

Quantization

Scalar dead zone quantization

• TCQ

- Arbitrary wavelet decompositions
- Arbitrary wavelet kernels
 - can differ for each direction and for each resolution level
- Arbitrary bit-depth images
 - anywhere from 1 to about 30 bits per sample
 - signed and unsigned

Decompositions supported

spacl

packet

JPEG2000: Filters supported

- Floating point wavelets: (9,7), (10,18)
- Integer: (13,7), CRF(13,7), (5,3), (2,10), ...
- **Default integer** (for lossy coding): CRF(13,7)
- **Default integer** (for lossless coding): (5,3)
- User defined filters

Some results for different filters

PSNR [dB] - Filter Comparison (Hotel)

Some results for lossless coding

Lossless Results

- Arbitrary number of resolution levels
 - 0 to 16 currently allowed
 - image dimensions down to 1x1 for all decompositions
- Multi-component imagery
 - up to 256 components
 - arbitrary dimensions/bitdepths for each component
 - reversible & non-reversible component colour transforms

- Explicit and implicit scalar deadzone quantization
 - implicit mode degenerates to no quantizer at all
 - fixed visual weighting capability
- rate control
 - post-compression rate-distortion optimization
 - target one bit-rate or an arbitrary set of specified bit-rates

- Resolution scalability
- SNR scalability
 - selection of the degree of SNR scalability
 - progressive visual weighting
- "Random access" capability

Example: Progressive by resolution

• Image: gold

Resolution levels: 5

UNIVERSITY OF PATRAS Electronics Laboratory

Example: Progressive by resolution

• Image: hotel

Resolution levels: 5

Example: Progressive by quality

Image: gold

• Bitrates: 0.0625 bpp

0.125 bpp

0.25 bpp

0.5 bpp

1.0 bpp

2.0 bpp

Example: Progressive by quality

Image: hotel

• Bitrates: 0.0625 bpp

0.125 bpp

0.25 bpp

0.5 bpp

1.0 bpp

2.0 bpp

0.0625 bpp

0.125 bpp

0.25 bpp

0.5 bpp

JPEG2000 supported capabilities

- Region-of-Interest coding
 - scaling method
 - max-shift method for implicit region identification
 - arbitrary region shapes
 - any number of regions
 - block aligned mode for non-ROI capable decoders

Error resilience

- resync marker option
- propagation of most errors limited to block boundaries

JPEG2000 supported capabilities (cont'd)

Tiling

- any number of tiles
- rate-control performed jointly over all tiles

Frames (SSWT)

- similar to tiles
- coder operates independently in frames

JPEG2000 supported capabilities (control)

- All modes and capabilities work together whenever this is meaningful (almost always)
 - e.g. ROI with frames, overlapping in some levels only, with a packet transform, using convolution horizontally and lifting vertically, and tiled multicomponent images.

ROI Coding Using Blocks/Tiles

- Outside the ROI (A)
- Inside the ROI (B)
- Partly inside the ROI (C)

Region Of Interest coding

- Allows certain parts of image to be coded in better quality
 - BASIC IDEA:
 - Calculate wavelet transform of whole image/time
 - calculate ROI mask == set of coefficients that are needed for up to lossless ROI coding
 - Encoding is progressive by accuracy and resolution
 - NOTE: ROI mask need NOT be transmitted to decoder (location and shape of ROI needs however)

ROI: Some visual results

ROI coding: mask computation

Creation of ROI mask

- The ROI masks are acquired by looking at the inverse transform
- For each pixel (X) that is in the ROI, the low and high frequency coefficients (L:s and H:s) that are needed to reconstruct the pixel, are included in the ROI mask

Inverse transform of the 5-3 filter

Modes for ROI coding

- 'Block' based mode
 - Comes for free but not the optimal solution for static ROI
 - Useful in dynamic ROI coding
- 'Arbitrary shape scaling' based mode
 - Scale ROI mask coefficients up (decoder scales down)
 - During encoding the ROI mask coefficients are found significant at early stages of the coding
 - ROI always coded with better quality than BG
- MaxShift Method

ROI Scaling based method

ROI Coefficients

ROI MaxShift method

ROI Coefficients

ROI Maxshift mode: what is the gain?

- Support for arbitrary shaped ROI's with minimal complexity
- No need to send shape information
- No need for shape encoder and decoder
- No need for ROI mask at decoder side
- Decoder as simple as non-ROI capable decoder
- Progression by accuracy and by quality is supported

Multiple ROI coding

 ROI's might overlap in the wavelet domain

 Coefficients in overlapped area are coded as belonging to the highest quality ROI

UNIVERSITY OF PATRAS Electronics Laboratory

ROI coding: what do we pay? Lossless image coding with ROI

Gold: Rectangular ROI

ROI coding: what do we pay? Lossless image coding with ROI

Woman: Circular ROI

