
Signal Processing: Image Communication 17 (2002) 131–144

File format technology in JPEG 2000 enables flexible
use of still and motion sequences

J. Scott Houchina,*, David W. Singerb

aEastman Kodak Company, Rochester, NY, USA
bApple Computer, Cupertino, CA, USA

Abstract

While there exist many different image file formats, the JPEG committee concluded that none of those formats

addressed a majority of the needs of tomorrow’s complicated imaging applications. Many formats do not provide
sufficient flexibility for the intelligent storage and maintenance of metadata. Others are very restrictive in terms of
colorspace specification. Others provide flexibility, but with a very high cost because of complexity. The JPEG 2000 file

format addresses these concerns by combining a simple binary container with flexible metadata architecture and a
useful yet simple mechanism for encoding the colorspace of an image. This paper describes the binary format, metadata
architecture, and colorspace encoding architecture of the JPEG 2000 file format. It also shows how this format can be

used as the basis for more advanced applications, such as the upcoming motion JPEG 2000 standard. r 2002 Elsevier
Science B.V. All rights reserved.

Keywords: JPEG 2000; JP2; File format; Metadata; XML; Color; ICC; Moving pictures; Streaming; MPEG

1. Introduction

For several years, the JPEG committee (ISO/
IEC JTC1/SC29/WG1) has been working on a
next generation image compression algorithm
called JPEG 2000 (ISO/IEC 15444-1).1 The
compression algorithm itself is wavelet based and
promises to provide many new image access
features to applications. To practically use those
features, however, the codestream must be com-
bined with all of the information describing that
image; this requires the use of a file format in

addition to the codestream syntax. Therefore, as
part of the JPEG 2000 standard, the committee
has defined a pair of tightly linked standard file
formats. The minimal/simpler variation is called
JP2 [6] and is targeted at applications that are
limited to the storage of RGB and grayscale
images. The JPX [6] format expands the capabil-
ities of the standard to allow for the specification
of other types of images (both photographic and
non-photographic) and defines a set of standard
metadata fields. The JPX file format also allows
for the specification multiple images within a single
file, and for the combination of those images
through compositing and animation. While using
these formats is optional for conformance, either
applications are strongly encouraged to use the
JP2 or JPX file formats where appropriate.

*Corresponding author. Tel.: +1-716-588-8495.

E-mail addresses: scott.houchin@kodak.com (J.S. Houchin),

singer@apple.com (D.W. Singer).
1 ISO/IEC 15444-1, Information technologyFJPEG 2000

image coding system.

0923-5965/02/$ - see front matter r 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 9 2 3 - 5 9 6 5 (0 1) 0 0 0 2 3 - 6

There are three main aspects of the JP2 and JPX
file formats:
* binary container,
* colorspace specification,
* metadata embedding.
As described in the following sections, the file
formats provide a strong foundation and feature
set for today’s applications. In addition, it is well
understood that new applications are created every
day, and that these file format must continue to
meet the needs of tomorrow’s applications for
many years. As such, these formats are built upon
a strong foundation with well-defined means for
extension. This extension mechanism will also be
described.
Note that at the time of writing, neither the

JPEG 2000 standard nor the Motion JPEG 2000
standard have been finalized; therefore, aspects
may be changed as the standards are finalized. The
final standards, not this paper, should be taken as
the definitive references.

2. Why two file formats?

In a world that already has too many choices, it
may come to the surprise of the developer that the
JPEG 2000 standard defines not one, but two file
formats for use in ‘‘single-image’’ type applica-
tions. The reason for this is very clear when one
considers the state of the industry with respect to
the largest group of potential users: consumers.
To provide a file format that is useful for a large

number of target applications and industries, that
file format would have to have a very large feature
set. For example, commercial graphic arts applica-
tions require a format that can contain CMYK
image data as well as the ICC profiles that describe
that data. Similarly, remote sensing applications
require support for many channels of image data.
The problem is that it is not practical to implement
a reader that can be used in every application area,
and thus there will be situations in which a
particular JPEG 2000 file reader cannot open
a particular JPEG 2000 file. While many industries
have learned to deal with such interoper-
ability problems, this type of situation cannot be
tolerated on the consumer desktop. Thus, it was

important to define a compliance point at which
all readers (including those targeted at the
consumer desktop) could read all files written to
that compliance point. This compliance point is
the JP2 file format. All readers are required to read
all JP2 files. Applications that require features
greater than those defined as part of the JP2 must
use the JPX file format.
It is important to note, however, that many

aspects of the JPX file format are compatible
with inclusion in JP2 file, and thus it is possible
(and appropriate in many situations) to create JPX
files that can be completely read by a simpler JP2
reader.

3. Binary container

At the highest level, the JP2 and JPX file
formats are simply binary containers. They pro-
vide a mechanism to encapsulate both the com-
pressed codestream and any metadata required to
describe the decompressed data (such as the
colorspace). However, the binary container also
specifies how applications can gain access to the
data embedded within the file. To truly meet the
needs of today’s and tomorrow’s applications, that
binary container must provide quick access to the
individual elements, yet not overburden applica-
tions that desire to modify or add new elements to
the file.

