

1For a uniform Doppler power spectrum, the values p -- 0.0125, 0.05, 0.25 are achieved at 
TB d ,~ 0.2, 0.4, 0.6, respectively [4]. 

2For example, TBd ~, 0.013, at a carrier frequency of 1.8 GHz, data rate of 10 kHz, and 
maximum speed of 50 mph. 
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Fig.  13.2.1: (a) Joint multipath-Doppler diversity gains achieved by a single-user coherent time- 
frequency RAKE receiver as a function of p. The performance of conventional RAKE corresponds to 
p = TBd = 0. (b) The monotonic increase in the output SINR of a multiuser time-frequency RAKE 
receiver with increasing dimension of the inactive time-frequency subspace. For Nia < 19, the SlNR 
saturates, whereas for Nia >_ 19, interference is completely suppressed so that output SlNR increases 
linearly with input SNR as in a single-user system. 

tion of the transmitted SNR of the desired user for different values for the inactive 
subspace dimension, Nia. As evident from Figure 13.2.1(b), the receiver goes from 
an interference-limited regime to a noise-limited regime as ]Via increases, with the 
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optimal cut-off value around N i a  - -  2 8 -  N a  : 19. Thus, the dimension of the inac- 
tive subspace can be progressively increased to achieve a desired level of interference 
suppression with commensurate receiver complexity. 

13.2.4 Summary and Conclusions 
The time-frequency channel model (13.2.3) at the heart of the framework presented 
in this article was first developed by Bello in his classic paper [2] on WSSUS chan- 
nels. The monograph by Kennedy [3] exploits the model to address several key 
questions relating to reliable communication over dispersive channels, including ca- 
pacity and error exponents. Results relating to the use of the model in wireless 
communications are more recent and are necessarily incomplete due to ongoing 
investigations. As evident from our brief discussion on diversity and interference 
suppression, the insights offered by the time-frequency perspective are very use- 
ful in efficient transceiver design. While not discussed in this article, similar ideas 
can be fruitfully exploited in the design of efficient transmission schemes for reap- 
ing the capacity of linear dispersive channels, including the design of orthogonal 
frequency division multiplexing (OFDM) schemes that are strong candidates for 
high rate wireless communication. Furthermore, the same basic principles apply in 
underwater acoustical communications as well. 
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13.3 EIGENFUNCTIONS OF UNDERSPREAD LINEAR 
COMMUNICATION SYSTEMS 0 

The knowledge of the eigenfunctions of a linear system is a fundamental issue both 
from the theoretical as well as from the applications point of view. Nonetheless, no 
analytic solution is available for the eigenfunctions of a general linear system. There 
are two important classes of contributions suggesting analytic expressions for the 
eigenfunctions of slowly-varying operators: [1] and the references therein, where it 
was proved that the eigenfunctions of underspread operators can be approximated 
by signals whose time-frequency distribution (TFD) is well localized in the time- 
frequency plane, and [2] where a strict relationship between the instantaneous fre- 
quency of the channel eigenfunctions and the contour lines of the Wigner Transform 
of the operator kernel (or Weyl symbol) was derived for Hermitian slowly-varying 
operators. (See also Article 4.7.) In this article, following an approach similar to [2], 
we will show that the eigenfunctions can be found exactly for systems whose spread 
function is concentrated along a straight line and they can be found in approximate 
sense for those systems whose spread function is maximally concentrated in regions 
of the Doppler-delay plane whose area is smaller than one. 

13.3.1 Eigenfunctions of Time-Varying Systems 
The input/output relationship of a continuous-time (CT) linear system is [3]: 

F y(t) - h(t, T)x(t -- T)dT 
o o  

(13.3.1) 

where h(t, T) is the system impulse response. Although throughout this section we 
will use the terminology commonly adopted in the transit of signals through time- 
varying channels, it is worth pointing out that the mathematical formulation is much 
more general. For example, (13.3.1) can be used to describe the propagation of waves 
through non homogeneous media and in such a case the independent variables t 
and T are spatial coordinates. Following the same notation introduced by Bello [3], 
any linear time-varying (LTV) channel can be fully characterized by its impulse 
response h(t, T), or equivalently by the delay-Doppler spread function (or simply 
spread function) S(V,T) "= f _ ~  h(t,T)e-J2~tdt, or by the time-varying transfer 
function H(t, f )  := f-~c~ h(t, T ) e - J 2 r f r d T  . 

Since the kernels of LTV systems in general are not self-adjoint, it is not possible 
to define the eigenfunctions of a linear system, but we can introduce the so called 
left and right singular functions (in the following we will use the term eigenfunction 
only for simplicity, meaning generically the left and right singular functions). In 

~ Sergio Barbarossa, INFOCOM Department, University of Rome "La Sapienza", 
Via Eudossiana 18, 00184 Rome, Italy (sergio~infocom.uniromal.it). Reviewers: G. Matz and 
A. M. Sayeed. 
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fact, if the system impulse response is square-integrable, i.e. 

f : r  f ~  [h(t,T)[ 2 dt dr  < oc, (13.3.2) 
j -  oo J -  oo 

then there exists a countable set of singular values Ai and two classes of orthonormal 
functions vi(t) and ui(t) ,  named right and left singular functions, such that the 
following system of integral equations holds true 

A u (t) - h ( t ,  t - 
(3O 

/: A~v~(r) - h* (t, t - r)u~(t)dt .  (13.3.4) 
cx) 

Inserting (13.3.3)in (13.3.4), we have 

A~vi(7) - h*( t , t  - r )h ( t ,O)v i ( t  -- O)dOdt. (13.3.5) 
oo  oo  

so that vi(7) is the eigenfunction of the system whose kernel is 

/? h(~-, O) " -  h* (t, t - r )h( t ,  t -- O)dt. (13.3.6) 
o o  

In practice, there are at least two quite common situations where h(t,  T) is not 
square-integrable: (i) linear time-invariant (LTI) channels, where h(t,  T) is constant 
along t 1; and (ii) multipath channels with specular reflections, where h(t,  T) contains 
Dirac pulses. However, to avoid unnecessary complications with different notations 
as a function of the integrability assumption, in the following we will keep assuming 
(13.3.2), considering the aforementioned exceptions as limiting cases, as in [4, sec. 8]. 

13.3.2 Systems with Spread Function Confined to a Straight Line 
If the spread function is confined to a line, i.e. 

S(~, T) = g ( T ) 5 ( u -  fo -- #T), (13.3.8) 

the singular functions are chirp signals, i.e. 

vi( t)  -- eJTrttt2eJ27rfit 

- : (13.a. o) 

1 The  LTI case as well as a large class of t ime-vary ing  sys tems  exhibi t ing  some sort  of s t a t iona r i ty  
can be dealt  with by requir ing the following integrabi l i ty  condi t ion 

lim --  dt Ih(t,r)12d'r < ~ ,  (13.3.7) 
T-----* cx:~ T j-T/2 c ~  

instead of (13.3.2). 
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In fact, the impulse response corresponding to (13.3.8) is 

h(t, T) = g(T)eJ2~t'~te j2~l~ (13.3.11) 

and, substituting (13.3.11) and (13.3.9)in (13.3.3)we get 

Aiui(t) = eY2'~f~ y'~t't~ Gt,(fi) = G~,(fi)d2~I~ (13.3.12) 

where a.(f) is the Fourier transform (FT) of g•(t)"-  g(t)e j~"t2. We can verify 
that  (~3.3.12) is satisfied if ui(t) is given by and ,~i = Gt,(fi). It is also 
straightforward to check that  the two classes of functions vi(t) and ui(t) are orthog- 
onal. Interestingly, the contour lines of IH(t, f)l coincide with the instantaneous 
frequency of the eigenfunctions. In fact, the transfer function associated to (13.3.8) 
is H(t, f )  = G( f  - # t )d  2~f~ where G(f)  denotes the FT  of g(7), so that  IH(t, f)l 
is constant along lines of equation f = pt + fi, which coincides with the instanta- 
neous frequency of the right singular functions. Furthermore, if f0 = 0, i.e. S(u, 7-) 
is maximally concentrated along a line passing through the origin, the left and right 
singular functions are simply proportional to each other and we can talk of eigen- 
functions and eigenvalues. Finally, it is worth noticing that  if the spread function 
is mainly concentrated inside a rectangle of a r e a  BmaxTma x ~ 1, thus FtT2ax << 1 
and IN(t, fi + pt)l = fG(f~)l ~ IG.(f~)f, so that  the modulus of the i-th eigenvalue 
coincides approximately with the absolute value of the channel transfer function 
evaluated over the curve given by the eigenfunctions' instantaneous frequency. 

In the following, we will show how these results can be generalized, albeit in 
approximate sense, to the more challenging case where the spread function is not 
confined to a straight line. But, before considering the more general case, it is worth- 
while to remark that  the model (13.3.8) encompasses three examples of systems 
commonly encountered in the applications, namely (i) time-invariant systems, where 
S(L,, T) = g(T)5(L,), which corresponds to p = 0 and thus to having, as well known, 
sinusoidal eigenfunctions; ( i i)multiplicative systems, where S(L,,7-) = C(u)5(T), 
which corresponds to # = c~ and thus to Dirac pulses as eigenfunctions; (iii) com- 
munication channels affected by two-ray multipath propagation, each ray having its 
own delay and Doppler frequency shift, i.e. 

1 1 

S(t/, T) -- ~ hqS(~ - ~q)5(w - Tq) or h(t, T) -- ~ hqej27rfqtS(T -- Tq). (13.3.13) 
q=0 q=0 

In such a case, the eigenfunctions are chirp signals having different initial frequen- 
cies, but all with the same sweep rate p = (fl - fo)/(T1 -- ~-0), which depends on 
the channel delay and Doppler parameters. 

13.3.3 Analytic Models for Eigenfunctions of Underspread Channels 
We extend now the analysis to systems whose spread function has a support, in the 
delay-Doppler domain, with small, but, differently from the previous case, non-null 
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area. Interestingly, this case encompasses all current digital communication systems. 
The aim of the ensuing analysis is to show that if S(v, 7) is mainly concentrated 
around the origin of the Doppler-delay plane, along one of the two axes but not 
along both, the main result derived above can be generalized, even though only in 
approximate sense. 

First of all, proceeding as in [1], we define the absolute moments of S(v, T) as 

rn(k,l) . f - ~  f - ~  Ivlkl~-IllS( u,r)ldvdT 
= f_o~ f_~  IS(v ' T)ldvd~. �9 (13.3.14) 

We say that a system is underspread if all the products rn(~ 'j) rn (k't) of order i + j + 
k + l > 2, where the indices are such that there is at least the product of a non null 
moment along 7- times a non null moment along v, are "small". This definition is not 
rigorous, but its meaning will be clarified within the proof of the main statement 
of this section. Since the partial derivatives of H(t, f)  can be upper bounded as 
follows 

OHk+t(t,f) < (27r)k+trn(kt) ~ T)ldvdv, (13.3.15) 
OtkOft - ' IS(v, 

oo oo 

if S(~, T) has small moments, H(t, f) must be a smooth function in at least one 
direction. 

In the following we show that, if the system is underspread, the singular function 
associated to the i-th singular value can be approximated by the following analytic 
function 

K i ( t )  K i ( t )  

vi(t) "- E vi,m(t)"- E ai,m(t)eJ4)~'m(t)' (13.3.16) 
m - - 1  m - - 1  

where (i) the instantaneous phase r is such that the corresponding instanta- 

neous frequency fi,m(t) := $i,m(t)/27r of vi,m(t) is one of the real solutions of 

]H(t, fi,m(t))l 2 = A 2, Vm; (13.3.17) 

(ii) the amplitude a~,m(t) is approximately constant and different from zero only 
within the time interval where IH(t, f/,m(t))l 2 = A 2 admits a real solution, and its 
value is such that vi(t) has unit norm; Ki(t) is the number of solutions of (13.3.17), 
for each Ai and t. 

The existence of a real solution for fi,m(t) of implies that  the singu- 
lar values A~ must be bounded in the following interval: mint , / IH(t ,  f)l < A~ < 
maxt , / IH( t ,  f)l. Between these two boundaries, not all values of Ai are possible: 
The only admissible values are the ones that  allow the eigenfunctions to be or- 
thonormal and respect Heisenberg's uncertainty principle, similarly to the area rule 
suggested in [2]. 

From (13.3.17) we notice that the instantaneous frequencies of the system eigen- 
functions coincide with the contour lines of IH(t, f)l. Typically, the contour plots 
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are closed curves and then Ki(t) is usually an even integer. In general, we have 
verified numerically that if there are more closed curves corresponding to the same 
eigenvalue Ai, the multiplicity of the eigenvalue is equal to the number of closed 
curves corresponding to Ai, with each closed curve giving rise to one eigenfunction. 

We show now under which approximations, the function Vi(T), as given in 
(13.3.16), is a solution of (13.3.5). Exploiting the system linearity, we compute 
the output yi,m(t) corresponding to each rn-th component Vi,m(t) in (13.3.16) and 
then we exploit the superposition principle to derive the output corresponding to 
vi(t). In our proof, we assume that the support of h(t, T) along T is small. 2 As a 
consequence, for each value of T, the product h*(t, t - r)h(t, O) in (13.3.5) assumes 
significant values only for small values of both t - T and 9. We can thus expand 
Vi,m(t - 9) in (13.3.5), around T and keep only the lower order components 

v~,m(t - O) ~ ai,m(T)eJr (13.3.18) 

having used a first order approximation for r  O) and a zero-th order ap- 
proximation for a i ,m( t -  0). Substituting (13.3.18) into (13.3.5) and invoking the 
principle of stationary phase [5] to derive an approximate analytic expression of the 
integral, we get the m-th output term 

Yi,m(T) "~ ai,m(~')e jr co h * ( t , t -  ~')h(t,O)e-J$~,m(r)eeJ(~','~(r)(t-r)dOdt 
c o  c o  

= a~,m(~-)e jr h * ( t , t -  T)H(t, fi,m(T))eJr (13.3.19) 
c o  

After a few algebraic manipulations involving the Taylor series expansion of both 
h(t, t--T) and H(t, f )  about T in their first argument and summing over m, we get 

Ki co ~(k,O)(T, fi,m(T))D~(l,k+l)'(T, f i ,m(T) ) 

m=l k,t=o (--j2~) k+zk! l! ai,m , 

k,t#O 
(13.3.20) 

where ~'t,fTJ(k'l) (t, f )  := ok+lH(t, f ) / o t k o f  I. This equation shows that Vi(T ), as given 

in (13.3.16), is (approximately) the eigenfunction associated to the eigenvalue A 2 if 
the perturbation, given by the second term of the right-hand side of (13.3.20), is 
small with respect to A2vi(v). From (13.3.20), we notice that the perturbation is 
equal to the sum of complex functions given by the product of the partial derivatives 
of the system transfer function, evaluated along the curve where the modulus of the 
transfer function is constant. Furthermore, each term in the perturbation contains 
at least the first order derivative with respect to both time and frequency. Therefore, 

2If this assumption is not true, to respect our main assumption about  the concentration of the 
spread function, the spread of S(~, r )  along ~ must be very small. In such a case, using duali ty 
arguments,  we can derive equivalent results working with the spectrum of the eigenfunctions. 
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the perturbation is small with respect to the first term in (13.3.20) if the transfer 
function is smooth in at least one direction, i.e. time or frequency. Hence, the 
analytic model (13.3.16) is valid only for underspread systems, i.e. systems whose 
transfer function has small partial derivatives, by virtue of (13.3.15), in at least one 
direction. Furthermore, since the energy of the first term is A~, the approximation 
error is smaller for the highest eigenvalues. 

Since so many approximations have been used to justify the analytic model 
(13.3.16), it is necessary to check the validity of such approximations. Given the 
crucial role played by the instantaneous frequency in the definition of the system 
eigenfunction and the interplay of time and frequency, the analysis of the time- 
frequency distribution (TFD) of the system eigenfunctions plays a fundamental 
role as a validation tool. Since the validation is necessarily numerical, we start  
deriving the equivalent discrete-time (DT) system corresponding to the continuous- 
time (CT) relationship (13.3.1). Specifically, we consider the system obtained by 
windowing h(t, T) in time and in frequency. Assuming that  the input signal x(t) has 
a spectrum confined within the bandwidth [-1/2Ts, 1/2Ts], we can express x(t) as 

o o  

x(t) - ~ x[k]sinc(Tr(t - kTs) /Ts) ,  (13.3.21) 
k = - - o O  

where x[k] := x(kTs) andl/Ts is the sampling rate. Sampling the continuous time 
system output y(t) at the same rate 1/Ts ,3 we get the equivalent discrete-time I /O 
relationship 

o o  

k - - - - o o  

where h[n, k] denotes the equivalent DT impulse responses, defined as 

/?j? h[n, n - k] "- sinc(Tr(nWs - 0)/Ts)sinc(Tr(0 - T -- kTs)/Ws)h(0, T)dTdO. 
o o  o o  

(13.3.23) 
Equation (13.3.22) is the DT counterpart  of (13.3.1). Assuming that  h[n,k] has 
finite support over k, i.e. the channel is FIR of order L, and parsing the input 
sequence into consecutive blocks of size R, the discrete-time model leads directly to 
the matrix I /O relationship y(n) = H(n)x(n) ,  where H(n)  is the P x R channel 
matrix, with P = R + L, relative to the n-th t ransmit ted block, whose (i, j )  entry 
is {H(n)}i, j  = h[nP + i , i -  j], whereas x(n) := (x[nR], . . . ,x[R + R -  1]) T and 
y(n) := (y[nP],.. . ,  y[nP + P -  1]) r are the input and output  blocks. 

The discrete time counterpart of (13.3.3) and (13.3.4) is the singular value de- 
composition (SVD) of the channel matrix g ( n ) ,  i.e. H(n)  = U(n)A(n)VH(n) ,  
that  allows us to write 

3We assume that  1/Ts is large enough to respect the Nyquist  principle for the system output  
y(t); this means that ,  if we take into account the bandwidth  increase due to the t ransi t  through a 
t ime-varying system, 1/Ts is strictly larger than the bandwidth  of x(t). 
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U(n)A(n) = H(n)V(n), or HH(n)U(n) = V(n)A(n), (13.3.24) 

where the columns of U(n) and V(n) are the left and right channel singular vectors 
associated to the singular values contained in the diagonal matrix A(n). 

To check the validity of model (13.3.16), we proceed through the following steps. 
Given the impulse response h(t, T) of the CT system, (i) we build the channel 
matrix H(n) of the equivalent DT system; (ii) we compute the SVD of H(n);  
(iii) we compute the TFD of the right and left singular vectors associated to the 
generic singular value Ai; and (iv) we compare the energy distribution of these 
TFD with the contour plot of IH(t,f)l corresponding to level A~. We used as 
a basic tool to analyze the signals in the time-frequency domain the Smoothed 
Pseudo-Wigner-Ville Distribution (SPWVD) with reassignment, presented in [6] 
and Article 7.2, for its property of having low cross terms without degrading the 
resolution. We considered as a test system a communication channel affected by 
multipath propagation, thus described by the CT impulse response 

Q-1 

h ( t ,  - - 

q--0 

where each path is characterized by the triplet of amplitude hq, delay Tq and Doppler 
shift fq. We generated the amplitudes hq as independent identically distributed 
(lid) complex Gaussian random variables with zero mean and unit variance (the 
Rayleigh fading model), and the variables Tq and fq as lid random variables with 
uniform distribution within the intervals [0, AT] and [-Af/2, Af/2], respectively. 
An example, relative to a multipath channel composed of Q = 12 paths, with 
AT = 4Ts and A f  = 4/NTs, N = 128, is reported in Fig. 13.3.1 where we show: (a) 
the mesh plot of IH(t, f)l, (b) two contour plots of IH(t, f)l corresponding to the 
levels/~16 (dashed line) and )~32 (solid line); (c) the contour plot of the SPWVD of 
v16; (d) the contour plot of the SPWVD of v32. 

It is worth noticing how, in spite of the rather peculiar structure of the contour 
plots of IH(t, f)l, the SPWVDs of the two singular functions are strongly concen- 
trated along curves coinciding with the contour lines of IH(t, f)l corresponding to 
the associated singular values, as predicted by the theory. 

It is also interesting to observe the bubble-like structure of the two SPWVDs. 
Indeed this behavior is quite common, because in general the contour lines of the 
time-varying transfer function are typically closed curves. 

Before concluding this section, it is also important to provide some physical in- 
sight to justify the rather peculiar behavior of the channel eigenfunctions. Indeed, 
the bubble-like structure is perfectly functional to guaranteeing two of the funda- 
mental properties of the eigenfunctions, namely orthogonality and system modes 
excitation. In fact, by construction, (13.3.16) and (13.3.17) insure that the instan- 
taneous frequency curves of singular functions associated to distinct eigenvalues do 
not intersect. Therefore, if the WVDs of the eigenfunctions associated to distinct 
eigenvalues are well concentrated along their instantaneous frequency curve (i.e. if 
their amplitude modulation is negligible), the scalar product of their WVDs is null 
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Fig. 13.3.1: Comparison between contour lines of IH(t, f ) l  and TFDs of channel singular vectors: 
(a) 3D plot of IH(t, f ) l ;  (b) contour lines of IH(t, f ) l  corresponding to levels ~16 (dashed line) and 
/~32 (solid line); (c) SPWVD of v16; (d) SPWVD of v32. 

and thus, by virtue of Moyal's formula, the eigenfunctions are orthogonal, as re- 
quired. Considering now the modes of the system, we know that the unit energy 
input signal that maximizes the output energy is the right singular function asso- 
ciated to the highest singular value. Now, if we combine this basic property with 
the model given in (13.3.16) and (13.3.17), we can conclude that, not surprisingly, 
the input signal which maximizes the output energy is the signal whose energy is 
concentrated in the time-frequency region where the channel time-varying transfer 
function is maximum. 
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13.3.4 Optimal Waveforms for Digital Communications through 
LTV Channels 

Let us consider one of the most interesting applications of the theory described 
above, i.e. the transmission of information symbols s[k] through an LTV channel. 
In Article 13.2, for example, it is shown how to convert the channel dispersiveness, 
possibly in both time and frequency domains, into a useful source of diversity to be 
exploited to enhance the SNR at the receiver. Here we show that if the transmitter 
is able to predict the channel time-varying transfer function, at least within the next 
time slot where one is going to transmit, it is possible to optimize the transmission 
strategy and take full advantage of the diversity offered by the channel dispersiveness 
(see e.g. [7] for more details). 

Considering a channel with approximately finite impulse response of order L, 
we can parse the input sequence in consecutive blocks of K symbols and insert 
null guard intervals of length L between successive blocks to avoid inter-block in- 
terference. If the symbol rate is 1/Ts, the time necessary to transmit each block 
is KTs. For each i-th block, we must consider the channel hi(t, T) obtained by 
windowing h(t, 7) in time, in order to retain only the interval [igTs, (i + 1)KTs], 
and in frequency, keeping only the band [-1/2T~, 1/2T~]. The optimal strategy for 
transmitting a set of symbols si[k] :- s[iK + k], k = 0 , . . . ,  K - 1, in the presence 
of additive white Gaussian noise (AWGN), is to send the signal [4, sea. 8] 

K - 1  

�9 ~(t) = ~ ~,k~[k]v~,~(t) (13.3.25) 
k = O  

where vi,k(t) is the right singular function associated to the k-th eigenvalue of the 
channel response hi(t, T) in the i-th transmit interval and Ci,k are coefficients used 
to allocate the available power among the transmitted symbols according to some 
optimization criterion [7]. Using (13.3.3), the received signal is thus 

// yi(t) - hi(t, ~')z~(t - ~)d~" + w(t) - ~ c~,ka~,ks~[k]u~,k(t) + w(t), ( la .a .26)  
c~ k 

where ui,k(t) is the left singular function associated to the k-th singular value of 
h~(t, T) and w(t) is AWGN. Hence, by exploiting the orthonormality of the func- 
tions ui,k(t), the transmitted symbols can be estimated by simply taking the scalar 
products of y(t) with the left singular functions, i.e. 

// 1 y(t)ui*m(t)dt = s[m] + w~[ml, (13.3.27) ii[m] - ,Xi,~ci,m oo 

where the noise samples sequence wi [m] "= f-~c~ w(t)ui*m (t)dt constitutes a sequence 
of iid Gaussian random variables. In this way, the initial LTV channel, possibly 
dispersive in both time and frequency domains, has been converted into a set of 
parallel independent non-dispersive subchannels, with no intersymbol interference, 
and the symbol-by-symbol decision is also the maximum likelihood detector. 
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Most current transmission schemes turn out to be simple examples of the gen- 
eral framework illustrated above. For example, in communications through flat 
fading multiplicative channels, whose eigenfunctions are Dirac pulses, the optimal 
strategy is time division multiplexing. By duality, the optimal strategy for linear 
time-invariant channels is orthogonal frequency division multiplexing (OFDM). In- 
terestingly, in the most general case (of underspread channels), the optimal strategy 
consists in sending symbols through channel-dependent bubble-carriers. 

13.3.5 Summary and Conclusions 
The analytic model for the eigenfunctions of underspread linear operators shown in 
this article, although approximate, shows that  the energy of the system eigenfunc- 
tions is mainly concentrated along curves coinciding with level curves of the system 
transfer function. This property, for whose validation the analysis of the system 
eigenfunctions' TFD plays a fundamental role, gives a general framework for inter- 
preting some current data transmission schemes and, most importantly, gives a new 
perspective on the optimal waveforms for transmissions over time-varying channels. 

Pictorially speaking, if we draw a parallelism between time-frequency repre- 
sentations and musical scores, we may say that  the eigenfunctions of underspread 
systems give rise to a polyphonic texture which reduces to monophonic lines only 
in the simple case of systems whose spread function is concentrated on a straight 
line. In the most general case, we have a polyphony of ascending and descending 
melodic lines which run in order to create bubbles whose shape is dictated by the 
contour lines of the system transfer function. 
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13.4 FRACTIONAL AUTOCORRELATION FOR D E T E C T I O N  
IN C O M M U N I C A T I O N S  0 

Linear frequency modulated (FM) signals, also called chirps, are commonly used in 
communications systems. For example, they are employed in modulation schemes 
that  allow better resilience against interferences. Due to their frequent occurrence 
in communications, detection of chirp signals and estimation of their parameters 
have been of great interest. In this article, a method based on fractional auto- 
correlation is proposed for detection and parameter estimation of chirps. To that  
end, after briefly introducing the fractional Fourier transform (FRFT), formulations 
of fractional convolution and correlation are presented. Then, a detection statistic 
based on fractional autocorrelation is proposed and its performance is demonstrated 
through simulations. 

13.4.1 Fractional Fourier Transform 
The FRFT is a linear, energy preserving signal transformation that  generalizes the 
conventional Fourier transform (FT) via an angle parameter r [1,2]. For r - ~, 
the FRFT simplifies to the conventional FT. The conventional FT of a time domain 
signal s(t) can be interpreted as a counterclockwise rotation by ~ radians in the 
time-frequency plane. The FRFT generalizes this rotation property by defining 
rotations associated with angles other than -~ 2" 

The FRFT of a time domain signal s(t) is defined [1,2] as 

- 

V / 1 - - y c o t r  e'~r2c~162 'Trt2 c~ r e-227rtrcscr r 
- s(r).)(_r r = 2n~, (13.4.1) 

, r  

where ]F r is the FRFT operator associated with angle r Sr denotes the frac- 
7r tional Fourier transformed signal and n is an integer. For r  y, the conventional 

FT is obtained. Similarly, for r - 0, one obtains the time domain representation 
s(t) [1]. Furthermore, for r - ~, the FRFT reduces to a time reversal operation [1], 

(IF ~s)(t) - s ( - t ) .  (13.4.2) 

One fundamental property of the FRFT relates it to the WD. The WD of the 
time domain signal s(t) is defined (in Section 2.1.3) as 

Ws(t, f )  = s(t + -~) s*(t - -~) e--22~fTdT. (13.4.3) 
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The relationship between the FRFT and the WD can be stated [1,2] as 

Ws~ (t, f )  = W~(t cos r - f sin r t sin r + f cos r (13.4.4) 

where Ws~(t,f) denotes the WD of the FRET signal, Sr whereas Ws(t,f) is 
the WD of the original time domain signal, s(t). According to (13.4.4), the WD 
of the fractional Fourier transformed signal Sr can be obtained by rotating the 
WD of the original signal s(t) in the clockwise direction by r 

13.4.2 Fractional Convolution and Correlation 
Definitions of fractional convolution and correlation operations are obtained using 
the unitary fractional-shift operator R~, which is defined [3] as 

(RCs)(t) - s(t - pcosr e -227r~- c~ r + J27rtpsin (13.4.5) 

where p is the fractional lag variable. For r = 0, the unitary fractional-shift op- 
erator, R r simplifies to the well-known unitary time-shift operator, (R~ - 
(TTs)(t) = s ( t -  7), with ~- denoting the time lag. Analogously, as the special case 

7r 

for r - 2, the unitary frequency-shift operator is obtained, (R7 s)(t) = (F~s)(t) = 
e32~ts(t), with u denoting the frequency lag. 

Fractional convolution of two signals s(t) and h(t) is calculated [4] by evaluating 
the inner product 1 of the first signal s(t) with the axis-reversed, complex-conjugated 
and fractionally-shifted version of the second signal h(t), 

- * )  - 

2 ~2 r _ _  e3 7r-ycosCsin (/3) h ( r c o s r  Z)e-327r/3rsinCd/3. (13.4.6) 

In (13.4.6), ,~ denotes fractional convolution associated with angle r h(t) = h*( - t ) ,  
and IF" is the axis-reversal operator in (13.4.2). For r = 0, fractional convolution 
simplifies to linear time invariant (LTI) convolution given as 

(s *o h)(t) - {s, TtlF~h*} - {s, Tth) - / s(fl) h(t -/~) dZ. (13.4.7) 

Similarly, for r - ~, fractional convolution in (13.4.6) reduces to linear frequency 
invariant (LFrI) convolution which is obtained [4] by 

i F  71" m (s ,~ h)(f) - (s Ff h*) (s, Fi[t ) 

- I s ( Z )  h(-Z)e-Y2~f fldZ =JS~ (Z) H~ [ - ( f  - /3)]dZ (13.4.8) 

where S~ (f)  and H~ (f) denote the conventional FTs of s(t) and h(t), respectively. 

1The inner product of two functions g(t) and h(t) is defined as {g, h} - f g(t) h* (t) dt. 
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T a b l e  13.4.1:  Definitions of fractional convolution and correlation at angle r 

Convolution 

Cross-corr. 

Autocorr. 

r2 / 
(s .r h)(r) = eg27rY cosCsin r s(/3) h(rcosr - f~)e -327rf~r sin Cdf/ 

(s *r h)(p) = e227r~ cos r sin r  h*(f~ - p cos r -32Trypsin Cd~ 

(s .r s)(p) - e327r~ cos Csin r  s*(fl - pcos r -327rflpsin Cd~ 

Table 13.4.2" Linear time invariant (LTI) and frequency invariant (LFrl) convolution and correlation. 

Convolution 

Cross-corr. 

Autocorr. 

LTI 

(s *o h)(t) - / s ( # )  h(t-#)d# 

(s *o h)(T) = / s (# )  h*(#--T) d# 

(s *o S)(T) = /S(~)  S*(~--T) d~ 

LFrI 

[ 
(~.~ h)(f) = / S ~ ( # ) H ~ [ - ( f - ~ ) ] d f i  

(s .~  h)(~,) = S~ (~) H~ (~-u a~. 

[ 

Analogously, fractional cross-correlation, denoted by .r of s(t) and h(t) is cal-~ 
culated [4] using the fractional-shift operator, R r within an inner product, 

(s .r  h)(p) - (s, RCh) - eg27r~2 cosCsin r  - pcosr e -  g27rflp sin Cdfl. 

(13.4.9) 
Fractional autocorrelation at angle r is similarly defined [4] by replacing the second 
function h(t) in (13.4.9)with the function s(t), 

(s ,r  s)(p) e 327r~c~ r sin r  s* -221r~P sin = 2 (/3) (/3 - pcosr  Cd~. (13.4.10) 

- - r fractional correlation operations in For the special cases of r 0 and r y, 
(13.4.9) and (13.4.10) reduce to the corresponding LTI and LFrI correlation oper- 
ations, respectively. Table 13.4.1 displays the definitions of fractional convolution 
and correlation operations. Definitions of LTI and LFrI convolution and correlation 
operations are listed in Table 13.4.2. 

13.4.2.1 Alternative Formulations of Fractional Convolution and Correlation 

In this subsection, alternative formulations for fractional convolution and correla- 
tion are presented. Having alternative equivalent formulations allows one to gain 
additional insight about these fractional operations. Furthermore, these alternative 
formulations suggest efficient ways for computer implementation. 
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The first alternative formulation of fractional convolution is given [4] as 

(s ,r h)(r) - f Sr162 H-r - ~)d~ = (S r *o H- r  (13.4.11) 

where Sr = (IFCs)(r) and H- r  = (IF-r One can see from (13.4.11) that 
fractional convolution at angle r can equivalently be calculated by a conventional 
LTI convolution of S4)(r) and H-r  Another alternative formulation can be 
obtained by applying the convolution property of the conventional FT [4] to the 
right hand side of (13.4.11) and is given by 

(s ,r h)(r) - ( F - ~  {SO+r162 (r). (13.4.12) 

According to this formulation, fractional convolution associated with angle r can 
be computed by multiplying the FRFT at angle ~ + r of the first signal, S~+r 

71" 7r 

with the FRFT at angle ~ -  r of the second signal, H~- r  and then taking 
a conventional inverse FT. This formulation suggests a way for efficient computer 
implementation of fractional convolution using the fast Fourier transform (FFT) 
along with the fast FRFT algorithm [5]. 

An alternative formula for fractional autocorrelation in (13.4.10) is given as [4] 

(s , r  s)(p) - f Sr162 - p)]*d/~ = (S r *o Sr (13.4.13) 

Thus, as can be seen from (13.4.13), fractional autocorrelation can also be calculated 
via the LTI autocorrelation of Sr By applying the autocorrelation property 
of the conventional FT to the right hand side of (13.4.13), another alternative 
formulation of fractional autocorrelation is obtained as 

(13.4.14) 

71" In (13.4.14), one FRFT with angle r + 7 and one conventional inverse FT are used 
to compute fractional autocorrelation. This formulation suggests a fast discrete- 
time approximation of fractional autocorrelation. The discrete FRFT algorithm 
proposed in [5] has a computational load of O(N log N) for a discrete-time signal 
of length N. Thus, utilizing the discrete FRFT and FFT algorithms together, 
a discrete-time approximation of fractional autocorrelation via (13.4.14) can be 
computed efficiently with a computational load of O ( 2 N l o g N  + N) [4]. If one 
wants to calculate fractional autocorrelation for M different angles, then the total 
computational load is O[M(2N log N + N)}. 

By computing the conventional FT of both sides of (13.4.14), one obtains 

{(s ,+ IS ++(u)l (13.4.15) 

Eq. (13.4.15) can be thought as the fractional autocorrelation theorem. For r = 0, 
it simplifies to the autocorrelation theorem of the conventional FT [4], 

(IF~ {(s *o S)(T)}) (f) = IS~ (f)l 2. (13.4.16) 
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T a b l e  13.4.3: Alternative formulations of the fractional convolution and correlation operations as- 
sociated with the fractional domain at angle r The cross-AF, AFs,h(T,U) = f s(t Jr ~ ) h * ( t -  
~)e-32~Utdt, simplifies to the auto AF in (13.4.17) when h(t)= s(t). Also, h(t) = h*(-t). 

Fractional alternative I alternative II alternative III 

Convolution 
(~,~ h)(~) = 

Cross-corr .  

Autocorr. 
(s .~/, ~ ) (p)  = 

/ S r 1 6 2  

. /S r (~)[H r ( 3 -  P)]* d3 

S r r ( 3 -  P)]*d/3 

(IF-~ { S~+r162 } )(r) AFs, h (r cos r r sin r 

AFs,h (p cos r psin r 

AFs (p cos r p sin r 

The alternative formulations of fractional cross-correlation are similarly obtained 
by replacing the second s(t) in (13.4.13) and (13.4.14)with h(t). All alternative 
formulations of fractional convolution and correlation operations reported in this 
subsection are listed in the second and third columns of Table 13.4.3. 

13.4.3 Fractional Autocorrelation and the Ambiguity Function 
One of the fundamental properties of fractional autocorrelation is its relation to the 
ambiguity function (AF). The AF of s(t) can be defined [6] as 

T s * ( t - r  e_22~utd t AF~(T,U) - ( F _ ~ T _ ~ s , F ~ T ~ s >  - s(t + -~) -~) (13.4.17) 

where (T~s)(t) = s ( t -  7) is the unitary time-shift and (F~s)(t) = e32~Vts(t) is the 
unitary frequency-shift operator. A well-known property of the AF is that  one can 
recover the LTI and LFrI autocorrelations in the fourth row of Table 13.4.2 by taking 
horizontal (r - 0) and vertical (r - ~) cross sections of the AF, respectively [6]; 

(s *o S)(T) -- AFs(T, 0) and (s ,~  s)(u) - AFs(O, u). ( 3.4.1s) 

The relationship between the AF and fractional autocorrelation is given [4] as 

(s , r  s)(p) = AFs(pcosr psin r 

This relationship generalizes the properties given in (13.4.18) for time (r = 0) 
and frequency (r - 2) domain autocorrelations into other orientations of the AF. 
One can see from (13.4.19) that  fractional autocorrelation at angle r can also be 
recovered by taking a radial slice of the AF at angle r in the ambiguity plane. 
Similarly, fractional convolution and fractional cross-correlation can be related to 
radial slices of the cross-AF as can be seen in the fourth column of Table 13.4.3. 
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13.4.4 Detection and Chirp Rate Parameter Estimation of Chirps 
In this section a detection statistic is proposed for detection and chirp rate parameter 
estimation of chirp signals. 

