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Abstract

Quantization is instrumental in enabling the rich feature set of JPEG 2000. Several quantization options are provided
within JPEG 2000. Part I of the standard includes only uniform scalar dead-zone quantization, while Part II allows
both generalized uniform scalar dead-zone quantization and trellis coded quantization (TCQ). In this paper, an
overview of these quantization methods is provided. Issues that arise when each of these methods are employed are
discussed as well. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

JPEG 2000 is the latest ISO/IEC image com-
pression standard. It is distinct from previous
standards, in that it creates a framework where the
image compression system can act like an image
processing system rather than just a simple input—
output storage filter. The decision on several key
compression parameters such as quality or resolu-
tion can be delayed until after the creation of
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the compressed codestream. JPEG 2000 enables
decompression of many image products from a
single compressed file and offers several opportu-
nities for compressed domain processing.

Quantization is one of the critical ingredients of
the JPEG 2000 image compression system. Many
of the desirable elements of the JPEG 2000 feature
set are enabled due to careful selection of
quantization methods. In this paper, we provide
an overview of these methods.

This paper is organized as follows. In Section 2,
an introduction to quantization methods used in
JPEG 2000 is presented. Section 3 describes how
these quantization methods are used within the
framework of JPEG 2000, and Section 4 provides
a brief summary.
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2. Quantization

Quantization is the element of lossy compres-
sion systems responsible for reducing the precision
of data in order to make them more compressible.
JPEG 2000 offers several different quantization
options. Only uniform scalar (fixed-size) dead-
zone quantization is included in Part I of the
standard. Part II of the standard generalizes this
quantization method to allow more flexible dead-
zone selection. Furthermore, trellis coded quanti-
zation (TCQ) is offered in Part IT as a value-added
technology.

2.1. Scalar quantization

The simplest form of quantization is scalar
quantization. JPEG 2000 employs a dead-zone
uniform scalar quantizer to coefficients resulting
from the wavelet transform of image samples.
Fig. 1 illustrates such a quantizer with stepsize A4.
A scalar quantizer (SQ) can be described as a
function Q that maps each element in a subset of
the real line to a particular value. For a given
wavelet coefficient x, the quantizer produces a
signed integer ¢ given by

q = 0(x). (1)

The quantization index ¢ indicates the interval in
which x lies. In Fig. 1, the endpoints of the
quantization intervals are indicated by the vertical
lines.

Given ¢, the decoder produces an estimate of x
as

=07 2

In Fig. 1, the heavy ‘“dots” represent these
estimates (or reconstruction values). For a given
step size 4, ¢ is computed as

|x]
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Fig. 1. Dead-zone uniform scalar quantizer with stepsize 4.

Notice that the wavelet coefficients inside the
interval (—4, 4) are quantized to zero for the
quantizer in Fig. 1. Thus, the interval (—4, 4) is
called the “deadzone”. The width of this interval is
24, while all other intervals are of width 4.

The inverse quantizer is given by

f=0 g =1 0
sign(q)(lg| + 0)4, ¢ # 0,

where 0 is a user selectable parameter within the

range 0<d <1 (typically 6 = 1/2).  can be chosen

to achieve the best objective or subjective quality

at reconstruction.

The quantizer illustrated in Fig. 1 is the quanti-
zer used in JPEG 2000 Part I. However, in Part I1
of the standard, it is possible to generalize this
quantizer to allow a deadzone of variable width,
while maintaining the fixed width 4 for all other
intervals. For a deadzone of width 2(1 — nz)4, the
quantization index is given by

0, |x| < — nz4, )
T\ sign(n |B24] > — nza.

Here, nz is a parameter that adjusts the dead-zone
size, and is transmitted as side information to the
decoder. Notice that nz =0 corresponds to the
default quantizer given in Fig. 1, and values of nz
in the interval (0, 1) result in a smaller deadzone,
while values in (—1, 0) result in a larger deadzone.
The generalized dead-zone uniform scalar quanti-
zer is illustrated in Fig. 2. In this case, the
reconstructed wavelet coefficients are given as

A 07 q - 0,
Y=Y o (6)
sign(q)(|q| — nz + 64, ¢ # 0.

In JPEG 2000, there is some indication that using
nz~0.25 (i.e., dead-zone size about 1.54) can
provide a very slight decrease in MSE and generate
more visually pleasing low-level texture recon-
struction.