3.1. File structure

Conceptually, a JP2 file contains a sequence of
boxes. Each box encapsulates one element of the
file, such as the codestream or a group of metadata
fields. Many of those boxes directly contain the
data embedded in the file. Other boxes, called
superboxes, just contain more boxes, providing
only grouping and higher level meaning to other
pieces of data. The binary structure of a box is as
follows (Fig. 1).
The file is a sequence of boxes. Each box then

contains header and contents fields. The header of
the box starts with a 4-byte length followed
immediately by a 4-byte type.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144132

The length field of the box, L; specifies the
amount of data in the box, in bytes, including all
box header fields. Because the length of the box
includes the length and type fields, the smallest
legal box size is 8 bytes. Values of the L field
smaller than 8 are used to indicate special cases. If
the value of L is 0, then the box contains all data
up to the end of the superbox, or to the end of the
file for top-level boxes (boxes not contained within
any other superbox). For example, if the value of
L in Boxn in Fig. 1 were 0, then Boxn would go to
the end of the file. If the value of L in Boxkm were
0, then Boxkm would go to the end of Boxk.
If the value of L is 1, the box may be longer than

can be represented by a 4-byte field. In this case,
the extended length field immediately follows the
box-type field. This 8-byte field specifies the actual
length of the box.
The type field specifies the kind of data found

within the contents of the box. Generally, box
types are represented by four ASCII2 characters
rather than integer codes.
Once the length of the box is determined, the

sequence of boxes in the file can be parsed, even if
the format of the contents of the individual boxes
is unknown. Fig. 2 shows how the box lengths can
be used to jump from box to box.
As shown in Fig. 2, the length of each box

includes any boxes contained within that box.
For example, the length of Box 1 includes the
length of Boxes 2–4, in addition to the header
fields for Box 1 itself. In this case, if the type of

Box 1 was not understood by a reader, it would
not recognize the existence of Boxes 2–4 because
they would be completely skipped by jumping the
length of Box 1 from the beginning of Box 1.
This box structure is what provides for the

extension of the simple JP2 file format into more
complex formats, such as the JPX file format. For
example, there are two additional file formats
planned at this time, each building upon the
frameworks defined as part of the family:
* JPM enables the storage of compound images

using multiple compression types across a single
scene.

* Motion JPEG 2000 enables the storage of
sequences of individual image frames (such as
burst sequences from digital cameras or digital
cinema).

3.2. Boxes defined in the file format

The JP2 file format defines several standard
boxes. These boxes encapsulate the standard and

Box0

Boxi

Boxk

Boxkm

Boxk0

Boxn

JP2 file

L: Box length (32 bits)

T: Box type (32 bits)

XL: Extended length (64 bits)
Present only if L = 1

D: Box contents (variable length)

L = 0 to end of superbox
Li = L = 1 XL

L 8 L

Box structure

Fig. 1. File and box structure.

Box 0 Box 1

Box 2 Box 3 Box 4

Box 5

LBox 0

LBox 1

LBox 2 LBox 3 LBox 4 LBox 5

Fig. 2. Jumping from box to box.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144 133

mandatory information needed by most applica-
tions to properly parse the file:
* The signature and application profile boxes

allow this file to be recognized as being part of a
JPEG 2000 family of files. In addition, the
application profile box allows each file to
specify what readers can properly interpret
from the file. For example, a JPX file may
indicate that it can be correctly interpreted by a
simpler JP2 reader (to the extent defined within
the JP2 standard).

* The header box contains the standard image
header information, such as image size, resolu-
tion, bit depth, and colorspace.

* The contiguous codestream box contains the
JPEG 2000 compressed image data.

* Metadata boxes allow vendor-specific and non-
image data to be embedded within the file.

Many of these boxes will be discussed in the
following sections. However, for the definitive
description of the boxes in a file, see the JPEG
2000 standard (see footnote 1) itself.

3.3. Building on the binary container

While the file format does define a minimal set
of features, the flexibility of the binary container
allows a great deal of extensibility without affect-
ing compatibility with a JP2 reader (or any of the
other JPEG 2000 family readers). Because each
box contains a type value, applications can easily
recognize important boxes and skip unknown
boxes. In addition, there are very few requirements
on the order of defined boxes. In JP2 files, the
Signature and File Type boxes shall be at the
beginning of the file, the header box will be found
at some point after those boxes, and the code-
stream box will be found somewhere after the
header box. Putting data between those boxes is
permitted and encouraged as required by a
particular application. The JPX file format reduces
those restrictions for the header and codestream
boxes.
In the past, most digital image file formats

allow a writer to create an optimized file only
for a small number of applications. While those
formats are often used in other applications,
they may be used non-optimally due to restric-

tions within the image file format. It is clear
that new applications are created every day,
and that it is not possible to imagine today
how images will be used in five years. Thus,
it is necessary that flexibility be built into the
baseline system. By allowing a great deal of
flexibility, the standard allows for the creation
of files optimized for a much wider range of
applications.
However, it is also vitally important that

files can be shared between different applica-
tions, and thus, a high level of interoperability
is necessary. By using the box framework, we
allow application specific optimizations to be done
in an interoperable way, with minimal barriers to
adoption.