A continuous-time chirp can be formulated as e32~r(r t)t, where rh and ~ are the 
unknown chirp rate and initial frequency parameters, respectively. The AF of all 
chirps has a linear region of support that passes through the origin of the ambiguity 
plane [6, 7]. Since fractional autocorrelation corresponds to radial slices of the AF 
as in (13.4.19), a detection statistic based on fractional autocorrelation can be used 
for detection of chirps. By expressing the integral of the AF magnitude along the 
radial line with angle r the following detection statistic is derived [4], 

/ 1(8 "karctan(m ) S)(p) I dp. (13.4.20)  L(rn) 

Eq. (13.4.20) states that  integration of the modulus of fractional autocorrelation 
with angle r = arctan(m) of the received signal s(t) can be used for detection of 
chirp signals [4]. If the detection statistic, L ( m ) ,  exceeds a threshold for a certain 
chirp rate value, ~h, then the detection statistic determines that  a linear FM signal, 
with that particular chirp rate, is present in the received signal. The fast fractional 
autocorrelation algorithm via (13.4.14) does not require the calculation of the AF, 
and hence, is computationally efficient. In fact, if the number of chirp rates M, for 
which the detection statistic is calculated, is much less than the number of signal 
samples N, (M < <  N), then, computational savings provided by (13.4.20) over any 
detection statistic which requires calculation of the AF is considerable. 

13.4.4.1 Simulation Examples 
In this subsection, we test the detection statistic in (13.4.20) for detection and chirp 
rate parameter estimation of monocomponent and multicomponent chirp signals. 

E x a m p l e  1: In this simulation example, a discrete-time monocomponent chirp 
signal with chirp rate rh = 0.35 is corrupted with complex additive noise, w[k], gen- 
erated by two independent, zero-mean, Gaussian random processes of equal vari- 
ance; 

^ ~ k2 
s[k] - e3ml--O-~ + w[k], k - 1, 2 . . . ,  512. (13.4.21) 

The normalized 2 detection statistic is calculated using (13.4.20) for different chirp 
rate values mt - 0 . 1  + (0.4 2---0-6)l, l - 0 , . . . ,  199. The experiment was realized for the 
noise-free case, and for additive complex noise cases o f - 6  dB and - 9  dB signal-to- 
noise ratio (SNR) values. Fig. 13.4.1 shows how the normalized detection statistic 
behaves in different levels of noise. It can be seen in Fig. 13.4.1 that  the algorithm is 
able to detect the monocomponent chirp signal with the correct chirp rate parameter 
value, rh - 0.35, even in significant levels of noise. 

2We normalize the detection statistic by the area under the received signal magnitude, i.e. 

L(m) so that the detection threshold level is less affected by the noise level. E ~= 1 Is[k]l ' 
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Fig .  13.4.1:  Normalized (See Footnote 2) detection statistic. Dotted line: noise-free. Dashed line: 
SNR - - 6  dB. Solid line: SNR = - 9  dB. 

E x a m p l e  2: In this example, a discrete-time, multicomponent linear FM signal 
with initial frequency and chirp rate parameter values ~0 - 6/1024, ~1 - 3/1024, 

~2 - 2/1024, ~3 : 1/1024, rh0 = 0.10, rhl = 0.20, rh2 - 0.22 and ?~t 3 --- 0.45 is 
corrupted with complex additive noise, w[k], generated by two independent, zero- 
mean, Gaussian random processes of equal variance; 

3 

s[k] - ~ e 212u~i + ~ h i ~ k ] k  + w[k], k - 1 , 2 . . . ,  2048. (13.4.22) 
i = 0  

The normalized detection statistic is calculated via (13.4.20) with respect to different 
chirp rates rnz - (0.5)l, 1 - 0, 199. The experiment was done for the noise-free - - ~  . . . ,  

case, and for additive complex noise cases o f - 5  dB and - 1 0  dB SNR values. As 
can be seen from Fig. 13.4.2, all four chirps are detected with their correct chirp 
rates. Two closely placed chirps with rhl = 0.20 and rh2 = 0.22 are also resolved 
well. 

13.4.5 Summary and Conclusions 
In this article, a computationally efficient method based on fractional autocorrela- 
tion is proposed for detection and chirp rate parameter estimation of chirp signals 
that  are utilized frequently in various applications of communications. Formula- 
tions of the fractional convolution and correlation operations associated with the 
fractional domains of the time-frequency plane are also presented. Those fractional 
domains are defined by the recently developed fractional Fourier transform (FRFT) .  
The effectiveness of the proposed method is illustrated with simulation examples. 
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Fig.  13.4.2: Normalized (See Footnote 2) detection statistic. Dotted line: noise-free. Dashed line: 
SNR = - 5  dB. Solid line: SNR = - 1 0  dB. 

Alternative presentations of the fractional Fourier transform are given in Articles 
4.8 and 5.8. 
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Chapter 14 

Time-Frequency Methods 
Sonar & Acoustics 

in Radar, 

The fields of radar and sonar are traditionally key application areas and testing 
grounds for advances in signal processing. Time-frequency methodologies have made 
significant inroads already in these fields; their usefulness is demonstrated in five 
articles with appropriate internal cross-referencing to this and other chapters. 

A baseband Doppler radar return from a helicopter target is an example of a 
persistent non-stationary signal. A linear time-frequency representation provides a 
high resolution suitable for preserving the full dynamic range of such complicated 
signals (Article 14.1). The synthetic aperture principle allows the combination of 
range resolution, achieved by the use of linear FM signals, with cross-range. For 
long observation intervals, the phase cannot be assumed to be a linear function of 
time; then time-frequency based imaging can obtain improvements in focus of the 
synthetic-aperture image (14.2). When a propeller-driven aircraft or a helicopter 
passes overhead, it produces a Doppler effect which allows the estimation of flight 
parameters by using IF estimation and the interference patterns formed in TFDs 
(14.3). To track a theater ballistic missiles launch, the WVD can be used effectively. 
Its peak provides a direct estimate of the instantaneous Doppler law giving the 
accelerating target dynamics (14.4). In sonar, there is a clear rationale for using 
time-frequency processing of returns to provide useful information about targets 
such as ships (14.5). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
�9 2003 Published by Elsevier Ltd. 
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14.1 SPECIAL TIME-FREQUENCY ANALYSIS OF 
HELICOPTER DOPPLER RADAR DATA~ 

14.1.1 Dynamic Range Considerations in TF Analysis 
The classical technique for characterizing the time evolution behavior of sampled 
nonstationary signals has been the short-time Fourier transform (STFT), a time- 
frequency analysis technique that uses linear operations on sampled data. With 
momentary nonstationary signals of short duration, one often wishes to improve 
the time-vs-frequency resolving detail over that achievable with the STFT. Time- 
frequency distributions (TFDs) that use quadratic operations on sampled data, such 
as the Wigner-Ville distribution (WVD), are often able to achieve this improvement. 
For finite duration data records, this improvement in practice can be shown graph- 
ically to be approximately a factor of two in the time or frequency sharpening 
of the TFD response. However, this improvement is achieved in the presence of 
significant cross-term artifacts and with the sacrifice of detectable dynamic range 
(DNR). The cross terms, which are generated by multi-component signals (more 
than one signal present at an instant of time), additive noise, and analog-to-digital 
converter quantization effects, often obscure relevant signal components, particu- 
larly much weaker signal components (see Article 4.2). Numerous filtering and 
smoothing approaches have been developed to mitigate these cross-term artifacts, 
but this is always achieved at the expense of degrading the time-frequency sharpness 
of quadratic TFDs. Thus, quadratic TFDs tend to work best in mono-component 
signal situations. 

The DNR between strongest and weakest signal components in practice can be 
quite significant. For example, modern radar systems, sonar systems, and medical 
Doppler ultrasound cardiovascular imaging systems can have DNRs that exceed 
70dB, 50dB, and 100dB, respectively. Signals from these systems almost always 
have multiple signal components present. Thus, quadratic TFD techniques are not 
good candidates for analyzing signals from such systems due to obscuring cross- 
term artifacts and dynamic range degradation. As this article will illustrate, it is 
still possible to achieve at least a factor of two improvement in the TFD response 
sharpness, without incurring the degradation caused by cross-term artifacts, by 
exploiting a pair of special two-dimensional (2-D) data arrays: the windowed data 
function (WDF) and the complex WDF transform (CWT). Application of variants 
of high-resolution 2-D spectral analysis techniques to the CWT will generate the 
desired high resolution TFD capability sought in quadratic TFDs, but without the 
cross-term artifacts. 

14.1.2 Classical Linear and Quadratic TFDs 
The baseline technique for comparing all time-frequency analysis methods is the 
STFT linear TFD. If x(t) is the signal to be analyzed, define the short-time win- 

~ S. Lawrence  M a r p l e  Jr . ,  ORINCON Corporation, 9363 Towne Centre Drive, San 
Diego, California 92121 (lmarple@orincon.com). Reviewers: Joel M. Morris and Emin Tagluk. 
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dowed signal 
xh(t, r) = x(T)h*(J - t), (14.1.1) 

in which h(T) is the analysis window centered about 7 = 0, * denotes complex 
conjugation, and t represents the center time of the analysis interval on x(t). The 
Fourier transform of the short-time windowed signal is therefore 

// Fh~(t , f ) -  ~ {Xh(t,T)}-- Xh(t,T) exp(--j27rfr)dT . (14.1.2) 
r - - -~ f  o O  

which is the classical STFT. The localized STFT spectrum, or spectrogram, is simply 
the magnitude of the STFT 

sh(t, f)  - IFh(t, f)l 2 (14.1.3) 

which is then plotted to form the 2-D TFD gram. Trading off time-frequency 
concentration vs the resolution is achieved by the selection of the analysis window 
shape and duration. 

The classical quadratic-based TFD method is the Wigner-Ville distribution 
W~(t, f)  [1]. Most alternatives to the WVD are typically derivatives in which weight- 
ing or smoothing kernels are added to the functional definition of the quadratic TFD 
to better handle finite duration signal records or to suppress cross-term artifacts (see 
Chapter 3 and Article 5.7). As explained in Section 3.2.1, the WVD is linked to 
three companion quadratic functions: the instantaneous autocorrelation function 
(IAF) Kx(t, T), the spectral correlation function (SCF) k=(u, f),  and the complex 
ambiguity function (CAF) A=(u, T). The WVD can alternatively be computed as 
(1) the one-dimensional forward transform of the IAF, (2) the one-dimensional in- 
verse transform of the SCF, or (3) the double transform of the CAF as follows 

Wx(t,f) - jz {K~(t, T)} - x(t+T/2) x*(t--T/2) e-J2'~f'dT (14.1.4) 
r--- '  f O 0  

= S {kx(.,  f )}  - x(f+./2) x*(f-./2)e+~2~"~d~ (14.1.5) 
o o  

////  = ~ )r {Am(-, T)} - Am(,, 7) eJ2~[Ir-~tldu dT-. (14.1.6) 
V----+t T---+f ~ 

in which X ( f )  is the Fourier transform of x(t), t is the "localized" center time, 
r is the relative separation (shift) time displacement, f is the "localized" center 
frequency, and u is the relative separation (shift) frequency displacement. More 
details on these relationships may be found in Part I. Fig. 14.1.1 depicts the key 
mathematical definitions and relationships among these four quadratic functions. 
Fig. 14.1.1 also graphically depicts the support regions of the quadratic functions for 
a finite-duration signal of N samples x(nAT) = x[n] at AT second intervals. Note 
that the temporal and spectral correlation functions have diamond-shaped support 
regions with time-shift and frequency-shift axes, respectively, that are twice the 
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Fig. 14.1.1: Flow diagram and key relationships and support domains among the four quadratic 
representations: Wigner-Ville distribution, complex ambiguity function, instantaneous autocorrelation 
function, and spectral correlation function. 

original signal time-width and its transform band-width, due to the correlation 
processes used to form the IAF and SCF. Having twice the temporal or spectral 
extents will yield, after transformation, WVD responses that are twice as sharp 
relative to the original signal's time extent or bandlimited frequency extent. Note 
that the temporal and frequency resolutions of the WVD are greatest at t = 0 and 
f = 0 and decrease as one advances to the outer time and frequency edges of the 
IAF or the SCF diamond-shaped regions of support. 

In order to mitigate the deleterious effects of cross terms, a number of optional 
smoothing and filtering operations, marked in Fig. 14.1.1 as kernels g, G, 7, G, have 
been developed to suppress the cross-term effects (see Articles 5.2 and 6.1 for more 
details). However, suppressing the cross terms will also degrade the time-frequency 
concentration; therefore, all kernel designs involve a tradeoff between minimizing 
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cross-term artifacts and maximizing time-frequency resolution�9 

14.1.3 Alternative High-Resolution Linear TFD 
Let us revisit the 2-D STFT and develop a new perspective for creating the 2-D 
STFT spectrogram from a I-D data record. Based on this new perspective, we will 
create an alternative 2-D matrix array using linear transform operations on data  
samples from which an opportunity to apply high-resolution 2-D spectral analysis 
procedures is generated. If one assumes a finite-width analysis window of M samples 
for a case of finite-duration data of N samples, and further assumes the analysis 
window center time is stepped through the data one sample at a time (multiple 
sample steps are also possible but not discussed here), then the operations to be 
performed on the data will start  with the data matrix 

x ( t , ~ )  - 

, o . 

0 

0 ." 

x[1] 

x[1] 

�9 .. o x [ i ]  

. x[~] ~[2] 

x [ ( M -  1)/2] 

x[NI 

�9 " 0 

x[N] . -  : 

0 0 

0 . . .  0 

x [ N -  ( M -  1)/2] 

x [ N - ~ ]  z[N] . 
x [ N ]  0 . . .  

(14.1.7) 

in which the analysis center time t = mAT corresponds to the row index m and the 
data  samples within an analysis window interval are all the elements along a selected 
row, indexed by their column time ~- = nAT. Note that  the above data  matrix has 
N + M -  1 rows corresponding to the center times ranging from t = - ( M  + 1)/2 
to N + (M + 1)//2, which requires zero fill when the analysis window runs off the 
ends of the available data. Other ranges along the vertical axis are also possible to 
define such that  zero fill is not required. 

Noting the analysis window values as h[1] to h[M], the resultant windowed data 
function (WDF) is obtained element-by-element as 

x h ( t ,  ~-) - x ( ~ - ) h *  (~- - t )  . (14.1.8) 

to form the WDF matrix H(t, 7) shown in Fig. 14.1.2. The STFT is then formed 
by taking the one-dimensional Fourier transform of each row of the WDF 

Fh(t, f) -- ~ {H(t,  T)} (14.1.9) 
r - - - ,  f 
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Fig. 14.1.2: Flow diagram of key relationships among windowed data function (WDF), complex WDF 
transform (CWT), short-time Fourier transform (STFT), and short-time Fourier transform spectrogram. 
Insertion of alternative 2-D spectral technique possibilities is indicated. 

as indicated in Fig. 14.1.2. 
Although counterintuitive, one could alternatively take the Fourier transform 

of each column (rather than each row) of the WDF to produce the complex WDF 
transform (CWT) 

C(v, T) = ,1: {H(t, T)} (14.1.10) 

as shown in Fig. 14.1.2. It may seem computationally disadvantageous to form 
the CWT, but the motivation is found in the similarity of the CWT to the CAF of 
Fig. 14.1.1. A double transform of the CWT yields the STFT as shown in Fig. 14.1.2, 
just as a double transform of the CAF yields the WVD in Fig. 14.1.1. By computing 
the CWT, we now open the possibility of creating a TFD gram via an alternative 
high-definition 2-D spectral analysis technique in lieu of the squared-magnitude 
STFT spectrogram. Because no cross terms are created in the formation of the 
CWT, there will be no cross-term artifacts introduced into the 2-D spectral analysis 
results. 

Examples of high-definition 2-D spectral estimation procedures that may be 
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applied here include the 2-D autoregressive [2] and 2-D minimum variance tech- 
niques [3]. The 2-D data set that is used as the input to these methods is the CWT 
array. The final spectral analysis formula for generating the time-vs-frequency anal- 
ysis gram will be a modification of the normal 2-D spectral analysis formula in order 
to account for the time-vs-frequency units of the CWT (rather than time-vs-time). 
For example, the 2-D autoregressive spectral formula is modified to have the struc- 
ture 

STFAR(t, f )  -- 1 
I~-~m ~-~ a,,r[m, n] exp(-j27~[-mAFt + nATf])] 2 (14.1.11) 

in which the two-dimensional autoregressive parameters a,,r[m,n] are estimated 
from the CWT array elements, AT is the time-increment along the CWT rows, A F  
is the frequency-increment along the CWT columns, t represents the center time 
of the analysis evaluation, and f represents the center frequency of the analysis 
evaluation. Note the opposite signs of the time and frequency variables in the above 
equation, which contrast with the usual 2-D formulae that have the same sign. The 
modified 2-D spectral procedures are more appropriately termed the 2-D time-vs- 
frequency autoregressive (TFAR) and the 2-D time-vs-frequency minimum variance 
(TFMV) methods for TFD gram creation from the CWT array. Fast computational 
algorithms for 2-D autoregressive parameter estimation may be found in Marple [2,4] 
and for the 2-D minimum variance spectral function in Jakobsson et al. [3]. 

14.1.4 Application to Simulated and Actual Data 
To illustrate the benefit of the new 2-D high-resolution approach to time-frequency 
analysis, consider the various TFDs shown in Fig. 14.1.3 for a simulated complex- 
valued waveform (has in-phase I and quadrature-phase Q components) of 256 sam- 
ples consisting of two criss-crossing chirp (linear frequency modulated) signals and 
a sinusoidal FM modulation. The traditional stationary processing approach would 
be to form the assumed stationary correlation estimate using the entire 256-point 
data record, followed by Fourier transformation of this estimated correlation to 
create the long-term Fourier transform (LTFT) spectrum shown at the bottom of 
Fig. 14.1.3(a) (note that a logarithmic scale in dB is used to capture the full dy- 
namic range of the spectral response). The I and Q temporal plots of the signal 
are drawn on the left and right sides of Fig. 14.1.3(a), respectively. Note that the 
LTFT spectral shapes of the criss-crossing chirps and the sinusoidal FM component 
are essentially the same, and thus the two signals are almost indistinguishable if 
the LTFT alone is used for signal classification.The three signals are distinguish- 
able when the short-term Fourier transform spectrogram is used, as illustrated in 
Fig. 14.1.3(a) using a color-coded linear plot and in Fig. 14.1.3(c) using a log plot 
of the top 50 dB. The nonstationary frequency-varying character of the three signal 
components is now apparent. The Wigner-Ville TFD estimate is plotted with linear 
units in Fig. 14.1.3(b) and with log units in Fig. 14.1.3(d). The promise of the WVD 
to increase sharpness in the time-vs-frequency localization is apparent, but this has 
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Fig. 14.1.3" Comparison of various time-frequency analysis techniques to extract the 2-D localized 
nonstationary features of a signal with three components: two criss-crossing chirps and one FM mod- 
ulated waveform. 
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been achieved at the price of introducing significant cross-term artifacts, especially 
when emphasized by the logarithmic gram of Fig. 14.1.3(d). Four alternatives to 
STFT and WVD characterizations of the nonstationary behavior of the three sig- 
nals are illustrated in Figs. 14.1.3(e-h). These include the TFAR and TFMV. These 
last two alternatives produce results as sharp as those obtained with WVD without 
the cross-term artifacts. 

Consider the three TFD grams of Figs. 14.1.4-14.1.6 produced from a 330ms 
record of baseband Doppler radar returns from a helicopter target. This is a case 
of a persistent nonstationary signal, in contrast with the more typical momentary 
nonstationary signals that characterize much of the time-frequency analysis litera- 
ture. We shall use a sliding analysis window in this case, computing a single line of 
the TFD with each increment of the sliding analysis window. The helicopter target 
illuminated by the X-band CW radar was a two-engine Eurocopter Deutschland 
BO-105, as depicted in the inset of Fig. 14.1.4. The radar signal consisted of sam- 
ples of the complex-valued (I/Q) baseband (carrier frequency demodulated down 
to 0 Hz) waveform; the temporal waveform samples are plotted as vertical displays 
on the left and right gram sides in Figs. 14.1.4-14.1.6. The helicopter is in motion, 
so the radar signal will have Doppler components due to the forward motion of the 
fuselage, the main rotor and tail rotor rotations, and multipath components between 
the fuselage and rotors. A LTFT spectral estimate of the entire 330 ms data record 
produced the spectrum plotted beneath each TFD gram in Figs. 14.1.4-14.1.6. Note 
that there is at least 70 dB of dynamic range between strongest and weakest signal 
components in this radar signal. 

Fig. 14.1.4 is the result of a classical STFT analysis of the data record which has 
been adjusted to use sliding 128-sample Hamming analysis windows to best capture 
the most rapidly-varying Doppler components (main rotor) of the radar signal. Note 
that positive frequencies represent Doppler components moving toward the radar 
and negative frequencies represent Doppler components moving away from the radar 
in this baseband signal. Also note the color coding assignments of the logarithmic 
dynamic range that is is displayed; approximately the top 70 dB of each TFR gram is 
displayed. The dominant signal component is the +2.8 kHz line that  represents the 
Doppler component off the helicopter fuselage due to the constant velocity motion 
of the helicopter toward the radar. Other features that can be seen in the STFT 
gram of Fig. 14.1.4 include the sinusoidal patterns bounded between -12kHz and 
+18 kHz that correspond to the Doppler pattern of the four main rotor blades and 
the periodic broadband horizontal "flashes" corresponding to the periodic alignment 
of the main or tail rotors to maximally reflect the radar beam. Spectral lines at 
+500 Hz also appear due to a 500 Hz modulated time tone that was added to the 
data tape. 

Using the same sliding 128-sample analysis window increments as the STFT, 
the WVD gram shown in Fig. 14.1.5 was produced. A Choi-Williams smoothing 
filter was employed using a exponential parameter factor of 0.3 to mitigate the 
cross-term artifacts. Although there is an improved sharpness relative to the STFT 
spectrogram, the cross-term mitigation is insufficient as these terms are still much 
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Fig. 14.1.4" Classical short-time Fourier transform (STFT) time-frequency analysis of 330 ms of com- 
plex (I/Q) baseband Doppler radar signal of a helicopter target in motion. Profile of B0-105 helicopter 
target is shown in lower right inset. 
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Fig. 14.1.5' Time-vs-frequency gram of Doppler radar signal using the Wigner-Ville distribution with 
sliding window and complex ambiguity function weighting using a Choi-Williams kernel. 
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Fig. 14.1.6: Time-vs-frequency gram of Doppler radar signal using the two-dimensional minimum 
variance method with sliding window. 
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stronger than the weaker Doppler components that we are at tempting to detect and 
to track. Fig. 14.1.6 is the TFD gram resulting from use of the TFMV technique. 

14.1.5 Summary and Conclusions 
The alternative high-resolution methods presented in this article clearly are capable 
of preserving the full dynamic range of features in complicated signals being ana- 
lyzed while achieving sharp time-frequency responses comparable to those found in 
the WVD gram. These attributes are achieved without the artificial introduction 
of cross-term artifacts typical of some of the quadratic TFD methods. 
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1 4 . 2  TIME-FREQUENCY MOTION COMPENSATION 
ALGORITHMS FOR ISAR IMAGING o 

The synthetic aperture principle is now a well established concept and has 
given rise to several applications in high resolution microwave imaging. Among 
the most impressive applications is the imaging of Venus' surface provided by 
the synthetic aperture radar (SAR) aboard the spacecraft Magel lan (see e.g. 
h t tp : / /www,  j p l . n a s a . g o v / m a g e l l a n ) .  Venus' surface could not be observed by 
optical telescopes because of the thick layers of clouds covering the planet. It was 
thus necessary to use lower frequency waves to penetrate the clouds, but this would 
have come at the expense of resolution. The radar aboard the Magellan orbiter 
made it possible to send and receive electromagnetic waves through Venus' at- 
mosphere and still maintain good resolution: the range resolution was achieved by 
transmitting a wideband impulsive linear FM (chirp) signal, whereas the cross-range 
resolution was obtained by exploiting the synthetic aperture principle. 

The so-called s y n t h e t i c  a p e r t u r e  is formed by gathering the echoes collected 
by the radar platform during the interval in which the radar antenna beam insists 
on a specific site, and processing them coherently. The instantaneous phases of the 
echoes are compensated as to mimic the presence of a real antenna gathering the 
same echoes. If the phase compensation is perfect, we can consider the compensated 
signal as gathered by a synthetic aperture whose along-track length is equal to the 
distance traveled by the radar during the time interval within which each point on 
the ground is illuminated by the radar antenna. Clearly the relative motion between 
radar and observed scene, or target, 1 is fundamental to synthesizing an aperture 
wider than the real aperture. 

The synthesis of the wide aperture requires an accurate knowledge of the tem- 
poral evolution of the phase shift induced by the relative radar / target  motion. In 
formulas, if the radar sends an unmodulated sinusoid of frequency f0, the echo from 
a point-like target whose distance from the radar is r( t )  assumes the form 

y( t )  -- a ( t ) e  j2rrf~ -- a ( t )E  j27rf~ e -j47rr(t)/A, (14.2.1) 

where c is the speed of light, A = c / f o  is the transmission wavelength, and a(t) is 
the amplitude modulation. 

In the imaging of stationary scenes observed by a radar carried on a spacecraft 
or an aircraft, the variation of r(t) is entirely due to the radar and an initial coarse 
estimation of r( t )  comes from the navigational system of the vehicle carrying the 
radar. However, in applications where the observed target is also moving, as in the 
so called Inverse SAR (ISAR), the distance r(t) is not known at the radar site. Fur- 
thermore, also in cases where the target is not moving, the accuracy provided by the 

~ Sergio Barbarossa, INFOCOM Department, University of Rome "La Sapienza", 
Via Eudossiana 18, 00184 Rome, Italy (sergio@infocom.uniromal.it). Reviewers: M. Mesbah and 
G. R. Putland. : 

1 In this article, the "target" means the object of the radar imaging. 
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navigational instruments may be insufficient, especially for high resolution imaging. 
In all these cases, it is necessary to estimate the phase history r := 47rr(t)/)~ 
directly from the received data [1]. This requires the presence of prominent scatter- 
ers on the target, whose radar echoes are sufficiently stronger than the background 
to allow a reliable estimate. The situation is complicated, however, when more 
dominant scatterers occupy the same range cell, as is likely in many practical cir- 
cumstances. In fact, if no a priori knowledge of the relative motion is available, it is 
safer not to use a high range resolution at the beginning, simply to avoid the range 
migration problem. But the more we decrease the range resolution, the higher is 
the probability of observing more dominant scatterers in the same range cell. In 
these cases, as proposed in [2], an iterative procedure can be followed, based on the 
following steps: (i) start  using low range resolution data, for example by smoothing 
along the range direction, to avoid the range resolution problem; (ii) estimate the 
instantaneous phase of the dominant scatterer; (iii) estimate the relative motion law 
r(t) of the dominant scatterer from the instantaneous phase; (iv) use the estimated 
motion law to compensate for the range migration occurring in the high range reso- 
lution data (hence the dominant scatterer automatically becomes the image center); 
(v) analyze the full range resolution data after compensation of the range migration. 

Clearly step (i) increases the probability of having more dominant scatterers in 
the same range cell and, if the observed signal is really multi-component, the analysis 
becomes more complicated because we must separate the components corresponding 
to each echo before estimating their instantaneous phases. The separation is simple 
if the components have linear phase. In such a case, in fact, an FFT-based approach 
may be sufficient. However, especially when long observation intervals are used to 
obtain high cross-range resolution, the phase cannot be assumed to be a linear func- 
tion of time. Time-frequency representations of the observed signals thus provide an 
important  analysis tool in such cases. In this article we illustrate a method for sepa- 
rating the signal components and estimating their instantaneous phases using the so 
called Smoothed Pseudo Wigner-Ville Distribution with Reassignment (RSPWVD),  
described in Article 7.2 and originally proposed in [3], followed by a parametric esti- 
mation method. Intuitively speaking, the time-frequency analysis is used to get an 
initial idea about the kind of received signals. Based on this preliminary analysis, 
we can assume a parametric model and then use parametric estimation methods to 
improve the estimation accuracy. One possible method for combining TFDs and 
parametric modeling for retrieving the parameters of multi-component signals, with 
instantaneous frequencies (IFs) modeled as sinusoids or hyperbolas, was suggested 
in [4]; but clearly many alternatives can be followed to optimize the performance of 
the estimation method. 

14.2.1 Echo from a Rotating Rigid Body 
We assume that  the target is a rigid body in the far field of the radar antenna and 
is characterized by a certain number of dominant scatterers. For a transmission 
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frequency fo  = c / A ,  the echo from the k-th scatterer is 

A k  e j2rr f~176  k = 0 , . . . ,  K - 1 (14.2.2) 

where ro  is the vector indicating the radar position, r~ (t) indicates the k-th scatterer 
and K is the number of scatterers. Under the far field hypothesis, the echo can be 
approximated as 

A k  e j27rf~ e -j4~rR~ e j47ri'~ (14.2.3) 

where Ro  = Irol. The motion of a rigid body can always be expressed as the 
composition of the translation of one of its points plus the rotation of the body 
around that  point. Every imaging or classification procedure must apply some kind 
of motion compensation and, in general, the translational motion is compensated 
first. This operation is performed by multiplying the radar echo by a reference 
signal matched to the echo from one dominant scatterer, and resampling the data 
in range to remove any range migration of the scatterer assumed as a reference. 
Taking as a reference the echo from the 0-th scatterer in (14.2.3) (setting k = 0 and 
A0 = 1), the signals after compensation take the form 

A k  e j47ri '~ k -- 1 , . . .  , K  - 1, (14.2.4) 

where q k ( t )  "-- r 'k ( t  ) -- r 'o(t  ). Under the rigid-body constraint, the vectors q k ( t )  

can only rotate and the rotation matrix is the same for all points belonging to the 
target. The differential equation characterizing the rotation of the generic vector 
q k ( t )  is 

d q k ( t )  = w ( t )  x q k ( t )  (14.2.5) 
dt  

where w ( t )  is the vector containing the instantaneous pitch, roll and yaw pulsations 
(wp( t ) ,  w~(t), w y ( t ) ) ,  and x denotes the vector (cross) product. Assuming a constant 

pulsation, i.e. w ( t ) -  w ,  and indicating by ~ its modulus, i.e. ~t - Cw 2 + w 2 + W2~ 

and given an initial position qk(O)  = qk  of the vector at time to = 0, the solution 
of equation (14.2.5) is 

q k ( t )  - ak  + bk cos(at) + g-~ sin(at)  (14.2.6) 

where the vectors a k ,  bk,  ck are 

(w.q~) (w.q~)  
ak  -- ~2 w ,  bk -- qk  -- ~2 w ,  Ck = W X qk .  (14.2.7) 

Hence the echo from the generic k-th scatterer is 

A k  e j4~ i~~  - A k  e j4~(mk co~(~t+r (14.2.8) 

where 

j( m k  -- i 'o .bk)  2 + ~2 , Ck -- arctan ai 'o.bk , a k  -- i ' o .ak .  (14.2.9) 
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It is important to notice that the instantaneous phase of each echo contains a 
constant term plus a sinusoidal contribution having the same frequency for all the 
scatterers, but different amplitudes and initial phases. This is a consequence of the 
rigid-body constraint. 

14.2.2 Signal Analysis based on Time-Frequency Representations 
The general model for the frequency modulation induced by the relative radar- 
target motion can always be decomposed into the sum of a slow component, well 
approximated by a low-order polynomial, plus a possible fast component having a 
sinusoidal behavior. The echo can then be modeled as 

Sg(t) - -  A c  j ~M=~ a.m,t" cJflcos(Ftt+O) ~_ w(t), (14.2.10) 

where w(t) is additive noise. The slow component is mainly due to the translation; 
the fast component depends on the rotation. If the sinusoidal component has a 
period (T = 27r/f~) much longer than the duration (To) of the observation interval, 
it can also be approximated as a low-order polynomial, so that the overall signal can 
be modeled as a polynomial-phase signal (PPS). Conversely, if T is much less than 
To, it is better to estimate the parameters of the sinusoidal component without any 
polynomial modeling. 

As the velocity of variation is not known a priori, it has to be estimated from the 
data using, at least initially, a non-parametric approach. We used, as a preliminary 
tool, the Reassigned Smoothed Pseudo Wigner-Ville Distribution (RSPWVD) for 
its good localization and low cross-terms (see Article 7.2). 

As an example, in Fig. 14.2.1 we report the RSPWVD of the echo from a rotating 
object with two dominant scatterers having the same backscattering coefficients. 
The two components are clearly visible and show the same period. 

We can use the RSPWVD to extract an initial estimate of the period ft and then 
exploit the parametric modeling, as shown in the following section. One possibility 
is to extract the peaks of the TFD, as in [5] and Articles 10.3 and 10.4, and then 
estimate the modulating frequency of the IF. 

14.2.3 Parametric Estimation of Instantaneous Phases 
With the aid of the echo modeling illustrated in Section 14.2.1, we can improve the 
performance of the estimation method over that obtainable from the simple use of 
the RSPWVD. In principle, considering signals expressed as in (14.2.8), we could 
smooth the WVD by integrating it over all possible sinusoids in the time-frequency 
plane, as a function of the sinusoidal parameters, using for example a generalized 
Hough Transform as in [4]. However this operation would be quite troublesome from 
the computational point of view. In fact such an operation is almost equivalent to 
computing the square modulus of the scalar product of the received signal and 
the signal model (14.2.8), with Ak = 1. Hence the detection and estimation of 
FM signals satisfying (14.2.8) can be carried out by searching for the peaks of the 
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Fig. 14.2.1: Reassigned smoothed pseudo-Wigner-Ville distribution of the sum of two echoes from a 
rotating object. 

function 

P ( m .  r = 

N-1 
x(n)  e -j4 m 

n--0 
(14.2.11) 

where N is the number of samples: if a peak exceeds a suitable threshold, a sinu- 
soidal FM signal is detected and its parameters are estimated as the coordinates of 
the peak. Of course the straightforward application of (14.2.11) is also quite trou- 
blesome from the computational point of view. Observing, however, that all signal 
components have the same pulsation ~, we can estimate ~t from the RSPWVD and 
then use the estimated value ~ in (14.2.11) to compute the 2D function 

r = 
N-I 12 E x(n)e-J4~mc~162 " 
n - O  

(14.2.12) 

An example is shown in Fig. 14.2.2 for the case where three sinusoidal FM sig- 
nals occupy the same range cell. Fig. 14.2.2 shows the function P(m, r given in 
(14.2.12). We can clearly observe the presence of three peaks. Comparing P(m, r 
with a suitable threshold, we detect the presence of dominant scatterers and esti- 
mate, at the same time, their modulation parameters rnk and r as the coordinates 
of the peaks which exceed the threshold. A further simplification of the proposed 
procedure consists in analyzing time intervals smaller than the rotation period. In 
these sub-intervals, the instantaneous phases can be approximated by polynomials 
(the first terms of their Taylor series expansions). In this case we can use specific 
algorithms devised for the detection and parameter estimation of multicomponent 
polynomial phase signals embedded in noise, based on the so called high order 
ambiguity function [6]. 
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Fig. 14.2.2: P(m, r of a three-component sinusoidal FM signal. 

Fig. 14.2.3: Example of imaging: (a) Image defocused with a third-order polynomial instantaneous 
phase; (b) Focused image. 

An example of application to real SAR images is given in Fig. 14.2.3, where 
we show a SAR image defocused by a third-order polynomial (left side) and the 
image focused by estimating the polynomial parameters and then compensating the 
instantaneous phase (right side). 

The time-frequency analysis coupled with the parametric method is especially 
important when the illuminated spot contains moving targets. In such a case, 
the conventional SAR processing would provide a focused image of the stationary 
background and a defocused image of the moving object. Indeed, the only way to 
discriminate moving targets echoes from the background is to analyze their instan- 
taneous frequencies: a different motion law must give rise to a different frequency 
modulation. Some examples of applications of this idea were shown in [7]. 
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14.2.4 Summary and Conclusions 
Estimating the frequency modulations of the radar echoes is a fundamental step 
in the formation of high-resolution images. The tool is especially important  in the 
presence of targets moving on a stationary background, where the only possibility 
for discriminating moving from fixed targets involves the analysis of their instan- 
taneous frequencies. As the observed signal often comes from multiple scatterers, 
the availability of TFDs with good localization and low cross-terms is particularly 
important.  The other key idea is that, given a time-frequency representation of 
the signal of interest, we may derive a parametric model of the signal and then use 
parametric estimation techniques to improve the estimation accuracy. 
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14.3 FLIGHT P A R A M E T E R  E S T I M A T I O N  USING DOPPLER 
AND LLOYD'S MIRROR EFFECTS~ 

14.3.1 Acoustical Doppler Effect 
In 1842, Doppler predicted the change in the frequency of a wave observed at a 
receiver whenever the source or receiver is moving relative to the other or to the 
wave propagation medium. The effect was first verified for sound waves by Buys- 
Ballot in 1845 from experiments conducted on a moving train. Nowadays, more 
striking examples of the acoustical Doppler effect can be found in the time-frequency 
distributions (TFDs) from acoustic sensors, whether in air or under water, when a 
propeller-driven aircraft or a helicopter passes overhead. The dominant feature in 
the acoustic spectrum of a turboprop aircraft is the spectral line corresponding to 
the propeller blade-passage frequency. In the case of a helicopter, the dominant line 
corresponds to the main (or tail) rotor blade-passage frequency. This line of constant 
frequency represents the signal emitted by the source. During an aircraft transit, 
the instantaneous frequency (IF) of this signal, when received by a stat ionary sensor, 
is observed to change with time due to the acoustical Doppler effect. 