2.1.1. Embedded scalar quantization

A very desirable feature of compression systems
is the ability to successively refine the recon-
structed data as the bit-stream is decoded. In this
situation, the decoder reconstructs an approxima-
tion of the reconstructed data after decoding
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Fig. 2. Generalized dead-zone uniform scalar quantizer with stepsize 4 and dead-zone size 2(1 — nz)4.

a portion of the compressed bit-stream. As more
of the compressed bit-stream is decoded, the
reconstruction quality can be improved, until the
full quality reconstruction is achieved upon
decoding the entire bit-stream.

Since this property is one of the key focuses of
JPEG 2000, the quantizers used in the standard
have been designed to enable embedded quantiza-
tion. Let us consider the uniform dead-zone
quantizer defined by Egs.(3) and (4). This
quantizer has embedded within it, all uniform
dead-zone quantizers with step sizes 274 for
integer p=0.

To see this, let K = max [log,(l¢])|. That is, K is
the number of bits r(équired to represent all
quantization indices. Then, we can represent ¢ in
sign magnitude form as

(7

where s is the sign, go is the most significant bit
(MSB), and gk is the least significant bit (LSB)
of q. Now, let

»)

q=25,4q09192" " 4k-1,

®)

denote the index obtained by dropping the p least
significant bits of ¢. It is then easy to see that

4" = Qy(x), ©)

where O, is the uniform dead-zone quantizer with
step size 27 4. Fig. 3 illustrates this embedding for
p=1and 2.

q =38, 909192 dk—1—p
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Fig. 3. Embedded dead-zone uniform scalar quantizer.

Eq. (9) suggests that if the p LSBs of |¢| are not
available at the decoder, it is still possible to obtain
an approximation to x, but at a lower level of
quality. In this case, the inverse quantization is
performed using the dequantizer Q;l such that

& — O)-1(,P)
X = 94 q )
q(p) =0,

10
q” # 0. (10)

0,
Oa
sign(¢P)(lg")| + 6)27 4,

Note that p = 0 yields the full quality dequantiza-
tion given by Eq. (4).

Similar embedding properties exist for the
generalized dead-zone uniform scalar quantizer
defined by Egs. (5) and (6). In this case, when p
LSBs of the index |g| are not available at the
decoder, the reconstructed value is computed as

. 0, g =0,
=
sign(¢®)(|¢P)| — nz277 + 8)2° 4, ¢P # 0.
(11)

Note that uniform dead-zone SQ has one im-
portant embedding property that is not shared by
the generalized dead-zone scalar quantizer when
nz#0. For QP(x), as illustrated in Fig. 3, any
truncation of p bits is exactly equivalent to
choosing a larger step size 2°4. As a consequence,
the dead-zone width is always exactly twice the
effective step size of 24. So full reconstruction of
a quantization with a large step size will produce
identical results to a partial reconstruction of a
quantization with a smaller step size. This allows
flexibility in setting the step size magnitude.

When nz#0 the deadzone after truncating p
LSBs is 2(1 — nz277) times the effective step size of
2?A. Thus, the dead-zone size does not remain
constant throughout the embedding. Benefits
gained by setting nz#0 will have fullest impact
when coefficients are fully decoded, so step size
choice becomes quite important.



76 M.W. Marcellin et al. | Signal Processing: Image Communication 17 (2002) 73—-84

2.1.2. Dequantization with reversible transform

The inverse quantizer formulas given in Eqgs. (4)
and (10) have a problem when followed by a
reversible transform. There is no guarantee that
the estimate X is an integer. To avoid this problem,
JPEG 2000 modifies the inverse quantization defi-
nition in this special case to

£=0,"4")
0, g» =0,
=9 . (12)
sign(¢?)| (1P| + 6)22 4], ¢ #0.

2.2. Trellis coded quantization

Trellis coded quantization (TCQ) is based on
the ideas of an expanded signal set and set
partioning from coded modulation, and has been
shown to be an efficient method with modest
complexity for encoding of memoryless sources [5].
As mentioned previously, TCQ is included in
JPEG 2000 Part II.