4. Specification of colorspace

One of the chief jobs of a digital image file
format is to tell an application how to interpret
the samples of the image, and one of the
primary aspects of this is the specification of
the colorspace. Given the importance of the
specification of color, and the magnitude of
the problem introduced by incorrect interpreta-
tion, it is unfortunate that most digital image
formats do not allow an application to precisely
specify the colorspace of an image. When past file
formats have allowed for a more precise specifica-
tion of color, the flexibility in selecting a color-
space for encoding of the image data was often
very limited.
The JP2 and JPX file formats change this

situation by adopting a thorough and precise
architecture for colorspace specification that still
allows for a high degree of flexibility.
This architecture is built around three major

requirements:
* that the colorspace of an image shall be

precisely and accurately specified within the
digital image file,

* that the creator of an image shall be allowed to
select the colorspace of the image such that the
image file best meets the needs of the target
application,

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144134

* that any reader of that file shall be able to
properly interpret the colorspace of the image
and correctly display that image.

Obviously, these are lofty goals, and practicality
must be kept in mind when designing a system
based on such requirements. However, the color
architecture in the JP2 file format makes great
strides in resolving these requirements into a
system that is practically implementable in any
system (as required by the overall interoperability
goals of the JP2 file format). Application require-
ments that are not fully met by the JP2 file format
will rely on the JPX file format. This prevents
many interoperability problems by guaranteeing
that all JP2 files can be read by all JP2 readers,
while still providing a means by which the
extended features can be used.
There are two major parts of the color

specification architecture in the JPEG 2000 stan-
dard: specification of encoding and specification of
interpretation, as shown in Fig. 3.
This architecture clearly differentiates the steps

that were taken by the file writer in order to
maximize compression efficiency (encoding) from
those steps that must be taken by a file reader in
order to properly use the image (interpretation).

4.1. Color encoding

The color encoding half of the architecture
represents those steps that the file writer took to
prepare the image data to be compressed using the
JPEG 2000 algorithm. In general, this involves a
transform that mixes the components to decorr-

elate the data. The decorrelated data is then
compressed on a component-by-component basis.

4.1.1. Baseline encoding (JP2)
In JPEG 2000, encoding, through the multiple

component transform, can be specified on a tile-
by-tile basis, and thus is specified as part of the
codestream syntax, not the file format. Part I of
the standard defines two multiple component
transforms.
The irreversible component transform (ICT) is

better known as the YCbCr transformation from
baseline DCT-based JPEG. It transforms data in
an RGB colorspace to a luminance–chrominance
form and is useful in lossy compression applica-
tions. Once the components have been trans-
formed and compressed, the chrominance
components can be truncated to improve compres-
sion with minimal loss of quality.
The reversible component transform (RCT)

provides decorrelation of RGB data in situations
where lossless compression is required. Once the
components are decompressed, the reverse RCT
can be applied to get back to the original code
values. Obviously, if the chrominance components
were truncated, there would still be loss associated
with the image.
While these two transforms do not meet the

needs of all applications, they are generally
sufficient for digital photography and Internet
imaging applications.

4.1.2. Extended encoding (JPX)
The JPX file format (along with extensions to

the compressed codestream as defined in Part II of

Encoder
Multiple

Component
Transform

Transform
to device

code values

Printer

Display

Device specific
code values

Decorrelated
code values

Color interpretation Encoding

Viewing
or analysis

Decompressed
or original code values

Fig. 3. Division of color architecture in JPEG 2000.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144 135

the standard) extends the encoding architecture to
allow for two new capabilities. The first new
feature is the ability to use a custom multiple
component transform. This would allow an
encoder to generate an optimal multiple compo-
nent transform for a particular image, thus
improving quality or increasing compression. The
second new feature is the ability to shape or
gamma encode the image data as part of the
encoding process. For example, linear encoded
data is required in many high-end compositing
applications; however, it compresses very poorly.
The file reader would extract the inverse shaper or
gamma value from the codestream and use that
value to transform the image data back to its
original form.
One possible image processing chain for ex-

tended encoding is shown in Fig. 4.

4.2. Color interpretation

The color interpretation half of the architecture
represents those steps that a file reader must take
to properly print, display or prepare the image
for analysis. In general, this involves a trans-
form that converts the decompressed (and
recorrelated) code values into a colorspace de-
signed for use with the target output device
or analysis. The JP2 and JPX file formats
define several methods by which the color-
space of the image can be specified. These
methods balance the required flexibility with the
barriers to adoption and interoperability between
readers.