14.3.1.1 Time-Frequency Model: Microphone in Air 
Consider an acoustic source moving along a straight line at a constant subsonic speed 
v so that  at time Tc it is at the closest point of approach (CPA) to a stationary 
acoustic sensor at a separation distance (or slant range) of R c .  Suppose that  the 
source emits an acoustic tone of constant frequency f0 and that  the isospeed of 
sound propagation in air is Ca. The IF of the signal received by the sensor at time 
t is given by [1] 

f a ( t )  = Ol -}- ~ p ( t ;  7c ,  S )  (14.3.1)  

where 

a - foC2a/ (C2  a - v 2)  (14.3.2) 

- -  - -  f o C a V / ( C  2 - -  V 2) (14.3.3) 

Rc - v 
s - (14.3.4) 

?2Ca 

p ( t ;  T~, s )  - t - 7~ . (14.3.5) 
+ ( t -  

Examples of time-frequency ( t ,  f a )  curves computed by (14.3.1-14.3.5), with 
NLS-optimized parameters,  are shown as solid lines in Fig. 14.3.1. 

~ B r i a n  G. F e r g u s o n  and K a m  W.  Lo, Defence Science and Technology Or- 
ganisation, P.O. Box 44, Pyrmont, NSW 2009, Australia (Brian.Ferguson@dsto.defence.gov.au, 
Kam.Lo@dsto.defence.gov.au). Reviewers: G. J. Frazer and M. Mesbah. 
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Fig.  14.3.1: (a) Variation with time of the instantaneous frequency estimates (circles) of the signal 
received by a microphone during the transit of a turboprop aircraft, and the nonlinear least squares 
(NLS) fit (solid line) to the observations. The actual and estimated values of the source parameters 
are tabled at the top of the diagram. (b) Similar to (a), but for the transit of a helicopter. 

14.3.1.2 Time-Frequency Model" Hydrophone in Water 
Now consider an airborne source traveling with a constant subsonic speed v at a 
constant  al t i tude h in a constant direction so that  its flight path  passes directly 
over an acoustic sensor located at a depth d below the sea surface. Due to the 
propagat ion delay, the signal emit ted by the source at t ime T (the source time) 
arrives at the sensor at a later t ime t (the sensor time), which is given by [2, 3] 

la(T) lw(T) h d 
t - T + + ~ = T + + __ (14.3.6) 

Ca Cw Ca COS Cw ~r - (cw ~Ca)2 sin 2 Ca (T) 

where ca and cw are the respective isospeeds for sound propagation in air and water, 
Ca(T) is the angle of incidence (in air) at source t ime T, and la(T) and lw(T) are the 
respective travel distances in air and water. Assume the source emits an acoustic 
tone with a constant  frequency f0. The IF of the signal received by the sensor at 
t ime t is given by [2, 3] 

dT fo fo (14.3.7) 
fw(t)  -- fo d-~ - 1 + vs inr  = 1 + vs inr  

where r is the angle of refraction (in water) at source t ime T. Note tha t  
(14.3.6) and (14.3.7) consti tute a set of parametr ic  equations in Ca(T). Given the 
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Fig.  14.3.2: (a) Variation with time of the instantaneous frequency estimates (circles) of the signal 
received by a hydrophone during the transit of a turboprop aircraft, and the nonlinear least squares fit 
(solid line) to the observations. The actual and source parameters are tabled at the top of the diagram. 
(b) Similar to (a), but for another transit of the turboprop aircraft. 

source parameter set { f0, v, h, 7c } and sensor depth d, there is no explicit analytical 
expression for the IF fw as a function of the sensor time t. However, a theoretical 
curve of fw as a function of t can be obtained indirectly by first specifying the 
angle of incidence Ca(T) and then calculating the corresponding values for fw and 
t. Only acoustic ray paths for which the angle of incidence is less than the critical 
angle of incidence r will have (some) acoustic energy transmitted across the air- 
sea interface into the underwater medium; i.e., ICa(~-)l must be less than the critical 
angle of incidence r which is equal to sin-l(ca/Cw). Ray paths with angles of 
incidence exceeding the critical angle have all their acoustic energy reflected from 
the sea surface. Examples of time-frequency (t, fw) curves computed by (14.3.6) and 
(14.3.7), with NLS-optimized parameters, are shown as solid lines in Fig. 14.3.2. 

14.3.2 Acoustical Lloyd's Mirror Effect 
When a broadband acoustic source (like a jet aircraft) is in motion, the TFD of the 
output of a sensor located above the ground displays a pattern of interference fringes 
known as the acoustical Lloyd's mirror effect. Fig. 14.3.3(a) shows a simulated TFD 
of the acoustic energy at the sensor output during the transit of an airborne source of 
broadband sound in an ideal environment. The resultant sound field at the sensor 
is the sum of the direct and ground-reflected sound fields. The reflected path is 



600 Chapter 14: -lime-Frequency Methods in Radar, Sonar gz Acoustics 

Fig.  14.3.3: (a) Simulated time-frequency distribution of a microphone's output for the transit of an 
airborne broadband acoustic source in an ideal environment. (b) Spectrogram of real data recorded 
from a microphone's output during a jet aircraft transit. (c) Image enhancement of (b) through pre- 
processing. (d) Predicted paths (thinner lines) of 1st and 2nd destructive-interference curves using 
NLS method superimposed on observed paths (thicker lines) from (c). 

longer than the direct path between the source and the sensor, and the path length 
difference results in a phase difference between the two fields. At certain frequencies, 
the phase difference is of the correct amount to cause destructive interference (or 
cancellation) of the two sound fields. 

14.3.2.1 Destructive-Interference Frequency Model 
Consider an airborne source traveling in a straight line with a constant subsonic 
speed v at a constant altitude ht over a hard ground. The acoustic sensor is located 
at a height h~ above the ground. The source is at the CPA to the sensor at time 
7-~, with the ground range at CPA being dc. Suppose the isospeed of sound propa- 
gation in air is Ca. The temporal variation of the nth order destructive-interference 
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frequency as a function of the four parameters {v~, vt, 7-c, 7} is modeled by [4] 

2 ] f ~ ( t ) _ 2 n - 1  c~ 2(c~ v~)+ 2 2(t T~) 2 (t T~) (14.3.8) 4 C 2 _ V 2  -- C~V t -- - -VrVt -- 

where vr = v / h r ,  vt = v / h t ,  7 = V/1 + (dc /h t )  2, and cr = ca /hr .  The four param- 
eters {v~, vt, To, 7} are uniquely related to the four flight parameters {v,  7~, ht,  dc}. 
Examples of destructive-interference frequency curves { f n ( t )  : n = 1,2} com- 
puted by (14.3.8), with NLS-optimized parameters, are shown as thinner lines in 
Fig. 14.3.3(d). 

14.3.3 Time-Frequency Signal Analysis 
Various techniques for estimating the IF of a non-stationary signal have been con- 
sidered in the literature (see [5] and Chapter 10). A common approach is to locate 
the peak of a TFD of the signal. In this article, an IF estimate corresponds to the 
propeller blade rate of a turboprop aircraft (or main rotor blade rate of a helicopter) 
as observed at an acoustic sensor. Shown in Figs. 14.3.1(a) and 14.3.1(b) are two 
examples of using the peaks of the spectrogram (short-time Fourier transform) to 
estimate the temporal variation of the IF (denoted by circles) of the signal received 
by a microphone located just above the ground during the respective transits of 
a turboprop aircraft and a helicopter. Shown in Figs. 14.3.2(a) and 14.3.2(b) are 
two examples of using the peaks of the Wigner-Ville distribution [Section 2.1.4] to 
estimate the temporal variation of the IF (denoted by circles) of the signal received 
by a hydrophone located under water during the respective transits of a turboprop 
aircraft. 

Similarly, the temporal variation of the destructive-interference frequency of the 
signal received by an acoustic sensor located above the ground during the transit of 
an airborne source of broadband sound can be extracted by locating the minima of 
a TFD of the sensor's output. Shown in Fig. 14.3.3(d) is an example of using the 
minima of the spectrogram to estimate the temporal variation of the first and second 
destructive-interference frequencies (denoted by thicker lines) of the signal received 
by a microphone located above the ground during the transit of a jet aircraft. 

14.3.4 Source Parameter Estimation: 
An Inverse Time-Frequency Problem 

The inverse time-frequency problem is to estimate the source or flight parameters 
from the variation with time of the received signal's IF or destructive-interference 
frequency. The problem is solved by a nonlinear least-squares (NLS) method. 

14.3.4.1 Narrowband Source in Level Flight with Constant Velocity: 
Microphone in Air 

The source parameters { fo,  v, 7c, Rc }, or equivalently {c~, fl, Tc, S}, are estimated by 
minimizing the sum of the squared deviations of the noisy IF estimates from their 
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predicted values [1]. Specifically, the NLS estimates of {c~, fl, Tc, S} are given by 

{&,/~, 7~c, g} = arg min [a' + fl'p(tk; T~c S') -- g(tk)] 2 
{~' ~',~',s'} 

k--1 
(14.3.9) 

where g(tk) is the IF estimate at sensor time t = tk and K is the number of IF 
estimates. The four-dimensional minimization in (14.3.9) can be reduced to a two- 
dimensional maximization [1]" 

Ek--1 [g( tk)  - ~0] p ( t k ) l  2 {?~ g } -  arg max I K 
K 

E k = l [ p ( t k )  - 

_ E k ~ l  [g( tk)  - ~0]/~(tk) 

(14.3.10) 

(14.3.11) 

(14.3.12) 

1 1 p(tk) P(tk) -- p(tk; "rc s) where ~0 - ~ E k  g(tk),  p(tk) - p(tk; ~'~c,S'), P - -~ ~-~k , , , 
and/~ - ~ ~--~k ~(tk). Solving (14.3.2) and (14.3.3) using the estimated values for c~ 
and ~ gives the estimates of the source speed v and source frequency f0 as 

= - ( f l /&)ca  (14.3.13) 

f0 - &(1 - ~2/c~). (14.3.14) 

From (14.3.4), the estimate of the CPA slant range Rc is given by 

- - (14.3.15) 

The maximization in (14.3.10) is performed using the quasi-Newton method 
where the initial estimates of 7c and s are given by the method described in [1]. The 
results of applying the source parameter estimation method to experimental data 
(represented by the circles) are shown at the top of Figs. 14.3.1(a) and 14.3.1(b). 
The estimates closely match the actual values of the aircraft's speed, altitude, and 
propeller or main rotor blade rate. 

14.3.4.2 Narrowband Source in Level Flight with Constant Velocity: 
Hydrophone in Water 

Define the cost function 

I ! 
P f ( f ; ,  v', , r~) E [g(tk) foZk(V ' h', T')] 2 

k 

(14.3.16) 

h ! ! where g(tk) is the IF estimate at sensor time tk, {f~, v', , Tc} are the hypothesized 
source parameters, and f~Zk(V', h', T~c) = fw( tk)  is the modeled frequency at sensor 
time tk, which is computed using the approximate method found in [3]. Estimates 
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of the source parameters, {f0, �9 h, "~c}, are obtained by finding the set of values of 
{ f~, v', h', ~-c ~ } that minimizes Pf. It can be shown that 

{~), h,'~c} - a r g {  max [~-~kg(tk)zk(v" h"T~)]2 h' } 
{v',h',,'} Ek z~(v', h', T~) ,0 < V' < Ca, > 0 (14.3.17) 

] 0  - -  Ek g(tk) Zk(O, h, *c) . (14.3.18) 

Numerical procedures for maximizing (14.3.17) use standard (constrained) op- 
timization methods. The initial estimates for {v, h, To} are calculated using the 
procedure detailed in [3]. The results of applying the source parameter estimation 
method to experimental data (represented by the circles) are shown at the top of 
Figs. 14.3.2(a) and 14.3.2(b). The estimates closely match the actual values of the 
aircraft's speed, altitude and propeller blade rate. 

14.3.4.3 Broadband Source in Level Flight with Constant Velocity: 
Microphone in Air 

In a TFD of the sensor output,  a destructive-interference curve is a sequence of 
connected points on the time-frequency plane with (locally) minimum amplitudes. 
The positions of these points, corresponding to the temporal variation of a par- 
ticular order destructive-interference frequency, define the path (or shape) of the 
destructive-interference curve and their (logarithmic) magnitudes define the inten- 
sity of the curve. If the TFD is treated as an image, destructive-interference curves 
can be identified as dark fringes in the image - see Fig. 14.3.3(a). However, in 
practice, noise and background variations obscure the exact paths of these curves. 
Fig. 14.3.3(b) shows the spectrogram of a set of real data recorded from the output  of 
a microphone during the transit of a jet aircraft. It is thus necessary that  the time- 
frequency image be pre-processed to enhance the appearance of the destructive- 
interference curves before extracting the flight parameters from the image. The 
image shown in Fig. 14.3.3(b) is first normalized to remove background variations, 
and then wavelet de-noising is applied to the normalized image to suppress noise [6]. 
The result is an enhanced image [Fig. 14.3.3(c)] with the noise suppressed, yet the 
destructive-interference curves are not degraded in appearance. 

Define the parameter vector z = [?)r,~)t,Tc,')'] T. A cost function that  mea- 
sures the difference between the observed and predicted paths of the destructive- 
interference curves is given by 

N K n  

P(z) - ~ E [gn(tnk) - fn(tnk,Z)] 2 (14.3.19) 
n = l  k = l  

where g,~ (t) is the observed value of the nth order destructive-interference frequency 
at time t, which can be obtained by selecting the correct (local) minimum in the en- 
hanced image, and fn(t,z)is the corresponding predicted value using (14.3.8). Min- 
imizing P(z) produces the NLS estimate ~. = [~)r, ~)t, "~c, ~/]T of Z. The speed, altitude 
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and CPA ground range of the source are then estimated as ~)=hr~)r, ht =v/v t ,  and 

dc - lh t v /~2 -11 .  The cost function is minimized using the Gauss-Newton method 
and the required initial estimate of z is obtained by the procedure detailed in [6]. 

The raw time-frequency image [Fig. 14.3.3(b)] is too noisy for flight parameter  es- 
timation. Indeed, direct application of the NLS method to this raw image produces 
very poor flight parameter estimates, necessitating the use of the enhanced image 
[Fig. 14.3.3(c)]. Fig. 14.3.3(d) shows the paths (thicker lines) of the first and second 
destructive-interference curves extracted from the enhanced image, which are then 
used in the NLS method to estimate the flight parameters. Only the first and sec- 
ond curves are used for flight parameter estimation, i.e., n _< 2 in (19), because the 
higher order (n > 2) destructive-interference curves are too noisy. The estimated 
and actual values of the flight parameters are shown at the top of Fig. 14.3.3(d). The 
estimates of the speed and altitude are in good agreement with the actual values. 

14.3.5 Summary and Conclusions 
The acoustical Doppler effect enables the flight parameters and blade-passage fre- 
quencies of turboprop and rotary-wing aircraft to be estimated from the time- 
frequency signal analysis of acoustic sensor data. Also, during the transit  of a 
broadband acoustic source, the acoustical Lloyd's mirror effect manifests itself as 
an interference pat tern in the time-frequency distribution of the output  of an acous- 
tic sensor positioned above the ground. The flight parameters of jet aircraft can be 
estimated from the destructive interference fringes. 
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14.4 WIGNER-VILLE ANALYSIS OF HIGH FREQUENCY 
RADAR MEASUREMENTS OF A SURROGATE 
THEATER BALLISTIC MISSILE ~ 

14,4.1 Experiment Description 
In the autumn of 1997 four surrogate theater ballistic missiles (TBM) were launched 
from a temporary launch site in northern West Australia with the objective of test- 
ing a variety of TBM launch detection sensors. The missiles comprised two stages 
and used Terrier and improved Orion motors together with a passive payload de- 
signed so the flight vehicle had the same in-flight length as a representative TBM. 
The Terrier first stage burnt for approximately 5s following launch and the Orion 
second stage ignited at approximately 18s following launch and burnt for approxi- 
mately 24s. 

One of the sensors was an Australian Defence Science and Technology Organ- 
isation high frequency (HF) line-of-sight radar. The radar was positioned several 
tens of kilometers from the launch site and operated at a carrier frequency of either 
(approximately) 8MHz or 25MHz. The data reported here is from measurements 
made at 25MHz and is from the fourth surrogate TBM launch. The radar operated 
bistatically with the radar t ransmitter  and receiver spaced approximately 20km 
apart  to avoid the t ransmit ter  signal overloading the receiver via a direct line-of- 
sight or ground wave propagation path. This meant that  there were no occluded 
regions in the range coverage. The transmit ter  floodlit the region of interest. The 
receiver used a '%" shaped array of 32 elements, with 16 elements on each arm of 
the "L" and each arm approximately 500m long. A 32 channel receiving system with 
analog de-ramping and digital output fed data to a real-time radar signal processor. 
Multiple directive beams covering the region of interest were formed using digital 
beamforming and both target elevation and azimuth could be determined. A full 
description of the radar is given in [1]. 

14.4.2 Signal Description 
The radar used a linear frequency modulated continuous wave (LFMCW) waveform 
with a sweep (or waveform) repetition frequency (WRF) of 50Hz. A set of coherent 
measurements were collected, each of 256 sweeps or 5.12s duration. For hardware 
limitation reasons there was a short inter-dwell gap of approximately 12 sweeps 
(12. ~ s )  where no data was recorded between each coherent measurement interval. 
The radar signal processor pulse compressed each sweep using stretch processing 
then formed 20 digital beams (10 for each arm of the "L" array). Doppler analysis 
of the 256 sweeps in each successive coherent processing interval was performed for 
each range cell in each beam direction. 

The selection of W R F  (50Hz) meant that  Doppler measurements of what was a 

~ G. J. Frazer, Defence Science and Technology Organisation (DSTO), PO Box 1500, 
Salisbury, SA 5108, Australia. Reviewers: B. Ristic and M. Turley (DSTO). 
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Fig.  14.4.1: Range-Doppler map showing the accelerating target smeared in Doppler (from -22Hz 
to 0Hz) in range cells 6 and 7. The direct wave from the transmitter and ground clutter is visible 
surrounding 0Hz Doppler and centered in range cell 2. The coasting spent first stage of the two stage 
TBM can be seen at range cell 6 with 10Hz Doppler. 

very high velocity target were ambiguous for most of the flight. The long (with re- 
spect to target kinematics) coherent integration time (CIT) increased radar sensitiv- 
ity although the target acceleration decreased the coherent processing gain achieved 
and limited the accuracy of velocity measurements. The radar used existing software 
for range, beamforming and Doppler processing which assumed constant velocity 
targets and rather than modify the software to support accelerating targets it was 
considered that some form of post event acceleration analysis could be used to 
mitigate the accelerating target mismatch loss. 

Received radar data was displayed in real-time during the experiment and also 
recorded on tape for subsequent analysis. The data for off-line analysis was range 
processed (sweep compressed) and beamformed but not Doppler processed. It was 
organized into a sequence of dwells of data where each dwell contained two sets of 
10 formed beams (one set for each arm of the "L" array) with a group of 20 range 
cells of interest and the complex signal corresponding to each of the 256 sweeps in a 
CIT for each range and beam. Sequences of dwells were collected into a single file. 

A typical range-Doppler map seen by the operator is shown in Figure 14.4.1. It 
corresponds to one beam in the direction of the target and 20 range cells stacked 
vertically. For each range cell the Doppler spectrum has been determined from the 
appropriate range samples of each of the 256 pulse compressed sweeps, with one 
spectrum per range cell. Although not shown, the operator actually sees 20 such 
figures per dwell where each one corresponds to a different beam direction. 

This particular example covers the time interval from launch time plus 16s to 
launch time plus 21s (T+16s : T+21s). The range-Doppler map shows the acceler- 
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ating target smeared in Doppler (from-22Hz to 0Hz) in range cells 6 and 7. The 
target velocity is such that this is an ambiguous Doppler measurement. The coast- 
ing spent first stage of the two stage TBM can be seen at range cell 6 with 10Hz 
Doppler. The direct wave from the transmitter as well as ground clutter is visible 
surrounding 0Hz Doppler and centered in range cell 2. An injected calibration signal 
can be seen in range cells 2 and 3 at -25Hz and +25Hz. Receding targets appear 
to incorrectly have positive Doppler however this is a frequency inversion artifact 
of the hardware design of the radar. 

It is clearly difficult to determine the true time-varying velocity of the target 
since it changes significantly during the radar CIT. We are interested in determining 
the instantaneous Doppler law and hence the time-varying velocity of the target 
throughout this and all other dwells which contain the target during the powered 
segment of flight. 

14.4.3 Signal Model 
Let Zk,r,b,a,d be the complex sample output from the radar signal processor prior 
to Doppler processing corresponding to the k th sweep of the r th range cell and b th 
beam for the a th arm of the "L" shaped receive array, for the d th dwell. In the 
data k e [0,. . . ,255], r e [1,. . . ,20],  b e [1, . . . ,10],  a e [1,2] and d e [1,. . . ,10].  
Now let the complex signal corresponding to the coherent radar return from all 
sweeps for the r th range cell, b th beam and a th arm in the d th dwell be Zr, b,d,a(k). 

This is the signal used for conventional Doppler processing. An example of the 
results of conventional Doppler processing applied to a set of range cells is shown 
in Figure 14.4.1. 

Consider now a signal model for the radar return from a particular range and 
beam cell in a dwell which contained the target and where now for clarity we drop the 
notational dependence on r, b, d, a. Preliminary analysis using a spectrogram time- 
frequency distribution [2] suggested that the following discrete-time signal model 
would be at least piece-wise appropriate 

z( t )  = AeJ2~[f~162 t~l + c(t) + n ( t )  (14.4.1) 

1 K for {t �9 0, W R F ' ' ' ' ,  W R F }  and where A is the complex amplitude, fo, fl are the 
linear FM parameters, c(t) represents clutter, and n( t )  represents noise. TCIT  = 
K+I is the coherent integration time (CIT) of the radar In the case of a bistatic W R F  

HF line-of-sight radar, c(t) includes contributions such as; the direct signal from the 
transmitter, range sidelobes from the direct signal, additional targets, say from a 
booster stage in a multi-stage rocket and meteor and ionospheric scatter. In general, 
both the clutter and noise are unknown, although we assume the relative energy is 
such that 

IAI2Tci  
>> 1 (14.4.2) 

Ic(t)l 2 + In(t)L 2 

and thereby consider z ( t )  as deterministic with unknown parameters, unknown 
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clutter and background noise, and with high signal to clutter plus noise energy 
ratio. 

The objective is to determine the instantaneous Doppler law as part of the 
task of establishing the accelerating target dynamics. At a given radar carrier 
frequency the instantaneous Doppler as parameterized by f0 and fl can be converted 
to instantaneous target velocity. In some cases the instantaneous Doppler law of 
the target is not linear, or is piece-wise linear only, nevertheless, we adopt the 
model in (14.4.1) and if necessary apply our analysis over appropriate subsets of 
{t " 0 < t < T c I T } .  

14.4.4 Instantaneous Doppler Estimation 
There are many methods which may have been applied to determine the instanta- 
neous Doppler law (or f0 and/9) of the TBM target from the measured signal z( t) .  
Some are based on various time-frequency distributions [3-5]. Others are based on 
some estimation procedure for the parameters f0 and fl or the Doppler law, e.g. 
a maximum-likelihood criteria estimator for f0 and fl, or a least-squares criteria 
polynomial-phase-law estimator for the instantaneous Doppler law. 

We have chosen to use a procedure based on the Wigner-Ville distribution 
(WVD) of the signal z( t ) .  We have done this for several reasons. Firstly, the 
clutter term c(t) in (14.4.1) is unknown and at least early in the flight will include 
components due to the Terrier booster and range sidelobes from the direct signal 
from the transmitter. A simple phase difference based estimator we tried failed 
in these cases and more disturbingly provided no diagnostic as to the source of 
the error. On the other hand the WVD provided a clear visualization of the time- 
frequency law of the signal and since c(t) was not too complicated the WVD display 
did not become overwhelmed by cross-terms in the WVD. Secondly, the data is in 
batch form (a sequence of dwells) with comparatively few samples in each dwell 
(256) which simplifies selection of the analysis window size for the WVD. There 
are small temporal gaps between dwells so that each dwell must be examined in 
isolation. Finally, our analysis is off-line with no requirement to be fully automatic. 
It was quite permissible to manually inspect and interpret the WVD of any signal 
of interest. Full details on the WVD are given in [2] and the references therein, and 
in Chapters 2 and 3. 

14.4.5 Results 
Standard analysis of the measured data from launch four consisted of extracting 
sequences of peaks corresponding to the target from beam-range-Doppler maps for 
the sequence of dwells covering the time interval of power flight. Each dwell com- 

1 - -  5 12s CIT. A prised (256 + 12). 1 - -  5.36s elapsed time and a 256. WRF 
W R F  - -  ~ " 

single beam example of one of these maps from the dwell collected during second 
stage ignition is shown in Figure 14.4.1, the detail of which was discussed previously. 
The extracted Doppler measurements for the full period of powered flight, one per 
dwell, are shown in Figure 14.4.2. In this figure we have manually corrected for the 
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Fig. 14.4.2: The result of target Doppler law extraction based on conventional processing. One target 
Doppler measurement is determined for each dwell (5.12s). 

discrete ambiguously measured Doppler caused by the selection of such a low WRF 
with respect to the target velocity. 

Although not presented, similar results were obtained for target azimuth, ele- 
vation, range, and signal and noise energy. Although" of no consequence here, de- 
termining azimuth, elevation and range required compensation for beam coning for 
the beams formed on each arm of the receive array and for range-Doppler coupling 
induced by our selection of waveform. 

It is clear from Figure 14.4.2 that the temporal resolution of our Doppler mea- 
surements is poor. In fact, we have only 9 measurements for the period of powered 
flight, and any at tempt to predict the full target trajectory following motor burnout, 
including impact location, will certainly be less accurate than desired. Many of the 
peaks are very approximate since the target accelerated during the CIT and there- 
fore had no single velocity or Doppler. 

Based on the approximate signal model in (14.4.1) and known localization prop- 
erties of the WVD we have applied a procedure based on the WVD to improve upon 
the results derived from our standard analysis. Our objective was: to determine the 
target instantaneous Doppler law, to assist with distinguishing between accelerat- 
ing and transient targets or scatterers, and to determine the instantaneous received 
target energy law and the processing loss caused by the target acceleration. 

14.4.5.1 Instantaneous Doppler Law 

The instantaneous Doppler law has been estimated from the peak of the WVD 
shown in Figure 14.4.3. Dwells prior to and later than this measurement interval 
have also been analyzed using the same procedure. The sequence of Doppler esti- 
mates, approximately one per sweep, is shown in Figure 14.4.4. There is an estimate 
every 20ms excluding the inter-dwell gap intervals and some missing estimates at the 
beginning and end of each CIT. It covers the period of powered flight and is an in- 
terval of approximately i0 CITs or some 50s. Contrasting Figures 14.4.2 and 14.4.4 
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Fig.  14.4.3: WVD of the signal containing the accelerating target from range cell 7 in Figure 14.4.1. 
Second stage ignition occurred at 18s. 

F ig.  14.4.4: Doppler v. elapsed time. Computed using the WVD. The gaps are due to missing 
sweeps during the radar inter-dwell gap and some lost instantaneous Doppler detections at either end 
of individual radar CIT. The plot is a sequence of point measurements, one per radar sweep, and not 
a continuous line, as it appears at this scale. 

shows the benefit of determining accurate instantaneous Doppler law estimates as 
compared with conventional Doppler processing. The WVD based procedure has 
a temporal resolution of approximately the sweep duration, as compared with the 
CIT for conventional Doppler processing (20ms v. 5.12s). Note that the target sec- 
ond stage motor ignited at approximately 18s and that an accurate time of ignition 
can be determined from the instantaneous Doppler law. 

Cross-terms are visible in the WVD shown in Figure 14.4.3 and are generated 
between the segment of the signal prior to second stage motor ignition and the 
segment which follows second stage ignition. The presence of the cross-terms did 
not impede the estimation of the instantaneous Doppler law. 

Further work not reported here showed that smoothing of the instantaneous 
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Fig. 14.4.5: Range-Doppler map showing the transient meteor scatterer in range cell 19. It is difficult 
to distinguish between this smeared feature and the smeared accelerating target shown in Figure 14.4.1. 

Doppler law estimates using polynomial models reduces estimate variance and allows 
Doppler law prediction into the inter-dwell intervals. The corresponding polynomial 
velocity law was analytically integrated to produce range law estimates which were 
consistent with the directly measured range measurements. 

14.4.5.2 Accelerating Target v. Transient 

Figures 14.4.1 and 14.4.5 show the range-Doppler (RD) maps generated for two sep- 
arate beam steer directions measured during the same 5.12s dwell. In Figure 14.4.1 
the accelerating target is visible as a large smear in Doppler at range cell 7. In 
Figure 14.4.5 a transient meteor scatterer is visible at range cell 19, which is also 
smeared in the Doppler domain. We seek improved discrimination between the ac- 
celerating and the transient scatterers. Figures 14.4.3 and 14.4.6 show the WVD 
computed from the signal corresponding to the mentioned range cells. The instan- 
taneous Doppler law of the accelerating target is visible and so is the transient 
behavior of the meteor scatterer. The WVD provides a display whose features 
readily allows the two types of scatterers to be distinguished. 

14.4.5.3 Instantaneous Energy Law 

Knowledge of the instantaneous Doppler law can also be used to construct a demod- 
ulation reference signal, s(t). This signal has unity amplitude and instantaneous 
frequency law which is the conjugate of the estimated instantaneous Doppler law 
of the target, i.e. the instantaneous frequency law of z(t). s(t) can be used to 
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Fig. 14.4.6: WVD of the signal containing the transient meteor scatterer from range cell 19 in Fig- 
ure 14.4.5. 

demodulate z(t) giving the approximately constant Doppler frequency signal z'(t). 

z ' ( t )  = 

The instantaneous energy of the demodulated signal is 

~(t) = Clz'(t)l 2 

(14.4.3) 

(14.4.4) 

where G is some zero-phase smoothing operator. The instantaneous energy is shown 
in Figure 14.4.7, which shows three different levels of local smoothing, (i.e. different 
G). Regardless of the smoothing operator selected there is a significant reduction 
in the target return energy immediately following second stage ignition between 18s 
and 18.5s. The cause of this effect is unresolved. 

14.4.5.4 Processing Loss due to Target Acceleration 
The processing loss due to target acceleration compared with a comparable target 
of constant velocity can be determined. One contrasts standard Doppler process- 
ing applied to the signal z(t) and to the demodulated version z'(t). It can be seen 
from Figure 14.4.8 that the processing loss is approximately 10dB for this particular 
CIT. This is the worst case since the dwell considered includes the period imme- 
diately before and immediately after second stage ignition and target acceleration 
was greatest in this measurement interval. 

14.4.6 Summary and Conclusions 
The Wigner-Ville distribution has been applied to HF line-of-sight radar measure- 
ments of a surrogate TBM launch. A procedure based on the WVD has been used 
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Fig. 14.4.7: Instantaneous energy law v. elapsed time for the interval 16.5s to 21.5s after launch. The 
three curves correspond to i (..), i i  (- -) and ig (-) sample zero phase moving average smoothing. 

Fig.  14.4.8: The Doppler spectrum computed over the full CIT for the original signal ( - . )  and for 
the demodulated signal (-). The processing loss caused by assuming a constant velocity target is 
approximately 10dB in this case. 

to estimate the Doppler law of the target at a temporal resolution of approximately 
20ms compared with standard processing which had a temporal resolution of 5.12s 
and which contained error due to the target accelerating during the radar CIT. 
Examination of the display of the WVD has assisted with distinguishing between 
the accelerating target and interfering transient meteor scatterers. It has also al- 
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lowed determination of the instantaneous energy law of the target, identifying a 
still unexplained reduction in received signal level immediately following stage two 
ignition. Finally, analysis based on the procedure using the WVD has provided an 
estimate of the processing loss when standard Doppler processing is applied for this 
particular accelerating target. 
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14.5 T I M E - F R E Q U E N C Y  M E T H O D S  IN SONAR 0 

14.5.1 Principles of Sonar 
S o n a r  (for "Sound Navigation and Ranging", analogous to "Radar" for "Radio De- 
tection and Ranging") was originally used for finding the distances and velocities of 
targets. It has evolved to systems that scan and are capable of localizing, identi- 
fying and classifying targets. Many other applications use sound under water, e.g. 
tracking and locating shoals of fish, identifying and tracking whales, sea-bottom 
surveying for mining, estimating depth or turbulence or temperature variations of 
the ocean, tracking aircraft flying above the ocean, vision systems for underwater 
robotic vehicles, etc. These tasks require the processing of a received signal to 
extract the relevant information. Some of these systems are active, that  is, they 
transmit a sound signal and receive the reflected or backscattered signal. Others are 
passive and only receive sound emanating from other sources. The transmitters and 
receivers of sound in water are called hydrophones. Often arrays of hydrophones 
are employed to provide narrow beamwidths and increased sensitivity. 

In ac t ive  sonar ,  the transmitted signal is of known shape. The problem is 
to determine the delay in receiving the reflected or scattered signal. This delay is 
proportional to the target distance (i.e. range) and inversely proportional to the 
velocity of sound in water, which is about 1500m/s. The wavelength of a 15kHz 
component is therefore about 10 cm. In order to obtain better resolution, ultrasound 
at frequencies above 20 kHz is frequently employed in active sonar. The signal travels 
through water on its way to the target and back and is modified by the channel 
response. The received signal could be a superposition of scattered signals from 
several points on the target. It can also be a superposition of reflections from other 
objects in the environment (referred to as multipath). In addition, there may be 
noise. 

An active sonar signal can be modeled using linear systems theory [1]. In the 
general case, both the object and the channel are linear and time-varying. The 
channel impulse response c(~, t) and the insonified object's impulse response o(~', t) 
are functions of space and time. The received signal S~e~(r;t) is related to the 
transmitted signal Str(t) through superposition integrals, as follows: 

8rec(~'; t) : C(~; t, T)V(~'; t, T) d7 + n(t) (14.5.1) 
o o  

where ~'= [x, y, z] is the spatial position vector, t is the time, n(t) is the noise, and 

/? v(K; t) - u(~'; t, T)O(~'; t, T)dT (14.5.2) 
o o  

where 

F U(~'; t) -- C(r'; t, T) 8tr(T) dT. (14.5.3) 
(x)  

~ V. Chandran ,  Queensland University of Technology, Brisbane, Australia 
(v.chandran@qut.edu.au). Reviewers: P. O'Shea, K. Abed-Meraim, E. Palmer and B. Boashash. 
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The spatial and temporal coherence of the ocean medium determine the largest 
aperture that can be used for image formation and the longest waveform duration 
that can be used in sonar systems. It is usually assumed that the coherence time of 
the channel is much greater than the time taken by the signal to travel to the target 
and back. Then the phase shift remains nearly constant over one pulse period. 
It is also assumed that the signal bandwidth is much smaller than the coherence 
bandwidth of the channel, which makes the channel wideband and frequency non- 
selective. 

If the channel impulse response does not change over the duration of the signal, 
the system can be considered to be linear and time-invariant, and the superposition 
integrals are replaced by convolution integrals. 

Srec(t)  --  [ (S t r ( t )  * C(t)) * o( t ) ]  * C(t) zc rt(t) (14 .5 .4 )  

where �9 represents convolution in the time domain. The channel impulse response 
consists of delayed impulses corresponding to various paths of propagation, such as 
echoes from the target and the sea-bottom. A typical channel impulse response that 
takes into account multiple reflections (but ignores point scatterers) is the discrete 
summation of impulses 

M 

c(t) - E ci 5(t  - Ti) (14.5.5) 
i--1 

where the ci represent the attenuation suffered by each reflection term. Usually, 
in active sonar, the return from the target of interest is the strongest. The ideal 
condition is when there is only the one reflection, i.e. when M = 1. In practice, 
there are not only multiple reflections from other objects in the environment (such 
as fish or debris) but also backscattering from the ocean floor. If the lags for which 
the returned signal is analyzed are restricted to those corresponding to reasonable 
expected distances of the target, bottom backscatter and reflections from cluttering 
objects outside this "ballpark" can be ignored. The problem then essentially becomes 
one of detecting and locating the principal echo in additive noise that may be 
nonstationary owing to clutter. 

Time-frequency analysis plays an important role in analyzing the received signal 
and estimating the range of the echo from the target because 

�9 the transmitted signal is often frequency-modulated; 

�9 there is a Doppler shift if the target is moving; 

�9 time-delay is the parameter of most interest; 

�9 noise level is high and signals are highly non-stationary, so that classical meth- 
ods such as correlation or matched filters do not perform well, and 

�9 time-frequency displays are physically meaningful for human observers to in- 
terpret. 

In pass ive  sona r  (or acoustic) systems, there is no transmitted pulse; the sound 
emanates from the target itself. However, there may still be multiple paths by 
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Fig .  14.5.1:  Spectrogram of ship noise. Parabolic patterns are visible towards the right of the plot. 
The time (t) varies from 0 to 12 minutes and the frequency (f )  from 0 to 280 Hz. (From ref. [21. ) 

which the sound travels to any hydrophone. In fact, the interference between the 
direct path and the bottom-returned path can be used to advantage in determining 
the distance and velocity of the source, and is particularly useful in detecting and 
tracking ships off the coast; it leaves parabolic patterns in the time-frequency plane 
as shown in [2]. If the channel is modeled as 

c ( t )  = 5 ( t )  + c 5(t - , (14.5.6) 

then the magnitude-squared frequency response is IC(w)l 2 - 1 + c 2 + 2Cl cos(wT). 
If h is the bottom depth, h - k  the hydrophone depth, and d the distance from 
the hydrophone to the ship along the surface, then it can be inferred from the 

geometry [2] that the direct signal travels a distance (d 2 + ( h - k )  2)1/2 and the 

bottom-reflected signal travels a distance (d 2 + (h + k)2) -1/2. The time delay 
1 --1/2 2) 1/2 between them is ~[(d 2 + (h + k) 2) - (d 2 + ( h - k )  ], where c is the velocity 

of sound in water. Because d is often far greater than h - k  or h + k, the square 
roots can be approximated by first-order Taylor expansions to show that ~- ~ 2hk dc " 
Since the ship is in motion, 7- will vary with time. If a is the minimum range of the 
ship and v its velocity of passage, and if the time origin is at the moment of closest 
approach, then d 2 = a 2 -t-(vt) 2. Again, when vt  is much larger than a, this becomes 

a 2 
d ~ vt  + ~ ,  and the first interference maximum occurs at the angular frequency 

27r 7r[vt + a2 / (2v t ) ]  
Wmax : '~ (14 .5 .7 )  

7 hk  " 

Therefore, a time-frequency display will show parabolic patterns; see Fig. 14.5.1. 
Even if there is only flow noise from the vessel, these patterns can show up in 
long-time history averaged time-frequency representations. From these patterns, 
the speed of the vessel and its range can be estimated. 