A trellis is nothing more than a state transition
diagram (that takes time into account) for a finite
state machine. Trellises are used to study se-
quences of state transitions, or equivalently,
sequences of states. A typical trellis with § states
is shown in Fig. 4. In the figure, each column of
heavy dots represent the eight possible states at
any given point in time. These states are labeled
from 0 to 7, from top to bottom. Each branch in

the trellis represents a transition from one state to
another, at the next point in time. For example, in
the figure, two possible transitions from state | are
to either state 0 or state 4. Specifying a path
through the trellis is equivalent to specifying a
sequence of states. Given an initial state at t =0,
this path can be specified by a binary sequence,
since there are only two possible transitions from
one state to another in the figure.

For the variant of TCQ included in JPEG 2000,
a uniform scalar quantizer is partitioned into four
subsets called Dy, D;, D, and D;. This is
illustrated in Fig. 5. The subsets D; are used to
label the branches of a trellis. Fig. 6 shows a
single stage of the 8-state trellis used in Fig. 4
with branch labeling. The union of the quantizers
associated with each state is called a wunion
quantizer. Notice that the two union quantizers
used for the trellis in Fig. 6 are 49 = Do |J D> and
Ay = Dy |J D3. These quantizers are illustrated in
Fig. 7. In Fig. 7, the reconstruction values X
corresponding to each union quantizer and the
corresponding union quantizer indices g4, are
shown as well.

The structure of the trellis allows encoding to be
done using the Viterbi Algorithm [2]. For encoding
a data sequence xeR", an N-state trellis of
m stages is employed. Note that such a trellis
has m+1 columns of states. Let %,
i=0,1,....,m1[1=0,1,..., N—1 denote state /
of column i.

=2 t=3

State

N~ o a A WN PP O

Fig. 4. A typical trellis diagram.
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Fig. 7. Union quantizers for TCQ.

For each state &1, let %y and &, be the
two states having branches ending in %, ;. Also,
let D' and D"+ be the subsets associated with
those branches, respectively. Let ¢y, and ¢y be the

codewords in D' and D"/ that minimize p(x;, ¢) =
(x; — ¢)*, and let dy; = (x; — ¢p)* and dpry = (x; —
c1~31)2. Finally, let s;;1; be the ‘“‘survivor distor-
tion” associated with the survivor path at state
Lir1-

The ith step (i=0,..., m—1) in the Viterbi
algorithm then consists of setting si.1; =
min {s;y + dp s, i + dpr}, preserving the branch
that achieves this minimum, while deleting the
other branch from the trellis. If two values
compared for minimum survivor distortion are
equal, the “tie”” can be resolved arbitrarily with no
impact on MSE.

When the end of the data is reached (i = m — 1),
the trellis is traced back from the final state having
the lowest survivor distortion, and the correspond-
ing set of TCQ indices are produced. For long data
sequences (m>log, N) the choice of initial state
has negligible impact on MSE. Thus, we arbitra-
rily fix the initial state at 0.

A simple modification can be applied to the
TCQ quantization indices obtained as described
above, to allow more efficient entropy coding. If
we assume that the input sequence x; has a
symmetric probability distribution, it can be seen
in Fig. 7 that the quantization indices 1 from A,
and —1 from A; have the same probability.
Similarly, the probability of the quantization index
—1 from Ay is equal to that of quantization index 1
from A;. Thus, we negate the +1 indices in 4; to
bring the probabilities of +1 indices in both union
quantizers into agreement. This allows for more
efficient entropy coding of quantization indices.
Note that, it is also possible to negate al// the
quantization indices in A; [3]. This will bring the
probabilities of all the quantization indices in Ay
and A; into agreement, and will improve the
performance of entropy coding. However, this is
avoided since the negation of the indices of 4,
(except +1) compromises the embedding property
of TCQ, as discussed in the next section.

The dequantization of TCQ indices at the
decoder is straightforward. The sequence of
indices specifying which codeword was chosen
from the appropriate union quantizer at each stage
is sufficient to allow the decoder to reproduce the
reconstructed values, given the initial state. The
dequantization utilizes the same trellis employed at
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the encoder, and initializes the state index / = 0,
and the stage index i = 0. If the union quantizer
used for the current state &;; is A; and the
quantization index is + 1, the quantization index is
negated. The reconstructed value is computed
using the union quantizer of the current state.
The next state is chosen using the branch labeling
of the trellis as follows: if the quantization index of
the union quantizer is from subset D;, the next
state is selected by following the branch labeled D;.