4.2.1. The enumerated method
Like many other digital image file formats, the

JP2 and JPX formats define a list of standard
colorspaces and assigns integer codes to represent
those spaces. For an image encoded in one of those
standard spaces, the file would embed that integer
code into the file (the enumerated method). While
there are a large number of known and commonly
used colorspaces, each enumerated colorspace
must be natively understood by the reader, and
thus the complexity of a reader implementation is
somewhat proportional to the number of color-
spaces that must be understood through enumera-
tion. The image chain for the enumerated method
is shown in Fig. 5. Note that each input to device
color transform must be natively known to the
application (or how to generate it must be known).
To ensure that the JP2 format is practically

implementable in all applications, the set of
enumerated spaces is restricted to sRGB [3] and
a grayscale space related to sRGB [3] for JP2 files.
Other spaces, such as the ITU CIELAB, are
expected to be standardized as extensions in the
JPX file format. The JPEG committee also intends
to provide a mechanism by which vendors can
register and use other standard colorspaces.

4.2.2. The any ICC method
Another common way to specify the colorspace

of the image is to embed an ICC profile2 in the file

Encoder
Custom

Component
Transform

Decorrelated
code values

Encoding

Original
code values

Custom
Shaper or
Gamma

Fig. 4. Encoding a color image using extended encoding

options.

Printer

Display

Device specific
code values

Color interpretation

Viewing
or analysis

Decompressed
code values

sRGB to Display

sRGB to

sRGB to Printer

grey to Display

grey to

grey to Printer

Fig. 5. Interpreting the colorspace of an image using the

enumerated method.

2Coded character setF7 bit, American Standard Code for

Information Interchange, ANSI X3.4–1986.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144136

(the any ICC method). This profile (an input
profile) specifies the transformation between the
decompressed code values and the profile connec-
tion space (PCS). To convert to a device specific
colorspace, the input profile is combined with an
output profile (a profile that specifies the transfor-
mation from the PCS to the device specific
colorspace). The decompressed code values are
then processed through the combined profile by an
ICC color management engine. The image chain
for the any ICC method is shown in Fig. 6.
However, some ICC profiles are very complex,

containing multiple 1D-LUTs, matrices and 3D-
LUTs. In many applications, it is impractical or
impossible to implement a fully compliant ICC
color management engine. As such, the any ICC
method is expected to be defined as part of JPX in
Part II, not in JP2, because it is very important
that all JP2 readers be able to read all JP2 files.

4.2.3. The restricted ICC method
The major problem with the enumerated meth-

od is lack of flexibility. While sRGB is appropriate
for some applications, other colorspaces are
needed in other applications. For example, RGB
images targeted at wide-gamut output devices
should be stored in a wide-gamut colorspace, such
as ROMM RGB [7]. Other images, such as those
captured by scanning a consumer 35mm negative,
require the storage of information whiter than a
perfect diffuse white reflector (a consumer negative
may contain information up to 30,000% white).
For those images, a colorspace such as ERIMM
RGB [7] would be appropriate.
However, as noted above, it is impractical to

enumerate a large number of spaces, as the

complexity of a JP2 reader increases with
the number of required enumerated colorspaces.
The generic use of ICC profiles does not provide
the answer either, as a complete ICC color
management engine would represent barriers to
adoption in many applications.
However, the ICC profile format specification

[2] does define two classes of profiles. These
classes, three-component matrix-based input and
monochrome input profiles, can be implemented
very easily. Those transforms contain at maximum
three 1D look-up tables and a 3� 3 matrix. These
two profile classes allow for the specification of a
very large number of RGB and grayscale color-
spaces.
The restricted ICC method for specifying

the colorspace of an image in the JP2 format uses
any profile conforming to one of these two
classes of profiles. That profile is embedded
into the JP2 file. Applications reading the JP2
file have two choices for interpreting the color of
the image:
* Extract the profile and use any compliant ICC

color management engine to transform the
image into a colorspace appropriate for the
desired output device.

* Extract the profile, extract the look-up tables
and matrix from the profile, and transform the
image using application specific code. If this
choice is made, it is important to note that the
transformation specified within the profile
transforms the decompressed code values to
the profile connection space. The application
must combine that transformation with the
appropriate transformation for generating
values appropriate for the desired output

Printer

Display

Device specific
code values

Color interpretation

Viewing
or analysis

Decompressed
code values

PCS to Display

PCS to

Input to PCS

PCS to Printer

Device independent
connection values

Fig. 6. Interpreting the colorspace of the image using the any ICC or restricted ICC method.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144 137

device. Additional information for performing
such a transformation is contained within the
JPEG 2000 standard itself.

Note that the image chain for the restricted ICC
method is identical to that of the any ICC method
as shown in Fig. 6. The difference is that the Input
to PCS transform is guaranteed to be of low
complexity.

4.2.4. The vendor color method
While the use of ICC profiles does provide a

very high degree of flexibility, there are two
drawbacks to those methods:
* It is a non-trivial process to match a profile

against a set of known profiles.
* ICC profiles are generally limited to photo-

graphic applications.
Because of these drawbacks, the JPX format is
expected to define a fourth method, called the
vendor color method, to allow any application in
any domain to define a ‘‘shortcut-code’’ to
represent a particular colorspace definition.
This code is stored as universally unique
ID (UUID); a 16-byte number that when
generated correctly, should be unique ‘‘through-
out the universe’’. This can be done without
involving either the JPEG committee or another
third party.