The passive sonar problem could be looked upon as one of blind deconvolu- 
tion where the emitted signal parameters and the channel parameters need to be 
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simultaneously estimated (see also Article 8.1). Time-frequency methods are able 
to overcome the ill-conditioning typical of single sensor deterministic deconvolution 
techniques. Passive sonar can also be viewed as a transient signal detection problem 
in nonstationary noise when the signal-to-noise ratio is poor. 

14.5.2 Classical Methods used in Sonar 

14.5.2.1 Matched Filter 
The optimal detector for a signal of known shape, s(t),  in additive Gaussian noise 
is the matched filter. If the received signal is Srec(t) and there is no Doppler shift, 
the matched filter can be formulated as a correlation, i.e. 

F r/(T) = Srec(t) s*(t -- 7)dr.  (14.5.8) 
( x )  

The greatest correlation between the delayed transmitted signal and the received 
signal will occur at the value of T which corresponds to the delay of the principal 
echo. Hence the ideal matched filter output exhibits a peak at this delay. The 
matched filter output is thresholded to make a detection decision. 

With increasing noise, dispersion in the medium and uncertainty in the trans- 
mitted signal shape, it becomes more and more difficult to obtain a discernible peak 
in the output  at the correct location. When there is relative velocity between the 
source and receiver and a corresponding Doppler frequency r the matched filter 
can be used for range-Doppler processing as 

F r](r 7) -- Srec(t) S* (t -- T) e - j2~r dt (14.5.9) 
c ~  

where the delay T corresponds to the range parameter. The above version of the 
matched filter is also known as the Woodward ambiguity function. 

14.5.2.2 Hypothesis Tests 
Hypotheses tests, based on energy in sliding window signal segments, spectral den- 
sity correlations and other statistics, are employed to decide whether a segment 
around a particular location resulted from signal (echo of the t ransmit ted pulse in 
active sonar or signature of some acoustic source of interest in passive sonar) plus 
noise, or only noise. The alternative hypotheses for the detection of an unknown 
signal s(t) in additive noise n(t)  are 

H0:  Srec(t) = n(t)  

H i :  srec(t) = s(t) + n(t) .  

(14.5.10) 
(14.5.11) 

A test (or decision) statistic rl is computed from the received signal 8rec(t) or one 
of its transformed representations. If the value of the statistic exceeds a certain 
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threshold, the hypothesis is accepted. A measure of goodness of the test statistic 
(r]) is the Signal-to-Noise (SNR) ratio [3] 

S N R -  [E(v/H1) - E(~/Ho)[ (14.5.12) 

V/�89 [var(Tl/H1) + var(r//H0)] 

where E(...) denotes the expected value and var(...) the variance. This SNR can be 
used to compare test statistics. If the energy of the signal s(t) is A, and if the noise 
is additive, Gaussian and white with power spectral density No, then the SNR of 
the matched filter output as a decision statistic is given by v/A/No. 

For classification of the signal into one of several known categories rather than 
detection of one category, the transient event would need to be segmented and a 
set of features extracted from the segment. Instead of thresholding a likelihood, a 
comparison of likelihoods can be used (e.g. the maximum-likelihood Bayes classifier). 

Time-frequency methods are also used in hypothesis testing frameworks using a 
test statistic, and in classification frameworks using a set of features extracted from 
the time-frequency representation of the signal. The two-dimensional nature of the 
representation offers some potential for the selection of discriminating features that 
are also robust to noise. 

14.5.3 Time-Frequency Approach to Sonar 
14.5.3.1 Quadratic and Adaptive TFDs in Sonar 
For sonar signal detection with the Wigner-Ville distribution (WVD), energy in 
the time-frequency plane is used as a test statistic. The WVD (see Article 2.1) is 
expressed as 

W(t, f )  - Zrec (t -- T/2) Zr*ec (t -t- 7"/2)e-j27rfrdT (14.5.13) 
o o  

where Z~ec(t) is the analytic associate of Srec(t). The noise performance is given 
by [3] 

SNR = V/A-~- 1 (14.5.14) 
! 

No v/l + No/A" 
Thus the time-frequency representation is known to be sub-optimal and its per- 
formance degrades in high noise, due to its cross-terms. However, it provides the 
potential for time-varying filtering, and the effect of noise on the test statistic can 
be reduced by windowing the distribution. It is thus possible to obtain adaptive 
filtering prior to statistic computation or feature selection. 

The cross WVD can be applied when the reference signal waveform is known 
(see Subsection 3.1.2.3): 

W(t, f )  - Zrec(t - 7/2) z* (t + T/2) e-J2~l'dT (14.5.15) 
o o  
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where z(t) is the analytic associate of s(t). It is equivalent to the matched filter 
approach in this case, but with the added advantage of a two-dimensional time- 
frequency plane for adaptation and filtering. 

If the transient signal is monocomponent and of known instantaneous frequency 
(IF), a two-dimensional window in the time-frequency plane that preserves points 
in a neighborhood of the IF, while filtering out all others, can be used to provide 
a test statistic with improved SNR. If the transient signal is multicomponent, one 
can compute and add the cross WVDs of the received signal with the separate 
components of the transient signal, thereby eliminating the effect of cross-terms 
while retaining auto-terms in the time-frequency plane. The IF laws in this case 
would need to have been identified and are assumed known [3]. 

Other quadratic TFDs such as the cone - shaped  kernel  time-frequency repre- 
sentation (CK-TFR) or ZAM distribution, given in Article 3.3, significantly atten- 
uate the cross-terms and hence may be better suited for time-frequency displays of 
active sonar returns [4]. 

The adap t ive  o p t i m a l  kernel  (AOK),  described in Article 5.3, uses a radially 
Gaussian signal-dependent kernel. The shape of the kernel is changed to optimally 
smooth the TFD as discussed in Chapter 3 and Article 5.3. The optimal kernel is 
one that maximizes a quality measure for the time-frequency representation subject 
to constraints that force the kernel to suppress cross-terms and to satisfy marginal 
distributions. 

Performance comparisons of the AOK-based time-frequency representation with 
the STFT, Wigner and ZAM kernels on real multicomponent active-sonar signals 
are presented in [5]. 

Fig. 14.5.2 shows various time-frequency representations of a man-made under- 
water acoustic signal comprising three chirps in noise. The signal itself in plotted 
in the top box. The other boxes, labeled STFT, WIGNER (for WVD), ZAM and 
AOK, contain four time-frequency representation plots where the horizontal axis is 
time and the vertical axis is frequency. The chirps show up in the AOK plot as 
three line-like features decreasing in frequency with time. They overlap in time but 
not significantly in the time-frequency plane of the AOK TFR. Hence the chirps 
can be detected and delays estimated from this representation. Notice that the 
Wigner and ZAM distributions suffer more severely from cross-term artifacts while 
the resolution of the STFT is too poor to bring out the relevant features. 

14.5.3.2 Gabor Expansion and Wavelets in Sonar 

A C r o s s - t e r m  De le t ed  W i g n e r  r e p r e s e n t a t i o n  ( C D W R ) ,  based on Gabor 
expansions (see Article 11.2), is applied in [6] to sonar detection and classification, 
on data collected by the US Navy. The test data include hyperbolic FM chirp 
signals and continuous-wave signals for two events. The decision statistic is a cross- 
correlation between the cross-CDWR of the received and replica signals and the 
auto-CDWR of the replica signal. This method achieves better detection accuracy 
than the square-law detector used by the US Navy. It is tailored to helicopter- 
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Fig.  14.5.2: Time trace (top) and various TFRs (labeled) of a sonar signal comprising three chirps. 
The AOK representation resolves features (nearly linear with negative slopes, showing frequencies 
decreasing with time) corresponding to the three chirps. The frequency sweep would typically be about 
10 kHz to 20 kHz and the transients would last tens of milliseconds. (Adapted from [5].) 

deployed arrays of hydrophones, which are often close to the target but have wide 
beamwidths and consequently poor signal-to-noise ratios. 

The wavelet  t r a n s f o r m  and its squared magnitude (the scalogram) are com- 
pared with the Wigner-Ville distribution for automatic classification of active sonar 
data in [7]. Classification accuracy of up to 92 percent is achieved at - 4  dB SNR on 
synthetic data of acoustic scattering from high-aspect-ratio solids (length-to-width 
ratios of 5 and 10). The wavelet transform often outperforms the Wigner-Ville 
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distribution partly because it does not suffer from cross-terms. The scalogram, 
however, does suffer from such effects because it is a second-order representation. 

Wavelet-based features and artificial neural networks based on the Bienenstock, 
Cooper and Munro (BCM) theory are used to classify underwater mammal sounds 
in [8]. Accuracy is shown to be significantly greater than for the use of the same 
number of Fourier energy and frequency features. The improvement is largely owing 
to the wavelets' non-uniform tiling of the time-frequency plane, and owing to BCM 
feature extraction that performs unsupervised nonlinear dimension reduction and 
supervised discriminant pursuit. 

14.5.4 Prony and Higher-Order Spectral Methods in Sonar 
The methods discussed below are "indirect" because although they provide time- 
frequency representations (primarily by means of sliding window analysis) they 
are adapted from techniques first proposed for spectral analysis, higher-order spec- 
tral analysis or other signal processing techniques. They are not members of the 
quadratic class of time-frequency representations either, but are sufficiently impor- 
tant to warrant description in this article. 

Prony model method: The modified Prony method of detection of short-duration 
transient signals in noise is based on complex exponential signal modeling. It em- 
ploys forward and backward predictions using high prediction orders, and eliminates 
noise zeroes from the forward and backward characteristic polynomials by using the 
fact that zeroes of white, stationary noise do not exhibit conjugate reciprocal rela- 
tionships in the z-plane as do true signal zeroes. Singular value decomposition is 
used to provide further noise enhancement. After these steps, an enhanced short- 
duration signal spectrum for the analysis window is computed. A sliding window 
ensures that a time-frequency representation is obtained from which features can 
be extracted for detection and/or classification. The performance of this technique 
is compared with the STFT and the Wigner distribution on underwater acoustical 
data (tuna and sperm whale clicks) in [9]. The data was sampled at 23 kHz and the 
transient events lasted 10 to 30 milliseconds. Significantly improved features were 
extracted by the Prony technique. 

Higher-Order Spectral methods: Gaussian noise immunity, translation invariance 
and other useful properties of higher order spectra are also used in obtaining robust 
time-frequency representations and in the feature-extraction stage after a represen- 
tation. Higher-order spectra are Fourier representations of cumulants or moments 
of a stationary random process. They are functions of more than one frequency. 
The bispectrum is a function of two frequencies and is the Fourier transform of 
the third-order cumulant, which is a function of two lag variables. Unlike the 
power spectrum (which is the second order spectrum), higher-order spectra retain 
phase information. They are zero for Gaussian processes and can be used to detect 
non-Gaussian processes and identify nonlinear systems. For transient detection, as 
required in sonar, the stationarity assumption needs to be relaxed. Further, the 
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noise is often non-stationary as well and can contribute to non-zero higher-order 
spectral contributions. Time-varying versions of higher-order spectra include the 
third-order Wigner distribution called the Wigner Bispectrum [10], and a class of 
generalized Wigner-Ville distributions based on polynomial phase laws [11], which 
is applied to underwater acoustic signals. 

A sonar image processing technique based on higher-order spectral feature ex- 
traction, presented in [12], is also indirectly related to time-frequency representation. 
This method applies to sonar scans that result in two-dimensional images with az- 
imuth and range as independent variables. Sonar0, Sonar1 and Sonar3 sea-mine 
databases from the US Naval Surface Warfare Center, Coastal Systems Station, 
Florida (reference in [12]) are used. The three databases together contain 122 sea- 
mines in the training set and 123 in the testing set. The processing stages comprise 
adaptive Wiener filtering, sliding window matched filtering and adaptive threshold- 
ing. These steps account for non-stationary background noise. In this method, the 
thresholding after matched filtering is used for removing outlying noise rather than 
for detection. The resulting image is then used to extract features--the principal 
ones being bispectral and trispectral features (references in [12]) that are designed 
to be invariant to scaling and translation. Features that are robust to scaling make 
the task of the classifier easier. A statistical multi-stage classifier is used. The 
method achieves close to 90% accuracy with about 10% false alarms for detection 
of sea-mines. Since higher-order spectra are evaluated over overlapping windows, 
this method is an indirect "space-frequency" representation approach applied to 2D 
input. It is capable of being trained to achieve robustness to intra-class variations 
and some channel variations. 

14.5.5 Dispersion and Angle Frequency Representation 
Different propagating modes through the ocean (viewed as a waveguide) can exhibit 
different dispersion (group velocity versus frequency) curves. Different frequencies 
travel with different velocities within the same mode and between different modes 
of propagation. As a result, it is even possible for a linear FM up-ramp pulse to 
be converted into a down-ramp pulse of a different frequency law and increased 
duration, in extreme cases. In [13] a study of this effect is presented along with a 
method for deconvolution of the channel response. Such deconvolution is sometimes 
necessary before feature extraction to reduce classification or parameter estimation 
errors. 

Dispersion can also be beneficial in classifying ocean bottoms. Bottom baekscat- 
tering is a function of the type of surface (such as sand, pebble, clay, rock) and of 
the frequency of sound and incident angle. Wideband sonar (typically 20 kHz to 
140 kHz [14]) is used to characterize the frequency dependence of bottom backscatter 
and estimate the backscattering coefficient or the impulse response of the bottom. 
Conventional methods are not adequate for this. The directivity of the transducer 
and propagation attenuation cannot be ignored and must be deconvolved from the 
echo response. An angle frequency representation is then obtained which exhibits 
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features similar to time-frequency representations that can be used for classifica- 
tion. When the scale of the roughness is much smaller than the depth, it affects 
only the phase and not appreciably the magnitude of the response at any frequency. 
However, there is an incident angle dependence which can be used for classifica- 
tion. A sand bottom shows a decrease in the backscattering coefficient as the angle 
increases, whereas, for surfaces with greater roughness such as the pebble bottom, 
the backscattering coefficient is nearly independent of the angle. 

14.5.6 Summary and Conclusions 
Time-frequency analysis may be applied with considerable success to active and 
passive underwater sonar data. Although multipath interference is usually a prob- 
lem in radar and sonar applications, it is interesting to note that one of the first 
applications of time-frequency analysis to underwater sonar used it beneficially for 
detecting and tracking ships. Reduced-interference quadratic time-frequency repre- 
sentations allow time-frequency characteristics of transient signals to be displayed 
and interpreted without difficulty even at low signal-to-noise ratios and even for mul- 
ticomponent signals. Filtering in the time-frequency plane allows for robust feature 
selection and decision statistics of better quality. Adaptations of other techniques 
such as Prony's method of spectral analysis, wavelet transforms, scale-space analy- 
sis and higher-order spectral analysis also allow time-frequency type representation 
and feature extraction for underwater acoustic signal processing. 

Automated classification of underwater sources is still challenging. Multi-class 
problems with more than a few classes are yet to be solved satisfactorily, as the 
signatures often show significant intra-class variation due to changing channel 
conditions--multipath, dispersion, etc.--while the classification problem is coupled 
with the estimation of range, velocity and possibly other parameters.  

Two-dimensional and three-dimensional scans make the classification task eas- 
ier through the exploitation of spatial correlations of the returned signal or the 
match filtered output. However, they introduce additional difficulties with real- 
time processing. The concept of first expanding a signal in dimensionality to an 
information-rich space, and then selectively reducing the dimensionality through 
projections, slices or segmentation, is a powerful one and is being exploited in many 
pattern recognition problems. Time-frequency representations are one example of 
such an approach. They can reveal the nature of the evolution of correlations in 
a transient signal and provide information on the appropriate subspaces to extract 
features from. Practical exploitation of this in an automated detection, classification 
and tracking system requires its interfacing with other powerful concepts from other 
areas such as feature extraction, feature selection, adaptive information processing, 
classifier selection and classifier fusion. 
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Chapter 15 

Time-Frequency 
Monitoring 

Diagnosis and 

Time-frequency applications are now so widespread that they cannot be compre- 
hensively covered in one volume. For this reason, this chapter at tempts to further 
illustrate the time-frequency approach by selecting a few key generic applications of 
diagnosis and monitoring. The topic is represented by six articles covering a wide 
range of diverse applications. 

Electrical power quality is often severely affected by transient disturbances. It 
is necessary to detect and assess their effect on voltage and current stability. This is 
achieved by a time-localized frequency analysis where the instantaneous frequency 
(IF) allows us to assess disturbance propagation (Article 15.1). In the automotive 
industry, the treatment and prevention of knock is a major problem for internal 
combustion engines as knock may lead to engine damage. The Wigner-Ville distri- 
bution is used to optimize the position for placement of knock sensors (15.2). Some 
applications involve signals that have dispersive group delays governed by a power 
law, such as dispersive propagation of a shock wave in a steel beam, and cetacean 
mammal whistles. A power class of TFDs suitable for such applications is formu- 
lated and a methodology described (15.3). In other applications of image processing, 
image quality may be assessed using a WVD based measure correlated with sub- 
jective human evaluations. A new SNR based on the WVD is shown to outperform 
the conventional SNR measure (15.4). In an application involving neonatal care, 
monitoring and diagnosing newborns for seizures is possible using a time-frequency 
approach exploiting characteristic patterns in the time-frequency plane. These pat- 
terns are used as a basis for a time-frequency matched-filter automatic detection 
(15.5). Machine condition monitoring is a task crucial to the competitiveness of a 
wide range of industries. Detecting and diagnosing faults in machines is possible 
using time-frequency approaches such as the WVD, wavelets and wavelet packets 
(15.6). 

Time Frequency Signal Analysis and Processing 
Boualem Boashash (Ed.) 
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15 .1  T IME-FREQUENCY ANALYSIS OF ELECTRIC POWER 
DISTURBANCES ~ 

With the advent of various power electronic devices in modern power systems, power 
quality is becoming an important issue for both customers and service providers. 
Ideally the voltage and current signals in power systems are supposed to be constant 
in amplitude and frequency. However, the voltage and current frequently suffer dis- 
tortions in amplitude, frequency and phase due to various sources of disturbances [1]. 
The effects of periodic distortion or harmonics have been treated with Fourier series 
and are characterized by a total harmonic distortion (THD) index [1]. Recently 
transient disturbances, which occur within less than one cycle, are of great inter- 
est since they also degrade power quality. Specifically, the detection, estimation, 
classification and assessment of transient disturbance signals have become an impor- 
tant aspect in power quality analysis. To overcome the inability of Fourier analysis 
to provide time-localized frequency information for the transient disturbance sig- 
nals, advanced signal processing techniques such as the wavelet transform [2] and 
time-frequency analysis [3] have been introduced to provide time-localized frequency 
analysis of the disturbances. 

In this article, we focus on applications of time-frequency analysis to transient 
power quality events. A power system is mainly divided into distribution and trans- 
mission levels. We will provide one example from the distribution level for power 
quality assessment and the other from the transmission level for the propagation of 
disturbance waves. 

15.1.1 Time-Frequency Analysis: 
Reduced Interference Distribution 

As explained in Chapter 3, various types of time-frequency distributions may be 
expressed in terms of the following quadratic (or bilinear) distribution function 
with a kernel g(~, T) [4]: 

pz(t,f) - eJ2r~(u-t) g(~, ~-) z(u+ 2) z*(u-2) e-J2~f 'd,  dudT. (15.1.1) 

This pz(t, f)  is the time-frequency distribution of z(t). The arguments regarding 
the kernel selection and suppression of interference effects are also applicable to 
the case of the power quality analysis. As the disturbance signal is characterized 
by the presence of multiple frequency components over a short time, interference 
is also problematic and a high resolution time-frequency distribution is required. 
Among the various types of time-frequency distributions, the reduced interference 
distribution (RID) [4] has been shown to exhibit the most suitable properties for 
the analysis of power quality disturbance events (see [3] and Article 5.2). 

~ E d w a r d  J.  Powers ,  Y o n g J u n e  Shin  and W i l l i a m  M. G r a d y ,  University of 
Texas at Austin, TX (ejpowers@mail.utexas.edu, june@ece.utexas.edu, grady@ece.utexas.edu). 
Reviewers: W. J. Williams and G. J. Frazer. 
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The advantage of the RID can be found in the motivation and philosophy of 
the RID. RID is a more general definition of the time-frequency distribution ker- 
nel that satisfies the following criteria: realness, time/frequency shift invariance, 
time/frequency marginal properties, instantaneous frequency (IF) / group delay 
(GD) availability, and time/frequency support. Various definitions of the RID ker- 
nel are available as a two dimensional low pass filter and the requirements listed 
above. Among the various types of the RID kernels, we employ the binomial distri- 
bution kernel provided in [4]. 

In the beginning of transient power quality signal analysis, the wavelet transform 
has been mainly utilized [2], because wavelet analysis provides time-localized prop- 
erties. However, the time-frequency distribution, especially the RID, is a potentially 
more useful distribution [5] because it allows one not only to visualize the transient 
signal information but also to extract transient parameters useful in assessing the 
severity of various transient power quality events. 

15.1.2 Power Quality Assessment via Time-Frequency Analysis 
In this section, we present the application of time-frequency analysis to the assess- 
ment of power quality [3]. A capacitor switching disturbance waveform with its 
corresponding RID is provided in Fig. 15.1.1. The objective of capacitor switch- 
ing in power systems is to correct the power factor and/or mitigate the effects of 
harmonics associated with nonlinearities. However, the switching capacitor event 
also generates undesirable disturbance waveforms as shown at the top of Fig. 15.1.1. 
At the bottom of Fig. 15.1.1 the corresponding RID is provided. The time-varying 
frequency content of the capacitor switching disturbance is clearly seen. Note that 
frequencies up to 3.5kHz appear to be associated with this particular event. This 
voltage signal was recorded in the field and is provided through the courtesy of 
EPRI (Electric Power Research Institute). 

Besides the visualization of the time-varying spectral characteristics of the dis- 
turbance provided by the binomial RID, one can characterize the frequency variation 
of the disturbance in terms of instantaneous frequency. 

For a time-frequency distribution pz(t, f )  satisfying the IF property (see Sec- 
tion 3.1.1), the instantaneous frequency (IF) may be expressed as 

fi(t) = f_o~ f . pz(t, f ) d f .  (15.1.2) 

f _ ~  pz(t, f ) d f  

The instantaneous frequency is a normalized first order frequency moment for the 
time-frequency distribution and corresponds to the "average" frequency for given 
time t, where each frequency is weighted by the relative energy associated with 
that frequency at time t. Note that not all types of time-frequency distributions 
provide a reasonable estimate of the instantaneous frequency. For a reasonable 
estimate of the instantaneous frequency, a kernel must meet the requirements that 

Og(~,,~-) g(t/, ~- - 0) -- 1 and that ~ I~=o - 0, which are satisfied by the binomial RID 
kernel used in this article (see Tables 3.3.1 and 6.1.1). 
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Fig. 15.1.1: Capacitor switching disturbance time series (top) and its reduced interference distribution 
(bottom). From [3], (~ 1999 IEEE. 

Fig. 15.1.2: Capacitor switching disturbance and corresponding instantaneous frequency based on 
the RID. From [3], Q 1999 IEEE. 

As a result, the instantaneous frequency of the disturbance provides a quantita- 
tive assessment of the transient frequency distortion. The same capacitor switching 
disturbance waveform (zoomed for the disturbance portion) used in Fig. 15.1.1, and 
its corresponding instantaneous frequency, are plotted in Fig. 15.1.2. The peak of 
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Fig. 15.1.3: EMTP simulation circuit configuration. From [6], (~ 2000 IEEE. 

the instantaneous frequency is estimated to be around 800 Hz. During the distur- 
bance (between times 16 ms and 28 ms), the disturbance is reflected in the change 
of the instantaneous frequency. After the transient disturbance the instantaneous 
frequency returns to 60 Hz. 

15.1.3 Application of Instantaneous Frequency 
for Disturbance Propagation 

The time of arrival of disturbance signals on high voltage transmission lines is of 
great interest for relay and fault localization. Traditional fault localization in a 
transmission line network is based on a fault-study using voltage and current mea- 
surements. The traditional methodology is subject to inaccurate results, because 
the calculation depends on the rough assumption of the fault impedance and the 
type of fault. Recently, power system monitoring systems employ GPS (Global Po- 
sitioning Systems) receivers to provide time synchronized data. GPS synchronized 
data enables one to solve the fault location problem based on time-of-arrivM of the 
disturbance waveforms. The propagation properties of high voltage transmission 
lines have been carefully treated and shown to be dispersive [6]. To treat the time 
synchronized disturbance data, an accurate estimation of the arrival time is critical. 
In this section, an application example is provided to show how the instantaneous 
frequency can be utilized for the arrival time estimation. 

In Fig. 15.1.3 a simulation circuit diagram is provided. For a long transmission 
line (345kV), there occurs a typical line-to-ground fault which is 84.6 km away 
from 'SEND' and 394.3 km away from 'RECV' as indicated in Fig. 15.1.3. For this 
transmission line configuration, EMTP (Electro-Magnetic Transient Program) sim- 
ulates the voltage and current disturbances. The corresponding voltage waveforms 
at individual buses (X0005, SEND, X0041, RECV) are provided in Fig. 15.1.4. 

As the transmission line is characterized by frequency-dependent attenuation 
and dispersion, different frequencies suffer different amounts of attenuation and 
also propagate with different phase and group velocities; consequently, the wave- 
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Fig .  15.1.4:  Disturbance voltage waveforms recorded at individual buses. From [6], (~) 2000 IEEE. 

forms observed at different buses appear "distorted" or "dispersed" from the original 
waveform. Therefore, it is difficult to assign time-of-arrival for "distorted" signals. 
There are perhaps many ways to determine time-of-arrival; however, in this article 
we focus on one, namely instantaneous frequency. 

The corresponding zero sequence mode disturbance voltage is provided in 
Fig. 15.1.5. The zero sequence mode is a summation of the individual three-phase 
waveforms and is ideally zero for a balanced three-phase system. Thus it is very 
sensitive to a fault on any of the three phases as shown in Fig. 15.1.5. The reduced 
interference distribution has been calculated for the disturbance waveforms in zero 
sequence mode in order to generate the instantaneous frequency of the zero sequence 
disturbance signals. The instantaneous frequency, its peak value and time of arrival 
of the disturbance at various observation points are provided in Fig. 15.1.6. Note 
that  the time axis in Fig. 15.1.6 is zoomed to within a 20-40 ms interval as indicated 
in Fig. 15.1.5. The time of arrival t arrival has been assigned as follows: 

tarrival = arg{mtax[fi(t)] }. 

As the frequency bandwidth of the disturbance is broad since the disturbance is 
transient, the assignment of the arrival time via the peak instantaneous frequency 

is a reasonable approximation. 
The arrival times and peak values of the instantaneous frequency are presented 

in Table 15.1.1. To convert times to distance we utilize the results of the analysis 
presented in reference [6], where it was shown that  for a range of peak frequencies 
appearing in Table 15.1.1, the corresponding zero-sequence group velocity is Vg = 
(2.6+0.2) x 10 s m/sec. The corresponding estimates of distance are compared to the 



Time-Frequency Analysis of Electric Power Disturbances 633 

Fig. 15.1.5: 
(~ 2000 IEEE. 
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Fig. 15.1.6: Instantaneous frequency estimation of the disturbance voltage waveforms in zero se- 
quence. From [6], (~) 2000 IEEE. 

true distance in Table 15.1.1. Note the range of estimated distance agrees quite well 
with the known true distance. Note, also, that the peak instantaneous frequency 
is lower for the larger propagation distance. This is due to the fact that higher 
frequencies associated with the disturbance suffer greater attenuation than lower 
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T a b l e  15.1.1: Summary of the zero sequence disturbance via RID. 

Bus 
name 

(unit) 

X0005 

SEND 

X0041 

RECV 

Arrival Peak True 
time IF distance 

(ms) (KHz) (Km) 

28.60 159.60 0.0 

28.90 100.36 84.6 

29.25 51.22 162.7 

30.20 50.80 394.3 

Estimated 
distance 

(Km) 

N/A 

72 ~ 84 

156 ~ 182 

384 ~ 448 

frequencies. Ongoing work in voltage-only distance localization involves refinement 
of the instantaneous frequency approach and consideration of the use of group delay. 

15.1.4 Summary and Conclusions 

In this article, we provided two examples of time-frequency analysis applied to 
power system disturbances. RID-based time-frequency analysis successfully pro- 
vides a useful characterization of power system disturbance signals. In this article, 
we have also demonstrated that  the concept of instantaneous frequency is quite 
useful in providing a simplified picture of the time-frequency features of a transient 
disturbance and in determining the arrival time of a disturbance observed in the  
zero-sequence mode of a three-phase system. 
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15.2 COMBUSTION DIAGNOSIS BY TF ANALYSIS 
OF CAR ENGINE SIGNALS~ 

15.2.1 Knocking Combustions 
A permanent challenge for car manufacturers is to increase efficiency, reduce pol- 
lution, and prolong life of internal combustion engines. A restriction to these aims 
is the occurrence of knock. Knock is an undesired spontaneous auto-ignition of 
the end gas causing a sharp increase of pressure and temperature [1]. Generally, 
rare knock has no effect to engine performance but frequent or very strong knock 
can damage the engine. Knock excites combustion chamber acoustic resonances 
that can be measured by special pressure sensors. But they are too expensive 
for use in serial vehicles. Nowadays, acceleration sensors mounted on the engine 
housing measure structure-borne sound as a distorted version of pressure to detect 
knock. Time-frequency analysis can help to understand the nature of pressure and 
structure-borne sound signals and to improve knock detection. The following appli- 
cations for combustion diagnosis make use of the high frequency part of the signals 
which means frequencies above 3 kHz. Therefore, all signals were high pass filtered. 
Fig. 15.2.1 shows two pressure signals and a structure-borne sound signal of a BMW 
engine recorded simultaneously. The sensor of pressure 1 is mounted in the spark 
plug, the sensor of pressure 2 in the cylinder head. 

15.2.2 Signal Models 
Considering homogeneous gas distribution, the frequencies of the resonances depend 
on the speed of sound and of the combustion chamber geometry. The latter can 
be approximated by an ideal cylinder [2], or more accurately using finite element 
methods (FEM) [3]. Fig. 15.2.2 shows the instantaneous frequencies of a BMW 
engine estimated by FEM simulations [4]. But they do neither yield information 
about time instant when knock occurs nor the resonance amplitudes. The time 
instant of excitation is random, usually between 5 ~ to 15 ~ crank angle after top dead 
center of the piston. The amplitudes are damped due to heat and friction losses 
and to increasing combustion chamber volume. Previous considerations motivate 
to model the undisturbed pressure signal in time domain by [5] 

X(t)  - E Ape-d'(t-t~ cos 2zr fp(a(T))dT + (bp u(t -- to). (15.2.1) 
p=l 

The pressure signal is a superposition of P resonances, index p refers to the pth 
component. Ap and (I)p are random initial amplitude and phase, e -dpt describes the 
damping of the oscillation, to a suitable time instant after excitation, u(t) the step 

~ J o h a n n  F. Bhhme ,  Department of Electrical Engineering and Information Sci- 
ence, Ruhr-Universit~t Bochum, 44780 Bochum, Germany (boehme@sth.ruhr-uni-bochum.de) 
and Shnke C a r s t e n s - B e h r e n s ,  Robert Bosch GmbH, 70049 Stuttgart, Germany (scb@ieee.org, 
scb@sth.ruhr-uni-bochum.de). Reviewers: LJ. Stankovi(~ and G. Matz. 
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Fig.  15.2.1" Example of time signals of a knocking combustion. 

function, and fp (a( t ) )  the instantaneous frequency at crank angle a(t). The engine 
housing transfer function is modeled as a linear, time-varying function h(z( t ) ,  T), 
whereas time variance stems only from piston position z(t)  which is a function of 
crank angle. Merging pressure model and engine housing transfer function yields 
the model of the undisturbed structure-borne sound signal 

F Y(t)  - h(z( t ) ,  7 ) X ( t  - 7)dT- 
o o  

P 

p--1 

(15.2.2) 

where 

F Hp(z( t ) ,  w) - h(z( t ) ,  7) e dp~ e - j ~  d~-. 
o o  

(15.2.3) 
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Fig.  15.2.2: Frequencies estimated by finite elements (solid lines) and estimated WVS of pressure 
and structure-borne sound signals of a BMW engine at 3000 rpm based on 96 realizations measured 
simultaneously. 

The approximation is valid if the instantaneous frequencies fp(c~(t)) do not change 
fast. Thus, the structure-borne sound signal is a complex amplitude modulated 
version of the pressure signal. 

15.2.3 Signal Analysis using Wigner-Ville Spectrum 
Pressure and structure-borne sound signals consist of a superposition of amplitude 
and frequency modulated components. Therefore, identification of the components 
only in time domain or frequency domain is difficult: a suitable time-frequency 
representation is required. The Wigner-Ville spectrum (WVS) yields a high time- 
frequency resolution. For a stochastic process S(t) the WVS is defined by 

Ws(t,  f )  - rs t + -~7, t -  -~- e dT (15.2.4) 
O 0  

where r s ( t , t ' ) =  E{S(t)S*(t ' )}  is the correlation function of S(t) [see Article 9.4]. 
In case of constant speed and load pressure and structure-borne sound signals are 
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cyclo-stationary with low stochastic dependency from combustion to combustion [5]. 
Exploiting this  fact, the correlation function can be estimated by 

1 L 

§ t') - -~ E sz( t )sz( t ' )  (15.2.5) 
/--1 

where st( t)  is observed pressure or structure-borne sound of the /th combustion, 
l = 1 , . . .  ,L, with st( t )  = 0 if t is not in the observation interval [0,T] and t - 0 
corresponds to top dead center for each combustion cycle. Substituting the esti- 
mated correlation function in Eq. (15.2.4) yields the estimated WVS of pressure or 
structure-borne sound, respectively, 

? ( ) 
O 0  

This WVS estimate has three advantages: it has a high time-frequency resolution, 
cross-terms are reduced effectively, and the algorithm is fast compared to other 
approaches that  first estimate the WVS of each combustion and then take the 
mean over all combustions. 

Model verification Fig. 15.2.2 shows the estimated WVS of the signals of two dif- 
ferently located pressure sensors and a structure-borne sound signal of a BMW 
engine. In order to stress weak signal components, signal amplitudes are scaled 
logarithmically, so we have to be careful in interpreting gray scales as amplitudes. 
In addition, Fig. 15.2.2 shows the instantaneous frequencies estimated by FEM sim- 
ulations. Obviously, the pressure sensors observe different resonances due to their 
positions and pressure nodes and anti-nodes locations. The frequencies of the visible 
pressure resonances coincide well with the frequencies estimated by FEM simula- 
tions. The structure-borne sound signal shows similar behavior but there are some 
strange components at approximately 6.5 kHz and between 10 and 12 kHz. They 
may be a consequence of the engine housing transfer function, additional noise, or of 
insufficiently reduced cross-terms of the estimated WVS. As mentioned before, we 
have to be careful in interpreting the gray scale amplitudes. Nevertheless, we can 
recognize for pressure and structure-borne sound signals that  knock occurs around 
10 ~ crank angle. Furthermore, signal power (and amplitude) is maximal at exci- 
tation of knock and decreases with increasing crank angle. In general, the results 
of the estimated WVS justify the decomposition of pressure and structure-borne 
sound signals into frequency and amplitude modulated components. 

Knock s e n s o r  position optimization The number of resonances being observed 
by a sensor depends strongly on its position. This holds for pressure as well as for 
structure-borne sound. Therefore, it is very important  to find a good acceleration 
sensor position. This can be done at test bed engines by optical methods like laser 
holography or by assessing the position of several acceleration sensors with statistical 
analysis [6]. A very simple, intuitive, and fast approach is to use the estimated 
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WVS. Since there are fast algorithms for its implementation, it can be calculated 
at the test bed while the engine is running. The operator compares the WVS of 
the pressure signal with those of the acceleration sensor signals. Using pressure as 
reference, structure-borne sound signals that contain the same resonances are more 
suitable for knock detection than signals with less or different resonances. As spin- 
off, observing the sensor signals by WVS is very useful for verifying measurement 
setup, a very important task at test bed measurements. 

Non-equidistant sampling Knock detection usually bases on estimated resonance 
energies of structure-borne sound signals. As previous considerations have shown, 
the frequencies vary with crank angle. Optimum estimation of resonance ener- 
gies can therefore be achieved by time-varying filtering. Alternatively, optimized 
non-equidistant sampling in time domain leads to resonances with approximately 
constant frequencies [7]. Using Wigner-Ville analysis, parameters can be found to 
optimally compensate the frequency modulation in a crank angle interval with sig- 
nificant resonance energy. Then, ordinary band pass filtering is sufficient to estimate 
the resonance energies well. 