2.2.1. Embedded trellis coded quantization

As in the case of SQ, the sign magnitude
representation of TCQ indices can be employed
to achieve an embedding for TCQ. To see this, first
notice that codewords from the two subsets
(within a union quantizer) differ in the least
significant bit of their index ¢g(4,. In other words,
the least significant bit of the quantization index
determines the subset to which the codeword
belongs.

For example, in A4y all the codeword indices for
the codewords in D, have ‘I’s in their least
significant bit, while the indices for codewords in
Dy have ‘0’s. Since the decoder determines the next
state by identifying the subset each codeword
belongs to, the least significant bit thus determines
the path through the trellis. Since the decoder
needs to be able to determine the path, it is not
possible to invert the TCQ indices precisely until
all of the least significant bits are available.
However, it is possible to form an approximate
reconstruction value in the absence of the p least
significant bits of the TCQ quantization index.
Similar to the case of SQ, this value can be
computed as

q” =0

b

0,
X=9 . (13)
{ sign(g?)(lg"| + 9)2°14, ¢ # 0.

Note that this operation is equivalent to perform-
ing inverse scalar quantization with twice the TCQ
step size.

As mentioned in the previous section, negation
of the indices of 4; will improve the performance
of entropy coding. However, since the path
through the trellis cannot be determined until the
least significant bitplane becomes available at the

decoder, the decoder cannot identify the code-
words belonging to 4;. Thus, this negation will
jeopardize the embedding property, and is
avoided. Note, however, that the negation of
+1’s in 4; will not jeopardize embedding. The
+1’s are transmitted in the least significant
bitplane and at this point the decoder can
determine the path through the trellis. This allows
identification of +1’s that belong to A;. The
reader is referred to [1] for further discussion on
embedded coding of TCQ indices.

3. Quantization in JPEG 2000

In JPEG 2000, each resolution of wavelet
coefficients is partitioned into precincts. Precincts
are one of the ingredients to low memory
implementations. They also provide a method of
spatial random access. Compressed data from a
precinct are grouped together to form a packet.

Another one of the geometric structures used in
JPEG 2000 are codeblocks. Codeblocks are for-
med by partitioning subbands. Since the precinct
size (resolution dependent) and codeblock size
(resolution independent) are both powers of 2,
the two partitions are forced to ““line up”. Thus, it
is reasonable to view the codeblocks as partitions
of the precincts (rather than of the subbands).

In JPEG 2000, wavelet coefficients of each
codeblock are scanned in a particular order for
the purpose of quantization and entropy coding.
This order was chosen to facilitate efficient
pipelining and/or parallel processing. Fig. 8 illus-
trates the scan pattern used for a given codeblock.
Each codeblock is quantized and entropy coded
independently.

4 coefficients

Fig. 8. Scan order for quantization sequence of a codeblock.
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Entropy coding is performed using context-
dependent, binary, arithmetic coding of bitplanes
(For details of entropy coding methods used in
JPEG 2000, refer to [6]).

Consider a quantized codeblock to be an array
of integers in sign-magnitude representation, then
consider a sequence of binary arrays with one bit
from each coefficient. The first such array contains
the most significant bit (MSB) of all the magni-
tudes. The second array contains the next MSB of
all the magnitudes, continuing in this fashion until
the final array which consists of the LSBs of all the
magnitudes. These binary arrays are referred to as
bitplanes.

The number of all-zero “‘leading” bitplanes for
the codeblock is signaled as side information and
bitplanes are encoded starting from the first
bitplane having at least a single 1. Note that this
way of coding complements embedded quantiza-
tion and facilitates successive refinement of wave-
let coefficients. If K—p of the most significant
bitplanes for a codeblock are available at the
decoder, the quantization index q(/’) can be formed
for each wavelet coefficient of the codeblock. The
approximate reconstruction values are then given
by Eq. (10).

The encoder may take advantage of this
embedding facility and choose not to encode p of
the LSBs for a particular codeblock. When this
occurs, the effective quantization step size of this
codeblock, 274, is due to a combination of the step
size 4 and encoder truncation. How a desired
effective quantization 4’ is generated—either all in
the quantization step size (4’ = 4) or some portion
occurring via bitstream truncation (4’ = 27 4)—is
typically an encoder choice.

The ability to transfer much of the quantization
into the bitstream truncation process is a powerful
tool within JPEG 2000. Since JPEG 2000 code-
stream construction allows truncation to be
controlled on a sub-bitplane level at each code
block, coefficients in different areas of the image
can have different effective quantization levels.