4.2.5. Using multiple colorspace specification
methods
It is important to note that there is often more

than one way to specify the colorspace of an
image. For example, a well-defined colorspace can
be specified through enumeration or can be
specified through an ICC profile (which technically
specifies the default transformation from that
colorspace to the PCS, not the colorspace itself).
However, while these multiple methods often
produce identical results, they are optimized for
different applications. Each of the defined methods
has pros and cons:
* The enumerated and vendor color methods

allow for quick recognition, but the application
must recognize the code and natively under-
stand how to transform the image data to the
relevant device colorspaces. In addition, color-
spaces defined in Part II of the standard or by

registration will not be understood by a
conforming JP2 reader.

* The any ICC method allows almost any color-
space to be precisely and accurately specified in
a generic way, but can be impractical or
impossible to support in some applications.

* The restricted ICC method allows for many
RGB and monochrome spaces to be specified
in a generic way that is practically implemen-
table in all applications, but approxima-
tions may need to be made in order to
represent the transformation to the PCS
within the profile restrictions. However, the
performance of a system (in terms of decoding
speed) using restricted ICC profiles will be
higher than a system using the more complex
profiles.

When creating optimal files for a particular
application, the writer may be able to choose one
best method for specifying the colorspace of the
image. However, many files must also be inter-
operable outside that particular application, and
performance issues may need to be considered.
When considering target optimization, interoper-
ability, and performance, a balance will often only
be found by using multiple representations of the
colorspace of the image.
The JP2 and JPX file formats allow for any

number of different colorspace methods to be used
within a single file, allowing the file writer to
address these three issues, provided that all of
those methods are ‘‘equivalent’’. In fact, it is
expected that many JPX files will contain multiple
methods by default.
For example, consider the registration of

standard and vendor colorspaces in Part II. In
most cases, it is desirable to create files that can be
read by any reader (and thus meet the confor-
mance requirements for a JP2 reader). This can be
a problem, because the new colorspaces are not
understood by older and simpler readers. If
interoperability is indeed required, the file writer
must use the restricted ICC method to specify the
colorspace of that image. However, an application
that has an optimized processing path for the new
colorspace would need to compare the ICC profile
byte for byte with a reference profile. In the best
case, this step is justa nuisance. In the worst case,

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144138

such as with scene spaces such as ERIMM RGB
[7], this step is not possible, as there may not be a
specific reference profile, because the profile
embedded within the file must specify the desired
rendering (look) of the image in addition to the
colorimetric transformation.
In these cases, it is very desirable to also embed

the enumerated code for that new colorspace
in the file (at the insignificant cost of around
15–27 bytes).
In another example, the ‘‘best’’ transformation

from the decompressed code values to the PCS
requires the use of 3D look-up tables, which un-
fortunately reduces the performance of the system.
In this example, the application desires to provide
a ‘‘quick-and-dirty’’ user-selectable setting, indi-
cating that the application should approximate
the colorspace transformation to improve perfor-
mance, at the expense of quality. In this example,
the file would contain both the best ICC profile,
using the any ICC method, and a less complex
profile, using the restricted ICC method.
It is expected that some applications will have

requirements from both examples, and thus use all
three colorspace methods within the same file, as
shown in the image chain in Fig. 7.

5. Encapsulating metadata within a JP2 file

In many applications, much of the value of
an image is derived from metadata. For example,

the emotional value of a picture of your children
is increased if you remember when and where
the picture was taken. In other cases, metadata
can be used to provide enhanced processing on
the image. This may allow an application to
improve an image such that it much more
closely reflects the photographers’ memory of
the scene.
The JP2 file format provides two mechanisms

for embedding metadata into a file:
* XML boxes allow XML [9] documents to be

embedded within a JP2 file. The meaning of the
data (and the definition of the XML elements)
is specified through the XML document type
definition (DTD).

* UUID boxes allow binary data to be embedded
within the file. The contents of each UUID box
starts with a UUID [4]. This number is
generated by the application developer when
the format of the data to be contained in the
box is determined.

Both the XML and UUID methods allow
vendors to add metadata to image files in
such a way as to not impact readers who do
not understand that data. Also, when properly
written, there is very little chance that one
vendor’s data will be mistaken for another
vendor’s. Additionally, XML and UUID boxes
may be placed almost anywhere in the file,
allowing the writer to place the metadata
where it is most appropriate for the target
application.

Printer

Display

Device specific
code values

Decompressed
code values

PCS to Display

PCS to

Best input to PCS
PCS to Printer

Device independent
connection values

Viewing
or analysis

Color interpretation

Optimized print path

Fast input to PCS

Fig. 7. Color interpretation image chain with multiple options.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144 139

6. Compositing and animation in JPX

The other novel new feature of the JPX file
format is the ability to specify multiple images and
the methods by which those images shall be
combined through either compositing or anima-
tion. While this is similar to the capabilities of the
motion JPEG 2000 format, it is targeted at simpler
applications that do not include synchronized
sound or real-time frame rates.
The building block of this architecture in JPX is

the compositing layer. A compositing layer repre-
sents the combination of one or more JPEG 2000
compressed codestreams. This allows, for example,
the RGB color channels of the layer to be stored
separately from the opacity mask that will be used
to combine the layer with the other layers (and
thus facilitate separate editing of the color data
from the opacity data).
Each compositing layer is then combined, in

turn, as specified through a set of instructions.
Those instructions allow for traditional Porter-
Duff compositing, cropping, scaling, and anima-
tion. For example, the instructions are able to
specify the animation of a single compositing layer
over a static background.