15.2.4 Signal Analysis using S-Method 
The estimated WVS is a useful tool for analyzing a large number of combustions 
at once. But if the number of combustions is not large enough, cross-terms dis- 
turb the estimated spectrum. In many cases, we are interested in analyzing single 
combustions. There are a couple of good WVS estimators reducing or avoiding 
cross-terms; see e.g. [8, 9]. Among these, the S-method has been proven to be an 
appropriate tool to represent single knock signals in time-frequency domain [10]. 
Using the short-time Fourier transform of signal s(t) 

/? - + ( 1 5 . 2 . 7 )  
o o  

where w(r) is a lag window, the S-Method can by defined as 

/? SM(t,w)- 1 P(O)F~(t,w+O)F~'*(t,w-O)dO (15.2.8) 
T" o o  

with an appropriate window P(O). The width of P(O) affects the behavior of the 
S-Method with regard to reduction of cross-terms significantly. For a detailed discus- 
sion of the S-Method see Article 6.2. Exploiting Fast Fourier Transform algorithms, 
the S-Method can be implemented very efficiently [11], so that real-time processing 
is possible on a fast DSP. 

Observation of single combustions Fig. 15.2.3 shows the estimated WVS and the 
S-Method of a single knocking combustion. The estimated WVS seems to contain 
mainly one component. There are some more but it is very difficult to distinguish 
between auto-terms and cross-terms. The time-frequency concentration of the S- 
Method is worse but it is easy to identify at least four components. Therefore, the 
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Fig.  15.2.3: Left: estimated WVS of a single knocking combustions of a BMW engine at 3000 rpm 
observed by pressure sensor 2; middle: S-Method of the same signal; right: S-Method averaged over 
96 realizations. 

S-Method is much more suitable to observe single combustions than the estimated 
WVS. Normally, the WVS is estimated by averaging over a large number of realiza- 
tions. Analogue, the S-Method of a large number of single knocking combustions 
was averaged in Fig. 15.2.3 (right). Comparing this representation to the according 
WVS in Fig. 15.2.2 (middle), we recognize the worse resolution of the averaged S- 
Method. But the amplitude and frequency modulation is observable. In contrast 
to the WVS, the averaged S-Method is able to resolve the component that  starts 
at 15 kHz at 0 ~ crank angle which is the strongest component in pressure 1; see 
Fig. 15.2.2 (left). In the WVS this component is covered by cross-terms. Appar- 
ently, the number of realizations was too small to reduce cross-terms sufficiently. 

Power and energy estimation As demonstrated before, the S-Method can be used 
to investigate single combustions. As shown in [10], it is possible to track the 
resonances and to estimate the power A2(t) of component p at each time instant t 
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by integrating along the frequency axis in the component's band Bp(t): 

1 /B SM(t,w) dw. (15.2.9) 

In the simplest case, the band width Bp(t) is constant. But considering knock 
signals, the band width decreases with crank angle; see Fig. 15.2.2. So the signal-to- 
noise ratio can be improved by adapting the band width. In Article 6.2 an adaption 
algorithm is proposed. Finally, integration of A2p(t) along the observation interval 

[0, T] yields the estimated resonance energy Ep of component p 

T 

f0 #,p - Ap(t)dt. (15.2.10) 

Knock detection The main application of estimating resonance energies of internal 
combustion engines is the detection of knock. A knock detector in today's cars based 
on structural-borne sound usually estimates the signal energy in a wide band, e.g. 
5 to 12 kHz. The energy is compared to a threshold which yields the knock detection. 
This is a simple, fast and successfully applied method. But it can be improved by 
taking into consideration that  signal energy is the sum of the energies of single 
components. Since the engine housing transfer function may at tenuate or amplify 
the components differently, we get a wrong idea of the energy distribution inside the 
cylinder which is used as reference at test bed engines. Among other time-frequency 
detectors like those presented in Article 12.4 or [12], [13], the S-method is a useful 
tool for estimating the resonance energies of single components and is therefore 
advantageous for detecting knock; see e.g. [14]. 

15.2.5 Summary and Conclusions 
On the basis of the WVS and the S-method, it was demonstrated that  time- 
frequency representations are suitable and very useful tool~ for the task of com- 
bustion diagnosis of internal combustion engines. They allow an intuitive insight in 
relevant signal ~)arameters and properties like amplitude and frequency modulation. 
Therefore, they simplify and improve investigations during the development and ap- 
plication of new engines. Furthermore, they help to improve signal processing for 
higher engine efficiency. 
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1 5 . 3  POWER CLASS TIME-FREQUENCY 
REPRESENTATIONS AND THEIR APPLICATIONS o 

15.3.1 Power Class Quadratic Time-Frequency Representations 
Various classes of quadratic time-frequency representations (QTFRs) are best suited 
for analyzing signals with certain types of time-frequency (TF) geometries. For 
example, when a signal has constant TF characteristics, Cohen's-class QTFRs (with 
signal-independent kernels; i.e. the quadratic class as defined on p. 68) [1,2] are most 
appropriate. The aforementioned QTFR classification is based on the grouping 
together of all QTFRs that satisfy the same two signal transformation covariance 
properties (see [3,4] and Articles 4.3 and 5.6). Specifically, Cohen's class [1, 2] 
consists of QTFRs that are covariant to constant (nondispersive) time shifts and 
frequency shifts of the signal whereas the affine class (see [2, 5, 6] and Article 7.1) 
consists of QTFRs that are covariant to scale changes (dilations) and constant time 
shifts. Furthermore, the hyperbolic class [7, 8] consists of QTFRs that are covariant 
to scale changes and hyperbolic dispersive time shifts and are best suited to analyze 
signals with hyperbolic (nonlinear) group delay. When the analysis signal has a 
group delay that is a power function of frequency, the aforementioned QTFRs do not 
provide an adequate representation as they do not match power TF characteristics. 
Thus, we designed power class QTFRs to successfully localize signals along their 
power law group delay functions [9, 10]. 

The importance of power QTFRs is pronounced by the fact that many appli- 
cations involve signals with dispersive group delays governed by a power law that 
corresponds to some power parameter ~. Examples of such signals include the dis- 
persive propagation of a shock wave in a steel beam (~ = 1/2), trans-ionospheric 
chirps measured by satellites (t~ = -1) ,  acoustical waves reflected from a spherical 
shell immersed in water, various cetacean mammal whistles, and signal solutions of 
the diffusion equation (t~ = 1/2) (e.g., waves propagating along uniform distributed 
RC transmission lines). Power laws can also be used to roughly approximate other, 
more complex, group delays. References for these applications can be found in [9]. 

Localized signal analysis application. The type of signals found in the applications 
mentioned above constitute the family of power impulses that best typifies the power 
TF geometry. Power impulses are defined in the frequency domain as 

I (~)( f )  ~- V/IT~(f)] e - j 2 r c A ~ ( ~ / y )  - -  V/(It~l/fr)[f/fr[ ~-1 e -j2zccsgn(f)[f/f'['~ (15.3.1) 

with monotonic phase spectrum A ~ ( f / f r )  = sgn(f ) [ f / f r [~  and power group delay 
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d A ~ ( f / f r )  with f E ~. Here, sgn(f)  provides Tg(f) = cT~( f )  -- C ~ If /f~l ~-1 -- C ~ 
the sign (+1) of the frequency variable f ,  and fr  > 0 is a fixed reference frequency. 
For successful analysis, an ideal QTFR T must be localized along the group delay 
Tg(f)  of the power impulse in Equation (15.3.1). In particular, 

TI~,  (t, f )  - IT~(f)I 5(t - eTa(f)) (15.3.2) 

is very desirable in many applications where information about the signal analyzed 
could be obtained from the localized curve t = C T,~(f) in the TF plane. For ex- 
ample, the localization could be used in applications such as signal classification or 
estimation of the parameter c in (15.3.1). As we will show next, some power class 
QTFRs ideally provide the localized representation in (15.3.2) for analyzing power 
impulses as well as other signals with power group delay. 

The power law TF structure can also be observed in applications where a sys- 
tem can cause a time shift that varies dispersively in frequency to an input signal 
with Fourier transform X ( f )  yielding the output signal Y ( f )  = e -j2rcA~(f/f~) X ( f ) .  
Thus, power QTFRs could be used successfully in applications where a signal with 
constant group delay passes through a system with power dispersive TF character- 
istics that transforms the signal's constant group delay to a power group delay [9]. 
For example, the ocean is a medium (system) that  could cause power dispersive 
changes to an underwater communications information message and its echoes. 
These changes could be accounted for at the receiver when matching processing 
tools, like power QTFRs, are used for detection. 

The power QTFR classes. Following the covariance-based classification method, 
for an analysis signal x(t)  with Fourier spectrum X (f),  we define all nth power class 

QTFRs, T(x ~) (t, f ) ,  to satisfy two specific covariance properties [9, 10]. The first 
property is covariance to scale changes on x(t) ,  i.e., 

Tc (~) (t, f )  T(x'~)(at f /a) (15.3.3) a X  ~ , 

where the scaling operator Ca is defined as (CaX) ( f )  - X ( f / a ) / ~ .  The second 
property is covariance to power time shifts on x(t)  that  correspond to frequency- 
dependent shifts, T~(f), in the signal's group delay.  Specifically, 

T (~) (t, f )  - T (~) (t - c~-~(f) f )  - T (~) (t - c (~ / / f , ) l f / / f , I  '~-~, f )  (15.3.4) T~: ~) X 

for f e ~. The effect of the power time shift operator 19 (~) is given by [9] 

- z ( f )  - x ( f ) .  (15.3.5) 

Here, c E ~ and ~ c ~ (~ # 0) is the power parameter associated with each 
power class. The ~th power function A~(b) = sgn(b)Ibl ~, b e ~, corresponds 1 to a 

1The definition An(b) = sgn(b)Ibl ~ versus An(b) -- b ~ extends the power function to b < 0 so 
that An(b) is an odd, strictly monotonic function constituting a one-to-one mapping from ~ to ~. 
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Fig.  15.3.1: The power group delay T,~(f) for various choices of the power parameter ~. 

transformation of the phase spectrum of the signal as shown in Equation (15.3.5). 
The frequency-dependent time shift 7,~(f) in (15.3.4) corresponds to the derivative 

d A ,~( f / f r )  - ~ I f / f r t  '~-1 Fig. 15.3.1 depicts of the power function, i.e., r , ~ ( f ) -  -37 ~ " 
T~(f) in the TF plane for various choices of the power parameter ~. 

The importance of the ~th power class QTFRs is directly linked to the two 
covariances in (15.3.3) and (15.3.4). The power time shift covariance in (15.3.4) is 
useful in analyzing signals passing through dispersive systems with power law group 
delay or signals localized along power law curves in the TF plane. On the other 
hand, the scale covariance in (15.3.3) is important for multiresolution analysis. 

Power class formulation. 
class can be expressed as 

It was shown in [9] that any QTFR of the ath power 

/ F  1 ~ F T ( f l / f ,  f e / f )  T ( ~ ) ( t ' f ) -  ~ oo oo 

�9 d 2€200 X(f l )  X * ( f 2 ) d f l  df2, (15.3.6) 

where the two-dimensional (2-D) kernel FT(bl,  b2) uniquely characterizes the QTFR. 
Specific choices of FT(bl,  b2) define specific QTFRs T (~) in the ~th power class. Also 
note that a different power class is obtained by varying ~ in (15.3.6). When ~ =  1 
we obtain the affine class [see Article 7.1], which is an important special case of the 
power classes corresponding to the constant (nondispersive) time shift 71 ( f )  =- 1~ft.  

The nth power class QTFR in (15.3.6) can also be obtained via a unitary warping 

operation (see Articles 4.5 & 5.6 and [9-11]). Specifically, if T(A)(t ,  f )  is a QTFR 
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of the affine class, then the corresponding ~th power class QTFR, T(x ~) (t, f),  can be 

obtained by warping the affine class QTFR, T(x A) (t, f),  according to [9] 

( t ) 
T(x ~)(t, f)  - u~x frT~(f-----~' hA~(f / f~)  

- ( t ) 
- u~x ~]f/frl~_l ,f~sgn(f)lf/f~] ~ . (15.3.7) 

Here, the unitary 2 frequency axis warping operator [9,10]/g~ is given by 

X(frA-~l( f  /fi.))lT~(frA_~l(f /fr))] _ ~ [ f  /frl X( f r sgn( f ) l f  / frl �88 (b l~X) ( f ) -  ~/Sr - 
u 

where inverse function s tisOes = = b. The 
QTFRs of the affine class are defined as [2] 

T(x A)(t, f) = ~1 ~o~ oo rT(fl/f, f2/f)e r Z(f~) X*(f2) df~df2 

where FT(bl, b2) is a 2-D kernel characterizing the affine class QTFR (aft (15.3.6)). 

Note that T(xA)(t,I) = T(x~)(t,f)l~=l . The unitary warping relation in (15.3.7) 
preserves certain desirable characteristics of the affine class while transforming other 
ones to match the dispersive nature of the signals to be analyzed by power class 
QTFRs. For example, whereas both classes preserve scale changes of the signal, 
only the affine class preserves constant (nondispersive) time shifts. On the other 
hand, the warping in (15.3.7) transforms constant time shifts to power dispersive 
time shifts in the power class, and thus the constant time shift covariance of the 
ai~ine class is transformed into the power time shift covariance of the power classes. 
The warping also provides an efficient method for computing power class QTFRs 
when algorithms for computing affine class QTFRs are available [10]. 

Class members. Specific QTFRs of the power classes satisfy various desirable 
properties in addition to the covariance properties in (15.3.3)-(15.3.4) satisfied by 
all members of the power classes. Some power class QTFRs of particular importance 
include the power Wigner distribution, the powergram, the smoothed pseudo power 
Wigner distribution [9], and the Bertrand P~-distributions (see Article 7.1 and [6,9]). 
All these QTFRs have counterparts in the affine class by virtue of the power warping 
relation in (15.3.7). For example, the power Wigner distribution, 

W(x ~)(t,f) = f X f A ;  1 1 + ~  fA~ 1 -  ~2 ~-1 

= Wu~x(t/( frT~(f)) ,  f~A~(S/f~)) 

2Unitarity of the operator/d~ implies that/d~ preserves inner products. Specifically, the oper- 
ator satisfies .f-~oo (U~X)(f) (ld~ X)* (f) df = f _~176 X( f )  X* (f) dr. 
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(cf. (15.3.7)), is the power warped version of the well-known Wigner distribution 
(WD) , Wx(t ,  f )  - f _ ~  X ( f  + 2 ) X * ( f  - 2)e  j2rtv dv [1-3]. As such, it satisfies 
many properties such as a specific set of marginal properties and the perfect TF lo- 
calization property for power impulses in (15.3.2). Just like the WD, the power WD 
contains oscillatory and partly negative cross terms when multicomponent signals 
are analyzed (see Article 4.2 and [10]). In order to suppress cross terms, a specific 
type of smoothing can be applied that  is matched to the power TF geometry. The 
powergram and the smoothed pseudo power WD apply such a smoothing to the 
power WD, at the expense of the loss of some properties (such as the marginal 
properties) and the loss of TF resolution. The Bertrand P~-distributions (see Arti- 
cle 7.1 and [6]) are also perfectly localized for power impulses; moreover, they are 
the only power class QTFRs that preserve constant time shifts in addition to power 
dispersive time shifts. Power class members and their properties are discussed in 
detail in [9]. Next, we present examples with both synthetic and real data. 

15.3.2 Power Class Applications 
Synthetic data analysis example. The discrete implementation of power QTFRs 
(outlined in [9, 10]) was applied to analyze a two-component signal consisting of 
two power impulses with power parameter nsignal --  3. F o r  computational purposes, 
the impulses are windowed in the frequency domain. Figs. 15.3.2(a) and 15.3.2(b) 
show the results obtained with the power WD and a smoothed pseudo power WD 
with a very short smoothing window. Both QTFRs have power parameter ~ = 3, 
matched to the power impulse parameter t%igna 1. The power WD in Fig. 15.3.2(a) 
has very good TF concentration but large cross terms [10] which are effectively 
suppressed in the smoothed pseudo power WD in Fig. 15.3.2(b) with hardly any 
loss of TF concentration. Also shown (in Figs. 15.3.2(c) and 15.3.2(d)) are the 
results obtained with the WD and an affine-smoothed pseudo WD, both members 
of the affine class [2] (i.e., both QTFRs have power parameter t~= 1 ~ t~signal). The 
WD in Fig. 15.3.2(c) is not matched to the power impulses, displaying complicated 
cross terms. The affine-smoothed pseudo WD in Fig. 15.3.2(d) does not suppress all 
the cross terms and has a larger loss of TF concentration than does the smoothed 
pseudo power WD in Fig. 15.3.2(b). Although all QTFRs in Fig. 15.3.2 are scale 
covariant, the results of the two power QTFRs with ~ = 3 in Figs. 15.3.2(a) and 
15.3.2(b) are better than those of the two affine QTFRs with ~ =  1 in Figs. 15.3.2(c) 
and 15.3.2(d) because the former two are optimally matched to the ~signal----3 power 
law group delays of the power impulse signal components. 

In order to further demonstrate the effect of mismatch in the signal parame- 
ter ~signal and the QTFR power parameter ~, Figs. 15.3.2(e) and 15.3.2(f) show 
the results obtained when analyzing the above signal using the power WD and a 
smoothed pseudo power WD with QTFR power parameter ~ = 4. Note that  in 
Figs. 15.3.2(e) and 15.3.2(f) the power parameter of the power class QTFRs, ~ = 4, 
is different from that  of the signal, ~signal = 3. The smoothed pseudo power WD in 
Fig. 15.3.2(f) has better cross term suppression and better TF concentration along 
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Fig.  15.3.2: Power class analysis of a two-component analytic signal consisting of the sum of two 
windowed power impulses with signal power parameter ~signal -- 3. (a) Power WD with ~ -  3, (b) 
smoothed pseudo power WD with ~--3, (c) WD (~--1), (d) affine-smoothed pseudo WD ( ~ - 1 ) ,  (e) 
power WD with ~---4, and (f) smoothed pseudo power WD with ~--4. 

the true group delay than the affine-smoothed pseudo WD in Fig. 15.3.2(d) since 
the power parameter mismatch in Fig. 15.3.2(f) is smaller than in Fig. 15.3.2(d). 

Real data analysis example. Next, we demonstrate the use of power class QTFRs 
for analyzing real data with dispersive TF structure. Fig. 15.3.3 shows two power 
class QTFRs with n =0.35 and two affine (n = 1) QTFRs of the measured impulse 
response of a steel beam with rectangular cross section 3 [12]. The impulse response 
was obtained by lightly tapping one end of the steel beam in the direction orthogonal 
to the fiat side of the beam. Bending waves travel along the beam until they are 
reflected at the free end. They return to the point of impact, are reflected again, 
etc., thereby producing a series of echoes with increasing dispersion. The QTFRs in 

3The da ta  was obtained by J. Woodhouse in an experiment  at Cambridge University. We are 
grateful to D. Newland and J. Woodhouse for making this da ta  accessible to us. 
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Fig. 15.3.3: Power class analysis of a bandpass-filtered segment of the measured impulse response of 
a steel beam (sampling freq. 4,096 Hz). (a) Power WD with ~--0.35, (b) smoothed pseudo power 
WD with ~=0.35, (c) WD (~= 1), and (d) affine-smoothed pseudo WD (~= 1). 

Fig. 15.3.3 display a bandpass-filtered segment of the measured impulse response. 
As can be seen, the smoothed pseudo power WD with ~ = 0.35 in Fig. 15.3.3(b) 
shows better resolution and/or  cross term suppression than the other three QTFRs 
depicted. The specific value of ~ = 0.35 was chosen empirically to match the TF 
curvature of the primary reflection. 

15.3.3 Summary and Conclusions 
This article presented QTFR classes specifically matched to signals and systems with 
power law group delay characteristics. These power QTFRs preserve scale changes 
and power law frequency-dependent time shifts of the signal under analysis. Thus, 
these QTFRs are potentially useful in applications where a propagation medium 
causes power dispersive time shifts as was demonstrated using a real data example. 
The implementation of power QTFRs can be based on a warping transformation 
that relates the ecth power class with the affine class. Successful application of power 
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class Q T F R s  presupposes sufficient a priori knowledge about  the signal to aid in 
choosing the appropriate power parameter  ~. 
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15.4 IMAGE DISTORTION ANALYSIS USING THE 
WIGNER-VlLLE DISTRIBUTION 0 

This article deals with the 2D Wigner-Ville distribution (WVD) in the context of 
image analysis applications. The properties that motivate the use of 2D WVD in 
image analysis are reviewed. The important issue of choosing the analytic image is 
emphasized, and practical implementation aspects are discussed. 

The usefulness of Wigner-Ville distribution for image analysis is demonstrated 
by an application to image dissimilarities measurement. The WVD-based measure 
is correlated with subjective human evaluation, which is the premise towards an 
image quality assessor developed on this principle. 

15.4.1 Image Quality and Joint Spatial/Spatial-Frequency 
Representations 

The Wigner-Ville distribution (see Section 2.1.4) has been proved to be a powerful 
tool for analyzing the time-frequency distribution of nonstationary signals. WVDs 
were successfully applied in capturing essential nonstationary image structures [1-3]. 
In this context, the properties of joint spatial/spatial-frequency representations of 
images led to other applications of WVD to image processing [3, 4]. 

This article aims to present the WVD from the point of view of image analysis, 
that is, to emphasis the desired properties and implementation considerations, and 
to present a specific application, namely analyzing and tracking image distortions for 
computing an image quality measure. While the WVD is widely used in applications 
involving 1D signals, the extension to multidimensional signals, in particular to 2D 
images, has not reached a similar development. 

With the increasing use of digital video compression and transmission systems 
image quality assessment has become a crucial issue. In the last decade, there have 
been proposed numerous methods for image distortion evaluation inspired from the 
findings on Human Visual System (HVS) mechanisms [5]. In the vision research 
community, it is generally acknowledged that the early visual processing stages 
involve the creation of a joint spatial/spatial-frequency representation [6]. This mo- 
tivates the use of the Wigner-Ville distribution as a tool for analyzing the effects 
induced by applying a distortion to a given image. The simple Wigner-based distor- 
tion measure introduced in this article does not take into account the masking effect. 
This factor needs to be introduced in future research. The qualitative correlation of 
the WVD-based measure with subjective human evaluation is illustrated through 
experimental results. This measure could be used for image quality assessment, or 
as a criterion for image coder optimization, or for bilinear problems encountered in 
computer vision, or for image segmentation. 

~ A. Beghdadi, L2TI-Institute Galilee, Universit~ Paris 13, FR-93430 Villetaneuse, 
France (beghdadi@12ti.univ-parisl3.fr), and R. Iordache, Signal Processing Laboratory, Tam- 
pete University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland (riordache@noos.fr). 
Reviewers: B. Boashash, H. Wechsler and K. Abed-Meraim. 
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15.4.2 Continuous 2D Wigner-Ville Distribution 
The 2D Wigner-Ville distribution (WVD) of a 2D image f(x, y) is defined as [41: 

Wf(x ' y ' u ' v ) - j f  R2 f (x+2'y+-~)  f* (x -2 'Y - -~ )  e-j2~(`~u+zv) dad~ (15.4.1) 

where x and y are the spatial coordinates, u and v are the spatial frequencies, and 
the asterisk denotes complex conjugation. 

Historically, the function introduced in (15.4.1) is called the "Wigner distribu- 
tion" of f ,  while the "Wigner distribution" of an analytic image associated to f is 
referred to as the "Wigner-Ville distribution" of f (see Chapter 2). For simplicity, 
in this article only "Wigner-Ville distribution" appellation is used, as defined in 
(15.4.1). 

To the 2D image f(x, y) corresponds a Wigner-Ville distribution W/(x, y, u, v), 
that provides a spatial/spatial-frequency representation of the image. To any point 
(x, y) of the image is assigned a 2D spatial-frequency spectrum. Applying Parseval's 
formula, the WVD can be written in terms of Fourier transform of f(x, y), F(u, v), 
a s  

(15.4.2) 

The image can be reconstructed up to a sign ambiguity from its WVD: 

f (x,  y) f*  (0, O) - 2 W /  u, v dx  dy . (15.4.3) 

Among the properties of 2D Wigner-Ville distribution, the most important for 
image processing applications is that it is always a real-valued function and, at 
the same time, contains the phase information. The 2D Wigner-Ville distribution 
has many interesting properties related to translation, modulation, scaling, and 
convolution. For an in-depth description the reader is referred to [4]. In the sequel, 
the properties relevant for image analysis tasks are reviewed. 

The Wigner-Ville distribution localizes the spatial/spatial-frequency structures 
of f(x, y). For instance, if the signal energy is concentrated in space around (Xo, y0) 
and in frequency around (uo, v0), then the energy of W/(x, y, u, v) is centered at 
(Xo, Y0, u0, v0) and has the same spatial and frequency spread as f(x, y). Actually, 
it can be shown that the spatial-frequency support of W/(x,y, u,v), is included 
in the support interval of F(u, v), for all (x, y), and that the spatial support of 
Wf(x, y, u, v) is included in the support interval of f(x, y) for all (u, v). 

The local power at a fixed position (x0, Y0) is equal to the marginal integral of the 
WVD over the spatial-frequency domain at the considered spatial position, while 
the spectral energy density at the spectral point (u0, v0) is equal to the marginal 
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integral of the WVD over the spatial domain at the considered spectral point: 

If(xo,yo)l 2 - L~ 

I F ( u o , v o ) [  2 - s 

WI (Xo, Yo, u, v) dudv 

WI (x, y, uo, vo) dx dy . 

(15.4.4) 

(15.4.5) 

As the result of these properties, the Wigner-Ville distribution is often thought as 
the image energy distribution in the joint spatial/spatial-frequency domain, which 
strongly encourages the use of 2D WVD in image analysis applications where the 
spatial/spatial-frequency features of images are of interest. 

The main problem of the WVD is the so-called cross-term interference (see 
Article 4.2 for the one-dimensional case). Due to its bilinearity, the Wigner-Ville 
distribution of the sum of two images fl and f2 introduces an interference term, 
usually regarded as undesirable artifacts in image analysis applications: 

WI, + f: (x, y, u, v) = WI~ (x, y, u, v) + WI~ (x, y, u, v) + 2Real [Wf~,f~ (x, y, u, v)] 

(15.4.6) 

where the interference term W f l , f  2 is the cross-WVD of fl  and f2: 

fl x+~-  

(15.4.7) 

The interference terms are highly oscillating and their magnitude can be two times 
larger than that of the auto-terms. The artifacts introduced by the interference 
can be classified into two categories [2]: (a) interference terms due to the interac- 
tion between the conjugate symmetric spectral components of real images, and (b) 
interference terms due to the interaction between any two spectral components of 
the image (real or complex) at different spatial frequencies. Obviously, the WVD 
of any real image suffers from the first type of artifacts, due to its conjugate sym- 
metric spectrum. Moreover, if the real image is multicomponent, which is usually 
the case in most of the applications, both kinds of artifacts are present, making the 
spatial/spatial-frequency representation difficult to interpret. The following subsec- 
tion presents a concept that may be used to eliminate the first type of interferences 
and to reduce the second. 

15.4.2.1 Analytic Image 
If the spectrum of an image contains only positive (or only negative) frequency 
components, there is obviously no interference between the positive and negative 
frequencies in its WVD. The analytic image has such a spectral property, therefore 
a cleaner spatial/spatial-frequency representation of a real image, f ( x ,  y), may be 
obtained by computing the WVD of an analytic image, z(x, y) associated to it. 
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The analytic image is the extension of 1D analytic signal to 2D. Contrary to the 
1D analytic signal, the analytic image is not unique. For a reliable spatial/spatial- 
frequency representation of the real image, the analytic image should be chosen so 
that: 
(a) the useful information from the 2D WVD of the real signal are found in the 2D 
WVD of the analytic image, and 
(b) the 2D WVD of the analytic image minimize the interference effect. 

As in 1D case where the analytic image is formed by suppressing the nega- 
tive frequencies, the 2D analytic image may be constructed by setting to zero one 
half-plane of the spatial-frequency domain. By introducing a reference direction 
(cos 0, sin 0), a pair of frequency (u, v) is called positive if u cos0 + v sin 8 > 0, and 
is called negative if u cos 0 + v sin 0 < 0. According to this convention, the analytic 
signal is straightforward defined in the frequency domain. 

The Fourier transform, Z(e)(u, v), of the analytic image with respect to direction 
(cos0, sin 0), z(e)(x, y), corresponding to the real image f is [7]: 

z(O)(u, v) = F(u, v) (1 + sign(u cos 0 + v sinO)). (15.4.8) 

The choice of 0 depends on the knowledge on the spectral characteristics of the real 
image. Unfortunately, Wz(o) contains interference cross-terms between the spectral 
components of the two quadrants in the positive frequency half-plane. 

To eliminate these interference cross-terms a second definition of the analytic 
image seems appropriate, as a complex signal with single-quadrant spectrum [8]. To 
avoid any loss of information, two analytic images are associated to the real image. 

The Fourier transforms Z1 (u, v) and Z2(u, v), of the analytic images with the 
single-quadrant spectra, zl (x, y) and z2(x, y), corresponding to a real image f are 
defined as: 

Z1 (u, v) = F(u, v) (1 + sign(u)) (1 + sign(v)) 

Z2(u, v) = F(u, v) (1 + sign(u)) (1 - sign(v)). 

(15.4.9) 

(15.4.10) 

Using zl and Z2, the interference between frequencies from different quadrants 
is eliminated for any spectral distribution of the real signal. Wzl reflects the 
spatial/spatial-frequency distribution of f for uv > O, and Wz2 for uv < O. 

15.4.2.2 Continuous 2D Windowed Wigner-Ville Distribution 

In practical applications, the images are of finite support. Therefore it is appropriate 
to apply Wigner analysis to a windowed version of the infinite support images. 

As in the 1D case [9], the 2D windowed Wigner-Ville distribution is constructed 
as follows: To compute the windowed WVD at a spatial location (x0, Y0), a win- 
dowed version of f is considered, where the window w(x, y) is centered on (x0, Y0): 

f (z, y; zo ,  yo) = f ( x ,  y)w(  - y - yo). (15.4.11) 
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Then the windowed WVD at (Xo, Yo) is defined as the WVD of f~ at x = x0, y = yo: 

~) (x, y, u, v) = w -~, ~ w* a~, /~2 (15.4.12) 
2 

( o ) . (  o ) x f x + ~, y + -~ f x - ~, y - -~ e-J2'~(~u+~V) dc~ dZ . 

The 2D windowed WVD can be shown to represent the convolution with respect 
to the spatial frequencies of WI and W~: 

W~W) (x' y' u' v) - JfR2 W f ( x '  Y'~' ~)Ww(x'  y' u - ~' v - ~)d~drl " (15.4.13) 

The effect of the windowing is to smear the WVD representation in the frequency 
plane only, so that the frequency resolution is decreased but the spatial resolution 
is unchanged. 

15.4.3 Discrete 2D Wigner-Ville Distribution 
In this article the discrete version of (15.4.1) is not discussed, as it does not provide 
any relevant information from the image analysis viewpoint. In this respect, it is 
more interesting to take into account the discrete version of the windowed WVD 
(15.4.13). For the sake of simplicity, square shaped images and analysis windows 
are considered. 

Let f ( m ,  n) be the discrete image obtained by sampling f(x,  y), adopting the 
convention that  the sampling period is normalized to unity in both directions. The 
following notation is made: 

K ( m , n , r , s )  = w ( r , s ) w * ( - r , - s ) f ( m + r , n + s ) f * ( m - r , n - s ) .  (15.4.14) 

The discrete space equivalent of the windowed Wigner-Ville distribution 
(15.4.13) is given by: 

L L 

W (w)(m, n, u, v) - 4 E E K ( m ,  n, r, s)e -j47r(ru+sv) 
r = - L  s = - L  

(15.4.15) 

where w(r, s) = 0, for ]r], > L C Z +. 
The properties of the discrete space WVD are similar to the continuous WVD, 

except for the periodicity in the frequency variables, which is one-half the sampling 
frequency in each direction: 

(15.4.16) 

Therefore, if f ( x ,  y) is a real image, it should be sampled at twice the Nyquist rate 
to avoid aliasing effects in WL, ' (m, n, u, v). 
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There are three practical solutions to avoid aliasing, when the original continu- 
ous image is not available: 
(a) to filter out the frequency regions that cause aliasing (lowpass filtering), 
(b) to up-sample the image by a factor of 2 in both directions and then appropri- 
ately band-limit the image using an anti-aliasing filter [1], and 
(c) to compute the Wigner-Ville distribution of one or more analytic images as- 
sociated to the real image, that eliminate or at least reduce the aliasing [2, 10]. 

To have a discrete spatial-frequency representation of the Wigner-Ville distri- 
bution, the frequency variables should be sampled. The 2D discrete windowed 
Wigner-Ville distribution of an image f(n, m), (n, m) c Z 2 is defined as" 

L L 

Wr Up, Vq) - 4 E E K(m'n'r's)WnP+Sq 
r=-L s=-L 

(15.4.17) 

where N = (2L + 2), W4 = e -j47r/N, and the normalized spatial-frequency pair is 
(Up, Vq) = (p/N, q/N). 

By making a periodic extension of the kernel K(m, n, r, s), for fixed (re, n), 
(15.4.17) can be transformed to match the standard form of a 2D DFT, except that 
the twiddle factor is W4 instead of 1412 (see [9] for additional details for 1D case; the 
2D construction is a direct extension). Thus standard FFT algorithms can be used 

to calculate the discrete W} w). The additional power of two represents scaling a 

along the frequency axes, and can be neglected in the calculations. 
, /  

As the real-scene images have rich frequency content, the interference cross- 
terms may mask the useful components contribution. Therefore a commonly used 
method to reduce the interference in image analysis applications is to smooth the 2D 
discrete windowed WVD in the spatial domain using a smoothing window h(m, n). 
The price to pay is the spatial resolution reduction. The result is the so-called 
2D discrete pseudo-Wigner distribution (PWD) [1], which is obtained from the 
windowed WVD: 

M M 

P W f ( m , n ,  Up, V q ) -  E E (15.4.18) 
k=-M g=-M 

In the case of a symmetric frequency window, i.e. w(r, s) - w(-r,-s) ,  the PWD 
can be defined by: 

L L 

PWi(m, n, up, Vq) - 4 E E [w(r, s)12W~ p+~q (15.4.19) 
r=-L s---L 

M M 

x E E h ( k , g ) f ( m + k + r , n + g + s ) f * ( m + k - r , n + g - s ) .  
k=-M g=-M 

A very important aspect to take into account when using PWD is the choice of 
the two windows, w(r, s) and h(k, g). The size of the first window, w(r, s), is dictated 
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Fig. 15.4.1: Examples of discrete analytic images. The spatial frequency is normalized with respect to 
the sampling frequency. If the case, the frequency supports of different images are marked by different 
motives. (a) Analytic image used in [2], which is the discrete version of (15.4.8) for 0 = 0. (b) The 
discrete analytic image pair proposed in [10]. (c) Single-quadrant discrete analytic image pair, which 
are the discrete version of (15.4.9) and (15.4.10). 

by the resolution required in the spatial-frequency domain. The spectral shape of 
the window should be an approximation of the delta function that optimizes the 
compromise between the central lobe width and the side lobes height. A window 
that complies with these demands is the 2D extension of Kaiser window, which was 
used in [1]. 

The role of the second window, h(k, ~), is to allow spatial averaging. Its size de- 
termines the degree of smoothing. The larger the size is, lower the spatial resolution 
becomes. The common choice for this window is the rectangular window. 

15.4.3.1 Choice of Analytic Image in Computing Discrete Wigner-Ville 
Distributions 

In the discrete case, there is an additional specific requirement when choosing the 
analytic image: the elimination of the aliasing effect. Taking into account that all 
the information of the real image must by preserved in the analytic image, only 
one analytic image cannot fulfill both requirements. Therefore, either one analytic 
image is used and some aliasing is allowed, or more analytic images are employed 
which satisfy two restrictions: (a) the real image can be perfectly reconstructed 
from the analytic images, and (b) each analytic image is alias free with respect to 
WVD. 

The discrete version of the half-plane analytic image (15.4.8) was used for texture 
segmentation in [2]. While preserving all the information of the real image, it fails 
to produce a substantial reduction of the aliasing, as it does not prevent frequency 
fold-over along one direction (Fig. 15.4.1(a)). 

To avoid aliasing, a solution is to use two analytic images, obtained by splitting 
the region of support of the half-plane analytic image into two equal area subre- 
gions. This is the procedure presented in [10], where one analytic image contains the 
low positive frequencies and the other the high positive frequencies (Fig. 15.4.1(b)). 
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(d) (e) (f) 

Fig. 15.4.2: Full-domain WVD computation using a single-quadrant analytic image pair. (a) Spectrum 
of the real image. (b) Spectrum of the upper-right quadrant analytic image (see (15.4.9)). (c) Spectrum 
of the lower-right quadrant analytic image (see (15.4.10)). (d) Spatial-frequency support of WVD 
of (b). (e) Spatial-frequency support of WVD of (c). (f) Spatial-frequency support of the full-domain 
WVD obtained from (d) and (e). 

Although this method requires the computation of two WVD, no aliasing arti- 
facts appear and the WVD of the analytic images can be combined to produce a 
spatial/spatial-frequency representation of the real image having the same frequency 
resolution and support as the original real image. This approach was successfully 
applied in texture analysis and segmentation in [3]. 

In general, the energy of natural images is concentrated at the low frequencies, 
so most probable the low frequency analytic image contains most of the energy of 
the real image, and, therefore, its WVD would exhibit strong cross-term interfer- 
ences. A more equilibrated energy sharing is done when discrete single-quadrant 
analytic images are used (Fig. 15.4.1(c)). They are the discrete version of (15.4.9) 
and (15.4.10). As the positive frequency domain is split along v-axis, the inter- 
quadrant cross-terms are eliminated. 