3.1. Determining amount of embedding

All the embedded inverse quantization formulas
rely on a knowledge of p, the number of LSBs

unavailable at the decoder. In JPEG 2000 each
subband b has a maximum number of magnitude
bitplanes that can be decoded, M,. By counting
the number of magnitude bits actually decoded for
each coefficient, Ny(u, v), the decoder determines

p = My — Np(u, v), (14)

where My, itself is composed of the predicted
number of quantized bits, ¢y, and some number of
guard bits, G, to accomodate unpredicted over-
flow, such that

My=G+e,— 1. (15)

Both G and &, are chosen by the encoder and
signaled in the codestream. A typical value for G is
2. The values ¢, set by the encoder are a function
of both the quantization step size and the
predicted bitdepth of the wavelet coefficients,

Ry, = Ri+log (gainy), (16)

where Ry is the original image bitdepth and gainy
is the gain expected from the wavelet transform in
subband b. The exact relationship between &, the
quantization step size, and R, will become
apparent in the next section.

3.2. Selection and signaling of quantization step
sizes

Image quality and compression rate are con-
trolled by the amount of quantization applied to
each coefficient. JPEG 2000 is a decoder standard
so the quantization step size selection is quite
flexible. However, there are a few restrictions
imposed by the standard.

3.2.1. Reversible wavelets

When reversible wavelets are utilized in JPEG
2000, uniform dead-zone scalar quantization with
a step size of 4 =1 must be used. Reversible
wavelets produce integer wavelet coeflicients.
Thus, a step size of 4 = 1 results in no quantiza-
tion. If all the bitplanes are encoded, lossless
reconstruction is possible once all bitplanes are
received by the decoder.

The constant step size 4 = 1 is not signaled to
the decoder. Instead, the value ¢, = Ry, is signaled
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in a 5-bit unsigned integer field. If Ry > 31, ¢, = 31
and lossless reconstruction is impossible.

Restricting the step size to 1 does not prevent
the encoder from embedding the bitstream to
allow intermediate (or even final) lossy results. The
effective quantization step size caused by this
embedding can be any power of two.

3.2.2. Irreversible wavelets

When irreversible wavelets are utilized in JPEG
2000, the step size selection is restricted only by the
signaling syntax itself.

Every subband b has a single quantization step
size, Ay, that is represented as a two-part quantity,
(&b, Hy,) such that

Ay = (1 +%>2Rh*8b, (17)
where yy, is an 11-bit unsigned integer and ¢y is a 5-
bit unsigned integer.

This syntax has several consequences.

® Only one quantization step size per subband.
Therefore, A, must be smaller than (or equal to)
the effective quantization desired in different
areas in the subband. If in doubt, choose a
somewhat small quantization step size and then
truncate later as required. This also means a
single scale factor (1 + w,/2'') must be used
across the entire subband.

® The accuracy of the step size is restricted to 12
significant binary bits. This can impact conver-
gence of integrative step size refinement techni-
ques and transcoding of step sizes defined
outside JPEG 2000.

® Upper bound: Ap<2R+1 A step size that is
over twice the predicted subband magnitude
will quantize almost all subband coefficients to
zero. The same effect can be achieved using a
reduced step size (set &, = 0) and applying
encoder truncation.

e Lower bound: 2831 < A,. This bound is more
restrictive than the upper bound, since it limits
high accuracy coding. For 8-bit image data 21
fractional bits of the HH coefficients can be
encoded. This is certainly enough for many
compression needs. However, when the image
bitdepth becomes large, this bound has more
impact. For example, the HH subband of 30-bit

image data must be truncated above the
original decimal point. When computations
are performed in 32-bit registers this does not
impact overall performance, but the lower
bound must be applied prior to using the step
size for any intermediate computations.
The exponent/mantissa pairs (e, y,) are either
signaled in the codestream for every subband
(expounded quantization), or else signaled only for
the lowpass subband (err, yyp) and derived for all
other subbands (derived quantization).
Derived quantization can only be used when the
step size exponent/mantissa pairs obey

(v, fp) = (eLL — NLL + b, i), (18)

where ny is the number of levels of decomposition
required to reach subband b, and the subscript LL
indicates the lowpass subband. With the Mallat
(or dyadic) decomposition used in JPEG 2000
Part I, this means that the step size decreases by a
factor of 2 at each decomposition level. This gives a
rough approximation of the step sizes which would
be chosen based on high rate theory using the L,
synthesis gains of the wavelet subbands.