7. Extending the file format architecture to new

application domains

As shown in the above sections, the JP2 file
format architecture provides a strong foundation
for extension. In many applications, the format
can be extended in ways that are transparent to a
standard JP2 reader.
The existing JPEG standard has been widely

used to handle motion sequences, particularly in
two applications areas. The first is in editing
applications, where coding systems that perform
frame differencing can make frame-accurate edit-
ing difficult, yet the size (and bandwidth require-
ments) of uncompressed video make such inter-
frame codecs impractical. The second area is in
consumer applications, where a JPEG codec is
already available. For example, several digital still
cameras permit the recording of short-motion
sequences.

Historically, there has not been a standard file
format for the interchange of motion data. This
has led to a variety of formats being used in the
marketplace. Worse, there was not a standard for
the use of the JPEG codec in motion sequences,
which led to incompatible variants being used in
the marketplace. A standard format to contain
motion JPEG 2000 sequences will help to avoid
these problems.
Finally, it is often desirable that a motion

sequence has other multimedia information pre-
sented at the same time: an audio track with the
video, or time-based metadata. To do this, a
general multimedia container is needed.
The JPEG committee sought to adopt a file

format, which would be upward compatible with
the JP2 still-image format described above, and be
a flexible container for multimedia data in general,
including, but not limited to, motion JPEG 2000.
Another committee in ISO, the MPEG commit-

tee, when developing the MPEG-4 specification,
had also recognized the advantages that would
accrue from a standard format. They desired a
format that could be used to support content
creation (editing), local playback, and streaming
from streaming servers using a variety of proto-
cols. The MP4 format3 that resulted from this
work serves all these functions, and is able to
contain a variety of multimedia data. The MP4
format uses the same object (box) structures as the
JP2 format.
By taking the MPEG-4 file format, and defining

how JPEG 2000 motion sequences may be stored
within it, the MJP24 format inherits these benefits,
as well as providing the industry with a common
file format for multimedia data, including JPEG
2000, MPEG-4, and, it is expected, MPEG-7
metadata in the future.
This section details some of the key design

aspects of the file format used for motion JPEG
2000, the MJP2 format. The MJP2 format is based
on, and structurally compatible with, the MP4
format used in MPEG-4. It, in turn, derives
much of its design and approach, and is largely

3The MP4 file format: ISO/IEC 14496-1 subpart 4.
4 ISO/IEC 15444-3, Information technologyFJPEG 2000

image coding system: motion JPEG 2000.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144140

compatible with, the QuickTime file format [8] as
used in QuickTime, including concepts introduced
in QuickTime 4.
At the time of writing, the motion JPEG 2000

standard was not complete; therefore, aspects may
have changed as the standard was developed. The
final standard, not this paper, should of course be
taken as the definitive reference.

7.1. Conceptual structure

The conceptual structure of a media file is that it
is a movie composed of tracks, which are logically
parallel in time. In each track, there is a sequence
of samples (for example, a video frame is a
sample). Each sample has associated with it:
timing, size, and position in the file.
The physical structure (layout) of a media file is

that it is a sequence of boxes, as in JP2. The data
structures that describe the movie, tracks, and
samples are kept in a single box, the movie box.
The actual compressed video and audio (the
sample data itself) is kept separately.
The movie box is able to refer to other files by

URLs. The sample data can be stored within the
same file as the movie box, or in these other files.
Within the movie box, the temporal sequence of
samples (e.g., video frames) is fully defined with,
for each sample:
* its duration,
* its size,
* its position within its enclosing file.
These three pieces of information allow the
temporal ordering (sequence) of the samples to
be de-coupled from their storage sequence. This
means that during editing, for example, each track
in the presentation can be stored in a separate file,
and the editing can proceed merely by updating
the timing information in the movie box. This can
be saved to disk in a file without samples in it quite
rapidly. However, when the presentation is com-
plete, a different save can be done: the movie box
written first in a file, and then the samples of each
track, in time-order, and interleaved. Such a file
serves well for local playback and interchange. It
can also be used for delivery over download
protocols such as HTTP. Once the movie box
has downloaded, and enough samples collected,

playback may proceed as long as the protocol is
delivering data as fast as it is being played. The file
does not need to be downloaded completely before
being played.

7.2. Representation of JPEG 2000 data

Motion sequences of JPEG 2000 data store
complete, unaltered JPEG 2000 codestreams as the
individual frames of video. This means that an
existing encoder or decoder can be used for motion
purposes. In addition, the JP2 header structures
can be used to describe the images. Therefore, all
the advantages and uses of that headerFfor
colorspace management, for exampleFcan be
used for motion sequences.
This is done in a compact fashion. The designers

of the format recognized that many frames of
video would normally share a common descrip-
tion. The file format stores a set of descriptions;
each frame of video is associated with one of the
descriptions, by its index into the set. The
description identifies the coding scheme used
(and thus the decoder required)Ffor example,
JPEG 2000, or MPEG-4 VisualFand provides
any parameters needed by that decoder.
By re-using both the codestream syntax and the

header syntax, the design of both the file format,
and software to create and read it, is simplified.