As in [10], a full-domain PWD of the real image f(m, n), FPW:f(m, n, Up, Vq), 
can be constructed from PWzl (m, n, Up, Vq) and PWz2 (m, n, Up, vq). In the spatial- 
frequency domain, the full-domain PWD is, by definition, of periodicity 1 and sym- 
metric with respect to the origin, as the WVD of a real image. It is completely 
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specified by: 

{ i 1 F P W ~ ( m . ~ . ~ , . ~ )  - P W ~ . ( . ~ . ~ . ~ . . v ~ ) .  0 <_ u .  < . 0 < v~ < ~ 1 
P Wz2 (m, n, 'ltp, Vq), 0 ~ Up < "~, 0 > Vq ~ 2 

(15.4.20) 

1 
F P W f  (m, n, up, O) - PWz, (m, n, up, O) + PWz~ (m, n, up, O), 0 < Up < -~ 

(15.4.21) 

1 
FPWI(m,  n Up, Vq) - FPWf (m ,  n , -Up,-Vq)  0 > Up, Vq > - -  (15.4.22) 

' ' - 2 

F P W f ( m , n ,  up + k, vq + l) = F P W f ( m , n ,  up, Vq), Vk, l,p,q e Z. (15.4.23) 

Fig. 15.4.2 illustrates the construction of the full-domain PWD from the PWD of 
the single-quadrant analytic images. The same shading indicates identical regions. 
Letters are used to follow the mapping of frequency regions of the real image; for 
instance, the region labeled A in (f) represents the mapping of the region A in the 
real image spectrum (a) on the spatial-frequency domain of the full-domain PWD. 

In conclusion, the full-domain PWD provides information un-altered by aliasing 
artifacts on the spatial/spatial-frequency distribution of the real image over the 
entire frequency spectrum. A potential drawback of these approaches is that the 
additional sharp filtering boundaries may introduce ringing effects. 

15.4.4 An Image Dissimilarity Measure based on the 2D Wigner-Ville 
Distribution 

Structured distortions affecting an image, which are more annoying than the 
unstructured distortions, are usually highly concentrated in the spatial/spatial- 
frequency domain. Between two distortions with the same energy, i.e. same signal- 
to-noise ratio (SNR), the more disturbing is the one having a peaked energy distri- 
bution in spatial/spatial-frequency plane. 

In terms of the effect on the WVD, the noise added to an image influences not 
only the coefficients in the positions where the noise has non-zero WVD coefficients, 
but also induces cross-interference terms (see (15.4.6)). Stronger the noise WVD 
coefficients are, more important the differences between the noisy image WVD and 
original image WVD become. 

WVD-based SNR of a distorted version g(m, n) of the original discrete image 
f (m,  n) is defined as: 

E m  E n  maXp,q (IFPWI(m, n, up, vq)l) 
SNR W - 10 log~o E~n En maXp,q (IFPWI(m, n, up, Vq) - FPWg(m, n, up, ca)l) 

(15.4.24) 

For each position (m, n) the highest energy WVD component is retained, as if the 
contribution of the other components are masked by it. Of course, the masking 
mechanisms are much more complex, but this coarse approximation leads to results 
which are more correlated to the HVS perception than SNR. 



660 Chapter 15: Time-Frequency Diagnosis and Monitoring 

The use of maximum difference power spectrum as a nonlinearity transformation 
is motivated and inspired by some findings on nonlinearities in the HVS. Similar 
transformations have been successfully used to model intra-cortical inhibition in the 
primary visual cortex in an HVS-based method for texture discrimination [11]. 

Let rh and r/2 be two degradations having the same energy. The first, 7/1 is 
additive white Gaussian noise, and the second, r12 is an interference pattern. While 
the energy of the noise is evenly spread in the spatial/spatial-frequency plane, the 
energy of the structured degradation is concentrated in the frequency band of the 
interference. Thus the WVD of r/2 contains terms which have absolute values larger 
than any term of WVD of rh, as the two degradations have the same energy. These 
peak terms induce larger local differences between WVD of g2 = f + r/2 and WVD 
of f ,  which are captured by 'max' operation in the denominator of (15.4.24) and 
lead to a smaller SNR W for g2. 

15.4.4.1 Results and Discussion 
To show the interest of the proposed image distortion measure as compared to the 
signal-to-noise ratio (SNR), three types of degradation are considered: white noise, 
interference pattern, JPEG coding (Fig. 15.4.3). They induce nearly the same SNR, 
whereas visual comparison clearly reveals different perceptual quality. 

The WVD-based distortion measure is proven to correlate with subjective quality 
evaluation done by five non-expert observers, which prefer the white noise distorted 
image to the interference perturbed image and to the JPEG coded image. The 
reason is that for random degradation the noise has the same effect in the entire 
spatial-frequency plane. Therefore, the maximum spectral difference at almost any 
spatial position is lower than the just noticeable perceptual difference. On the other 
hand, when the distortion is localized (as interference patterns or distortion induced 
by JPEG coding), the maximum spectral difference corresponding to an important 
proportion of the pixels has a significant value, much larger than the just noticeable 
perceptual difference. 

15.4.5 Summary and Conclusions 
This article considers the 2D WVD in the framework of image analysis. The ad- 
vantages and drawbacks of this spatial/spatial-frequency analysis tool are recalled 
in the light of some pioneer and recent works in this field. 

The usefulness of the WVD in image analysis is demonstrated by considering 
a particular application, namely distortion analysis. In this respect, a new image 
distortion measure is defined. It is calculated using the spatial/spatial-frequency 
representation of images obtained using the 2D WVD. The efficiency of this measure 
is validated through experiments and informal visual quality assessment tests. It is 
shown that this measure represents a promising tool for objective measure of image 
quality, although the masking mechanisms are neglected. To improve the reliability 
and the performance of the proposed method, a refinement to include a masking 
model is imperatively needed. 
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Fig.  15.4.3: Distorted versions of 256 • 256 pixel Parrot image, f :  gi  is obtained by adding white 
Gaussian noise on f ;  g2 is a JPEG reconstruction of f ,  with a quality factor of 88; g3 is the result of 
imposing a grid-like interference over f .  The SNR and SNR w values are given in dB. 

It can be concluded that, taking into consideration some basic, well-established 
knowledge on the HVS (the joint spatial/spatial-frequency representation, and non- 
linear inhibition models), one can develop a simple image distortion measure corre- 
lated with the perceptual evaluation. 

Further details on the use of the Wigner-Ville distribution for image analysis 
and processing can be found in [12-14]. 
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1 5 . 5  T I M E - F R E Q U E N C Y  D E T E C T I O N  OF 
EEG A B N O R M A L I T I E S  0 

This article presents an example of time-frequency methodology used for the de- 
tection of seizures in recorded EEG signals. The techniques used are adapted to 
the case of newborn EEGs, which exhibit some well defined features in the time- 
frequency domain that  allow an efficient discrimination between abnormal EEGs 
and background. 

15.5.1 EEG Abnormalities and Time-Frequency Processing 
Neonatal seizures are usually the first signs of neurological abnormalities and can 
lead to permanent brain damage or even fatalities if not detected at the early stages. 
There are a number of disturbances underlying the seizure rather than a single iden- 
tifiable cause making the identification process difficult. The problem in newborn 
is harder than in adults because the more obvious clinical symptoms such as muscle 
spasms, sporadic eye movements and drooling are often difficult to detect [1]. For 
this reason, Electroencephalogram (EEG) is practically the only tool available in 
seizure detection and characterization in newborns. Three major approaches have 
been used to detect seizures in newborns based on the assumption that the EEG 
signals are stationary or at least locally stationary [1,2]. However, a detailed exam- 
ination of these signals shows that EEG signals exhibit significant non-stationary 
and multi-component features [see Fig. 15.5.1(a)]. making these three methods es- 
sentially invalid and at best only an approximation. This explains the relatively 
poor performance of these methods [2]. The non-stationarity and multicomponent 
nature of the EEG signal suggested the use of time-frequency (TF) signal processing 
to analyze and characterize the different newborn EEG patterns for developing a 
time-frequency seizure detection and classification [1,3]. 

15.5.2 EEG Seizures in Newborns 
A seizure is defined to occur when there is an excessive synchronous discharge of 
neurons within the central nervous system. Its manifestation in the EEG, known as 
electrographic seizure, consists of a paroxysmal events which are trains of rhythmic 
repetitive sharp waves that emerge more or less abruptly from the ongoing back- 
ground activities and have a distinct beginning and end. They may start with low 
voltages that increase usually as the discharge progresses. They often contain sub- 
harmonics and may have polyphasic contours or be sinusoidal. These discharges 
pattern can be divided into four categories: focal spike and sharp waves (> 2Hz), 
local low frequency discharges (around 1Hz), focal rhythmic discharge (0.5 Hz-  15 
Hz), and multifocal patterns (EEG discharge originating from two or more loci) [1]. 
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The duration of rhythmic discharges is highly variable, from as short as 1 second 
to as long as 30 minutes. This fact contributed to the disagreement between the 
researchers about what constitutes a seizure. In order to consider an EEG discharge 
as a seizure, some researchers require that it must last at least 10 seconds, others 
require a minimum of 20 seconds, while a third group does not specify a time limit. 

Seizure patterns are occasionally corrupted by artifacts and some abnormal back- 
ground patterns such as burst suppression (BS). The most noticeable artifacts are 
the ones caused by the heartbeat (ECG), the eye movement (EOG) and head and 
body movements (EMG)[4]. 

15.5.3 Data Acquisition 
Electrical signals produced in the brain can be monitored in a non-invasive man- 
ner by measuring variations in potential on the scalp. This EEG measurement is 
achieved by strategically placing several small electrodes on the scalp. One elec- 
trode, usually at the base of the skull, acts as a reference (ground) signal, and 
various channels of data are created by measuring the voltage differences between 
neighboring electrodes. Five channels of EEG have been recorded in each session us- 
ing the 10-20 International System of Electrode Placement. The EEG data has been 
recorded using a sampling frequency of 256 Hz. For artifact detection, three auxil- 
iary signals representing electro-oculogram (EOG), electrocardiogram (ECG), and 
respiration are also recorded. Data used has been collected at the Royal Women's 
Hospital Perinatal Intensive Care Unit in Brisbane, Australia. The EEG signals con- 
taining seizures were obtained from two different newborn babies that  have been 
clinically identified to have seizures. The gestational ages of the babies were 35 
weeks and 40 weeks and 3 days. The recording lasted 137 minutes and 23 minutes 
respectively. 

15.5.4 Selection of a Time-Frequency Distribution 
The following characteristics were found to be typical of neonatal EEG signals [1]: 
non-stationary, occasionally multicomponent, low frequency signals in the range 0 
to 5 Hz. These factors must be considered when selecting an optimal time-frequency 
distribution (TFD), as each TFD is more suited to representing signals with par- 
ticular characteristics (see Chapter 3). 

Since neonatal EEG signals are non-stationary and occasionally multi- 
component, a desirable time-frequency distribution should have a good spectral 
resolution and reduced cross-terms. The performance and characteristics of several 
TFDs were compared to find an optimal representation of real neonatal EEG data 
in the TF domain. The scope of this comparison study has encompassed seven 
TFDs [1]. Each TFD has been applied to epochs of real neonatal EEGs for vari- 
ous data window lengths and individual TFD parameter values. The performances 
were compared visually and using an objective quantitative measure criterion (see 
Article 7.4). Based on this criterion, the B-distribution (BD) with the smoothing 
parameter ~ equals to 0.01 has been selected as the most suitable representation of 
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the EEG signals in the TF domain. 
The B-distribution is defined in terms of its time-lag kernel (see chapters 2 and 

3) and may be expressed as 

I_']L( 
pz(t, f )  - cosh2(t) 

z(t + 7/2)z* ( t -  ~-/2)e -j2~/~ dud~'. 

The parameter fl (0 < fl < 1) controls the sharpness of the cut-off of the two- 
dimensional filter in the ambiguity domain. Hence, the EEG signals were repre- 
sented in time frequency using the B-distribution with a smoothing parameter of 
0.01, a window length of 127 samples, and a time resolution of 5 samples. The data 
has been resampled to 20 Hz for better representation of low frequency regions. The 
time-frequency analysis was performed using the commercial TFSA 5.2 MATLAB TM 

toolbox (http: / /www.sprc.qut .edu.au// tfsa/~index.html).  

15.5.5 EEG Pattern Analysis 
The visual analysis of the time-frequency EEG data led to divide the time-frequency 
EEG patterns into two classes: seizure and background. The seizure patterns can be 
characterized in the time-frequency domain by a main ridge (component) as either a 
linear FM law or a piecewise linear FM while the background patterns exhibit a low 
frequency burst activities or irregular activities with no clearly defined patterns [1]. 
These observations correlate well with clinical information related to EEGs [5]. 
Representative TF representations of each of the subclasses are detailed below. 

15.5.6 Analysis of Time-Frequency Seizure Patterns 
15.5.6.1 Linear FM (LFM) Patterns 
The EEG seizures analyzed in the TF domain that can be approximated by linear 
FMs with either fixed or time-varying amplitudes can be classified into the following 
sub-classes: 

L F M  P a t t e r n s  w i th  a Q u a s i - C o n s t a n t  F r e q u e n c y :  Fig. 15.5.1(b)shows a 
seizure that has a linear FM behavior with an almost constant frequency. The 
amplitude of the time-frequency seizure pattern increases at the onset and decreases 
toward the end. A major advantage of the TF representation is that we can easily 
distinguish the seizure from other phenomena such as burst activities as long as 
they occupy different TF regions. These unwanted signals can be removed from 
the EEG signal using a well designed TF filter without affecting much the seizure 
signal. 

L F M  P a t t e r n s  w i t h  a Dec rea s ing  F requency :  Fig. 15.5.1(c) of this class differs 
from the one above by the fact that its frequency decreases with time [5]. By looking 
at the TF behavior of the seizure, we can easily deduce the precise non-stationary 
character of the seizure. The classical detection methods based on the stationarity 
assumption will most likely miss these patterns. 
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15.5.6.2 Piecewise LFM Patterns 

Most of the patterns analyzed so far can be approximated to a good degree of 
accuracy by piecewise linear FM as shown in Fig. 15.5.1(d). These types of seizures 
usually comprises the different stages of the seizure [4]. 

15.5.6.3 EEG Background Patterns 

By background, we mean any signal that is not classified as seizure. Two distinct 
patterns have been noticed: Burst of activity and an irregular activity with no clear 
pattern. 

B u r s t  of Ac t iv i ty :  Fig. 15.5.1(e) is an example of this class characterized by a 
burst of activity. These are a short period signals with a high energy lasting for 
few seconds and usually occurring at frequencies below 4 Hz. These features are 
characteristic of burst suppression. Burst suppression is defined as burst of high 
voltage activity lasting 1-10 seconds and composed of various patterns (delta (0 - 
4 Hz) and theta (4 - 8 Hz) with superimposed and intermixed spikes, sharp waves, 
and faster activity) followed by a marked background attenuation [5]. 

Activity Lacking a Specific P a t t e r n :  Fig. 15.5.1(f) is an example of an EEG 
epoch lacking a well-defined and consistent pattern. These type of activities are not 
constrained within the low frequency bands characterizing the EEG seizure. 

This time-frequency analysis indicates that a linear or piecewise linear instan- 
taneous frequency (IF), obtained by taking the peak of the main component of a 
TFD, can be used as a critical feature of EEG seizure characteristics. These find- 
ings suggested to propose a TF-based seizure detector. This detector, called TF 
matched detector, performs a two dimensional correlation between the EEG signal 
and a reference template selected as a model in TF domain of the EEG seizure. 

15.5.7 Time-Frequency Matched Detector 

The matched filter is the simplest approach for constructing detectors and classi- 
fiers. It essentially reduces to a correlator receiver whose output is compared to 
a threshold. The threshold is chosen such that the probability of a false alarm 
is kept constant. The correlator receiver is implemented in time domain as a one- 
dimensional correlation between the received noisy signal x(t) and a reference signal 
s(t) or using the corresponding spectral representations. To extend this detector to 
handle nonstationary signals, the one-dimensional correlation is replaced by a two- 
dimensional correlation involving the TED p(t, f) of z(t) and s(t). The resulting 
test statistic is given by: 

T(x) ] ]  px(t, f)ps(t, f) dt df (15.5.2) 

This type of detector has been implemented using different quadratic time-frequency 
distributions such as the spectrogram [6], the Wigner-Ville, and cross Wigner-Ville 
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Fig. 15.5.1: B-distributions of EEG signals. 
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distributions [7] and the auto- and cross-ambiguity functions [8]. Using Moyal's 
formula, we get: 

// px(t, f)ps(t, f) dt df = z(t)s* (t)dt 

This equality is only valid when the kernel filter is unimodular; that is its absolute 
value is equal to one all over the ambiguity domain. This is the case, for example, 
fbr the Wigner-Ville distribution and Rihaczek distribution [9]. Equation (15.5.3) 
is an alternative interpretation of the correlator receiver in terms of a correlation of 
the TFDs. Even though the B-distribution does not verify exactly Eq. (15.5.3), it 
has been used as the basis for the TF matched detector because of its superiority 
over the other TFDs in representing EEG signals as discussed in Section 15.5.4 (see 
also Articles 5.7 and 7.4). 

For the case of a deterministic signal in additive noise (even white Gaussian 
noise) the TF-based correlator is suboptimal due to the nonlinearity of the quadratic 
TFDs which accentuates the effects of noise by introducing artifacts. To use a 
correlator receiver, it is usually required that the wave shape of the reference signal 
(or other related information such as its TFD) as well as the noise statistics are 
known. Section 15.5.6 indicated that the EEG seizure could be characterized by 
a linear or a piecewise linear FM. To construct a TF-based matched detector, a 
representative TFD of a linear or piecewise linear FM, pref(t, f), is selected to serve 
as template (reference). The correlator statistic T(x) used is the two dimensional 
cross-correlation between the EEG signal TFD and the reference signal TFD, i.e.: 

/ /  pref(t, f)p*(t, f)dt df (15.5.4) 

where z is the analytic signal corresponding to the EEG signal under consideration. 

15.5.7.1 Implementation of the Time-Frequency Matched Detector 
The implementation of the TF matched detector and a description of its main 
components are described below. More details may be found in [10]. 

P r ep roces s ing :  This stage includes artifact (such as ECG, EOG, and EMG) re- 
moval, noise filtering, and resampling the signal to comply with detector input 
specifications. A low pass filter along with an artifact removal algorithm using 
adaptive signal processing techniques were implemented for this purpose [4]. 

Signal  R e s t r u c t u r i n g :  EEG is segmented into an array of signals of fixed length (2 
minutes) to be suitable for performing the cross-correlation. Shorter signal lengths 
led to higher rates of miss detections and false alarms. Once the full input EEG 
signal is divided into blocks of 2 minutes duration, each block is stored as a row 
of the newly formed array of signals. A protocol of 50% overlap of each block was 
adopted. 
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D e t e c t i o n  Loop:  The detection loop is executed until all the blocks of the input 
EEG signal have been processed. An offset value is maintained, giving a precise 
location in the original signal where abnormal events are detected. 

C r o s s - c o r r e l a t i o n :  The cross-correlation between the TF array of the EEG signal 
and the template (mask) is obtained using the two-dimensional cross-correlation 
function given by Eq. (15.5.4). The most crucial process is the choice of the template, 
in this case (see Section 15.5.6) the TFD of a linear FM or a piecewise linear FM. 
The time duration of the FM signal is set to 20 seconds as discussed below. To find 
the optimum slopes of the FM signal IF, that is the ones that  corresponds to the 
best detection rate, a testing stage is necessary [10]. A similar testing stage is also 
required to select an optimum threshold that realizes a good compromise between 
the rate of good detections and the rate of false alarms. 

A m p l i t u d e  and  L e n g t h  Cr i t e r i a :  Ideally there will be one peak value in the 
output of the cross-correlation array, with its output amplitude determining the 
presence or absence of seizure. This proved to be unreliable, and it was decided to 
perform a search of sequential series of values over the amplitude threshold defined 
earlier. This proved to be successful, and a minimum ridge length of 20 seconds over 
the amplitude threshold was classified as a seizure. The 20-second length adopted 
is larger than the minimum 10-second length of EEG seizure adopted by many 
neurologists [5]. 

M a p  Se izure  Dec i s ion  to Rea l  T i m e  Loca t ion :  This stage simply ties all of 
the independent decisions on each block of processed signal (remapping any seizure 
decision to a time series function) of equivalent length to the input EEG signal. 
This output waveform consists of ones or zeros, where one indicates the presence of 
seizure at the corresponding time. 

In order to validate and calibrate the detection algorithm, simulated data gener- 
ated by the EEG model [2]. The model generates an EEG like signal characterized 
in time frequency by a linear IF with a random slope in the range of [-0.07 0]. These 
values were reported in [5]. The B-distribution was used to generate the reference 
template and the TFD of the simulated EEG. The signal used in the construc- 
tion of the reference template is a linear FM. The average detection obtained was 
99.1% while the false alarm rate was 0.4%. These results confirm the validity of the 
methodology since the template is well adapted to the EEG model. 

15.5.8 Summary and Conclusions 
The patterns obtained by a TF analysis of newborn EEG seizure signals show a 
linear FM or piecewise linear FM characteristic. This suggests a method of seizure 
detection and classification in the TF domain. A TF detector is proposed that 
involves cross-correlating the TFD of the EEG signal with a template. The design of 
the template takes into account the TF characteristics of the EEG seizure extracted 
in the TF domain. The performance of this time-frequency detector was tested on 
synthetic signals, corresponding to one specific type of seizure pattern (LFM). At 
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the time of publication, the methodology was being extended to deal with LFM 
patterns of varying slopes, and with piecewise linear FM patterns. The procedure 
will then allow classification within the selected sub-classes. 

Another time-frequency approach to newborn EEG seizure detection is described 

in [11]. 
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15.6 T I M E - F R E Q U E N C Y  BASED M A C H I N E  C O N D I T I O N  
M O N I T O R I N G  A N D  FAULT DIAGNOSIS 0 

15.6.1 Machine Condition Monitoring and Fault Diagnosis 
Machine condition monitoring is the process of checking a machine for abnormal 
symptoms. Fault diagnosis, on the other hand, means deciding the nature and the 
cause of the fault by examining the symptoms [1]. The article aims at providing 
a methodology for potential users interested in implementing techniques pertaining 
to the area of machine condition monitoring using time-frequency analysis (TFA). 
It also provides three examples and some relevant references. Although this article 
focuses on one-dimensional time-domain signals, its methodology can be extended 
to images and image sequences. 

15.6.1.1 Machine Condition Monitoring 
In modern manufacturing, the quest for automation and flexibility has resulted in 
machines performing extremely complex processes. The performance of such pro- 
cesses highly depends on the trouble-free operation of all the components. When a 
fault occurs, it is critical to detect it, isolate the causes, and take appropriate main- 
tenance action at an early stage. This helps prevent faults from developing into 
an eventual major machine failure and interrupting the production cycle. Conse- 
quently a number of techniques have been developed which monitor certain parame- 
ters within the machinery allowing its condition to be determined. These monitoring 
techniques have become known as machine condition monitoring. 

The predictive maintenance through condition monitoring and diagnosis can sig- 
nificantly improve product quality, improve worker safety, and reduce the costs of 
maintenance. This is achieved by (1) allowing the early detection of potentially 
catastrophic faults which could be expensive to repair, and (2) allowing the im- 
plementation of condition based maintenance rather than periodic or failure based 
maintenance. In these cases, significant savings can be made by delaying scheduled 
maintenance until it is more convenient or necessary. 

An efficient condition monitoring technique is capable of providing warning and 
predicting the faults at early stages by obtaining information about the machine 
in the form of primary data. Through signal processing (SP), the critical informa- 
tion from these data is captured and correlated to the condition of the machine. 
Effectiveness depends on matching the SP algorithms to the characteristics of the 
monitored signals. 

Two types of condition monitoring and diagnosis systems are widely used: off- 
line and on-line. In an off-line (periodic) monitoring system, the monitored signal 
is measured at pre-selected time intervals. This approach is routinely used for fault 
diagnosis and trend analysis. In an on-line (permanent) monitoring system the 
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signal is continuously measured and compared with a reference level. This type of 
system is intended to protect machines and/or operators by providing a warning 
about a possible malfunction of the machine and/or an imminent shutdown to 
prevent catastrophic failure. 

Traditionally, human operators, using a combination of sight and sound, have 
performed machine condition monitoring. Recently, automatic techniques have been 
proposed to replace human operators. Some of these techniques rely on direct mea- 
surements while the majority depend on indirect measurements. Direct methods 
use sensing techniques that directly measure the extent of the deterioration, such as 
tool wear, in a machine. Indirect methods may rely on sensing different machine pa- 
rameters such as forces, acoustic emission, temperature, vibration, current, voltage, 
torque, strain, and images of the tools in question. In techniques based on indirect 
measurement, features indicative of condition are extracted from these monitored 
signals and correlated to give a measure of the extent, the nature, and the location 
of the fault [2]. 

15.6.1.2 The Four Stages of Condition Monitoring and Diagnosis 
In general, machine condition monitoring, as a pattern recognition problem, consists 
of four stages: data acquisition, feature extraction, feature selection, and decision- 
making. Data are acquired using transducers and normally recorded in either analog 
or digital form on magnetic tape or computer disk. (In simple systems it may be 
possible to perform the analysis in real-time). 

A critical step of condition monitoring and diagnosis is feature extraction. It is 
generally not practical to automatically determine the machine condition using the 
collected raw signals and therefore some transformation or processing is required. 
This transformation usually involves as a first step mapping the original data from 
time-domain to another domain, such as the frequency or time-frequency domains, 
where the differences between the normal and abnormal behaviors are much more 
apparent. In this new domain, features that best describe the characteristics of the 
process condition are extracted. Feature extraction techniques include statistical 
methods, power spectral methods, and time-frequency methods as detailed in Sec- 
tion 15.6.2. In some cases, where the dimension of the feature space (or the number 
of features) is high, the dimension can be further reduced by retaining only the most 
valuable features and eliminating those that give little or no additional information. 
This dimension reduction processes is called feature selection. 

The decision-making or classifier stage can be viewed as a process that automat- 
ically correlates the feature set, obtained from the previous stage, to the machine 
conditions [3]. It is usually done through supervised learning, where the operator 
instructs the computer of the possible patterns in the feature sets and relates them 
to the machine conditions. Sometimes it is difficult to generate data that  reflects all 
uncertainties and differences within one class or group of faults in an experiment set- 
ring. In this case, an unsupervised learning strategy is used. Unsupervised learning 
is a task in which the number of classes is not known before classification and there 
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are no labeled training features available. The classifier itself should be capable of 
exploring the extracted features and deciding about the number of classes. Typical 
automatic or computer decision-making methods include pat tern recognition, fuzzy 
logic, decision trees, and artificial neural networks. Ideally, there exists a one-to-one 
correlation between feature sets and machine conditions. 

An alternative approach is to monitor the features and spot trends in them and 
thus predict failure. The decision to replace the faulty part  is often taken when the 
feature crosses a given threshold [1]. 

15.6.1.3 Classical Signal Analysis Methods for Feature Extraction 

Classical methods used for feature extraction can be classified into time domain and 
frequency domain. 

T i m e  D o m a i n  M e t h o d s :  Probably the simplest approach proposed for fault 
detection in the time domain is through the measurement of the energy (mean 
square value) of the monitored signal. The method relies on the fact that  as the 
machine's condition deteriorates, the vibration energy is expected to increase. An- 
other approach is to use statistical parameters for fault detection. By treating the 
monitored signal as random variable, higher-order statistical moments, cumulants, 
and measures such as crest factor can also be used as features. Nonlinear signal 
based techniques have also been used for condition monitoring and fault diagnosis. 
In [4], for example, the correlation dimension was extracted from raw time-series 
acceleration data (collected from a rolling-element bearing) and used as a feature 
for detecting faults. Other methods such as level crossing, bandpass filtering, shock 
pulse, and autoregressive modeling are used (see for example [5]). 

F r e q u e n c y  D o m a i n  M e t h o d s :  The basic principle of spectral analysis is 
based on the fact that  the spectrum of the monitored signal changes when faults 
occur. The nature and extent of the change depends of the nature of the fault and 
the machine being monitored. The condition of the machine is estimated through 
monitoring the change in the spectrum or a number of discriminating features ex- 
tracted from the spectrum of the measured signal. These features are usually chosen 
as some specific frequency components that  depend on the type of machine and the 
nature of the fault. They are compared to references established when the machine 
was known to work properly under similar conditions, and an appropriate decision is 
taken when the feature vector deviates from the reference by more than a predeter- 
mined threshold. In [6], the different changes in the vibration spectrum of rotating 
machines are surveyed and linked to different types of faults. Also, in [7, ch. 11] 
the most frequent failure modes are identified for the different machine-train com- 
ponents such as drives, steam turbines, gearboxes, and generators. For each com- 
ponent, a number of specific vibration frequencies are monitored for the diagnosis 
of incipient problems. These frequency-domain features, depending on the compo- 
nent and the nature of the failure, may include defect frequencies, the fundamental 
and harmonics of the rotational speed, the line frequency, the slip frequency, and 
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the tooth-mesh frequencies and the sidebands that surround them. Higher-order 
spectra such as the bispectrum and trispectrum are also used as a basis for condi- 
tion monitoring. In [8], the bispectrum is used to analyze the acceleration signal 
obtained from a stamping process and to extract features related to defective parts. 

15.6.1.4 Nonstationary Signals in Machines 
L i m i t a t i o n s  of Classical  M e t h o d s :  Traditional time-domain and spectral anal- 
ysis techniques have several shortcomings. For example, the Fourier transform is 
unable to accurately analyze and represent a signal that has non-periodic compo- 
nents such as a transient signal, as it is based on the assumption that the signal to 
be transformed is periodic. Another deficiency of the traditional spectral analysis is 
its inability to provide any information about the time dependency of the frequency 
content of non-stationary signals (see Article 1.1 for more details). 

Motor current, for example, is well known to be a nonstationary signal whose 
properties vary with respect to the time-varying normal operating conditions of the 
motor, particularly with load. Also, for the case of rotating machines, the presence 
of certain frequency components within the spectrum has been shown to be an 
indication of a fault condition. However, since some of these frequencies depend on 
the rotational speed, it is not possible using spectral analysis to determine these 
frequencies when the bearing runs at variable rotational speed. Recent works have 
stressed the importance of machine monitoring during the transient states--such 
as start-up, shutdown, and acceleration periods--because some machine failures 
happen during these types of transition periods. Transient signals can be a good 
source of information about machine condition that is not available during steady 
states. Fourier transform based methods are known to be inadequate in representing 
this type of signals since the transient event can hardly be approximated by sines 
and cosines. For these reasons, Fourier transform based methods are unsuitable for 
machine monitoring in the above-mentioned circumstances [9]. 

The  Need  for T i m e - F r e q u e n c y  M e t h o d s :  To overcome the shortcomings 
of the traditional spectral analysis techniques, nonstationary signal analysis ap- 
proaches have been introduced. The most frequently used methods in the area of 
machine condition monitoring and diagnosis are quadratic time-frequency distribu- 
tions (TFDs) and time-scale analysis (mainly the wavelet transforms (WT)). These 
methods represent the signals in a wider time-frequency space that allows easier and 
more precise discrimination between fault and normal machine conditions. Using 
time-frequency techniques, such as the Wigner-Ville distribution (WVD), a frame- 
work was developed that provided robust detection and classification schemes for 
helicopter gearbox faults [10]. This was achieved by showing that different faults 
produced different patterns in the time-frequency plane. The WVD-based patterns 
of vibration and acoustic signals were also used to detect faults in a number of 
machines and machine components such as engines [11] and gearboxes [12]. Other 
time-frequency distributions such as higher-order Wigner-Ville moment distribu- 
tions [13] and reduced-interference time-frequency distributions (RIDs) [14] are used 
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for machine monitoring and diagnosis. Most of these methods, however, are visual- 
based detection/classification techniques which are meant to show the effectiveness 
of the respective TFDs for early detection of faults. The other methods are used 
as automatic feature extractors in an overall classification process. Some of the 
features extracted are amplitude values of the contour plots [12] and singular values 
of the TFD [14]. 

Due to their ability to represent nonstationary signals in general, and to detect 
and localize transient events in particular, wavelet transforms (both continuous and 
discrete) have been readily adopted in machine condition monitoring and diagnosis. 
They were used in detecting a large number of faults in different machines or ma- 
chine components such as turning and drilling machines [1], gears or gear trains [15], 
and bearings [16]. As in the case of the TFDs, some of the proposed methods are 
used as feature extractors whose output is fed to a detector/classifier [1]. 

15.6.2 Time-Frequency Analysis Methods 
Articles in Chapters 1 to 5 present detailed background on different time-frequency 
methods. The two most widely used time-frequency methodologies are the quadratic 
time-frequency distributions and the wavelet transforms. These two classes of rep- 
resentations are related through the STFT and the Gabor transform (see Articles 
2.3 and 2.7). TFDs are suitable for large BT signals (see Chapter  1) while WTs 
give best results when used with low BT and transient signals. 

15.6.2.1 Quadratic Time-Frequency Distributions 
For nonstationary signals, the Wiener-Khintchine theorem indicates that  the time- 
varying power spectral density, S=(t, f), of a real random signal x(t) is related to 
the time-varying autocorrelation function, Rx(t, ~-), by a Fourier transform relation; 
that  is 

Sx(t, f)  - E {W~(t, f)} - Rx(t, T)e -j2~y" d~-. (15.6.1) 
o o  

The expression S=(t, f)  given by Eq. (15.6.1) is the Wigner-Ville spectrum (WVS), 
which is the expectation value of the Wigner distribution (WD) Wz(t , f ) .  For 
practical reasons, x(t) is replaced by its analytic associate z(t) (see Sections 1.2.2, 
1.2.3 and 2.1.4). It was shown that  an estimate of Sz(t, f)  can be obtained from 
the quadratic class of TFDs [17], which was expressed in Section 3.2.2 as 

pz(t, f)  - Wz(t, f)  ~ } ~/(t, f)  (15.6.2) 

where 7(t, f )  is a two-dimensional kernel window which is application dependent, 
Wz(t, f)  is the WVD, and ** indicates a double convolution. The example in Sec- 

t i  
tion 15.6.3.1 illustrates an application of the WVD to machine condition monitoring. 

The kernel window, 7(t, f ) ,  characterizes a particular time-frequency distribu- 
tion and is generally chosen so as to obtain the best possible time-frequency reso- 
lution [14] (see Article 3.3 for more details). 
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15.5.2.2 Wavelet Transforms 

Wavelet transforms are the localized equivalent of the Fourier transform. They 
provide a powerful tool for representing local features of a signal. 

A finite-energy signal x(t) can be represented by its Fourier transform X( f ) :  

? F x(t) - X ( f )  e j2€ df where X ( f )  = x(t) e -j2€ dt. (15.6.3) 
c o  o o  

Thus, the FT decomposes the time-domain signal into linear combinations of har- 
monics e j27rft. The wavelet transform (WT) is defined in the similar manner except 
that  the harmonics are replaced by a series of wavelet basis functions given by [18] 

1 ( t - - T )  (15.6.4) 

where T and s are the translation and dilation (scale) parameters respectively. The 
function ~(...) is the transformation function called the mother wavelet. Using 
wavelet bases, the time-domain signal can be represented as 

1 F ~ o ~  1 ( t - - T )  ds 
x ( t )  - r 7 

where 

- x ( t )  

cr is a constant that  depends on the wavelet used and ~r S) is the continuous 
wavelet transform of the signal x(t). A number of mother wavelets have been 
proposed, such as the Mexican hat wavelet and the Morlet wavelet [18]. 

The discrete version of the WT is called discrete wavelet transform (DWT). It 
is realized by first discretizing the parameter scale s on a logarithmic grade. The 
time parameter is then discretized with respect to the scale parameter; that  is a 
different sampling rate is used for every scale. In other words, the sampling is done 
on a dyadic sampling grid. With this sampling, a signal x(t) can be decomposed 
into orthogonal basis functions (scaled and shifted versions of the mother wavelet 
~p); that  is [18] 

x(t) - cr E E alk sol/2r -- kTo) (15.6.7) 
l k 

where 

F aZk -- x(t) Sot/2r -- kTo) dt (15.6.8) 
(:x) 

with To and so being positive constants usually taken as 1 and 2 respectively. The in- 
teger 1 describes the different levels of wavelets, and k covers the number of wavelets 
in each level. 
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The wavelet transform allows localization in both the time domain via transla- 
tions of the mother wavelet, and in the scale (frequency) domain via dilations. The 
wavelet is irregular in shape and compactly supported, thus making it an ideal tool 
for analyzing signals of a transient nature. Irregularity of the wavelet basis lends 
it to analysis of signals with discontinuities or sharp changes, while the compactly 
supported nature of wavelets enables temporal localization of a signal's features. 

The dilation function of the discrete wavelet transform can be represented as a 
tree of low- and high-pass filters, with each step transforming the low-pass filter. 
The original signal is successively decomposed into components of lower resolution, 
while the high-frequency components are not analyzed any further. 

In contrast with the regular DWT, discrete wavelet packet analysis (DWPA) 
can significantly increase the versatility and power of the DWT. Unlike the DWT, 
DWPA utilizes both the low frequency components (approximations), and the high- 
frequency components (details). From this family of bases, a method for choosing 
the optimum scheme for a particular signal can be developed [18]. The two examples 
in Sections 15.6.3.2 and 15.6.3.3 illustrate the applications of DWT and DWPA to 
machine condition monitoring. 

15.6.3 Examples of Condition Monitoring Using TFA 
To illustrate how both time-frequency distributions and wavelet transforms are used 
in condition monitoring and diagnosis, we summarize three methods selected from 
the literature. These examples illustrate the time-frequency methodology adopted 
in this increasingly important area of engineering. 

15.6.3.1 Gearbox Fault Detection Using Wigner-Ville Distribution 
We consider the detection of a broken tooth in a spur gear using the WVD as the 
basis for feature extraction and pattern recognition techniques for classification [12]. 