Average performance often improves if the
actual L, synthesis gains are used [7] to set the
relative step sizes. Specifically, if Wy is the L,
synthesis gain (or “‘energy weight”) of band b, then

Wo
Ay = T Ag. (19)
When this methodology of step size selection is
employed, expounded quantization is usually
required.

3.3. Lagrangian rate allocation

As discussed above, when expounded quantiza-
tion is employed, quantization step sizes can be
selected separately for each subband. Since the
selection of the quantization step sizes is an
encoder issue, a particular selection method is
not specified within the standard. One method that
can be used to determine these step sizes is
described in [3]. In this procedure, every subband
of wavelet coefficients is assigned a generalized-
Gaussian density (GGD) model. The GGDs are a
family of symmetric, unimodal probability density
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functions (pdf). The zero-mean pdf is given by

o r(3/a)
20 (1 /o) \| T'(1/2)
G/ (W)
xexp{—( (/) <F)> } (20)

The o parameter determines the shape of the
function, where o = 1.0 corresponds to the Lapla-
cian density, and « = 2.0 corresponds to the
Gaussian density. In the procedure, five allowable
choices for o are 0.5, 0.75, 1.0, 1.5, 2.0. These values
have been chosen to cover the extent of the observed
pdfs of wavelet coefficients in typical imagery. The
parameter o for a given subband is estimated from
its sample kurtosis. Given o; and di(%;), i=
1, ..., B, where B is the number of subbands and
di(#;) is the MSE obtained by quantizing at rate %;
a unit variance GGD source having parameter o;
the rate allocator attempts to minimize the overall
MSE constrained by an average rate constraint. For
details of this Lagrangian rate allocation strategy,
the interested reader is referred to [3].

p(x) =

3.4. Considerations for TCQ

For TCQ, the A}, signaled in the codestream is
actually 24, i.e. twice the step size used in the TCQ
description. This allows decoders that have no
knowledge of TCQ to decode embedded data
correctly using the standard inverse scalar quantizer.

It is important to reiterate that the LSBs of the
TCQ indices determine the path through the trellis
and are required for precise dequantization. If
only a portion of the LSBs are available at the
decoder (as would be the case if only one or two of
the three LSB coding passes have been received by
the decoder), full TCQ dequantization cannot be
utilized. For this reason, the following policy is
followed in the current verification model (VM):!
If any of the three coding passes for the LSB of a
codeblock is included within a packet, the encoder
is forced to include all three passes. This allows full

"The verification model for JPEG 2000 consists of software
implementation of an encoding system, a decoding system, the
bit-stream definition and syntax, input and output definitions of
each system, operational procedures and documentations.

TCQ dequantization to be utilized at the decoder
after this particular packet is received. It should be
noted, however, that this is an encoder issue, and
thus, is not specified by the standard.

TCQ provides visually superior results com-
pared to SQ, when images have fine grain texture.
Such an example is illustrated in Figs. 9-11. In
Fig. 9, the original image is displayed. Figs. 10 and
11 displays the same image encoded at 0.3 bits/
pixel using SQ and TCQ, respectively. By compar-
ing Figs. 10 and 11, it can be seen that texture is
better preserved using TCQ.

3.5. Multi-component and tiled images

In JPEG 2000, an image is a collection of two-
dimensional rectangular arrays of samples. Each
of these arrays is called an image component. Tiles
are non-overlapping rectangular regions of the
image and the array of samples from one
component that fall within a tile is called a tile-
component. Within JPEG 2000 the (ep, 1) pairs
may be separately chosen for each tile-component,
but cannot change within a tile-component. This
allows step size choices to vary in different image
components (for example intensity versus chroma-
ticity in a color image) and in different tiles.

A signaling priority is used for efficient storage
of this quantization information. A single default
set of image quantization pairs (e, fy) 1S signaled
in the main header and used whenever no other
quantization signaling overrides it. Default com-
ponent quantization pairs may be signaled to
override the image default on a particular compo-
nent. A tile-component using non-default quanti-
zation must signal the new quantization as part of
its header. The new quantization only effects this
particular tile-component.