7.3. Composition

In the motion JPEG 2000 file format, JPEG
2000 is presented as a ‘‘peer’’ coding system to
MPEG-4 visual. Those aspects of the file format
that are held in common have a common
definition. Motion JPEG 2000 sequences can thus
be represented as a simple timed sequence of
images, without involving MPEG-4 technology
beyond the file format.
However, it is optionally permissible to use

aspects of MPEG-4 in motion JPEG 2000 files.
One such area concerns powerful visual and audio
composition.
The basic file format permits simple audio and

visual composition. In audio, this consists simply
of assigning a volume and left/right balance to

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144 141

each audio track within the file, and requiring that
the tracks be mixed for output.
In visual tracks, simple layered composition is

provided. Each track has an assigned layer,
transformation matrix, and graphics composition
mode. The layer provides a composition ordering
for the visual tracks, from the back to the front.
The matrix allows simple 2D transformations of
the visual information, as it is rendered.
The composition modes allow for simple copy-

ing, single-color transparency (‘‘blue-screen’’), and
basic alpha composition, using an alpha plane
within the compressed image data.
If more advanced composition is required, the

MPEG-4 BIFS (binary information for scenes)
system can be used. This provides both audio and
visual composition and interaction, in both 2D
and 3D spaces.
Temporal composition is also possible. All of

MJP2, MP4, and QuickTime permit the use of
‘‘edit lists’’, which provide an explicit mapping of
the track’s timeline into the timeline of the movie.
‘‘Blank’’ segments of time can be inserted, and
sections of the track can be moved in time, or re-
used. This is another area where the updating of
small tables during editing can facilitate rapid
work.

7.4. Other media

It is rare that simple motion video is all that is
desired in a presentation. Still cameras may be able
to record audio as an ‘‘annotation’’ to single
pictures, or in parallel with motion sequences. As
has been noted above, more complex time-based
composition may be desired and time-based
metadata may be needed, leveraging the emerging
MPEG-7 standard.
All these are permitted in the MJP2 specifica-

tion. At the simplest level, raw audio in either 8-bit
or 16-bit (DV compatible) format is permitted.
This allows for simple audio/visual sequences. As
with composition, more complex support for
audio may optionally be used from MPEG-4.
MPEG-4 audio includes a number of tools: speech
and general-purpose (‘‘music’’) codecs and syn-
thetic audio from either text-to-speech or a
structured audio system for making music.

There is simple support for metadata and
extension information within the file format (an
overall copyright notice, or vendor-specific boxes).
MPEG-4 also provides simple content information
streams. Perhaps the most promising develop-
ments in this area come from MPEG-7, which is
a general scheme for defining and handling
metadata associated with a media composition.
The MPEG-7 standard is expected to work with
MPEG-4 media and within MP4 files; thus, its use
with motion JPEG 2000 should also be possible.
This will permit time-based, grammar-defined
metadata to be used in an open, extensible, and
interoperable way.

7.5. Streaming support

A popular and important way to deliver media
uses the concept of ‘‘streaming’’. In a file-based
delivery, a presentation is downloaded to a client,
which plays it from the file. Though the file may be
played as it is downloaded (which can be done
with MP4 and MJP2 files, if properly structured),
this is not ‘‘true’’ streaming: the client system must
still buffer the file, and a reliable transport be used.
The rate of file transfer is decoupled from the
natural rate of the media: the download may
happen faster, or slower, than the rate needed to
play the media. If the user requests a ‘‘rewind’’ and
review of previous material, it is locally available
and such seeking can be rapid.
True streaming involves sending the media to

the client at the playback rate. The client receives
the media incrementally, buffers only small quan-
tity, and then decodes, displays, and discards it.
If the user requests a ‘‘rewind’’ and review of
previous material, it must be re-requested from the
server.
There are a number of streaming protocols in

use today. Standard ones include MPEG-2 trans-
port, the protocol suite from the IETF that
includes real-time protocol (RTP) [1], and real-
time streaming protocol (RTSP) [5]. A number of
vendors have proprietary protocols also.
All of MJP2, MP4, and QuickTime support

both modes of delivery, and the support for
streaming is designed to be protocol neutral. In