D a t a  Acquis i t ion :  The system considered is composed of a 24-tooth input gear 
driven by an electric motor and meshing with 16 teeth of a pinion whose rotational 
frequency is 37.5 Hz. The applied load was 70% of the maximum load. The study 
simulated five fault types, each involving the partial or total removal of one or more 
teeth. In particular, the faults were the removal of 25, 50, 75, and 100 percent of the 
face-width at a given radius, plus the same defect with 100% advancement on two 
pinion teeth. The acceleration vibration signal obtained from the above-mentioned 
system was low-pass filtered and sampled at a rate of 6.4 kHz. 

Feature  E x t r a c t i o n :  The vibration signal is synchronously averaged in order 
to remove any periodic events not exactly synchronous with the gear of interest 
and to reduce the effects of noise and vibration sources other than that  of the gear. 
In an industrial environment, where the problem of noise may become critical, 
efficient time-frequency based signal-cleansing techniques such as time-frequency 
peak filtering [19] (see also Article 11.4) may be required. The averaged signal is 
then transformed to the time-frequency domain using the pseudo-WVD (discrete 
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Fig. 15.6.1: Weighted WVD of the residual signal: (a) normal condition of the spur gear; (b) one 
broken tooth with 50% fault advancement; (c) one broken tooth with 100% fault advancement.  

WVD) with a Hamming window. The negative values of the WVD are set to zero 
and the resulting distribution is normalized. The results are displayed in the form 
of contour plots. To enhance the sidebands around the meshing frequencies, the 
residual signal is obtained by removing the meshing harmonics using a band-stop 
filter. The extracted features are the amplitude values of the contour plots (see 
Fig. 15.6.1). 

F e a t u r e  Select ion:  To reduce the dimension of the feature vector, a selected 
number of WVD cross-sections at and around a chosen meshing frequency are se- 
lected. 

Decis ion  Making" Two classification approaches are considered: statistical 
and neural pattern recognition. In the first approach, to assign the feature vector 
from the last stage to one of the K classes considered, the Mahalanobis distance 
was chosen as the similarity measure. This measure is given by 

1/2 

where ~ is the feature vector and ~ and 2k are the mean vector and covariance 
matrix representing the k th class. The study considered only two classes; namely 
normal (no fault) and abnormal (fault) and used only one template representing 
the normal condition. In the second classification approach a neural network was 
trained in a supervised mode using the back-propagation algorithm [12]. 

15.6.3.2 Fault Diagnosis of Rotating Machinery Using Wavelet Transforms 
In this example, the problem is to detect faults in a model drive-line consisting of 
various interconnected rotating parts that include a vehicle gearbox, two bearing 
housings, and an electric motor. All these parts are connected by flexible couplings 
and loaded by a disk brake as seen in Fig. 15.6.2 [20]. 
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Fig.  15.6.2:  Schematic presentation of the model drive-line. 

(a) Envelope of the WT of a vibration sig- 
nal representing a normal condition. 

(b) Envelope of the W T  of a vibration sig- 
nal representing a faulty gear. 

F ig .  15.6.3: WT of normal and faulty condition of the vibration signal. 

D a t a  Acqu i s i t i on :  Of the five gears (four forward and one reverse) only the 
reverse gear pinion is used in the experiment. On the gear pinion, two types of 
localized faults were simulated: a small "blip" of 2mm diameter on one tooth, and 
a triangular fracture on the face of one tooth. On the bearing housing, one fault 
was simulated by introducing a lmm fracture across the inner race (Fig. 15.6.2). 
This gave six combinations of conditions for the pinion and housing, five of which 
represented fault conditions. An accelerometer was used to obtain the vibration 
signal from the bearing housing. 

F e a t u r e  E x t r a c t i o n :  The vibration signals were transformed to the time- 
scale domain using the Daubechies 4th-order wavelet (D4) (see Fig. 15.6.3). After 
the transformation of the whole signal into the wavelet domain, a threshold value 
was chosen. This value was selected to be above the dominant component of the 
reference (normal) signal. The 10 most dominant amplitudes of the signals above 
the threshold value were selected to represent half of the feature vector. The other 
half consists of the 10 corresponding wavelet numbers (indicating both time and 
scale). As the number of features (20) is not large, no feature selection was needed. 
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Fig. 15.6.4: DWPA representation of the vibration signal showing wavelet packets selected by ANFIS. 

Decision Making:  The classification was achieved using a two-layer neural 
network with sigmoid nodal function trained in a supervised mode using the back- 
propagation algorithm [20]. 

15.6.3.3 Extraction of Bearing Fault Transients Using DWPA 

This example exploits the multiple band-pass filtering capability of the DWPA for 
the extraction of rolling-element bearing fault-related components. An algorithm 
is trained to recognize three types of localized faults; namely inner race, rolling 
element, and outer race faults [21]. 

D a t a  Acquisi t ion:  The vibration signals are obtained from a rolling-element 
bearing test rig with a rolling-element fault and an operating speed of 60 rpm. 

Fea tu re  Ex t rac t ion :  The extraction of high-frequency transients due to bear- 
ing impact resonance is achieved via best-basis DWPA representation using the 
Daubechies wavelet of order 20 and an adaptive network-based fuzzy inference sys- 
tern (ANFIS). ANFIS is a transformational model of integration where the final 
fuzzy inference system is optimized via artificial neural network training. Before 
the neuro-fuzzy network is trained (using wavelet packets extracted from vibration 
signals), suitable input parameters to train the network are selected. These parame- 
ters are kurtosis (a measure of spikiness) and the spectrum peak ratio (an indication 
of the presence of localized defects). The network is then trained using wavelet pack- 
ets characterizing the above-mentioned types of faults. Fig. 15.6.4 illustrates how 
this method facilitates the extraction of bearing-fault-related components from a 
signal while rejecting the unwanted harmonics. The wavelet packets identified by 
ANFIS as containing bearing fault-related features are indicated on the figure [21]. 
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15.5.4 Summary and Conclusions 
Time-frequency analysis methods are applicable to the area of machine condition 
monitoring and diagnosis. They are capable of efficiently and unambiguously char- 
acterizing a large number of faults. TFA methods are used for detection, classi- 
fication, and monitoring the progression of the faults and wear with time. This 
enables prediction and prevention of catastrophic failures. Time-frequency analysis 
techniques, in the form of either TFD or WT,  are used as both visual indicators 
of the presence of faults and as a feature extractor in a fully automated pat tern 

recognition process. 
Articles 11.2 and 15.2 of this book describe two other time-frequency approaches 

to machine condition monitoring. 
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Chapter 16 

Other Applications 

There are a number of applications that may be of interest to the reader but that 
could not be included in the chapters for obvious space reasons. A list of ref- 
erences to selected applications is provided below to further assist the reader of 
this book. They represent the areas of biomedical engineering [1-7], speech [8-10], 
radar [11-13], telecommunications [14, 15], plasma science [16], image [17, 18] and 
tomography [19]. Further references can be obtained by the reader using available 
computer searches on the relevant databases (e.g. Elsevier, IEEE, etc.). 
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Symbo l s  
1/0 kernel, 181 

A 
AD-MUSIC, s e e  MUSIC 
adaptive (modified) matching pursuit, 

511 
adaptive cone-shaped kernel, 182-183, 

620 
adaptive network-based fuzzy inference 

system (ANFIS), 680 
adaptive notch filter, 544-547 
adaptive optimal kernel (AOK), 182, 

620-621 
- with chirp signals, 620, 621 

adaptive quadratic TFDs, 180-183 
adaptive representation for multiple 

structures (ARMUS), 513 
adaptive spectrogram, 178-180 
adaptive STFT, 178-180 
adaptive TFDs, 178-183 

- of bat sound, 179 
- with 1/0 kernel, 181 
- with adaptive cone-shaped kernel, 

182-183 
- with adaptive optimal kernel 

(AOK), 182 
- with radially Gaussian kernel, 182 
- with reduced interference, 183 

additive noise, 344, 345, 490 
- and polynomial FM signals, 447, 

455 
- converted to multiplicative, 491 
- IF estimation in, 437, 440 
- polynomial phase estimation in, 

198-201 
- smearing the WVD, 492 

adjoint system, 140 
affine class, 106, 110, 643, 645-650 

- with reassignment, 293 
affine group, 104, 280, 281, 288, 289 

- defined, 280 
affine transformation, 281 
affine Wigner function, 283-289 

- unitarity of, 287-289 
affine-smoothed pseudo-Wigner 

distribution, 647-649 
aliasing 

- in discrete quadratic TFDs, 237, 
241 

- in discrete WVD, 233-234 
- in images, 655-659 

ambiguity domain, 69, s e e  Doppler-lag 
domain 

ambiguity function, 66, 69, 160-166 
- and fractional autocorrelation, 

572 
- and signal design, 165 
- and TFDs, 161 
- and the STFT, 162 
- and the wavelet transform, 162 
- and uncertainty, 164 
- as time-frequency correlation, 163 
- computation of, 166 
- conflicting definitions of, 66n 
- filtered/generalized, s e e  filtered 

ambiguity function 
- higher-order, 594 
- in radar, 69, 160 
- in sonar, 160, 618 
- narrowband, 160, 162-166 
- properties of, 162-166 
- S u s s m a n  (symmetrical), 69, 161, 

169 
- time-localized, 182 
- weighted, s e e  filtered ambiguity 

function 
-wideband,  161, 166 
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- Woodward, 161,618 
ambiguity surface, 162 
AMMP, see adaptive (modified) 

matching pursuit 
analytic associate, 14, 15 

- and oversampling, 268 
- computation of, 268-269 
- used to reduce cross-terms, 96 

analytic image, 651-654, 657, 658 
- and aliasing, 656 
- choice of, 657-659 

analytic signal, 14, 86-93, see also 

analytic associate 
analytic signals, 13 

- sum and product of, 87 
ANFIS, see adaptive network-based 

fuzzy inference system 
angle of arrival, see 

direction-of-arrival... 
AOK, see adaptive optimal kernel 
ARMUS, see adaptive representation 

for multiple structures 
artifact, 62 
asymptotic mean squared error 

- of PWVD-based IF estimate, 
453-455 

asymptotic reassignment points, 294 
asymptotic signal, 18 
asymptotic-phase signals, 92-93 
atmospheric turbulence, 457 
auto-terms, 64 

- as superpositions of coherent 
cross-terms, 99 

- in STFDs, 351,353 
- location of, 70 
- selection of, 360 

autocorrelation function, 36, 637, 638 
average frequency, 21 
axis transformation, 123, 125 

B 
B-distribution (BD), 51, 53, 55, 75-77, 

217, 305, 441 
- computation of, 270 
- defined using time-lag kernel, 665 
- discrete, 240, 241,271 
- for component extraction, 361 
- for component separation, 366 

- o f  EEG signals, 664, 665, 667-669 
backscattering, see scattering 
band-limited signal, 16, 35 
bandpass signal, 23 
bandwidth, 16, 18 

- effective, 16 
- relaxed measures of, 16 
- Slepian, 17 

bandwidth-duration ( B T )  product,  17, 
18, 23, 152, 166, 503, 549, 
550, 553 

bat 
- large brown ( E p t e s i c u s  f u s c u s ) ,  

179 
bat sound, 156, 157 

- adaptive TFDs of, 179 
- Gabor spectrograms of, 157 
- spectrogram and MBD of, 438 

Bayesian detector, 508 
- optimal, 507 

BD, see also binomial distribution, see 

B-distribution 
Bedrosian's theorem, 88-89 
Bertrand distribution, 209, 384, 646, 647 
bias 

- o f  IF estimation, 429-436, 
439-440, 442, 443, 445, 490, 
492-494 

- of WVD, 372-373 
bilinear time-frequency representations, 

see quadratic TFDs 
bilinear transformation, 62 
binomial distribution, 175 

- kernel decomposition, 266 
- of electric power disturbances, 

629 
biorthogonal-like condition, 318 
biorthogonality, 253, 258 
bird song, 312, 313 
BJD, see Born-Jordan distribution 
blind source separation 

- underdetermined, see 

underdetermined BSS 
blind source separation (BSS), 324-334, 

339, 341-343, 617 
- based on STFD, 326-331,349, 

351, 357-368 
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- conditions permitting, 324 
- other names for, 324 
- underdetermined, 328 

blurring, s e e  smoothing 
Born-Jordan distribution (BJD), 51, 53, 

55, 74, 76, 77, 171 
- computation of, 271-272 
- discrete, 240, 241,271 
- kernel decomposition, 266 
- minimum kernel energy property, 

376 
BSS, s e e  blind source separation 
B T  product, s e e  bandwidth-duration 

( B T )  product 
burst (EEG pattern), 665-667 
burst suppression (EEG pattern), 664, 

666 
butterfly function, 74, s e e  cone-shaped 

kernel 

C 
canonical pair, 86-87 

- characterization of, 88-93 
- for regular phase signal, 89-91 
- for singular and asymptotic phase 

signals, 92-93 
- with amplitude modulation, 88 

Cauchy principal value, 15 
CDMA (code-division 

multiple-access)..., s e e  

spread-spectrum... 
CDWR, s e e  cross-term deleted Wigner 

representation 
center of gravity, 291 
central finite-difference (CFD) approx., 

31, 186 
centroid, s e e  local centroid 
CFD. . . ,  s e e  central finite-difference... 
channel 

- linear dispersive, 549-557 
- multiplicative, 567 
- overspread, 414 
- random, 410 
- time-varying, 410 
- underspread, 414, 550 
- WSSUS, s e e  WSSUS channel 

characteristic function, 413, 492 
Chebyshev polynomial, 190, 191 

chirp, 4, s e e  a l s o  frequency modulation, 
linear FM, quadratic FM, 
hyperbolic FM 

- and adaptive optimal kernel, 620, 
621 

- detection by fractional 
autocorrelation, 573-574 

- hyperbolic-phase, 92 
- parabolic-phase, 92 
- sweep rate estimation of, 573-574 

Choi-Williams distribution (CWD), 51, 
53, 54, 76, 77, 169-170 

-computation of, 271-272 
- d i s c r e t e ,  240, 241,271 
- invariance properties of, 172 
- of dolphin click, 176 
- sensitivity to noise, 379 

CIT, s e e  coherent integration time 
clustering 

- of components, 361-362 
-o f  vectors, 357-363, 366-368 

code-division multiple-access..., s e e  

spread-spectrum... 
Cohen's class, 68n, s e e  quadratic class, 

quadratic TFDs 
coherent integration time (CIT), 

606-613 
communication 

- tetherless underwater channel, 
390 

- wireless channel, 384 
complex envelope, 88 
complex WDF transform (CWT), 578, 

582-583 
- cross-terms avoided by, 582 

complex-time form, s e e  polynomial 
WVDs 

component clustering, 361-362 
component extraction, 361-366 
component separation, 364 
components 

- resolution of, 307 
computation 

- latency of, 269 
- of analytic associate, 268-269 
- of discrete kernels, 270-272 
- of discrete quadratic TFDs, 
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268-278 
- of discrete WVD, 268 
- of fractional Fourier transform, 

152 
- of modified B-distribution, 

274-277 
- of spectrogram, 277-278 
- of windowed DWVD, 268 
- real-time, 269-270 
- throughput  of, 269 

concentration .~ 
- and probabilities, 297 
- by analogy with duration, 

299-30O 
- measured by R@nyi entropy, 

298-299 
- measured by ratio of norms, 

297-298 
- normalized measures, 299 
- of S-method, 301-303 
- of spectrogram, 301 
- optimization of, 302-304 

condition monitoring, s e e  machine 
condition monitoring 

cone-shaped kernel, 74, 171 
- adaptive, 182-183, 620 

conformity 
- index of, 280-283, 285-287, 289 

constant IF, 25 
convolution invariance, 61 
convolutive mixtures 

- separation of, 328-332 
correlation operator, 400, 529 
covariance 

- in the group domain, 105 
- in the time-frequency domain, 

109 
- o f  bilinear/quadratic TFRs, 109 
- o f  linear TFRs, 109 

covariance property, 102, 203, 643, 644 
covariance theory of time-frequency 

analysis, 102 
Cramer-Rao bound, 164, 339, 490 
CRB, s e e  Cramer-Rao bound 
CRLS (cascade recursive least squares), 

s e e  neural network 
cross polynomial WVD (XPWVD), 449 

- iterative IF estimation by, 449 
cross-ambiguity function, 552 
cross-correlation 

- 2-D, 668 
cross-spectrogram, 260, 263, 266 
cross-term deleted Wigner 

representation (CDWR), 
620-621, s e e  a l s o  Gabor 
expansion 

cross-terms, 62, 63, 94-101,620 
- amplitude, 307 
- and localization, 98-100 
- avoided by CWT, 582 
- avoided by TFAR and TFMV, 

585 
- away from origin in Doppler-lag 

domain, 96-97, 170 
- in polynomial TFDs, 191 
- in STFDs, 341,351,353 
- in the energy spectrum, 94 
- in the spectrogram, 94-95 
- in the WVD, 94-96 
- location of, 70 
- reduced by using analytic 

associate, 96 
- related to XWVDs, 64 
- statistical, 406 
- suppressed by LI kernels, 217 
- suppression of, 64, 69 

cross-Wigner-Ville distribution 
(XWVD), 155 

- defined, 64 
- in IF estimation, 422-423 

cumulant, 492 
CWD, s e e  Choi-Williams distribution 
CWT, s e e  complex WDF transform 
cyclo-stationarity 

- of engine signals, 638 
cyclostationary random process, 414 

D 

DCT, s e e  discrete cosine transform 
decay time, 41 
dechirping, 34, 186 

- in polynomial WVDs, 448 
deflection, 345 
delay power profile, 412 
delay spread, 415 
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delay-Doppler spread, 139, 415, 506, 
558, 560, 562 

- straight-line, 559-560, 567 
denoising, 473, 522-524 

- experiments, 524 
- mask design for, 523-524 

density distributions, 128 
- as fine organizational data, 129 

detectable dynamic range (DNR), 578 
detection, 531, s e e  a l s o  test statistic 

- as hypothesis testing, 344-345, 
502-503, 618-619 

- Bayesian, 507, 508 
- by fractional Fourier transform, 

151 
- by quadratic TFDs, 503-509 
- decentralized, 554 
- of chirps, 573-574 
-o f  knock, s e e  knock detection 
- of lines, 362 
- optimal, 500-509 
- quadratic, 344-347 

DGT, s e e  discrete Gabor transform 
DI . . . ,  s e e  Doppler-independent. . .  
differential reassignment, 294 
dilation invariance, 282-283, 293 
direct-sequence spread-spectrum 

communication, 542 
direction-of-arrival (DOA) estimation, 

334-338, 340, 344-347, 349 
discontinuities 

- well handled by wavelet 
transform, 677 

discrete cosine transform (DCT), 318 
- windowed, 318 

discrete Gabor transform (DGT), 521 
- inverse, 521 

discrete PWVDs, 449-450 
discrete SM, 245-248 

- examples, 246-248 
discrete spectrogram, 272-274, 277-278 

- latency of, 274 
- sampling for, 272-273 

discrete TFDs, 232-241 
- aliasing in, 233-234, 237, 241 
- computation of, 268-278 
- derived from standard kernels, 

240-241, 271 
- Doppler-frequency form, 238 
- general quadratic, 235-238 
- IF property for, 239 
- properties related to kernel, 

239-241 
- real-time computation of, 269-270 
- sampling for, 236-238 
- with Doppler-independent 

kernels, 240, 241,271 
discrete T F P F  

- bias-variance tradeoff, 494 
- iterative algorithm, 494 
- signal scaling, 493-494 
- window length selection, 494 

discrete wavelet packet analysis 
(DWPA), 677 

- in fault diagnosis, 680 
discrete wavelet transform (DWT), 

319-322, 676, 677, s e e  a l s o  

scalogram 
- in interference excision, 543 

discrete WVD, 232-234, 240, 241, 271 
~ 2D, 655-659 
- aliasing in, 233-234 
- as discrete quadratic TFD, 237 
- computation of, 268 
- sampling for, 232-234 
- windowed, s e e  windowed DWVD 

discrete WWVD, s e e  windowed DWVD 
discrete-domain frames, 315-322 
dispersion 

- time shift, 205 
- time-frequency characteristics, 

203 
dispersive 

- IF shift, 382 
- spreading function, 386 
- system, 203, 382 
- transformation, 382, 643, 646 

displacement function, 106 
DNR, s e e  detectable dynamic range 
DOA. . . ,  s e e  direction-of-arrival... 
dolphin click 

- binomial distribution of, 266 
- Choi~ distribution of, 176 

dominant frequency, 21 
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dominant time, 21 
Doppler (~), 34 

- in radar echo from helicopter, 
585-589 

Doppler effect 
- acoustical, 597-599 
- hydrophone in water, 598-599 
- microphone in air, 597-598 
- vs. Doppler (~), 34n 

Doppler power profile, 412 
Doppler shift, 102, 137 
Doppler spread, 415, 550 
Doppler spreading, 410 
Doppler tolerance, 166 
Doppler, Christian, 597 
Doppler-delay spread, 139, 415, 558, 

560, 562 
- straight-line, 559-560, 567 

Doppler-frequency kernel, 67, 70 
Doppler-independent kernel, 52, 55, 63, 

71, 72, 74, 76, 77, 214-215, 
222, s e e  a l s o  windowed WVD 

- and TFD properties, 216-217 
- discrete, 240, 241,271 
- giving windowed WVD, 215 
- smoothing effect of, 215 

Doppler-invariant signal, 209 
Doppler-lag domain, 69, 70 

- and cross-terms, 96-97, 170 
Doppler-lag kernel, 67, 69 

- and Moyal's formula, 668 
double convolution, 38, 214 
DSSS... ,  s e e  direct-sequence 

spread-spectrum... 
dual functions, 42, 155 
dual operator, 107 
duration, 16, 18 

- effective, 17 
- Slepian, 17 

duration-bandwidth product, s e e  

bandwidth-duration (BT) 
product 

DWT, s e e  discrete wavelet transform 
DWVD, s e e  discrete WVD 
dyadic sampling grid, 676 
dynamic bandwidth, 26 

E 

EEG, see electroencephalogram 
effective analysis window, 37 
effective bandwidth, 16 
effective duration, 17 
effective lag window, 35 
electro-oculogram (EOG), 664 
electrocardiogram (ECG), 664 
electroencephalogram (EEG) 

- analyzed by B-distribution, 664, 
665, 667-669 

- background patterns, 666-667 
- data acquisition for, 664 
- for seizure detection, 663 
- multicomponent nature of, 663 
- nonstationarity of, 663 
- seizure patterns, 665-666 
- time-frequency analysis of, 

664-665, 668-669 
- time-frequency peak filtering of, 

495, 496 
energy 

- concentration about IF law, 12, 
76, 306 

- of signal, 5 
energy atom, 155 

- o s c i l l a t i o n  of, 155-156 
energy density, 45, 52 

- quasi-, 508 
energy distributions, 128 

- as smoothed density 
distributions, 128 

- as visual aids, 129 
energy gradient, 45, 52 
energy property, 60 
energy spectrum, 7, 33 

- cross-terms in, 94 
engine pressure signal, 302, 303 
engine sound, 476 

- Gabor coefficients of, 476, 477 
ensemble average, 37 
ensemble view, 116 
entropy 

- Leipnik measure, 300 
- R~nyi, 298-300, 305 
- Shannon, 297n, 299-300 
- Zakai parameter, 300 
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estimation, 528 
evolutionary spectrum, 37, 402 

- generalized, 402 
- transitory, 402 

expected ambiguity function 
-generalized, 403, 414 

exponential T-distribution, 443 
extended displacement function, 106 
extraction 

- of components, 361-366 

F 
fading 

- in CDMA communication, 551, 
555 

- in wireless communication, 457 
- Rayleigh, 551, 553, 564 
- reduced by time-frequency 

processing, 553 
fault diagnosis, 671,673 

- in frequency domain, 673, 674 
- localized, 679, 680 
- nonlinear methods, 673 

fault location 
- in electric power networks, 

631-632 
feature extraction 

- for machine condition monitoring, 
672, 673, 675, 677, 679-681 

feature selection, 672 
- in gearbox fault detection, 678 

feature space, 672 
filter, s e e  time-frequency filter 
filter bank, 42 

- perfect reconstruction, 320, 321 
filtered ambiguity function, 68, 69, 161, 

170, 180, 181 
- for separable kernel, 214 

filtered WVD, 36 
finite bandwidth, 16 
finite duration, 17 
finite-element method (FEM), 635, 638 
Fisher information, 117 
Fisher information matrix, 164 
FM-like signals 

- underdetermined BSS for, 
357-368 

FM. . . ,  s e e  frequency modulation. . .  

725 

Form I (of polynomial WVD), 189, 190 
Form II (of polynomial WVD), 189, 190 
Form III (of polynomial WVD), 189 
Fourier series, 628 
Fourier transform (FT), 7 
fractional autocorrelation theorem, 

571-572 
fractional convolution, 569-572 

- alternative formulations, 570-572 
- special cases of, 570 

fractional correlation, 569-572 
- alternative formulations, 570-572 
- and ambiguity function, 572 
- and chirp detection, 573-574 
- auto-, 570 

- computational complexity of, 571, 

573 

- cross-, 569-570 

- special cases of, 570 

fractional Fourier transform, 223-224, 

568-569 

- and Hermite-Gauss functions, 146 

- applications of, 151-152 

- computational complexity of, 152 

- defined, 146 

- global moments of, 148-150 

- invariance properties of, 149-150 

- local moments of, 150-151 

- of common functions, 148 

- of linear FM signal, 151 

- properties, 147 

- rotation property, 146-147, 223, 

569 

- special cases of, 223 

fractional power spectrum 

- defined, 147-148 

fractional-powers form, see polynomial 
WVDs 

frame, 315, 321 

- cascaded, 319-321 

- defined, 315 

- discrete-domain, see 

discrete-domain frames 

- dual, 315 

- pseudo-, 315 

frame operator, 315 

frequency covariance, 60, see 
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frequency-shift invariance 
frequency extent, 74 
frequency marginal, 60 
frequency modulation, s e e  a l s o  chirp, 

linear FM, quadratic FM, 
hyperbolic FM 

- l a w ,  4 ,  21 
- of multiple components, 510 
- rate (nonlinear), 511 

frequency resolution, 39 
frequency support, 61, 74, 171 

- discrete, 240 
- strong, 46 

frequency window, 35, 36, 70 
frequency-dependent modulation 

function, 136 
frequency-invariant system, 135 
frequency-invariant WSSUS channel, 

413 
frequency-shift invariance, 60, 74, 172, 

203 
- of robust WD, 397 
- preserved by reassignment, 292 

FRFT, s e e  fractional Fourier transform 
FT, s e e  Fourier transform 

G 
Gabor coefficient, 155, 477-480 

- of engine sound, 476, 477 
Gabor expansion, 155, 620-621 

- critical sampling in, 477 
- discrete, 476-479 
- dual window functions, 477-479 
- in time-varying filtering, 476-480 
- oversampling in, 252, 254-256, 

477 
- product form, 254 
- sum-of-products form, 255 
- with non-orthogonal sampling, 

252, 257-259 
- with rectangular lattice, 252-253 

Gabor filter, 470 
Gabor spectrogram, 153-158 

- concept of, 154 
- convergence to WVD, 156 
- defined, 154-156 
- of bat sound, 156 

Gabor transform, 42, 253, 316, 321,470 

- discrete, s e e  discrete Gabor 
transform 

- in interference excision, 543 
- multi-window, 317 
- oversampling in, 254-256 
- product form, 254 
- sum-of-products form, 255 

Gabor transform pair 
- o r t h o g o n a l - l i k e ,  478, 480 

Gabor, Dennis, 17n, 41, 114, 252, 422 
GAF, s e e  generalized ambiguity 

function 
Gaussian process 

- complex circular, 460 
Gaussian signal, 18, 22, 503 

- as basis function, 154 
- in derivation of Gabor 

spectrogram, 154 
GDS. . . ,  s e e  group delay shift... 
generalized ambiguity function (GAF), 

68, 195-196, s e e  a l s o  filtered 
ambiguity function 

- for polynomial phase estimation, 
196 

generalized evolutionary spectrum, 402 
generalized expected ambiguity 

function, 403, 414 
generalized impulse, 206, 207 
generalized likelihood ratio test 

(GLRT), 346, 347, 502-504, 
507-509, s e e  a l s o  likelihood 
ratio detector 

generalized marginals, 183, 224-228, 282 
generalized Radon transform, 283 
generalized spreading function, 137, 

403, 411,469 
generalized Weyl filter, 467 
generalized Weyl symbol, 135, 400, 402, 

408, 411,467, 528 
generalized Wigner distribution 

(GWD), 136, 196-198, 400, 
533, 623 

- application of, 197-198 
- discrete, 198 

generalized Wigner-Ville spectrum, 400, 
414, 528 

generalized-marginal property, 225 
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generalized-marginal TFDs, 225-228 
- kernel examples, 227 
- kernel properties, 227 

Givens rotation, 354-355 
global energy property, 60 
GLRT, s e e  generalized likelihood ratio 

test 
group, 103 
group delay, 23, 107, 634, 644, s e e  a l s o  

time delay 
- constant, 644 
- dispersive, 644 
- exponential, 210 
- hyperbolic, 208, 283 
- local, 291 
- nonlinear, 203, 644 
- power-function, 209, 643-645, 

647, 649 
group delay shift (GDS) covariance, 

203-212 
group velocity, 631,632 
GWD, s e e  generalized Wigner 

distribution 

H 

Haar window, 260, 263 
Hadamard product, 350 
HAF, s e e  higher-order ambiguity 

function 
halfband system, 472 
Hamming window, 218 
Hankel form, 243 
Hanning window, 218, 301,373, 380 
Heisenberg uncertainty relation, 41, 

290, s e e  a l s o  uncertainty 
- and singular functions, 561 
- applied to marginals, 114 
- in quantum mechanics, 41n 
- misleading as limit on resolution, 

114-115 
helicopter 

- radar echo from, 585-586 
- sound from, 597, 601 

Hermite function expansions, 131-132 
Hermite normal form, 257 
Hermite-Gauss functions, 146 
Hermitian operator, 122, 124 
Hermitian symmetry, 13 

Hessian, 117 
higher-order ambiguity function (HAF), 

452, 594 
- for multiple component analysis, 

453 
- for single component analysis, 453 

higher-order cumulants, 463 
higher-order IAF, 187 
higher-order moment, 463 
higher-order spectra, 463, 622 

- bispectrum, 622, 623 
- time-varying, 462, 463 
- trispectrum, 328, 623 

Hilbert space, 281,315 
Hilbert transform, 14, 15 
Huber M-estimates, 392, 393, 399 
human visual system (HVS), 651, 

659-661 
HVS, s e e  human visual system 
hyperbolic 

- class, 112, 643 
- FM signal, 62, 166, 282-283, 

286-287, 389, 511,620 
- frequency-shift operator, 110 
- time-frequency structure, 387 
- transformation, 387 
- wavelet transform, 112 

hyperbolic T-distribution (HTD), 441, 
s e e  modified B-distribution 

hyperbolic-phase chirp, 92 

I 

IAF, s e e  instantaneous autocorrelation 
function 

IDGT, s e e  discrete Gabor transform 
(inverse) 

I F . . . ,  s e e  instantaneous frequency... 
IFT, s e e  inverse Fourier transform 
image dissimilarity 

- measured by 2D WVD, 659-660 
image distortion, 651,659-661 
image quality, 651,660 

- as signal-to-noise ratio, 659, 661 
- time-frequency measures of, 

659-661 
impulse 

- generalized, 206, 207 
impulse noise, 392, 393, 397, 399 
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- and TFDs, 392 
impulse signal, 206 
index of (dimensional) conformity, 

280-283, 285-287, 289 
index of significance, 281, 283, 289 
information 

- spectral, 116-121 
inner artifacts, 62, 73, 74, 76, 98 

- suppressed by DI kernels, 217 
- suppressed by polynomial WVDs, 

190 
inner-product invariance, 62, 282 
innovations system, 401 
instantaneous amplitude, 11, 20 
instantaneous autocorrelation function 

(IAF), 33, 47, 66 
- higher-order/polynomial, 187 
- spatial, 349 

instantaneous bandwidth, 11,307 
instantaneous cross-correlation function, 

63 
instantaneous Doppler, 607-613 
instantaneous frequency (IF), 9, 11, 19, 

20, 22, 25, 26, 76, 86-93, 107 
- adaptive estimation of, 429-446 
- density of, 295 
- dispersive, 510 
- dispersive change of, 382 
- encoding signal as, 489-490 
- estimated by matched 

spectrogram, 423-427 
- estimated by maxima of MBD, 

442-445 
- estimated by maxima of 

quadratic TFDs, 438-441, 443 
- estimated by maxima of 

spectrogram, 437-438, 445 
- estimated by maxima of TFDs, 

429 
- estimated by polynomial WVD, 

187-188, 453-455 
- estimated for noisy signals, 429 
- estimated for random signals, 

422-427 
- hyperbolic, 510 
- hyperbolic shifts, 386 
- lag window affecting estimate of, 

439-440 
- local, 291 
- localization by WVS, 457 
- mean, 25 
- measurement of, 310 
- nonlinear, 510 
- of EEG signal, 666 
- of EEG template, 669 
- of electric power disturbance, 

629-634 
- of engine noise, 637 
- of engine pressure signal, 635, 

636, 638 
- power-function, 388 
- property, 61, 74, 187-188, 239 
- unbiased estimation of, 76 
- uniqueness of, 86 
- visualization of, 72 

instantaneous mixtures 
- separation of, 325-328, 331 

instantaneous phase, 20, 21, 26 
- parametric estimation of, 593-595 

instantaneous power, 5, 33 
integer-powers form, s e e  polynomial 

WVDs 
interference 

- traded against localization, 
99-100 

interference terms, 13 
intermediate frequency (IF) 

- definitions of, 422 
interpolation, s e e  oversampling 
inverse Fourier transform (IFT), 8 
inverse Gabor transform, 42 
inverse synthetic aperture radar 

(ISAR), 590 
inverse time-frequency problems, 

601-604 
invertibility 

- of WVD, 61 
invertible signal, 22 
ISAR, s e e  inverse synthetic aperture 

radar 
iterated projections distribution, 183 

J 

Jacobi diagonalization, 327, 330, 355 
JAD, s e e  joint anti-diagonalization 
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Jakes Doppler power profile, 413 
jammer, 543, 546-547 
Janssen's interference formula, 99 
JBD, s e e  joint block-diagonalization 
JD, s e e  joint diagonalization 
jet aircraft 

- sound from, 599, 600 
JOD, s e e  joint off-diagonalization, joint 

anti-diagonalization 
joint anti-diagonalization (JAD), 

327-328, s e e  a l s o  joint 
off-diagonalization 

joint block-diagonalization (JBD), 
330-331 

joint diagonalization (JD), 326-327, 
351-352, 354-355 

joint distributions 
- axis transformation approach, 123 
- by linked signal/axis 

transformations, 124-126 
- construction of, 122-123 
- signal transformation approach, 

124 
joint off-diagonalization (JOD), 

351-352, 354-355, s e e  a l s o  

joint anti-diagonalization 
Joint Photographic Experts Group 

(JPEG) coding, 660, 661 
joint spatial/spatial-frequency.. . ,  s e e  

spat ial/spat ial- frequency... 