3.6. Selection of ¢

The inverse scalar quantizer formulas incorpo-
rate a user selectable parameter 6 which indicates
where in the quantization interval the reconstruc-
tion value X is placed. A typical assignment of § =
1/2 will place the reconstruction at the center of
the quantization interval. Other considerations
such as transform coefficient distribution and
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Fig. 9. Original image.

visual appearance may influence the location of
the reconstruction value. Since there is no one
optimal reconstruction positioning for all images,
the JPEG 2000 standard allows the decoder free
choice of d.

Tuning of J involves a large number of factors
including: image type, subband coefficient distribu-
tion, number of missing LSBs p, quantization index,
neighboring coefficient values, and encoder embed-
ding rules. Over a range of image types, the default
0 =1/2 assignment tends to provide the most
reliable reconstruction performance. For further
information the interested reader is referred to [4].

3.7. Unusual quantization effects

When there is no change in the image bitdepth
between encoding and decoding, JPEG 2000
generates an image with data of the same
magnitude as the original. However, there are
situations requiring a change in the original
image bitdepth. For example, maximum display

depth restrictions or display of binary data with
high contrast. Sometimes this is a decoder choice,
but in other circumstances the encoder or
fileserver may force the change within the
compressed codestream. This section explores
the effects of such changes.

Let Ris be the bitdepth of the source image and
Rip be the image bitdepth signaled to the decoder.
Reversibly and irreversibly transformed data react
very differently when Rjs+# Rip.

3.7.1. Irreversible transform

When the transform is irreversible the decoder
quantization step size is a function of Ry, which
in turn is computed from the reported image
bitdepth Rip. If Rip > Ris the decoder will
see a larger step size than the encoder and if
Rip < Ris a smaller one. This difference translates
into either a gain or loss in magnitude of
the reconstructed image values. So altering the
signaled image bitdepth causes the most significant
bits of the input data to become the most
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Fig. 10. SQ quantized image at 0.3 bits/pixel.

significant bits in the decoded output data without
any extra manipulation.

For instance, using this manipulation 12-bit
imagery can be scaled down to 8 bits and reduced
bitdepth imagery can be stretched to 8 bits.

3.7.2. Reversible transform

When the transform is reversible, the step size is
always 1 and the signaled image bitdepth has no
impact on the magnitude of the inverse trans-
formed image data. Instead the magnitude of the
inverse transformed image data is proportional to
the signaled values ¢p. This is exactly the reverse of
the situation with irreversible transforms.

If ¢y is set as anticipated (¢, = Ris+log, (gain,))
the inverse transform will indeed act reversibly, but
the reconstructed image bitdepth will be Rs. In
other words, the decoder will create the original
image bitdepth regardless of the signaled image
bitdepth. If the image bitdepth is forced upwards,
say from 1 to 8, the result will be an 8-bit image

with significant values only at the very lowest
bitplanes (values of 0, 1 and possibly 2). If instead
the image bitdepth is forced down (say from 12 to
8), the output of the inverse transform will still have
the higher number of bits (12), and the application
will need to take extra steps unspecified by the
standard to decide which bits should be output.

If the encoder attempts to modify &, to force
scaling of the decompressed image data, another
problem will occur. Any time &, # Ris the rever-
sible property of the transform is lost since
rounding/truncation no longer occurs at the
correct bitplane. For example, lowering all
the values of &, by a fixed value k, will cause the
output magnitude to be reduced by k bits, but will
also cause errors in the inverse transform that
would not be present if the decoder application
independently reduced the bitdepth after the
transform. Likewise, increasing ¢, by a fixed value
k will stretch the data by 2%, but will also introduce
errors in the lower level bitplane values. For
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Fig. 11. TCQ quantized image at 0.3 bits/pixel.

example 1-bit data might be stretched to 8-bit via
&, and Ryp signaling, but the output image will not
be strictly binary even if all data are decoded.

4. Summary

Since JPEG 2000 is intended to serve a diverse set
of applications, several quantization options are
provided within the standard. Part I of the standard
includes uniform scalar dead-zone quantization.
Part II extends the quantization options to include
generalized uniform scalar dead-zone quantization
and trellis coded quantization. All of the quantiza-
tion methods support embedded coding and are
conducive to the rich feature set of JPEG 2000.

In Section 2 of this paper, the quantization
methods used in the standard are reviewed. In
Section 3, several issues pertaining to the use of
these methods within the standard are discussed.
These issues range from selection and signaling of
the quantization parameters to dealing with the

unusual quantization effects when the image
bitdepth changes between encoding and decoding.
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