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144142

MJP2, support for file-based playback is required,
and streaming support is optional.
Often a streaming protocol is supported by a

streaming server, which uses a file format specific
to that protocol. This is often a way to achieve the
best performance, by careful tuning of the format,
and the placement of media on disk systems.
However, in the formats discussed here, protocol-
independent support was desired.
Each streaming server is ideally decoupled from

intimate knowledge of the media it is serving. Such
intimate knowledge can be an impediment to
efficient operation. For example, the RTP protocol
requires that if a video frame from a macroblock-
based codec (e.g., H.261) is split into several
packets, those packets should start at a block
boundary, and contain enough information for
a decoder to decode that frame fragment even if
the preceding fragment is lost. Scanning media
streams at the time of serving can slow a media
server down.
Both these problems are addressed by the

concept of ‘‘hint’’ tracks. Hint tracks are extra
tracks added to a file, which instruct the server in
the process of transmitting media data for a
specific protocol. Just as, for example, visual tracks
can contain MPEG-4 visual, or JPEG 2000, so
the design of hint tracks permits their definition
for, for example, RTP, and MPEG-2 transport.
A sample in a hint track consists of packet-

formation instructions for a media packet (proto-
col data unit). Instructions might include sending
‘‘immediate’’ data from the hint track (e.g., a
packet header), or extracting data from an
associated media track (e.g., a visual track
containing motion JPEG 2000). By following these
instructions, the server is able to packetize data
correctly and efficiently without necessarily being
aware of the details of the codec or its packetiza-
tion scheme. Instead, an offline process is run that
provides the ‘‘bridge’’ between media and server,
which adds these hint tracks to the file.
In this way, authoring tools are media aware,

but protocol and server unaware. They write the
media data into the file in its ‘‘natural’’, unfrag-
mented state. Servers, on the other hand, are
essentially media unaware, but obviously protocol
aware. This decoupling permits great flexibility in

technology. As new protocols are developed, hint
track formats for those protocols, and the
accompanying hinter software can be developed,
and existing media assets streamed over those
protocols from the new servers supporting them.
The hint tracks, because they can reference data

in the media tracks, need not greatly expand the
size of the file (10% growth is common for RTP
hint tracks). Indeed, by using the file references
described above, the hint media file containing the
hint tracks can be distinct from the media files
containing the compressed media itself. Finally,
because the media is retained in its original,
protocol-unaware format, any media file can be
locally played, or indeed re-edited and re-hinted.
In this way, life-cycle management is possible.

7.6. Multifunction files

The discussion so far has focused on the use
of MJP2 and MP4 functions. However, because
of the common box (or atom) object structure of
these files, it is possible to make multifunction
files that contain, for example, both a still image
and a motion sequence. The still image might be
a ‘‘preview’’, or the image that will be printed, for
a motion sequence.
Each of these standards defines that unrecog-

nized objects should be ignored. Thus, a still image
reader may be able to find its header and image
within a file, which also contains a movie and
image sequence.
However, when such a general tool is used, there

is a danger: a file may have only a single ‘‘type’’
(e.g., file-name extension or mime-type), and as a
result, readers may be uncertain as to whether they
can read a file or not. For example, a still image
reader may be able to read a motion fileFif a still
image is present.
To avoid scanning the entire file, the header of

the file contains information, provided by the file
writer, on which standards the file adheres to.

8. Conclusion

As shown, the JP2 file format provides a strong
foundation and set of tools for describing images.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144 143

It is also extensible, allowing applications to
tailor and optimize JP2 files for that particular
application, while still preserving interoper-
ability across a large number of application
domains.
In addition, because of the tight integration with

QuickTime and MPEG-4 binary structures, the
system provides a platform for delivering both still
and motion imagery, along with any associated
data (such as sound or image descriptions) within
one binary container. While not without risks, this
integration maximizes interoperability between
still and motion imaging and reduces the imple-
mentation burdens in systems that handle both
types of media.

References

[1] S. Casner et al., RTP: A transport protocol for real-time

applications, RFC 1889.

[2] International Color Consortium, ICC profile format speci-

fication. ICC.1:1998-09, ohttp://www.color.org/ICC-1

1998-09. PDF>.

[3] International Electrotechnical Commission, Colour man-

agement in multimedia systems: Part 2: Colour manage-

ment, Part 2-1: Default RGB colour spaceFsRGB, IEC

61966-2-1 1998, 9 October 1998, ohttp://w3.hike.te.chiba-

u.ac.jp/IEC/100/PT61966/parts/> or ohttp://www. sRGB.

com/>.

[4] ISO/IEC 11578:1996 Information technologyFopen sys-

tems interconnectionFremote procedure call, ohttp://

www.iso.ch/cate/d2229.html>.

[5] A. Rao et al., Real-time streaming protocol (RTSP), RFC

2326.

[6] J.S. Houchin, SPIE 4115–48, JPEG 2000 file format

provides flexible architecture for color encoding, Appl.

Digital Image Process. (San Diego, CA) XXIII (3 August

2000), pp. 476–483.

[7] K.E. Spaulding, G.J. Woolfe, E.J. Giorgianni, Reference

input/output medium metric RGB color encodings (RIMM/

ROMM RGB), in: Proceedings of PICS 2000 Conference,

Portland, OR, 26–29 March 2000.

[8] The QuickTime file format specification ohttp://www.

apple. com/quicktime/resources/qtfileformat. pdf>.

[9] W3C, Extensible Markup Language (XML 1.0), Rec-xml-

19980210, ohttp://www. w3. org/TR/REC-xml>.

J.S. Houchin, D.W. Singer / Signal Processing: Image Communication 17 (2002) 131–144144