K 

Kaiser window 
- 2D extension of, 657 

Karhunen-Lo~ve Transform (KLT), 261 
kernel, 52, 60, s e e  a l s o  

Doppler-frequency kernel, 
Doppler-lag kernel, kernel 
filter, time-frequency kernel, 
time-lag kernel 

- and variance of TFD, 377-379 
- as filter, 70n, 71 
- as in "signal kernel", 30-31 
- computation of, 270-272 
- decomposition into spectrogram 

kernels, 260-266, 502 
-discrete, 240, 241, 270-272 

- Doppler-independent, 52, 55, 63, 
71, 72, 76, 77, 214-215, 222, 
240, 241,271 

-energy of, 375-376 
- for selected discrete quadratic 

TFDs, 240, 271 
- generalized-marginal, 227 
- lag-independent, 55, 72, 215, 222 
- optimizing parameter of, 309, 

312, 313 
- separable, 55, 71-72, 97-98, 

213-222, 292-293 
- singularities in, 271-272 
- time-only, s e e  lag-independent 

kernel 
- transformations of, 67 

kernel filter, 70, 71, s e e  kernel 
Kirkwood-Rihaczek distribution, 45, s e e  

Rihaczek distribution 
Klauder wavelet, 288 
KLT, s e e  Karhunen-Lobve Transform 

(KLT) 
knife-edge ridge, 30 
knock detection, 534, 635-637 

- by observing single combustions, 
639-640 

- by power and energy estimation, 
640-641 

- by S-method, 639-641 
- position of sensors for, 638-639 
- sampling for, 639 
- signal models for, 635-638 

Kohn-Nirenberg symbol, 136 

L 
L-Wigner distribution (LWD), 248-249 

- optimal lag window for, 432 
lag-independent kernel, 55, 72, 74, 215, 

222 
- and TFD properties, 216-217 
- smoothing effect of, 215 

Laplacian distribution, 393 
latency, 269 

- of discrete spectrogram, 274 
LD, s e e  Levin distribution 
leakage, s e e  spectral dispersion 
Leipnik entropy measure, 300 
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Levin distribution (LD), 49, 53, 54, 76, 
77 

- defined, 46 
- discrete, 240, 241,271 

LFM, s e e  linear FM 
LI . . . ,  s e e  lag-independent. . .  
Lie group, 104 
likelihood ratio detector, 532, s e e  a l s o  

generalized likelihood ratio 
test 

- time-frequency design, 534 
- time-frequency formulation, 533 

line detection, 362 
linear FM signal, 6, 8, 29 

- as test signal, 4 
- defined, 4 
- finite-duration, 34 
- for frequency-hopped CDMA, 357 
- IF of, 4 

- in multiplicative noise, 457-458 
- optimal window duration for, 40 
- TFDs of, 52 
- Wigner-Ville spectrum of, 

457-460 
linear frequency sweep, 4 
linear mixtures 

- blind separation of, 324-333 
linear phase, 23 
linear time-frequency representations, 

65, 102 
linear time-varying channel, 410, 558 

- optimal waveforms for, 566-567 
linear time-varying system, 135, 402, 

407, 410, 466, 528, 558 
- nonlinear frequency shift in, 382 

Lloyd's mirror effect, 599-601 
- nodal frequencies, 600-601 

local centroid, 291,292 
local cross time-frequency product, 132 
local energy, 72 
local ergodicity, 37, 463 
local frequency bandwidth, 132 
local time bandwidth, 132 
localization, 4 

- and cross-terms, 98-100 
- as by-product of interference, 98, 

99 

- traded against interference, 
99-100 

localized spectrum, s e e  short-time 
Fourier transform 

logon, 41 
loss function, 392-394, 396, 399 
LTV. . . ,  s e e  linear t ime-varying.. .  
LWD, s e e  L-Wigner distribution 

M 
M-STFT,  s e e  robust STFT 
machine condition monitoring, 671-672, 

674, 677, 681 
- and diagnosis, 672-673 
- data acquisition for, 672, 677, 

679, 680 
- during transient states, 674-675 

magnitude spectrum, 7, 9 
Mahalanobis distance, 678 
MAI, s e e  multiaccess interference 
mainlobe amplitude, 306, 307 
mainlobe bandwidth, 306 
Margenau-Hill distribution, 46, s e e  

Levin distribution 
marginal median, 395 
marginal properties, 33, 45, 114, 401, 

402 
- and the kernel, 224-225 
- discrete, 239 
- violated by spectrogram, 73 

marginals 
- generalized, 183, 224-228, 282 

Marinovich-Altes distribution, 126 
masked WVD, 65 
matched spectrogram, 422, 427 

-computa t ion  of, 423-427 
- convergence of computation, 

424-427 
- in IF estimation, 423-427 
- proof of convergence, 424-427 
- rate of convergence, 426-427 
- window of, 422, 426, 427 

matching pursuit 
- adaptive (modified), 511 
- adaptive algorithm, 512 
- concept, 510 
- dictionary of waveforms, 511 
- iterative algorithm, 510 
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MATLAB TM code, 274, 275, 278, 349, 
350, 352, 353, 355, 527, 665 

maximum likelihood (ML), 393 
MBD, see  modified B-distribution 
mean IF, 25 
mean instantaneous intensity, 400 
mean squared error (MSE) 

- minimum (MMSE), 555 
-o f  IF estimation, 429, 430, 433 
- of PWVD-based IF estimate, 

453-455 
mean value 

- of quadratic TFD, 374 
median WD, 397-398 
Mellin transform, 124, 283 
Mellin-Fourier duality, 162 
Mexican hat wavelet, 676 
minimax Huber M-estimates, 392, 393, 

399 
minimax robust Wiener filter, 531 
minimum description length (MDL), 

360 
missile tracking, 605-614 

- and instantaneous energy, 
611-614 

mixing matrix, 325, 334 
ML, see  maximum likelihood 
mobile radio channel, 410 
modified B-distribution (MBD), 51, 53, 

75-77, 217-218, 310, 313 
- computation of, 274-277 
- discrete, 218, 240, 241, 271 
- IF estimation by, 442-445 
- lag-independent kernel of, 218, 

441 
- of bat sound, 438 
- properties of, 441-442 
- versus spectrogram, 439 

modulation invariance, 61 
moments 

- of fractional Fourier transform, 
148-151 

monocomponent FM signal, 11 
monocomponent linear FM signal, 76 
monocomponent signal, 19, 306 

- imprecision of terminology, 98 
- optimal window duration for, 40 

Monte Carlo method, 340, 460, 462, 535 
Morlet wavelet, 676 
moving targets 

- discriminated from fixed, 595 
Moyal's formula, 163, 287, 565, 668 

- and Rihaczek distribution, 668 
- related to Doppler-lag kernel, 668 
- satisfied by WVD, 668 

MSE, see  mean squared error 
multiaccess interference (MAI), 551,554 
multicomponent FM signal, 11 
multicomponent signal, 19, 306, 357, 

358 
- imprecision of terminology, 98 
- instantaneous frequencies of, 12, 

437-441,443-446 
- testing AMMP method, 515 
- time-frequency peak filtering of, 

495, 496 
- WVD of, 63 

multipath propagation, 410 
multipath spread, 550 
multiple IFs, 12 
multiplicative noise, 13, 457, 460 

- analyzed as additive, 380 
- polynomial phase estimation in, 

200-201 
multiplicative system, 560, 567 
multiwindow Gabor filter, 470 
multiwindow STFT, 530, 534 

- filter based on, 468 
MUSIC, 337-340, 343 

- ambiguity-domain (AD-MUSIC), 
337-338, 340 

- time-frequency (t-f MUSIC), 338, 
340-341 

musical notation 
- as time-frequency representation, 

5 

N 
negative frequency, 13 
neural network, 622 

- in machine condition monitoring, 
673, 678, 680 

NLS, see  nonlinear least-squares 
noise 

- additive, s e e  additive noise 
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- analytic, 376 
- complex white, 375, 377-380 
- impulse, s e e  impulse noise 
- in quadratic TFDs, 374-376, 668 
- in TFDs, 372-381 
- in windowed WD, 372-374 
- multiplicative, s e e  multiplicative 

noise 
- nonstationary white, 374-375, 

379-380 
- real, 376 
- stationary colored, 374-375, 380 
- stationary white, 374, 377-379 
- thresholding, 359, 364 

noisy miner, 312, 313 
noisy signals 

- polynomial WVD of, 448, 449 
- quadratic TFDs of, 376-380 

non-negativity, 73, s e e  "positivity" 
non-orthogonal sampling, 256-257 
nonlinear FM signal, 185 

- as basic atom, 511 
- examples of, 185 
- WVD of, 62 

nonlinear frequency shift, 382 
nonlinear least-squares (NLS) method, 

598-604 
nonstationary interference, 543, 546-547 
nonstationary random process, 382, 400, 

528 
- cyclostationary, 414 
- joint ly underspread, 528, 529, 533 
-overspread,  404, 406 
- underspread, 404, 405, 528 
- white, 401,402, 404 

nonstationary signals, 5 
- detection, 531 
- estimation, 528 

nonstationary spectral correlation, 504, 
505 

notation 
- standardization of, vii 

nuisance parameters, 500, 502, 503 
- and covariance properties, 500, 

504 
- random, 507 

Nyquist term, 269 

O 
observation time 

- optimal, 116-121 
OFDM, s e e  orthogonal frequency 

division multiplexing 
operator 

- integral, 203, 383, 644 
optimal signal detector, s e e  likelihood 

ratio detector 
optimal signal estimator, s e e  Wiener 

filter 
orthogonal frequency division 

multiplexing (OFDM), 417, 
418, 557, 567 

orthogonal-like functions, 522 
orthogonal-like Gabor transform pair, 

478, 480 
orthogonality 

- quasi-, 358 
- time-frequency, 358-360, 366 

outer artifacts, 63, 73, 74, 76, 98 
- suppressed by LI kernels, 217 

oversampling 
- rational, 254-256, 259 

overspread process, 404, 406 
overspread system, 139, 143, 529, 533 
overspread WSSUS channel, 414 

P 
p-point uncertainty class, 531 
Page distribution, 50, 53, 54, 76, 77 

- defined, 44-45 
- discrete, 240, 241,271 

parabolic-phase chirp, 92 
parameters 

- of signals, s e e  signal models, 
signal parameters 

Parseval's relation, 163, 483, 652 
- for fractional Fourier transform, 

149 
partial displacement operator, 104 
pattern recognition 

- in machine condition monitoring, 
672, 677, 678, 681 

PCA, s e e  principal component analysis 
peak detection and tracking, 362, 

364-366, 368 
periodic auxiliary function, 478 
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PFFs ,  s e e  product - funct ion  frames 

phase, 12 
phase delay, 23 
phase lag 

- of Hilbert  t ransformer ,  14 

phase signals, 89 

- regular, 89-91 

phase spect rum,  7, 9 

pitch, 5 

polynomial  FM signal, 185, s e e  

polynomial -phase  signal 

polynomial  IAF, 187 

polynomial  phase est imation,  198-201, 

450-452 
- for cons tant  ampl i tude ,  addit ive 

noise, 198-200 

- for mult ipl icat ive & addit ive 

noise, 200-201 

- using the  GAF,  196, 198-199 

- using the  G W D ,  199-200 

polynomial  phase t ransform (PPT) ,  193 

polynomial  TFDs ,  185-191, 193-202, 
s e e  a l s o  polynomial  W V D s  

- derivation of, 194-195 
- ma themat i ca l  foundat ions of, 

193-194 

polynomial  WD,  187 

polynomial  WVDs,  185-191, 193, 197, 
201 ,461-463  

- coefficients of, 188-190 

- cross, s e e  cross polynomial  W V D  

- cross-terms in, 191 

- derivation of, 185-187 

- discrete, 449-450 

- for mult iple  componen t  analysis, 
453 

- for single componen t  analysis, 453 
- general definition of, 187 

- IF es t imat ion  by, 438, 447-449, 

453-455 

- IF proper ty  of, 187-188 

- in t ime-frequency peak filtering, 

493 

- of mul t i componen t  signals, 191 

- of noisy signals, 448, 449 

- opt imal  lag window for, 432 

- reducing to ordinary  W V D ,  

189-190 
- S -method  for, 249-250 
- signal kernel of, 186, 448 

- s ixth-order,  190, 191,462 
- suppressing inner artifacts,  190 

- s y m m e t r y  abou t  IF, 187-188 

- with complex t ime, 189 

- with fractional powers, 189-190 
- with integer powers, 189-190 

polynomial -phase  signal (PPS),  185, 
460, 461 

- detect ion of, 196 

- e s t i m a t i o n  of phase,  s e e  

polynomial  phase  es t imat ion  

- in addi t ive noise, 447-455 

- in model  of radar  echo, 593-595 

- ma tched  spec t rogram of, 427 

positivity, 62, 73, 78 

power class, 643-646 

- applied to beam impulse 
response,  648-649 

- applied to localized signal 

analysis, 643-644 

- formulat ion of, 645-646 

- impor tance  of, 643 

- ~th,  644-645 

- members  of, 646-647 

- tes ted  on synthet ic  data ,  647-648 

power impulse,  643 

power quality, 628-629 
- t ime-frequency assessment  of, 

629-631 

power spectra l  densi ty  (PSD),  36, 400 

- frequency resolut ion in, 307 

power spec t rum,  153 

- t ime-dependen t ,  153 
power t ime shift property ,  644 

power Wigner  dis t r ibut ion,  646 

- smoothed  pseudo,  646-649 

power-funct ion 

- t ime-frequency representa t ion,  

388 

- t ransformat ion ,  388 

powergram,  646, 647 

PPS,  s e e  polynomia l -phase  signal 

principal componen t  analysis (PCA),  
261 
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product kernel, 71 
product transform, 317, 321 
product-function frames (PFFs), 321 

- for non-periodic spaces, 317-319 
- for periodic spaces, 316-317 

projective group representation, 103 
projectogram, 262 
Prony method, 622, 624 
PSD, s e e  power spectral density 
pseudo-frame, 315 
pseudo-Wigner distribution 

- affine-smoothed, 647-649 
pseudo-WVD, s e e  windowed WVD 
PWD (pseudo-Wigner distribution), s e e  

windowed WVD 
PWVDs, s e e  polynomial WVDs 

Q 
Q-distribution, 209, 387, 515 

- and the ambiguity function, 162 
QTFRs (quadratic time-frequency 

representations), s e e  

quadratic TFDs, 
bilinear/quadratic 
time-frequency 
representations 

quadratic class, 68, 102, 106, 110, 168, 
170, 203, 501,643 

quadratic FM signal 
- IF estimation of, 462 

quadratic TFDs, 67, 74, 102, 170 
- adaptive, 180-183 
- affine class of, 643, 645-650 
- computation of, 268-278 
- design of kernels for, 71, 170-173 
- desirable properties of, 72-73, 76, 

440-441 
- detection by, 503-509 
- discrete, 232-241 
- generalized-marginal, 225-228 
- hyperbolic class of, 643 
- IF estimation by, 438-441 
- in machine condition monitoring, 

674 
- kernel decomposition, 260-263 
- noise in, 374-376, 668 
- of noisy signals, 376-380 
- power-class, 643-650 

- properties related to kernel, 
74-75, 216-217, 239-241 

- real-time computation of, 269-270 
- S-method in, 242-245 
- subclass P of, 73 
- subclass P '  of, 73 
- table of, with properties, 77 
- t ime/frequency covariance of, 643 
- variance of, 374-376, 381 
- with Doppler-independent 

kernels, 52, 55, 63, 71, 72, 76, 
77, 214-215, 240, 241,271 

- with lag-independent kernels, 55, 
72, 215 

- with reassignment, 292 
- with separable kernels, 55, 71-72, 

97-98, 213-222, 292-293 
quadrature signal, 14 
quasi-energy density, 508 
quasi-orthogonality 

- time-frequency, 358 

R 

radar 
- and the ambiguity function, 69, 

160 
- fluctuating target in, 457 
- HF line-of-sight, 605-608, 610, 

612 
radially Gaussian kernel, 182 
Radon transform 

- generalized, 283 
Radon-Wigner distribution 

- rotation of, 224 
Radon-Wigner transform, 148 
RAKE receiver, 551-552, 555-556 
random time-frequency shift, 413 
random time-varying channel, 410 
range-velocity transformation, 160 
rational oversampling, 254-256, 259 
Rayleigh fading, 551,553, 564 
RC, s e e  reconstruction collection 
RD, s e e  Rihaczek distribution 
real-time computation, 269-270 
real-time filtering 

- of speech, 481,483 
realness, 60, 74 



Time-Frequency Index 

- c o m p u t a t i o n a l  exploitation of, 
269-27O 

- of polynomial WD, 187 
- o f  robust TFDs,  398 
- of robust WD, 396 

reassigned smoothed pseudo 
Wigner-Ville distribution 
(RSPWVD),  292-293, 591, 
593-594 

reassignment points 
- asymptotic, 294 

reassignment principle, 290-295 
- and bilinearity, 292 
- and time-frequency "squeezing", 

292, 295 
- and t ime/frequency shift 

invariance, 292 
- differential reassignment, 294 
- fixed points, 295 
- for component separation, 294 
- for quadratic TFDs, 292 
- for scalogram, 295 
- for separable kernels, 292-293 
- for signal/noise discrimination, 

294 
- for spectrogram, 290-292 
- for the affine class, 293-294 
- histogram, 295 
- supervised reassignment, 294 

reconstruction collection, 315, 316, 318 
reduced interference, 73, 74 
reduced-interference distribution, 66, 

76, 213 
- adaptive, 183 
- compared, 175 
- computat ion of, 260 
- design of, 76 
- design of kernels for, 170-173 
- discrete kernels for, 173-175 

- in Doppler-lag domain, 169-170 
- of dolphin click, 176 
- of electric power disturbances, 

628-631,634 
- optimization of, 173 

- support  properties, 171 
regular phase signals, 89, 90 

- properties of, 91 

735 

relaxation time, 26, 40 
R@nyi entropy, 298-300, 305 
reproducing kernel, 162 
residual spectrogram, 394, 398 
resolution, 73 

- evaluation of, 309 
- of components, 307 

resolved components, 307 
RID, s e e  reduced-interference 

distribution 
Rihaczek distribution (RD), 48, 53, 76, 

77 
- and Moyal's formula, 668 
- defined, 45 
- discrete, 240, 241,271 

Rihaczek spectrum, 401 
ringing, 182, 659 
road detection algorithm, 362, 367 
road network tracking algorithm 

- in underdetermined BSS, 362-366 
robust spectrogram, 392-395, 397, 398 
robust STFT,  392-395 

- iterative realization, 394-395 
- vector filter realization, 395 

robust time-varying Wiener filter, 530 
robust Wigner distribution, 396-398 

- properties of, 396-397 
rotation property, 223 
RSPWVD,  s e e  reassigned smoothed 

pseudo Wigner-Ville 
distribution 

running energy spectrum, 44 
running spectrum, 43 
running transform, 44 
RWT, s e e  Radon-Wigner transform 

S 

S-method, 242-251 
- affine form, 245 

- and L-Wigner distribution, 
248-249 

- and polynomial WVDs, 249-250 
- basic form, 242-244 
- concentration of, 301-303 
- cross-terms in, 243 
- discrete realization, 245-248 
-examples ,  246-248, 250 
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- forms in quadratic TFDs, 
242-245 

- fractional domain form, 244 
- in spectral subtraction filtering, 

487 
- related to STFT, 639 
- sensitivity to noise, 379 
- time direction form, 244 

sampling 
- for discrete quadratic TFDs, 

236-238 
- for discrete spectrogram, 272-273 
- for discrete WVD, 232-234 
- for windowed DWVD, 235 
- ideal, 232 

SAR, s e e  synthetic aperture radar 
scalar product, s e e  inner product 
scale covariance, 172, 210 
scale modulation, 318-319, 321 
scale operator, 124 
scaling property, 644 
scalogram 

- cross-terms in, 94, 622 
- related to wavelet transform, 94, 

294, 621 
- with reassignment, 295 

scattering, 506, 615, 616, 621,623-624 
- by rotating rigid body, 591-593 
- in missile tracking, 607, 609, 

611-613 
scattering function, 411,506, 551 
seizures 

- definition of, 663-664 
- linear FM with decreasing 

frequency, 665, 667 
- linear FM with quasi-constant 

frequency, 665, 667 
- matched detection of, 666 
- neonatal vs. adult, 663 
- piecewise-linear FM, 666-667 
- time-frequency detection of, 

666-669 
- time-frequency patterns of, 

665-667 
self-adjoint operator, 122 

- eigensystem of, 262, 264 
separable kernel, 55, 71-72, 74, 77, 

97-98, 213-222 
- and TFD properties, 216-217 
- design examples, 217-218 
- general theory of, 213-214 
- numerical examples, 218-221 

separate convolutions in t and f ,  71 
separation 

- of components, 364 
separation measure, 308 
Shannon entropy, 297n, 299-300 
short-time ambiguity function, 182 
short-time Fourier transform (STFT), 

102, 106, 110, 468, 477, 500 
- adaptive, 178-180 
- and S-method, 639 
- and the ambiguity function, 162 
- defined, 38 
- in realization of higher-order 

TFDs, 248-250 
- in realization of quadratic TFDs, 

242-245 
- in speech filtering, 483 
- multiwindow, 530, 534 
- robust, 392-395 

SIAF, s e e  spatial instantaneous 
autocorrelation function 

sidelobe amplitude, 306, 307 
Siebert's self-translation property, 164 
signal classification, 510 
signal decomposition 

- by matching pursuit algorithm, 
510, 513 

signal detection, 531 
signal enhancement, 528 
signal estimation, 528 
signal formulations, 12 
signal kernel, 30-31, 194 

- for polynomial WVD, 186, 448 
signal measures 

- extended to two dimensions, 
129-130 

- in one dimension, 129 
signal models, 12 

- parameters of, 12, 13 
signal parameters, 310 
signal spread, 41 
signal transformation, 124-125 
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significance 
- index of, 281, 283, 289 

singular function, 558-561, 564-566 
singular value, 559, 561, 564-566 
singular-value decomposition (SVD), 

563-564, 622 
sinusoidal FM signal, 39 

- defined, 4 
- IF of, 4 

Slepian bandwidth,  17 
Slepian duration, 17 
Slepian, David, 17 
SM, s e e  S-method 
smearing, 39n, s e e  smoothing 
smoothed pseudo Wigner-Ville 

distribution, 97-98, 292-293 
- has separable kernel, 213, 222 
- reassigned (RSPWVD),  292-293, 

591, 593-594 
smoothed SIAF, 349 
smoothed WVD, 51,312 
smoothing 

- as convolution, 48 
- versus "squeezing", 292 

sonar, 510, 615-618 
- and the ambiguity function, 160, 

618 
sonogram, s e e  sonograph 
sonograph, 42 

- defined, 43 
- related to spectrogram, 43 

source parameter estimation, 601-604 
- broadband, 603-604 
- narrowband, in air, 601-602 
- narrowband, in water, 602-603 
- wavelet denoising for, 603 

sparse decomposition, 366 
spatial instantaneous autocorrelation 

function (SIAF), 349 
- smoothed, 349 

spatial TFD (STFD), 325, 334-343, 
349-356 

- auto-term points, 359 
- auto-terms in, 351,353 
- cross-terms in, 341,351,353 

- for blind source separation, 
326-331 

- in blind source separation, 
357-368 

- matrices, 329-331 
- quadratic, 334, 349 
- structure under linear model, 351 

spatial/spatial-frequency 
representations, 652-654, 
658-661 

- image quality and, 651 
spectral autocorrelation function, 35, 66 
spectral complexity, 116 
spectral disjointness, 15 
spectral information, 116-121 

- for nonstat ionary signals, 118-121 
- for stationary signals, 116-118 

spectral subtraction 
- SM-based, 487 
- s p e c t r o g r a m - b a s e d ,  485, 487 

spectrogram, 39, 47, 53, 54, 76, 77, 501 
- adaptive, 178-180 
- approximate decomposition into, 

264-266, 506 
- as energy distribution, 128 
- as special case of S-method, 243 
- auto-, 260 
- computat ion of, 277-278 
- concentration of, 301 
- c r o s s - ,  260, 263, 266 
- cross-terms in, 94-95 
- decomposition into, 260-266, 502, 

505 
- defined, 38 
-discrete,  240, 241, 271-274, 

277-278 
- IF estimation by, 437-438 
- in spectral subtraction filtering, 

485, 487 
- in speech filtering, 483-484 
- in time-varying Wiener filter, 484 
- limitations of, 153, 168 
- marginals violated by, 73 
- matched, s e e  matched 

spectrogram 
- of bat sound, 438 

- optimal window duration for, 39, 
40, 432 

- related to sonograph, 43 
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- residual, 394, 398 
- robust, 392-395 
- sensitivity to noise, 379 
- subsumed by quadratic TFDs, 77 
- variance of, 381 
- with reassignment, 290-292 

speech 
- time-varying filtering of, 481-486 

speech enhancement, 473 
spread function, s e e  delay-Doppler 

spread 
spread-spectrum communication 

- code-division multiple-access 
(CDMA), 357, 549, 551-557 

- described, 542 
- direct-sequence, 542 
- interference mitigation in, 

542-547, 553-557 
- reduction of fading in, 553 

spreading function, 550 
- dispersive, 386 
- generalized, 137, 403, 411,469 
- hyperbolic, 387 
- narrowband, 384 
- power, 388 
- wideband, 384 

SPWVD, s e e  smoothed pseudo 
Wigner-Ville distribution 

SS.. . ,  s e e  spread-spectrum... 
statistical cross-terms, 406 
steering vector, 334 
STFD, s e e  spatial TFD 
STFT, s e e  short-time Fourier transform 
STFT filter, 468 
strong frequency support, 46 
strong time support, 46 
supervised reassignment, 294 
Sussman ambiguity function, s e e  

ambiguity function 
symmetrical ambiguity function, s e e  

ambiguity function 
synchrosqueezed plane, 295 
synthetic aperture radar (SAR) 

- basic principles, 590-591 
- inverse (ISAR), 590 
- RSPWVD used in, 591, 593-594 

system 

- adjoint, 140 
- approx. 

eigenfunctions/eigenvalues of, 
141 

- halfband, 472 
- innovations, 401 
- linear frequency-invariant, 135 
- linear time-invariant, 135 
- linear time-varying, 135, 402, 407, 

410, 466, 528, 558 
-overspread, 139, 143, 529, 533 
- random time-varying, 410 
- underspread, 138, 140, 407, 467, 

528, 558-567 
- wideband, 390 

system identification, 519-527 
- using chirp signal, 519 
- using pseudo-random signal, 519 

T 
t-f MUSIC, s e e  MUSIC 
TBM (theater ballistic missile), s e e  

missile tracking 
TBP (time-bandwidth product), s e e  

bandwidth-duration (BT) 
product 

test statistic, 345-347, 502-508, 532, s e e  

a l s o  detection 
-optimal, 345-347, 502 

TFAR.. . ,  s e e  time-vs-frequency 
autoregressive... 

TFDs, s e e  time-frequency distributions 
TFMV.. . ,  s e e  time-vs-frequency 

minimum-variance... 
TFPF, s e e  time-frequency peak 

filtering, discrete TFPF 
TFRs, s e e  time-frequency 

representations, 
time-frequency distributions 

T F S A  package, 190, 278, 665 
TFSP, s e e  time-frequency signal 

processing 
thresholding constant, 523-524 
time average, 37 
time covariance, 60, s e e  time-shift 

invariance 
time delay, 9, 22, 25, 26, 61 

- critique of terminology, 22n 
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time delay proper ty  
- discrete, 239 

time extent, 74 
time marginal, 60 
time of arrival 

- of electric power disturbances,  
631-634 

time resolution, 39 
time support ,  61, 74, 171 

- discrete, 239 

- strong, 46 
time window, 35, 36, 70 
t ime-advanced signal, 269 
t ime-bandwidth  product  (TBP),  see 

bandwidth-dura t ion  ( B T )  

product  
t ime-frequency analysis 

- matching, 206 
time-frequency correlation, 403 

time-frequency correlation function, 411 
time-frequency correlation spread, 404 
time-frequency correlator, 668 
time-frequency displacement operator,  

103 
time-frequency distributions, 9 

- adaptive, 178-183, 513 
- affine, 209 
- and ambiguity functions, 161 
- comparison of, 305, 310, 312, 313 
- concentrat ion of, 297-304, see 

also concentrat ion 
- density-class, 128 
- desirable characteristics of, 11 
- detection by, 502-509, 619-621 
- discrete, 232-241 
- energy-class, 128 
- exponential,  210 

- GDS-covariant,  203-212 

- generalized-marginal,  225-228 

- high-resolution linear, 581-589 
- hyperbolic, 208 

- IF est imation by, 429-446 

- of helicopter radar  data,  578-589 

- of hybrid energy/dens i ty  class,  
128 

- o p t i m a l ,  309, 310 
- optimizing performance of, 309, 

310 
- performance criteria for, 306 
- performance measure for, 309, 

312 
- performance of, 305 
- polynomial,  see  polynomial  

TFDs,  polynomial  WVDs 
- poorly-performed, 309 

- power-class, 209, 643-650 
- quadratic,  see  quadrat ic  T F D s  

- robust,  392-399, see  robust  
spectrogram, robust  STFT,  
robust  Wigner  distribution, 
median WD 

- selection of, 305, 309, 310, 312, 
313 

- well-performed, 309 
t ime-frequency domain, 70 
t ime-frequency filter, 466 

- adaptive notch, 544-547 
- applications of, 473 

- discrete-time formulation of, 472 
- explicit design of, 466 
- for noisy speech, 481-486 

- Gabor,  470 

- Gabor  expansion based, 476-480 

- generalized Weyl, 467 
- implicit design of, 466 
- i terative algori thm for, 522 
- multiwindow Gabor,  470 
- multiwindow STFT,  468 
- projection, 467, 546-547 
- SM-based, 485-486 
- spectral  subtraction,  482, 484-487 
- spectrogram-based,  486 
- STFT,  468 

- system identification using, 
519-527 

- Weyl, 467 

- Zadeh, 467 

time-frequency kernel, 51, 67, 74 
t ime-frequency matched detector  

- criteria for, 669 

- cross-correlation stage, 669 
- detection loop, 668 

- for EEG seizures, 668-669 
- outpu t  of, 669 
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- preprocessing stage, 668 
- signal restructuring stage, 668 

time-frequency measures 
- generation of, 130 
- properties & applications of, 

132-134 
- properties & interpretation of, 

131-132 
time-frequency peak filtering (TFPF), 

489-496 
- bias-variance tradeoff, 494 
- concept, 489 
- definitions, 489-490 
- discrete signal scaling, 493-494 
- discrete window length selection, 

494 
- iterative algorithm, 494 
- of EEG signal, 495, 496 
- of multicomponent signal, 495, 

496 
- principles, 490-491 
- properties, 491-492 

time-frequency projection filter, 467, 
546-547 

time-frequency pseudo-Wiener filter, 
530 

time-frequency reassignment, see 

reassignment principle 
time-frequency representations, see also 

time-frequency distributions 
- linear, 65, 102 

time-frequency scaling operator, 104, 
110 

time-frequency shift operator, 102, 136 
T i m e - F r e q u e n c y  Signal  Ana lys i s  

package, 190, 278, 665 
time-frequency signal detector, 534 
time-frequency signal estimator, 530 
time-frequency signal processing 

(TFSP), 11 
time-frequency transfer function, 140 
time-invariant system, 135 
time-invariant WSSUS channel, 413 
time-lag kernel, 48, 51, 65, 67, 69, 501 

- of B-distribution, 665 
- of spectrogram, 501 

time-limited signal, 16, 25, 35 

time-Mellin distributions, 126 
time-only kernel, 215, see 

lag-independent kernel 
time-scale analysis 

- in machine condition monitoring, 
674 

time-scale distributions, 126, 508 
time-shift invariance, 60, 74, 172, 203, 

293 
- of robust WD, 397 
- preserved by reassignment, 292 

time-varying amplitude, 12 
time-varying channel, 410 
time-varying components, 12 
time-varying frequency, 12 
time-varying higher-order spectra, 462, 

463 
time-varying impulse response, 382 
time-varying power spectrum, 400, 405, 

4O8 
time-varying spectrum, 37, 38 
time-varying system, 135, 382, 402, 407, 

410, 466, 528 
- eigenfunctions of, 558-559 

time-varying transfer function, 382, 558, 
564-566 

time-varying Wiener filter, 485, 486, 529 
- SM-based, 487 
- spectrogram-based, 484, 487 

time-vs-frequency autoregressive 
(TFAR) method, 583, 585 

time-vs-frequency minimum-variance 
(TFMV) method, 583, 585, 
589 

Toeplitz factorization, 243 
tomographic methods, 282-284 
total harmonic distortion (THD), 628 
transfer function approximations, 140 
transformation, see axis transformation, 

signal transformation 
transient states 

- of machines, 674 
transitory evolutionary spectrum, 402 
tuning width, 41 
turboprop aircraft 

- sound from, 597, 601 
turbulence, 457 
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TV-HOS, see  time-varying higher-order 
spectra 

two-dimensional filtering, 70, 71 

U 
uncertainty, see  a l s o  Heisenberg...  

- and the ambiguity function, 164 
- entropic, 164 
- in time-frequency plane, 114-116 
- measures of, in (t, f)  plane, 

115-116 
uncertainty class, 531 
underdetermined blind source 

separation, see  

underdetermined BSS 
underdetermined BSS (UBSS) 

- for FM-like signals, 357-368 
- peak detection and tracking, 

364-366 
- road network tracking, 362-366 
- vector clustering, 358-361 

underspread approximations, 140, 405, 
415, 529, 533 

underspread process, 404, 405, 528 
underspread system, 138, 140, 407, 467, 

528 
- eigenfunctions of, 558-567 
- linear, 558-567 

underspread WSSUS channel, 414, 507 
- approximate eigenfunctions and 

eigenvalues, 415 
- sampling approximation, 417 

underwater acoustic channel, 410 
uniform linear array (ULA), 344 
unitarity 

- of affine Wigner function, 
287-289 

unitary equivalence, 124 
unitary equivalence principle, 112 
unitary group representation, 103 
unitary transformation, 62, 205, 282, 

327 
unresolved components, 307 

V 
variance 

- mean value of, 378 

- of IF estimation, 429, 431-433, 
435, 440-443, 445, 458-460 

- o f  quadratic TFD, 374-376, 381 
- of spectrogram, 381 
- of windowed WVD, 373, 380 

vector clustering, 357-363, 366-368 
- distance measure, 360 

vector filter, 395 
vector median, 395 
Vibroseis signal, 4 
Ville, J., 33, 161,422 
volume invariance 

- of ambiguity function, 163 

W 
warp, 124-127 

- dispersive, 205, 646 
-operator ,  124, 125, 205, 385, 646 
- power, 646, 647 
- signal, 207, 386, 646 
- time-frequency representation, 

207, 387, 512, 646 
- transformation, 124, 385, 646, 649 
- unitary, 646 

warped Wigner distribution, 126 
wavelet packet transform (WPT),  320, 

321 
wavelet transform, 106, 110, 294, 319, 

621,622, 624, 676, 677, see  

a l s o  scalogram 
- and discontinuities, 677 
- and the ambiguity function, 162 
- and transient events, 675, 677 
- discrete, s e e  discrete wavelet 

transform 
- in fault diagnosis of rotating 

machinery, 678-680 
- in machine condition monitoring, 

674 
- of electric power disturbances, 

628, 629 
wavelets, 288 

- as basis functions, 676 
- Klauder, 288 
- Mexican hat, 676 
- Morlet, 676 
- mother, 676 
- packets, 680 
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- theory of, 42 
WDF, s e e  windowed data function 
Weyl correspondence, 346, 501 
Weyl filter, 467 
Weyl spectrum, 402 
Weyl symbol, 135, 346, 467, 501,506, 

531,534, 558 
- discrete-time, 472 
- dispersive, 385 
- generalized, 135, 400, 402, 408, 

411,467, 528 
- hyperbolic, 387 
- narrowband, 382 
- power, 388 
- wideband, 384 

Weyl-Heisenberg group, 282 
whale song, 133, 134 
white nonstationary process, 401,402, 

404 
whitened STFD matrix, 326, 327 
whitening, 326, 329-330, 351-353 
wide-sense stationary uncorrelated 

scattering (WSSUS), 411,506, 
551, 553, 557 

Wiener filter, 482, 543 
- robust, 530 
- time-frequency design, 530 
- time-frequency formulation, 529 
- time-varying, 484-487, 529 

Wiener-Khintchine theorem, 36, 403 
Wigner bispectrum, 623 
Wigner distribution, 31,207, 647 

- artifacts in, 32 
- generalized, 400, 533 
- nonlinearity of, 31 
- power, 646-649 

Wigner, E. P., 31n 
Wigner-Ville distribution (WVD), 33, 

48, 53, 54, 66, 76, 77, 500 
- 2D, 651,659-660 
- 2D continuous, 652-654 
- 2D discrete, 655-659 
- and Moyal's formula, 668 
- as special case of polynomial 

WVD, 189-190 
- as special case of S-method, 243 
- cross-terms in, 94-96 

- discrete, s e e  discrete WVD 
- discrete windowed, s e e  windowed 

DWVD 
- holographic nature of, 99 
- in derivation of Gabor 

spectrogram, 155 
- in gearbox fault detection, 

677-678 
- in missile tracking, 608-614 
- in terms of the spectrum, 34 
- limitations of, 62, 153-154, 168 
- local centroid of, 291 
- masked, 65 
- median, 397-398 
- of linear FM signal, 33 
- polynomial, s e e  polynomial 

WVDs 
- p r o p e r t i e s  of, 60-62, 74, 153 
- pseudo-, s e e  windowed WVD 
- robust, 396-398 
- rotation of, 146-147, 223 
- satisfies a l l  generalized marginals, 

226 
- smoothing of, 71, 72, 311 
- spectrogram decomposition, 

262-263 
- windowed, s e e  windowed WVD 

Wigner-Ville spectrum, 37, 383, 401, 
481-483, 491,501,504, 505, 
531,534, 637, 639, 641 

- generalized, 400, 414, 528 
- IF localization by, 457 
- in additive noise, 458-460 
- in multiplicative noise, 457-459 
- knock detection by, 639 
- of engine signal, 638 
- of single combustion, 639-640 
- o p t i m a l i t y  of, 457-458 

Wigner-Ville trispectrum, 328 
window 

- Hamming, 218 
- H a n n i n g ,  218, 301,373, 380 

windowed data function (WDF), 578, 
581-582 

windowed DCT, 318 
windowed DWVD, 234-235, 240, 241, 

271 
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- as discrete quadrat ic  TFD, 237 
- computat ion of, 268 
- sampling for, 235 

windowed Levin distribution, 47, 50, 53, 
54, 76, 77 

- discrete, 240, 241,271 
windowed Rihaczek distribution, 47, 49, 

53, 76, 77 
- discrete, 240, 241,271 

windowed WVD, 36, 51, 53, 55, 63, 72, 
76, 77, 339, s e e  a l s o  

Doppler-independent  kernel 
- 2D continuous, 654-655 
- adaptive lag window for, 429, 

431,433-436 
- also called pseudo-WVD, 235 
- discrete, s e e  windowed DWVD 
- kernel of, 215 
- noise in, 372-374 
- optimal lag window for, 373-374, 

429-436 
- sensitivity to noise, 379 
- smoothed, 97-98, 292-293 
- variance of, 373, 380 

Woodward ambiguity function, s e e  

ambiguity function 
WPT,  s e e  wavelet packet transform 
WSSUS, s e e  wide-sense stat ionary 

uncorrelated scattering 
WSSUS channel, 411 ,551 ,553 ,  557 

- delay power profile, 412 
- delay spread, 415 
- delay-Doppler spread, 415 
- Doppler power profile, 412 
- Doppler spread, 415 
- frequency correlation function, 

413 
- frequency-invariant, 413 
- overspread, 414 
- random time-frequency shift, 413 
- scattering function, 411,551 
- statistical input-output  relations, 

414 
- t ime correlation function, 413 
- t ime-frequency correlation 

function, 411 
- time-invariant, 413 

- underspread,  414 
WT,  s e e  wavelet t ransform 

X 
XPWVD,  s e e  cross polynomial WVD 
XWVD, s e e  cross-Wigner-Ville 

distr ibution 

Z 

Zadeh's t ime-varying transfer function, 
135, 467 

Zak transform, 254, 255, 258, 259 
- and Fourier transform, 254 
- defined, 254 

Zakai entropy parameter ,  300 
Z A M . . . ,  s e e  Zhao-Atlas-Marks. . .  
zero-padding, 234, 238, 268 
Zhao-Atlas-Marks (ZAM) distribution, 

51, 53, 55, 74, 76, 77, 171 
- computat ion of, 270-271 
- discrete, 240, 241,271 
- limitations of, 182-183 
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